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Abstract

Estuarine mangrove ecosystems are considered essential nursery grounds and feeding 

areas for the early life stages of many fish species, often including commercially important ones. 

Particularly, climate change is expected to affect and have a substantial impact on mangrove 

estuaries, through processes including changes in precipitation, increased temperature, and

changing patterns of ocean and estuarine circulation. As a result, the inversion of the salinity 

gradient in several estuaries throughout the dry tropics is either underway or can be expected in 

the near future. Such modifications of these important estuarine environments are cause of 

concern because spawning and nursery grounds of fishes have requisite environmental and 

physical attributes. Thus, there is a strong scientific consensus that related pressing contemporary 

research questions regarding the early life history of fishes in these transformed estuaries should 

be addressed. 

Located in Senegal, West Africa, the Sine Saloum system is representative of estuaries

where the salinity gradient has been inverted due to climatic changes in the region. Given the 

high overall salinity and the resulting mangrove degradation that is taking place there, its 

potential role (compared to “classic estuary”) as a recruitment and nursery area for fish larvae is 

far to be clear. Thus, the Sine Saloum estuary is a natural and excellent choice to study how these 

climatic environmental transformations are affecting the ichthyoplankton community. The aim of 

this thesis is to gain knowledge on the environmental and physical factors affecting the Sine 

Saloum ichthyoplankton diversity and distribution.

The survival of fish larvae is known to be influenced by complex interactions between

environmental changes and tropho- and hydrodynamic processes. Consequently, I first analysed 

the spatial and seasonal distribution of the fish larval assemblages related to environmental 

parameters. Second, a field experiment measuring simultaneously vertical current profiles and

larval transport were conducted to investigate the effectiveness of larval fishes in regulating

transport in and out of the estuary. Lastly, stable isotope analysis was used to evaluate the

contribution of the sea surface microlayer (SML) to the diet of larval and juvenile African

halfbeaks (Hyporamphus picarti), one of the dominant species in the system.
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The summarised key findings of the thesis are:

A total of 41 taxa representing 24 families and 34 genera were sampled in the estuary, 

which is lower than that of other tropical estuaries, providing evidences that high salinity 

environment may harbour a less diverse ichthyoplankton fauna. Additionally, the distributional 

pattern of fish larvae revealed that the total abundance and the richness in the estuary decreased 

from the lower to the upstream areas with salinity and water temperature as the variables that best 

explained the spatial and temporal differences observed. Larval fish assemblages also showed a 

clear vertical structure corresponding to three distinct water strata.

The circulation at the entrance of the Sine Saloum estuary was characterized by the

existence of a longitudinal gravitational circulation with vertical shear and net near-surface

inflow into the estuarine system. This is of critical importance in the context of fish recruitment

because it offers a natural path into (resp. out of) the estuarine system for organisms that would

be able to maintain themselves in the upper (resp. lower) part of the water column. The

distribution of the fish larvae taxa that were examined revealed depth range preferences that did

not change in time, independent from tide conditions, and were consistent with the use of these

pathways. From a behavioural perspective, this mechanism can be viewed as simpler than

selective tidal stream transport in that it does not require the organisms to synchronise their

vertical migrations with the phase of the tidal currents.

By obtaining statistically distinct 13C and 15N isotopic signatures for the SML, its

presence at the entrance of the Sine Saloum estuary was confirmed. The organisms contained in

the SML presented an important food source for H. picarti larvae and juveniles, contributing to

more than 70 % of their diets. These results underline the importance of the SML and the role of

this estuary as a spawning and nursery habitat for H. picarti.

In conclusion, despite the environmental transformation that has taken place in the Sine 

Saloum estuary, the collective information gathered in this thesis indicated that some the 

prevailing environmental and physical conditions resulted in a reduction of the ichthyofauna 

diversity, but nevertheless allowed the maintenance of the estuary’s role as an important 

recruitment and nursery habitat. Furthermore, it contributes to our understanding about the 

potential development of other, currently less disturbed mangrove estuarine systems in West 

Africa and around the world.
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Zusammenfassung

Mangrovenökosysteme entlang tropischer Küsten sind wichtige Aufwuchs- und

Nahrungsgebiete für frühe Entwicklungsstadien vieler, auch kommerziell wichtiger, Fischarten. 

Diese Ökosysteme sind von verschiedenen Auswirkungen des globalen Klimawandels betroffen, 

wie zum Beispiel Veränderungen der Niederschlagsmenge in den Einzugsgebieten, erhöhte 

Temperaturen und sich verändernde Muster der Ozean- und Ästuarzirkulation. Eine Folge dieser 

Klimaveränderungen kann die Umkehrung oder Inversion des typischen Salzgehaltsgradienten in

einem Ästuar sein, was einen ansteigenden Salzgehalt mit zunehmender Entfernung von der 

Küste bzw. Mündung bedeutet. Dieser Prozess ist in vielen Ästuaren der trockenen Tropen 

entweder schon im Gange oder kann in naher Zukunft erwartet werden. Diese einschneidenden 

Veränderungen der hydrologischen Bedingungen in den Flussmündungssystemen sind ein Anlass 

zur Besorgnis, da damit wichtige ökologische und physikalische Eigenschaften der Laich- und

Aufzuchtgebiete von Fischen verändert werden. Daher besteht ein dringender Forschungsbedarf, 

die Konsequenzen dieser Umweltveränderungen für den Fortplanzungserfolg von Fischarten, 

deren frühe Lebensstadien auf ästuarine Habitate angewiesen sind, zu untersuchen.

Das Sine Saloum System im westafrikanischen Senegal repräsentiert ein solches Ästuar, 

in dem der Salzgehaltsgradient aufgrund von Klimaveränderungen in der Region umgekehrt 

wurde.. Der hohe Salzgehalt hat eine Degradation des lokalen Mangrovenwaldes zur Folge und 

es ist unklar, welchen Effekt dies auf dessen Qualität als Rekrutierungs- und Aufzuchthabitat für 

die Fischarten hat. Somit stellt das Sine Saloum Ästuar ein natürliches Laboratorium dar, welches 

hervorragend geeignet ist, den Einfluss der beschriebenen Umweltveränderungen auf das 

Vorkommen von Fischlarven und die Zusammensetzung der Ichthyoplanktongemeinschaft zu 

untersuchen.

Das Überleben von Fischlarven wird durch komplexe Wechselwirkungen verschiedener 

Umweltbedingungen bestimmt, wobei trophodynamische und hydrologische Prozesse von 

besonderer Relevanz sind. In dieser Arbeit wurde daher zuerst die räumliche und saisonale 

Verteilung von Fischlarven im Sine Saloum System und die Beziehung von Fischlarvenabundanz 

zu verschiedenen Umweltfaktoren untersucht. Der zweite Teil der vorliegenden Arbeit beschreibt 

ein Feldexperiment, in dem untersucht wurde inwiefern Fischlarven ihren Transport in und aus 

dem Ästuar in das angrenzende Küstenmeer beeinflussen können. Dafür wurden gleichzeitig 

sowohl vertikale Strömungsprofile als auch die Position und Abundanz von Fischlarven in 
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verschiedenen Wassertiefen bestimmt, um Larventransportraten abschätzen zu können. Im dritten 

Teil der Dissertation wurde mittels stabiler Isotopenanalyse die Bedeutung der Oberflächenfilms 

für die Ernährung von larvalen und juvenilen Stadien des Afrikanischen Halbschnabelhechts 

(Hyporamphus picarti), der eine der dominierenden Arten im Sine Saloum System ist.

Die wichtigsten Ergebnisse dieser Arbeit können wie folgt dargestellt werden:

Insgesamt wurden Larvenstadien von 41 Fischtaxa im Sine Saloum Ästuar gefunden, die 

24 Familien und 34 Gattungen repräsentieren. Diese Zahlen sind deutlich geringer als in anderen 

tropischen Ästuaren mit einem normalem Salinitätsgradienten und lassen darauf schließen, dass 

eine Umgebung mit hohem Salzgehalt eine weniger vielfältige Ichthyoplanktonfauna beherbergt. 

Zusätzlich zeigte das räumliche Verteilungsmuster der Fischlarven, dass sowohl die Anzahl als 

auch der Artenreichtum von Fischlarven im Ästuar vom Mündungsgebiet hin zu den Oberläufen 

abnahmen, wobei Salzgehalt und Wassertemperatur die beiden Umweltparameter mit dem 

höchsten Einfluss auf die beobachteten Unterschiede darstellten. Außerdem konnte eine klare 

vertikale Strukturierung der Fischlarvengemeinschaft in drei unterschiedliche Zonen beobachtet 

werden.

Die Wasserzirkulation an der Mündung des Sine Saloum Systems war durch einen 

longitudinalen Gravitationskreislauf mit vertikaler Scherung gekennzeichnet,. Oberflächennah 

wurde ein Nettowasserzufluss in das Ästuar gemessen, in tieferen Wasserschichten wurde 

dagegen ein Nettowassserabfluss gemessen. Diese Umkehrung der Strömungsrichtung innerhalb 

der Wassersäule stellt einen Transportweg für Fischlarven in das und aus dem Ästuar dar, in dem 

sie ihre vertikale Position entsprechend anpassen. Die vertikale Verteilung der untersuchten 

Fischlarven ergab unterschiedliche Tiefenpräferenzen für verschiedene Taxa, welche jedoch 

zeitlich stabil und unabhängig von den Gezeiten waren. Aus verhaltensbiologischer Sicht kann 

aus dieser Beobachtung geschlossen werden, dass im Sine Saloum Ästuar ein vereinfachter und 

energetisch vorteilhafter Transportmechanismus für Fischlarven in und aus dem System besteht. 

Es entfällt die Notwendigkeit auf eine mit dem Gezeitenstrom synchronisierte 

Vertikalwanderung, wie sie anderen Ästuaren gefunden wird.

Die wichtige Rolle von Plankton des Oberflächenfilms als Nahrungsquelle für Larven und 

Jungfische des Afrikanischen Halbschnabelhechts (H. picarti) konnte durch die Untersuchungen 
13C- 15N Isotopensignatur nachgewiesen werden. Durch die Anwendung dieser 
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Technik konnte gezeigt werden, dass im Sine Saloum Ästuar eine Oberflächenfilm existiert, 

deren spezifische Planktonorganismen mehr als 70% der Nahrungszusammensetzung bei den 

Jugendstadien von H. picarti ausmachten. Dieses Ergebnis unterstreicht die Bedeutung der 

Oberflächenfilms und die Rolle der ästuariner Mündungsgebiete als Brut- und Aufzuchtgebiet für 

H. picarti.

Zusammenfassend konnte die vorliegendene Arbeit zeigen, dass die geänderten 

ökologischen- und physikalischen Bedingungen im Sine Saloum Ästuar zwar zu einer 

Verringerung des Artenreichtums der Ichthyoplanktonfauna führten, das 

Flussmündungungsgebiet aber weiterhin ein wichtiges Rekrutierungs- und Aufzuchtgebiet für 

viele Fischarten darstellt. Weiterhin erlauben die Ergebnisse dieser Arbeit eine bessere 

Abschätzung, welche Auswirkungen der Wandel weiterer mangrovengesäumter 

Flussmündungssysteme zu einem inversen Ästuar auf die betroffene Fischfauna haben kann. Ein 

Prozess der bei anhaltendem klimatischen Wandel weiteren Ästuaren in Westafrika und in der 

restlichen tropischen Hemisphäre droht.
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General Introduction

Early life stages of fishes and recruitment hypotheses

The main goal of ecology is to describe the distribution and abundance of living 

organisms and how the distribution and abundance are affected by interactions between the 

organisms and their environments (Krebs, 2009). We generally think of the ecological position of 

the adults, but in animals, such as fishes with complex and varied life histories, the position of the 

eggs, larvae, and juveniles may be very different from that of the adults. Accordingly, the 

ecological requirements of these early life stages are in most cases different from those of the 

mature and more developed individuals, but like the adults, they operate at all of the levels of 

ecological organization: the organismal, population, and ecosystem levels (Cushing, 1996; 

Reynolds, 2001). Thus, knowledge specific to the early life stages is important for a sound 

understanding of the biology, ecology, and evolution of fishes.

Many have made the link between recruitment and the rates of survival during the early 

life of marine fishes (Houde, 2002). It is during their early life phases that fishes are most 

vulnerable to environmental problems (Miller and Kendall, 2009), thus they must survive this 

critical period (Fig. 1), or at least a few must survive and be recruited to sustain populations 

through time (Rothschild, 2000). Accordingly, recruitment is viewed as one of the key processes

in the life cycle of a fish for maintaining the population, and its variability is commonly 

understood as driven by complex interactions between physiological, tropho- and hydrodynamic 

processes, and environmental changes that are acting throughout pre-recruit life from the egg to 

the juvenile phase (Houde, 1987, 2008; Lehodey et al., 2006).

Recruitment hypotheses have emphasized alternative views about the relative importance 

of different ecological processes that act on different life history stages. As early as 1914, Hjort

proposed two major factors that could increase larval mortality. First, a lack of prey items during 

a “critical period” within which the larvae must feed or die (“Critical Period Hypothesis”) and 

second, larvae could be dispersed by advective currents to unfavourable areas where they may 

not grow or would not be recruited to the adult population and would perish 

(“Offshore Transport Hypothesis”). Complementary, the “Aberrant Drift”, “Stable Ocean”, and 

“Optimal Window” hypotheses stressed the effects of hydrodynamic conditions on larval and 

juvenile stages, whereby recruitment is determined by retention on, or transport to, favourable

nursery areas (Begg and Marteinsdottir, 2002; Hjort, 1914) or favourable hydrological conditions 
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for foraging (Cury and Roy, 1989; Lasker, 1975). Attempting to unite all of the previous 

mentioned hypotheses, one recently emerging concept that appears to have substantial 

explanatory power is that of ‘Ocean Triad Hypothesis’. A series of comparative studies of the 

climatology and geography of known preferred spawning areas (Bakun, 1990, 1996; 

Bakun and Parrish, 1991; Cury and Roy, 1989; Parrish et al., 1983) have served to identify three 

major groups of physical processes that combine to yield favourable recruitment habitat for 

coastal pelagic fishes and also many other types of fishes: (1) nutrient enrichment (upwelling, 

mixing, etc.), (2) concentration of larval food (convergence, frontal formation, water column 

stability), and (3) processes favouring retention within (or drift toward) appropriate habitats.

The central idea behind these recruitment hypotheses is that survival and mortality rates

during early life phases determine its strength, thereby affecting the size of the adult population.

Also, recurrent to all these hypotheses are the need for optimal environmental conditions, 

appropriate larval transport, and feeding success. A suitable environment during the fishes’ early 

life phases is therefore critically important in population terms, and an understanding of how 

different conditions associated with these processes influence larval survival is a prerequisite for 

assessing long-term variations and sustainability of fish populations and stocks. Consequently, 

the research on the early life history of fishes (particularly the larval stage) should be wide-

ranging, with the aim of identifying the mechanisms by which factors such as environmental 

conditions, larval transport, and feeding success can influence larval abundance, distribution, and 

survival.

Fig. 1. A conceptualization of the recruitment process in fishes including the sources of nutrition, probable sources of mortality, 
and hypothesized mechanisms of control for four early life history stages. Log10 scales are used on both axes 
(taken from Houde, 1987).



9 
 

Environmental conditions (abiotic factors)

Many environmental factors probably affect survival of fishes’ early life stages and their 

dynamics can be influenced by both regional and basin-wide environmental fluctuations 

(Boeing and Duffy-Anderson, 2008; Doyle et al., 2009; Hsieh et al., 2005). Two of the most 

potent abiotic factors in the early life stages of marine fishes are temperature and salinity 

(Kinne, 1963). Several studies have demonstrated that temperature and salinity played a defining 

role in structuring larval fish assemblages (e.g. Harris and Cyrus, 2000; Strydom et al., 2003).

Temperature, which changes the rate of metabolism of eggs and larvae, might affect production 

of their prey, and can change currents that transport eggs and larvae to or away from suitable 

nursery grounds. As an example, Beaugrand et al. (2003) analysed monthly data collected during 

1958–99 to show that Gadus morhua (Atlantic cod) recruitment in the North Sea was related to 

temperature-dependent processes. With regards to salinity, laboratory experiments have 

investigated its influence on egg and larval development and although the tolerance of larvae to 

salinity appears to be highly species specific, and may change during ontogeny, many of these

studies could demonstrate a detrimental effect of elevated salinities. For example, 

Fielder et al. (2005) showed that growth of snapper larvae was significantly reduced at the high 

salinity of 45 PSU. Moreover, salinity can affect yolk utilization, larval growth, and survival by 

influencing the amount of energy needed for osmoregulation (Howell et al., 1998). Salinity also 

affects the buoyancy of eggs and larvae and this can impact on the ability of larvae to get to a

suitable position in the water column for finding food or/and for being transported by favourable 

currents (Battaglene and Talbot, 1993; Hadley et al., 1987). In addition, high salinities are known 

to cause important shifts in zooplankton communities (Anton-Pardo and Armengol, 2012; 

Jensen et al., 2010), with the associated trophic interaction affecting the fish larvae and juveniles 

consuming them.
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Larval transport

In marine fishes, the coupling between adult population size and the physical processes 

that control transport of larvae is expected to be strong. This is because, many inshore marine 

fishes in temperate and tropical environments spawn offshore but their larvae or juveniles use 

shallow habitats such as bays, mangroves, and other estuarine regions as nurseries 

(Beck et al., 2001). In these cases, the larval transport phenomenon has three main components: 

(1) movement towards shore, (2) location of and movement into nursery areas, and (3) retention 

in nursery areas (Boehlert and Mundy, 1988; Miller and Kendall, 2009; 

Norcross and Shaw, 1984) (Fig 2). Consequently, the survival of the larvae are bound to effective

transport to recruitment and nursery areas and are an important feature of their life history having 

a significant effect on the successful recruitment to the adult populations 

(Roughgarden et al., 1988). This is because disrupting connectivity could lead to impeding a 

population to access resources (e.g. nursery area with favourable environmental conditions and 

adequate access to food sources), which diminishes the resilience of that population 

(Gawarkiewicz et al., 2007) and affect the whole ecosystem (Mumby and Hastings, 2008).

Fig. 2. The general sequence of movement of marine larvae from offshore to inshore nursery grounds 
(taken from Boehlert and Mundy, 1988).
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Feeding condition

Inadequate food has been found, in the worst cases, to directly lead to starvation, and in 

the best cases, to slow growth and thereby increasing predation leading to high mortality rates. As 

mentioned earlier, one of the principal agents of recruitment regulation is hypothesized to be 

food-mediated mortality occurring during the larval stages. Indeed, starvation have long been 

considered a major cause in larval mortality (Hjort, 1914, 1926) and accordingly, food production 

in the sea and other coastal ecosystems, larval feeding behaviour, and nutrition have been the 

objects of a large amount of research to understand larval survival (Grote et al., 2012; 

Lehman, 2004; Munk and Kiorboe, 1985; Primo et al., 2017). In a situation of limited food 

resources, the competition for prey can negatively influence growth rates and recruitment success

according to the “Stage Duration Hypothesis” (Houde, 2008, 1987) where well-fed and fast-

growing larvae require less time to transit stages that are the most vulnerable to predators. The 

production of larval food is usually dependent on conditions such as temperature, salinity, 

oxygen, and nutrient levels, and is often associated with conditions fostering high productivity 

(Cushing, 1996). Consequently, larvae and juveniles rely on the production of particular kinds 

and amounts of food for their survival. To be in a location that provides high quality feeding is 

thus of vital importance for the larvae and juveniles.

Shifting climatic condition of fish larvae environments

Facing severe environmental degradation of coastal marine ecosystems due to climate 

change (IPCC, 2014), there is a strong scientific consensus that new pressing contemporary 

questions in early life history research should be addressed. Many studies have documented 

modifications in adult marine and coastal fish distributions and linked these to climate change 

(e.g. Jung et al., 2014; Shackell et al., 2014). For example, it has been shown that climate change 

can have deleterious effects on fishes by affecting individuals, populations and communities 

through changes of extremes in environmental factors, such as elevated water temperature, low 

dissolved oxygen or high salinity (Moyle and Cech, 2004; Rijnsdorp et al., 2009). However, for 

many coastal marine ecosystems there is a dearth of information on early life history 

characteristics of their constituent fish populations and their specific connections to new 
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prevailing climatic and environmental conditions. This inhibits the development of meaningful 

ecological frameworks for predicting population responses to these environmental changes. 

Therefore, there is a need to better understand the implications of these environmental 

transformations on fish early life survival, abundance, and distribution. This is particularly 

important in the context of the potential impacts of global climate change on fish populations,

especially in high latitudes that are experiencing some of the most rapid and severe changes 

(IPCC, 2008, 2014).

Mangrove estuaries and climate change

Particularly, climate change is expected to affect and have a substantial impact on 

mangrove ecosystems (Ellison, 2015), through processes including sea level rise, changing ocean 

currents, increased temperature, and changes in precipitation (Mckee et al., 2012). This is 

relevant and an additional cause of concern as mangroves are known to provide food and refuge 

for larval and juvenile fishes, where they occur at higher densities, avoid predation more 

successfully, or grow faster than in a different habitat (Laegdsgaard and Johnson, 2001; 

Verweij et al., 2006; Nagelkerken et al., 2008). For these reasons, mangrove estuarine systems 

are considered as “nurseries”; an established and ubiquitous concept accepted by scientists, 

conservation groups, fisheries managers, and the general public (Beck et al., 2001). It is now well 

documented that the use of mangrove estuarine areas by larvae and juveniles is a critical phase of 

the life history of many marine fishes, including many commercially valuable species 

(Barletta et al., 1998, 2005; Brehmer et al., 2006; Haedrich, 1983; Pauly, 1988). Notably, these 

groups of commercially important species (e.g. classified as estuarine-dependent) are often the 

base for economic valuation of mangroves (Nagelkerken et al., 2008). In addition, several authors 

have reported that there is a positive correlation between fisheries landings and the size of 

mangrove habitat in an estuary (Aburto-Oropeza et al., 2008; Carrasquilla-henao and Juanes, 

2016; Lee, 2004; Manson et al., 2015; Meynecke et al., 2007). If that holds true, additional 

mangrove degradation and loss as a result of climate change will impact the early life stages of 

fishes and consequently have the potential to lead to a reduction of fisheries production in coastal 

waters. Yet, these mangrove systems that are important nursery habitats continue to decline and 
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in some cases alarmingly fast (Alongi, 2002; FAO, 2007; Giri et al., 2011; Polidoro et al., 2010; 

Valiela et al., 2001). The forecast is grim as it is anticipated that an additional 25 % of mangrove 

forests in developing countries could be lost by 2025 (Mcleod and Salm, 2006), making them one 

the most threatened tropical ecosystems (Feka, 2015).

Warming is expected to be linked to changes in rainfall (Jones et al., 2002), which can 

adversely affect the supply of water for mangrove ecosystems. The IPCC (2014) predicts an 

increase in hydrological extreme events, and these are typically defined as floods (associated with 

extremes in rainfall) and droughts (associated with a lack of precipitation and often extremely 

high temperatures that contribute to drying). Indeed, drought events have generally increased 

throughout the 20th century (Dai et al., 2004; Trenberth et al., 2007), as measured by the Palmer 

drought severity index (PDSI), and it is expected that this tendency will continue in the coming 

decades (IPCC, 2008, 2014). Increased heating leads to greater evaporation and thus surface 

drying, thereby increasing the frequency, intensity, and duration of drought events 

(Trenberth, 2011); resulting in significant decline in freshwater inflows and an increase of the 

evaporation rates in mangrove estuarine systems (U.S. DOE., 2012). The lack of precipitations 

and freshwater inflows can lead to insufficient flushing of soils and sediments (Ellison, 2015),

thereby increasing the degree of salt stress faced by mangroves and associated fauna. Under a 

reduction of precipitation scenario, mangrove estuarine waters would experience elevated 

temperature, saltwater intrusion resulting in high overall salinity (Pagès and Citeau, 1990),

thereby decreasing overall mangrove cover and productivity (Ball and Pidsley, 1995) to finally 

lead to a reduction of the geographic area where mangroves grow (Wilson, 2017). As larvae 

normally found in these estuarine areas could be subject, for example, to salinities above their 

tolerance limit, these transformed habitats may no longer provide quality nurseries and are likely 

to have negative impacts in larval survival, abundance, and distribution. For fishes, these 

changing environmental conditions might not meet the specificity of habitat requirements of their 

early life stages and pose problems affecting connectivity, recruitment, and population growth 

rates.

As a region of importance for mangroves, the West African coast is hosting about 12 % 

(20,410 km2) of the world's mangroves (Feka and Ajonina, 2011). These mangroves cover 15 % 

of the 8492 km of the West-Central African coastal zone (UNEP, 2007) stretching from the west 

coast of Mauritania through the Gulf of Guinea countries down to Angola, covering some 19 

countries with over 300 million people depending directly and indirectly on their ecological 
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services (e.g. fisheries) (Fig. 3). In the region, these estuarine ecosystems have been particularly 

subjected to enormous pressures and threats (climate change leading to reduced precipitation and 

anthropogenic use) within the last past decades with great losses (Fig. 4); a decline by more than 

25 % of the western African mangroves had been observed over the past 35 years (UNEP, 2007).

Therefore, many mangrove habitats may face severe degradation if climate change continues at 

the predicted rates. Given the link between fish reproduction success and mangrove systems, the 

observed degradation and loss due to climate change and direct human impacts negates the 

availability of nursery habitat, increases vulnerability of fish populations using them, and 

subsequently decreases their sustainability. As a consequence, significant environmental, 

economic, and social costs for human societies are expected.

Fig. 3. Map of the mangrove distributions (in green) along the West African Coast (taken from UNEP, 2007)
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Fig.4. Status of mangrove forests in West-Central Africa; including mean area change per country (1980–2006). Negative values
indicate a gain in mangrove area (taken from Feka and Ajonina, 2011; and orginally compiled from UNEP-WCMC, 2007).

Study system – The Sine Saloum estuary

Situated along the West African semi-arid coastline, the Sine Saloum estuary (Fig. 5)

differs significantly from its southern and wetter tropical counterparts in one major respect. The 

Sine Saloum is an “inverse estuary” (Pagès and Citeau, 1990; Pritchard, 1967), where water 

salinity is higher than that of seawater and increases monotonically with distance from the sea.

This estuarine system became permanently inverted in the late sixties mostly due to an increasing 

lack of freshwater inflow (Barusseau et al., 1985; Pagès and Citeau, 1990), a direct consequence 

of the prolonged drought (known as the Sahelian drought) that has affected the entire Sahel 

region (Nicholson, 2005; Nicholson et al., 2000). The annual rainfall has been decreasing in this 

region, first slowly until 1961, and then more drastically in recent decades 

(Pagès & Citeau, 1990). Between 1931-61 and 1961-85, the average annual rainfall fell from 

893 to 636 mm in Foundiougne (29 % reduction), from 796 to 612 mm in Kaolack 

(23 % decrease) and from 810 to 582 mm in Fatick (28 % deficit) (Diop-Gueye, 1991). Compare 

to the pre-Sahel drought conditions, the five-month wet season is now reduced to a three/four-

month period, and across the watershed the average annual rainfall is now only about 650 mm

(Doumouya et al., 2016), which correspond to an annual deficit of ~10 billion m3 of freshwater

inflow into the system. For comparison purpose, the Gambia River estuary (situated only about 
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50 km south of the Sine Saloum system) receives an average annual precipitation of 1500 mm

(Villanueva, 2015), more than two times what the Sine Saloum gets. Consequently, freshwater 

inflows have fallen sharply and no river of significant size currently flows into the Sine Saloum 

estuary. For example, the already low flow of the Nema-Ba River, a tributary of the estuary,

which was 0.29 m3 s-1 in 1976, was only 0.03 m3 s-1 in 1981 (Diop, 1990). Indeed, in contrast to 

“classical estuary”, it is the combined effects of reduced freshwater inputs, extended dry seasons 

with intense evaporation, and a low gradient of the slope in the lower estuary that have resulted in 

the inversion of the salinity gradient and the hypersalinization of the upstream areas of the 

system. 

The hydrographic system of the Sine Saloum estuary (~850 km2) is made up of three main 

branches (Fig.5): the Saloum (~110 km long; maximum depth 25 m), the Diomboss (~30 km;

10 m), and the Bandiala (~18 km; 10 m). As a result, the salinity difference between 

upstream and downstream is strong at the end of the dry season for the Saloum branch (e.g. 75 in 

1942, 62 in 1960, 90 in 1983, and 84 in 1993), but for the Diomboss and Bandiala branches it 

remains low (Maximum recorded 5) (Diouf, 1996; Panfili et al., 2004). These main branches are 

surrounded and interconnected by a very dense network of channels of different sizes (locally 

named “bolongs”). The vegetative cover of the Sine Saloum is characterized by the presence of 

mangroves dominated by Rhizophora and Avicennia species. With the exception of the remaining 

patchy mangrove vegetation found in the “Lagune de la Somone”, along the Senegal River Delta, 

and the relics of the Mauritanian coast, the Sine-Saloum is home to the most northerly mangroves

in West Africa. Furthermore, the Sine Saloum system exhibit a quite uncommon example of a 

mangrove system with little freshwater input except by direct rain or by ground water 

(Pagès and Citeau, 1990). Affected by the regional climatic changes and following the increase of 

the salinity and the resulting soil acidification, an important proportion of the mangrove cover has

been replaced by huge, flat, bare, salt-saturated areas locally called “tannes”. In the southern part 

of the Sine Saloum, the mangrove is very extensive. It occupies almost the entire space between 

the "bolons". The mangroves are high (7 to 11 m) along the tidal channels and especially in their 

downstream parts (Fig. 6a). The central portion is characterized by an increase in “tannes” and a 

lower and shorter (2-8 m) mangrove cover than in the south (Fig. 6b). The mangroves of the 

upstream parts of the "bolons" of this zone often have a more degraded appearance. The north of 

the estuarine complex is occupied by a much degraded mangrove (generally less than 4 m) that 
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eventually disappears upstream of the Saloum and being completely replaced by “tannes”

(Fig. 6c and d).

Fig. 5. The Sine Saloum estuary

The Saloum region economy is essentially based on fishing, mangrove exploitation, and 

more recently tourism (Mbow et al., 2008). The Sine Saloum is of great concern in terms of 

conservation and management because of the traditional and well developed fishing activities 

taken place there. The adult fish community has been well studied in the past decades 

(e.g.Diouf, 1996; Sadio et al., 2015; Simier et al., 2004) and a total of 114 species of fish 

belonging to 52 families have been recorded in the estuary of the Sine Saloum. In the absence of 

flooding, only small-scale seasonal variations of fish assemblages were observed, resulting from 

the migration of some species between the continental shelf and the estuary (Simier et al., 2004).

Fish assemblages are characterized by the almost complete absence of freshwater species, while 

the number of marine species is proportionally high for an estuarine system. The three main 

branches are dominated in both numbers and biomass by a small number of species belonging to 

the families of Clupeidae (Sardinella maderensis, Ethmalosa fimbriata), Pristigasteridae 

(Ilisha africana), Gerreidae (Gerres nigri), Carangidae (Chloroscombrus chrysurus), Mulgilidae 
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(Liza grandisquamis), and Cichlidae (Sarotherodon melanotheron, Tilapia guineensis). These 

fishes are vital subsistence resources for coastal communities across the country and the 

ecological and economic importance of the estuary has led the state of Senegal and the 

international community to take steps to protect the biodiversity of this site. The whole estuarine 

system has been classified as a “Reserve of Biosphere of UNESCO” in 1981, designated 

Senegal’s third Ramsar Wetland of International Importance in 1984, and has recently been listed 

as an UNESCO world heritage site in 2011. The Sine Saloum estuary is located within the 

Senegalo-Mauritanian East border upwelling system, considered one of the most productive and 

economically important fishing zones in the world, and is also part of the West African Marine 

Ecoregion (WWF, 2017).

Fig. 6. Variations of the mangrove cover in the Sine Saloum estuary. Mangroves cover almost the entire southern portion of the 
system and progressively diminish in the north. (a) The south-western area is characterized by dense and tall mangroves, (b) 
which become shorter in the central zone, (c) thin out in the north-eastern area and (d) totally disappear in the upstream Saloum, 
replaced by huge, flat, salt saturated intertidal areas “tannes”.
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Objectives and Outline

As a consequence of the decline of numerous commercial fish populations, an ecosystem-

based approach to fisheries management, which includes the assessment and protection of 

essential fish habitats, has emerged (Garcia et al., 2003). This doctoral thesis is part of the 

trilateral cooperation project Ecosystem approach to the management of fisheries and the marine 

environment in West African waters (AWA). This interdisciplinary research project aims at 

providing the scientific basis and requirements for setting up a strategic partnership capable of 

developing the vision of an ecosystem approach to fisheries in West African waters. 

Given the high overall salinity and the mangrove degradation that is taking place in the 

Sine Saloum estuary, its potential role (compared to “classic estuary”) as a recruitment and 

nursery area for fish larvae is far to be clear. Due to a globally changing climate, the inversion of 

the salinity gradient in several estuaries throughout the dry tropics is either underway or can be 

expected in the near future (Pagès and Citeau, 1990; Ridd and Stieglitz, 2002). Because spawning 

and nursery grounds of fishes have requisite environmental and physical attributes, early life-

history stages must be considered when modifications of these environments are observed. For 

these reasons, the Sine Saloum estuary is a natural and excellent choice to study how these 

climatic environmental transformations are affecting the ichthyoplankton community. This thesis 

aims at gaining knowledge on the environmental and physical factors affecting the Sine Saloum 

ichthyoplankton diversity and distribution. For this, specific research topics are addressed in three

separate chapters. Chapter I is a contribution to a better knowledge of the organization and 

dynamics of larval fish assemblages in high salinity environments and presents results of the first 

multispecies ichthyoplankton investigation in an inverse estuary. Chapter II, is a contribution to 

our understanding of the hydrography and the implications of physical dynamics upon the 

potential pathways for larval fish transport between low-flow estuaries and coastal waters in

seasonally arid climates. Presented here are the first current measurements that simultaneously

look at the estuarine physics (including circulation) and larval transport in an inverse estuary.

Chapter III, is a contribution to an initial understanding of the dietary importance of the sea

surface microlayer (SML) for larval or juvenile fish development. Stable isotope composition of

the SML was for the first time quantified and allowed the application of Bayesian stable isotope

mixing model to calculate its contribution to the diet of larval and juvenile African halfbeaks

(H. picarti). The combined information in those three chapters allowed the recognition of 
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valuable patterns and processes acting on the early life stages of fishes in this ecologically and 

economically important mangrove estuary, but also contributes to knowledge about the potential 

development of other, currently less disturbed mangrove estuarine systems in West Africa and 

around the world. These chapters are followed by a synoptic discussion that is summoning up the

main results of this thesis, connecting the aforementioned studies, and discussing additional 

aspects. Finally, highlights of emerging questions and potential future research lines are 

proposed.
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Chapter I

“Composition and structure of the larval fish community related to environmental 

parameters in a tropical estuary impacted by climate change”

Hans Sloterdijk, Patrice Brehmer, Oumar Sadio, Hanno Müller, Julian Döring, Werner Ekau

(Accepted in Estuarine Coastal and Shelf Science)

Climate changes that include the reduction of the average annual precipitation in parts of 

the dry tropics have resulted in the inversion of the salinity gradient of a number of estuaries. In 

these so called “inverse estuaries”, several studies on adult fish assemblages have been 

undertaken during the last decades. However, to have a comprehensive picture of how these 

environmental transformations are affecting the diversity, abundance, and distribution of the 

ichthyofauna, early life stages of fish must be included and consequently, Chapter I is a 

contribution to a better knowledge of the organization and dynamics of larval fish assemblages in 

high salinity environments and presents results of the first multispecies ichthyoplankton 

investigation in an inverse estuary, the Sine Saloum system. The aims were (1) to describe the 

composition and structure of the larval fish community, and (2) to analyse the influence that 

abiotic factors, in particular salinity, have on the distribution of fish larvae in this ecosystem.

Using neuston and ring trawl nets, larval fishes were sampled at locations distributed along a 

salinity and distance-to-the-sea gradient during four field campaigns covering an annual cycle.

Contribution of the authors: H. Sloterdijk designed the study. H. Sloterdijk, O. Sadio, J. Döring,

and W. Ekau took part of the field sampling.  H. Sloterdijk and H. Müller conducted the DNA 

work on the fish larvae. H. Sloterdijk analysed the data and wrote the manuscript. W. Ekau and 

P. Brehmer advised on data analysis and commented on the manuscript.
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Chapter II

“On the larval fish transport in and out of the Sine-Saloum estuary”

Hans Sloterdijk, Xavier Capet, Patrice Brehmer, Werner Ekau

(Submitted in Estuaries and Coast)

For several species of marine fishes, recruitment to adult population requires successful 

early life transport from open ocean spawning regions to estuarine nursery habitats. Chapter II,

is a contribution to our understanding of the hydrography and the implications of physical

dynamics upon the potential pathways for larval fish transport at the interface of an inverse

estuary connected to the North Atlantic Ocean. First, the flow structure at the entrance of the

Saloum branch of the Sine-Saloum estuary is characterized. Second, the movement of fish larvae 

in and out of the estuary is described by looking at the variation in the larval fish densities and 

transport rates as related to phase of the tide, time of the day, and location within the entrance of 

the Saloum river branch. Finally, the focus is on the physical and the possible impact of larval 

behaviour by which larval fishes are transported between the shelf and the estuarine areas. The 

survey extended over two full semidiurnal tidal cycles and included simultaneous measurements 

of larval density, transport, and current velocity (ADCPs).

Contribution of the authors: H. Sloterdijk designed the study and conducted the field sampling.  

H. Sloterdijk conducted the DNA work on the fish larvae. H. Sloterdijk and X. Capet analysed the 

data and wrote the manuscript. W. Ekau and P. Brehmer advised on data analysis and 

commented on the manuscript.
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Chapter III

“The importance of the sea surface microlayer as a feeding source for larval and juvenile 

Hyporamphus picarti in the Sine Saloum estuary: stable isotope analysis”

Hans Sloterdijk, Werner Ekau

(Submitted in Marine Ecology Progress Series)

Unexplored in terms of its potential as an important contributor of the nursery value of a

habitat for fish larvae and juveniles, the sea surface microlayer (SML) represents a unique

physical and chemical environment quite different from that of the underlying waters. As an 

important first step towards a better understanding of its function and derived dietary importance 

for organisms such as larval and juvenile Hyporhamphus picarti, a species that nearly exclusively

lives in the vicinity of SML, stable isotope analysis using diet-mixing model was used to look at

the contribution of the SML to the diet of H. picarti larval and juvenile fish at the entrance of the

Sine Saloum estuary, Senegal. Larvae and juveniles of this species are found in very high

abundance in the Sine Saloum estuary and are exploited commercially throughout the West

African coast. Because sampling the SML for isotope analysis was never done before, in

Chapter III, stable isotopic signatures between the food sources are characterized, ontogenic

shift in the isotopic signature of different size classes of the larvae and juveniles (the consumers)

are looked at, and a Bayesian mixing model (SIAR) is used to estimate the proportion of the SML

contributing to the larval and juvenile's diets.

Contribution of the authors: H. Sloterdijk designed the study and conducted the field sampling.  

H. Sloterdijk prepared the samples and conducted the isotope analyses. H. Sloterdijk analysed 

data and wrote the manuscript. W. Ekau commented on the manuscript.
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Abstract

Mangrove ecosystems have long been considered essential habitats and are commonly viewed 

and referred to as “nursery areas”. They are highly sensitive to climate change, and 

environmental transformations in these ecosystems are expected. The Sine Saloum estuary is a 

case of a system affected by global climate change where reduced precipitation and temperature 

increase have resulted in an inversion of the salinity gradient. Within the estuary, the composition 

and structure of the larval fish community related to environmental parameters were investigated 

using neuston and ring trawl nets. Larval fishes were sampled at 16 stations distributed along a 

salinity and distance-to-the-sea gradient during four field campaigns (November 2013, February, 

June, and August 2014) covering an annual cycle. This is the first study documenting the spatial 

and temporal assemblages of fish larvae in an inverse estuary. The total of 41 taxa representing 

24 families and 34 genus identified in this study was lower than that of other tropical estuaries. 

Clupeidae spp. was the dominant taxon, accounting for 28.9 % of the total number of fish larvae 

caught, followed by Gerreidae spp. (21.1 %), Hyporamphus picarti (18.8 %), Diplodus bellottii

(8.9 %), Hypleurochilus langi (4.8 %), Mugilidae spp. (4.4 %), and Gobiidae sp.1 (3.5 %). A 

total of 20 taxa were recorded within the upper estuary region, whereas 29 and 37 taxa were 

observed in the middle and lower reaches, respectively. While larval fish were captured at all 

sites and during all seasons, abundances and richness decreased with increasing salinity. Larval 

fish assemblages also showed a clear vertical structure corresponding to three distinct water 

strata. Salinity, water temperature, and dissolved oxygen were the variables that best explained 

the spatial and temporal differences in larval fish assemblages. It is difficult to forecast the future 

situation for this system but so far, compared to other mangrove estuarine system, we have 

observed the loss of freshwater species in favour of species of marine origin. The information 

provided in the present study is a contribution to the knowledge of tropical biodiversity and 

modifications of the ichthyoplankton communities in the context of climate change and future 

green fund action.



37 
 

1. Introduction

Estuarine and coastal ecosystems such as nearshore coral reefs, seagrass beds, salt 

marshes, lagoons, and mangrove forests are known to support numerous important functions 

(Beck et al., 2001). Providing a great deal of key ecosystem services, like coastal protection, 

water purification, carbon sequestration, fisheries, raw materials, and more recently tourism 

related activities; they influence human welfare both directly, through direct usage, and 

indirectly, via impacts on supporting and regulating services in other environments 

(Barbier et al., 2011; Brehmer et al., 2011; Costanza et al., 1997).

Amid these ecosystems, mangroves are among the most productive and biogeochemically 

active environments (Barbier et al., 2011). They have high primary and secondary productivity 

(Bouillon et al., 2008; Jennerjahn and Ittekkot, 2002) supporting a great abundance and diversity 

of ecologically and commercially important fishes and invertebrates (Primavera, 1998; 

Robertson and Duke, 1987). Many studies have shown that mangrove habitats can supply 

abundant and diverse food, and provide shelter for young fishes, where they occur at higher 

densities, avoid predation more successfully, and grow faster than in a different habitat 

(Laegdsgaard and Johnson, 2001; Verweij et al., 2006; Nagelkerken et al., 2008). Moreover, 

there is evidence that the hydrodynamic processes in mangrove areas enhance the entrapment of 

planktonic larvae (Chong et al., 1996). For these reasons, mangrove estuarine ecosystems have 

long been considered essential habitats and are commonly viewed and referred to as “nursery 

areas” (Manson et al., 2015; Faunce and Serafy, 2006; Field et al., 1998; Chong et al., 1990; 

Bell et al., 1984; Weinstein and Brooks, 1983). There is also an assumption that there is a 

positive correlation between the area of mangrove habitat in an estuary and fisheries landings 

(Carrasquilla-henao and Juanes, 2016; Manson et al., 2015; Aburto Oropeza et al., 2008; 

Meynecke et al., 2007; Lee, 2004). This paradigm predicts that changes in mangrove attributes, 

for instance mangrove loss or local disturbance, would then lead to a reduction in, or a massive 

loss of fisheries production in coastal waters. Strengthening this view, several authors have 

emphasized the importance of estuaries for marine fisheries by demonstrating that a large part of 

the landings around the world is made up of species that spend part of their lives in estuarine 

waters (Barletta et al., 2005, 1998; Brehmer et al., 2006; Pauly, 1988). Moreover, groups of 

commercially important species classified as estuarine-dependent are often the base for economic 

valuation of mangroves (Nagelkerken et al., 2008).
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These reasons are often invoked as grounds for the protection and conservation of 

mangrove estuarine ecosystems, and yet, these areas continue to decline, and in some cases 

worryingly fast (Polidoro et al., 2010; FAO, 2007; Alongi, 2002; Valiela et al., 2001).

Throughout history, estuaries have played a critical role in human development. However, 

anthropogenic threats have made the estuaries one of the most degraded ecosystems on earth 

(Edgar et al., 2000). The impacts come from a long list that includes coastal development, 

dredging, filing and draining of wetlands, hardening of shorelines with riprap or concrete, 

upstream dams and diversions that alter freshwater inflow, land-based pollution, and overfishing 

(Lotze et al., 2006). More recently, the effects of climate change such as sea-level rise, an 

increase in the number, duration, and intensity of tropical storms, and longer periods of drought 

in some regions are now recognized as important stressors threatening estuarine ecosystem 

functioning (Scavia et al., 2002). Accordingly, local and national conservation plans stress the 

need to get more information on such ecosystem.

Located in Senegal, West Africa, the Sine-Saloum estuary has been affected by climate 

change and direct human disturbances, and consequently has undergone significant 

environmental transformations (Mbow et al., 2008; Xenopoulos et al., 2005). This estuarine 

system became permanently inverted in the late sixties due to the increasing lack of freshwater 

inflow (Barusseau et al., 1985; Pagès and Citeau, 1990), a direct consequence of the prolonged 

drought (known as the Sahelian drought) that has affected the entire Sahel region 

(Nicholson, 2005; Nicholson et al., 2000). Accordingly, salinity increases upstream and values 

throughout the system are usually greater than that of seawater. During the dry season (November 

to June), the difference between upstream and downstream could reach up to 90 (Diouf, 1996).

What are currently unknown are the changes and impacts of this important environmental 

modification (inversion of the salinity gradient) in the Sine Saloum on its function as an essential 

habitat and important nursery area; both characteristics generally attributed to classics estuaries. 

Coupling this with indications that many arid regions are becoming drier as a result of climate 

change (IPCC, 2008, 2014), there is a need for managers and decision makers to understand and 

ultimately anticipate the gross effects of such natural and anthropogenic disturbances to these 

systems as they may further exacerbate the existing stresses on the food security and economy of 

these affected regions.

In the Sine Saloum estuary, several studies on adult fish assemblages have been 

undertaken during the last decades (Ecoutin et al., 2010; Simier et al., 2004; Vidy, 2000; 
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Diouf, 1996). Although many species could settle temporarily or permanently, few are dominant 

in terms of abundance and the ichthyofauna is dominated by a few species belonging to three 

main families: Clupeidae, Mugilidae, and Cichlidae (Simier et al., 2004; Diouf, 1996). The 

environmental conditions favour the establishment of a fish fauna mainly composed of species of 

marine origin and most of them are juvenile forms of species from the continental shelf 

(Simier et al., 2004). However, to have a comprehensive picture of the Sine Saloum estuary 

situation, early life stages of fish must be included and to our knowledge no study has been

conducted and published on larval fish assemblages. This paper presents results of the first 

multispecies ichthyoplankton investigation in an inverse estuary, the Sine Saloum system. The 

aims were (1) to describe the composition and structure of the larval fish community, and (2) to 

analyse the influence that abiotic factors, in particular salinity, have on the distribution of fish 

larvae in this ecosystem. The present study is a contribution to a better knowledge of the 

organization and dynamics of larval fish assemblages in high salinity environments, particularly 

in inverse estuaries.

2. Material and methods
2.1. Study area: the Sine Saloum estuary 

The Sine Saloum estuary (13°30’ 14°30’ N, 16°00’-16°80’ W) is located in Senegal 

(West Africa) and covers an area of approximately 800 km2 of open water (Fig. 1). It comprises 

three main branches/rivers (Saloum, Diomboss, and Bandiala) that are connected to each other by 

a vast network of small mangrove creeks locally named “bolong”. The Saloum channel is 7 to 

15 m deep; with maximum depth of 25 m, while the Diomboss and Bandiala have maximum 

water depth of 10 m (Saos and Pagès, 1985). Mangrove forests cover almost the entire southern 

portion of the system and progressively diminish in the North. Luxuriant in the Bandiala, patchy 

in the Diomboss and in the lower part of the Saloum, the mangrove fully disappears in the 

upstream Saloum (Simier et al., 2004; Trape et al., 2009). The region has a Sahelo-Sudanian 

climate (Köppen climate classification: BWh) and divides the year into two principal seasons: a 

single short rainy season from July to October and an extended dry season from November to 

June. The dry season can be further divided into two sub-seasons: “cool and dry” from November 

to March and “warm and dry” from April to June. Nowadays, as no river of significant size is 

flowing through the system, the Sine Saloum estuary does not receive freshwater inputs except by 
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local rainfall precipitation. Generally, in the system, salinity increases from downstream to 

upstream in all seasons. The difference between upstream and downstream is strong at the end of 

the dry season for the Saloum branch (75 in 1942, 62 in 1960, 90 in 1983, and 84 in 1993), but 

for the Diomboss and Bandiala branches it is still low (Maximum recorded 5) (Diouf, 1996; 

Panfili et al., 2004). During the year, the temperature of the water evolves in much the same way 

over the whole system with maximum reported values of about 32 °C between June and October 

and lowest reported between 21 to 22 °C between December and February (Diouf, 1996; 

Ecoutin et al., 2010; Saos and Pagès, 1985; Simier et al., 2004; Unesco, 1983). The whole system 

has been classified as a Reserve of Biosphere of United Nations Educational, Scientific and 

Cultural Organization (UNESCO) in 1981, designated as Senegal’s third Ramsar Wetland of 

International Importance in 1984, and has been recently listed as an UNESCO world heritage site 

in 2011. The Sine Saloum estuary is located within the Senegalo-Mauritanian East border 

upwelling system, considered one of the most productive and economically important fishing 

zones in the world, and is also part of the West African Marine Ecoregion (WAMER) 

(WWF, 2017).

Fig. 1. Map of the Sine Saloum estuary and location of the 16 sampling sites. 
(S: Saloum, D: Diomboss, B: Bandiala, M: Mangrove/Bolong)
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2.2. Data collection

Based on the seasonality, four field campaigns were conducted covering an annual cycle: 

[1] November 2013 (end of the wet season) when the system has received its highest yearly 

amount of freshwater, [2] February 2014 (cool and dry season), [3] June 2014 (warm and dry 

season), and [4] August 2014 (wet season). In order to get representative samples, 16 sampling 

sites were selected for measurements of environmental parameters and for fish larvae sampling 

(Fig. 1). 14 were distributed within the three main branches (S1-6, D1-4, B1-4), along a salinity 

and distance-to-the-sea gradient, and two sites (M1-2) were selected in areas inside the inner 

mangrove (Bolong). Selected environmental parameters were measured using hand-held multi-

parameter field instruments (WTW Multi 3430® and Lovibond-TurbiCheck®). Quantitative 

descriptors were water temperature (°C), salinity, dissolved oxygen (mg l-1), turbidity (NTU), pH,

and bottom depth (m). For each station, a vertical profile of these environmental variables was 

obtained by taking measurements starting at the surface with depth intervals of one meter until 

the bottom was reached.  Although no quantitative measurements of the mangroves were made, 

observations made during sampling at each site allowed for a rough qualitative characterization 

of the extent of the mangrove cover. Mangrove cover categories included none, residual, patchy, 

luxuriant, and replicate those used by Simier et al., (2004).

paired neuston nets (opening 30x15 cm, 3 m long) stacked on top of each other (referred in the 

text to Neuston Top and Neuston Bottom) for collecting fish larvae at and near the surface and a 

ring trawl ( 0.60 m, 3 m long) to collect fish larvae in the water column. Accordingly, 3 strata 

were sampled: surface (Neuston Top), near surface (Neuston Bottom), and mid-water 

(Ring Trawl). Both nets were custom made to be operated from an adapted catamaran 

(Hobie Cat 15®) deployed in a parallel route of a towing boat ensuring larval sampling well clear 

of its bow wave and wake. Each sample consisted of a 10-minute horizontal haul in the direction 

of the current at an average speed of 2-3 knots. All hauls were performed during daylight hours 

and sampling sites depths ranged from 4 to 15 m (Appendix A.1.). During the November 

sampling campaign, due to logistic reasons, only the ring trawl net was available and sampling 

was done only near the surface (referred later in the text as Ring Trawl Surface). The volume of 

water filtered was calculated using mechanical flow meters (Hydro-Bios®) attached to the centre 

of the nets so the number of larvae caught could be standardized into the number of larvae per 
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cubic meter (m3) for abundance/density measurements. Samples were immediately preserved in 

30 % alcohol/seawater and stored and cooled in an onboard electric coolbox. In the laboratory, 

fish larvae were sorted from the catches and gradually transferred to 50 % and 70 % alcohol.

Using the traditional morphological techniques, collected specimens were identified to the 

lowest possible taxon (Leis and Carson-Ewart, 2004; Moser, 1996; Richards, 2006; 

Tamoikine and Pandare, 1994). Due to the paucity of original descriptions and illustrations of 

fish larvae found in the literature covering the area of interest, especially the smaller individuals 

could not always be identified to the species level, but only to family or genus level.

Complementary to the morphological techniques, genetic identification of specimens, 

using DNA sequencing, was applied to selected samples. DNA barcoding was based on 

sequencing the commonly used barcode region, a ±600 base pair fragment of cytochrome c 

oxidase I (COI/COX) (Hebert et al., 2003; Aljanabi and Martinez, 1997). For amplification, the 

COI-primer pair FF2d + FR1d of Ivanova et al. (2007) was used. Samples that failed amplifying 

with this primer pair were amplified using the primer pair of Folmer et al. (1994). DNA was 

extracted (whole fish larvae) according to Aljanabi and Martinez (1997). All polymerase chain 

reaction (PCR) reactions were performed according to the protocols published with the primer 

pairs. Amplicons were sequenced using the PCR primers. Sequences were compared with the 

National Center for Biotechnology Information (NCBI) nucleotide collection database using           

BLAST (Altschul et al., 1990). Additionally, the BOLD Identification System was used 

(Ratnasingham and Hebert, 2007).

In order to identify selected specimens of the order Clupeiformes, we used the multiplex 

haplotype-specific PCR (MHS-PCR) method of Durand et al. (2010). Amplicons were separated 

on a 3 % agarose gel in TAE buffer for two hours at 120 V. Selected amplicons were sequenced 

to confirm MHS-PCR-based identification.  

2.3. Data analysis

2.3.1. Analyses of larval fish data

In order to determine and compare the spatial and seasonal distribution of fish larvae 

within the Sine Saloum estuary, for each sampling site, integrated catches (Neuston Top, Neuston 

Bottom, and Ring Trawl) of larval fish were estimated and expressed as number of individuals 
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per 100 m3. Since various transformations failed to normalize the data and stabilize the variance, 

nonparametric Kruskall-Wallis test was conducted to investigate whether the larval fish 

abundances differed among the sampling seasons. 

Prior to multivariate analyses, all of which were carried out using routines in the 

PRIMER statistical package (PRIMER version 7.0.10, 2015; PRIMER-E Ltd, Plymouth, U.K.), 

standardized catch data (number of individuals per 100 m3) were transformed to log (x+1) for all 

statistical analyses. The log (x+1) transformation balance the contribution of abundant species 

with consistently high counts against those of less common and rare species, ensuring that each 

taxonomic group contributed fairly evenly to each analysis, rather than a few abundant taxa in the 

samples dominating each analysis (Clarke, 1993; Field et al., 1982).

To assess if larval communities differed between positions in the water column (based on 

the type of net used: Neuston Top – Neuston Bottom – Ring Trawl – Ring Trawl Surface), a 

similarity matrix based on the Bray-Curtis similarity measure was generated, after which non-

metric multidimensional scaling (nMDS) was used to graphically display a two-dimensional 

ordination plot of the inter-relationships among samples, based on the relative abundance of each 

taxonomic group (Clarke et al., 2014; Field et al., 1982). One-way Analysis of Similarities 

(ANOSIM), which is analogous to univariate analyses of variance, identified whether differences 

in assemblage groupings in the nMDS ordination were significant. The extent of any significant 

differences produced by this test were determined using the R-statistic value (Clarke, 1993; 

Clarke et al., 2014), which can range from +1, i.e. all samples within each nets are more similar 

to each other than to any of the samples from other nets, down to approximately zero, when 

average similarities within and between the nets are the same (i.e. the null hypothesis). When the 

pairwise comparison in the ANOSIM test detected a significant difference in larval fish 

compositions between the nets and across seasons, Similarity Percentages (SIMPER) was used to 

identify which species typified each of those nets in each season (Clarke, 1993; 

Clarke et al., 2014). If the relative density and composition of the larval fishes found in a 

particular pair of net types were found not to differ significantly, SIMPER was used to typify the 

collective fish larval composition of those two net types. Similarly, if the relative abundance and 

composition of the larval fishes found in a particular type of net (previously identified with 

ANOSIM) were found not to differ significantly between seasons, SIMPER was used to typify 

the collective fish larval composition of those two seasons. All SIMPER on species contributions 

used Bray-Curtis similarity matrices and a cut off for low contributions set at 85 %. 
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For each of the water stratum sampled (i.e. surface: Neuston Top; near surface: 

Neuston Bottom; mid-water: Ring Trawl), the RELATE procedure (Clarke et al., 2014) was used 

to test the significance of the relationships between the larval fish abundances of the taxa 

(larval fish resemblance matrix) and the environmental variables data 

(environmental resemblance matrix). The correlation between a larval fish matrix and the 

environmental matrix was considered significant if the associated p value was < 0.05. When a 

significant match was detected between a larval fish matrix and the environmental matrix, the 

BEST (BIOENV) procedure using all the possible combinations was used to determine which 

subset of environmental variables, provided the best correlation with the larval fish matrix. The 

resulted subset of environmental variables was thus considered to be most influential in 

distinguishing the larval fish assemblages at sites representing the different environmental 

conditions. 

The individual relationships between the larval densities of the dominant taxa of the 

Neuston Top, Neuston Bottom, and Ring Trawl assemblages (SIMPER) and the environmental 

variables found to be the most influential (BIOENV) were explored to estimate the upper and 

lower limits where these individual taxa occurred. 

3. Results
3.1. Environmental conditions

Throughout the Sine Saloum estuary, vertical profiles showed no stratifications. The 

water column was very well mixed as salinity, water temperature, dissolved oxygen, pH, and 

turbidity were nearly the same from top to bottom at any given place within each sampling 

season. The environmental characteristics of the 16 sampling sites are given in Fig. 2 and 

Table A.1. The seasonal change of water temperature clearly showed an annual cycle (Fig. 2a)

with a maximum in August (mean ± SD: 30.0 ± 0.34 °C) and a minimum in February 

(mean ± SD: 21.2 ± 0.56 °C). Through the annual cycle, the water temperature changed 

substantially in the same manner throughout the Sine Saloum estuary (Fig. 2b). Therefore, within 

each sampling season, there were only minor and negligible spatial differences (i.e. between 

sites) in water temperatures. With reference to salinity, seasonal values also showed an annual 

cycle (Fig. 2c). As for temperature, the highest values of salinity were recorded in August 
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(mean ± SD: 42.1 ± 5.28) but the lowest were recorded in November (mean ± SD: 29.6 ± 1.86) 

i.e. end of the wet season. As the dry season progressed (from November to June), there was a 

steady increase in the system’s average salinity. However, at the end of the rainy season 

(November), a salinity gradient characteristic of classic estuaries was present with salinity values 

of the three main branches decreasing from downstream to upstream (Fig. 2d). Dissolved 

oxygen, highest in February (mean ± SD: 6.48 ± 0.30 mg l-1) and lowest in August 

(mean ± SD: 5.21 ± 0.48 mg l-1) presented values generally higher in sites situated close to the 

open ocean (Fig. 2e-f). Thus, an inverse relationship between dissolved oxygen and water

temperature was observed (Fig. 2a, e). Seasonally, pH was highest in February 

(mean ± SD: 7.880 ± 0.118), a trend similar as what was observed for dissolved oxygen and 

opposite to water temperature. Turbidity (Fig. 2i-j) was low in all seasons and sites, ranging from 

1.30 to 16.60 NTU. The turbidity was highest at the Bandiala mouth (B1, B2, and B3) with all 

values above 6 NTU obtained during February and June.

3.2. Abundance and taxonomic composition 

During the study period, a total of 21 082 fish larvae were collected over 161 

samples. 39 taxa were identified: 25 were assigned to species, 5 to genus, and 7 to family levels, 

while 2 remained unidentified. Overall, 24 families including 34 genera were represented. 

Clupeidae spp. was the dominant taxa, accounting for 28.9 % of the total number of fish larvae 

caught, followed by Gerreidae spp. (21.1 %), Hyporamphus picarti (18.8 %), Diplodus bellottii 

(8.9 %), Hypleurochilus langi (4.8 %), Mugilidae spp. (4.4 %), and Gobiidae sp.1 (3.5 %). These 

six taxa comprised 90 % of the total catch, the remaining 10 % being shared by the others 33 

taxa. Table 1 also provides the total number of individuals and additional information about each 

taxon collected in each net (water stratum). Markedly, when looking at the percentage 

contribution to the overall catch within each net, > 50 % of the total abundance of the separate net 

type could be accounted by a single taxon. Hyporamphus picarti accounted for 55.4 % of the 

Neuston Top, Gerreidae spp. 50.1 % of the Neuston Bottom, and Clupeidae spp. 60.7 % of the 

Ring Trawl total number of fish larvae caught (Table 1).
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Fig. 2. (Left Panel) Box and whisker plots showing the seasonal variations in the main environmental parameters. The bottom 
and top edges of the boxes are located at the sample 25th and 75th percentiles. The centre horizontal line is drawn at the 50th

percentile (median). The whiskers extend from the ends of the box to the outermost data point that falls within the distances
computed as follows: 1st quartile - 1.5*(interquartile range) and 3rd quartile + 1.5*(interquartile range). Outliers are shown as 
data points outside the whiskers ranges and single points are single measurements. (Right panel) Spatial variation in surface 
values of the main environmental parameters. Dashed lines separate the different branches of the Sine Saloum. 

, November; +, August)
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Table 1
Rank by abundance (Rk), abundance (A), percentage contribution to the overall catch (%), and occurrence (O) of each larval fish 
species in samples collected in the Sine Saloum estuary. Abundance: total number of individuals. Occurrence: number of samples 
where the taxon was present. Neuston Top: Surface. Neuston Bottom: Near Surface. Ring Trawl: Water Column. 

Total                    Neuston Top               Neuston Bottom          Ring Trawl             .
Rk     A   %        O      Rk     A    %        O      Rk     A    %        O      Rk     A    %        O

Clupeidae spp. 1     5810 28.9   55       6        58    1.0      6      5     281     5.4   16 1  5471  60.7   33
Gerreidae spp. 2     4230 21.0   98       2    1204  20.5    26      1   2612   50.1   48 4    414    4.6   24
Hyporamphus picarti 3     3770 18.8   57       1    3253  55.4  34      4     489     9.4   18      21      28    0.3     5
Diplodus bellotti 4     1797   8.9   20       4      419    7.1      5      2     859   16.5     5 3    519    5.8   10
Hypleurochilus langi 5       956 4.8   94       5      257    4.4  30      3     617   11.8   39      14      82    0.9   25
Mugilidae spp. 6       887   4.4   72       3      563    9.6    32      6     162     3.1   24 8    162    1.8   16
Gobiidae sp.1 7       712   3.5   40     15          1  <0.1      1      7       37     0.7     7 2    674    7.5   32
Pseudotolithus sp. 8       352   1.8     7 5    352    3.9     7
Enneacampus sp. 9       293   1.5   45         14       12     0.2     5 6    281    3.1   40
Cynoglossus senegalensis 10      213   1.1   31         11       16     0.3     7 7    197    2.2   24
Synaptura cadenati 11      137   0.7   14           9 18     0.3     4 9    119    1.3   10
Gobiidae sp.4 12      113   0.6     9                10   113    1.3     9
Gobiidae sp.2 13      107   0.5     9         10       17     0.3     3        13    90    1.0     6
Bathygobius casamancus 14       97    0.5   16         25         1   <0.1     1        11    96    1.1   15
Chloroscombrus chrysurus 15       95 0.5     6     13          1  <0.1      1    22        1   <0.1     1        12    93    1.0     4
Atherina sp. 16       69 0.3   16       7        42    0.7      7      8      26     0.5      8 32     1  <0.1     1
Unknown 2 17       53 0.3     5         16         6     0.1     2 15   47    0.5     3
Trachurus trecae 18       49 0.2     9         12       16     0.3     5 19   33    0.4     4
Fodiator acutus 19       48    0.2   14       8        34    0.6      9    13       13     0.2     4 33     1  <0.1     1
Caranx rhonchus 20       47 0.2     6     14          1  <0.1      1    17         5     0.1     2 17   41    0.5     3
Synaptura lusitanica 21       43    0.2     5           16   43    0.5     5
Monodactylus sebae 22       38    0.2  20     17          1  <0.1      1    15         8     0.2     5 20   29    0.3   14
Trachinotus goreensis 23       36 0.2   10         18          3     0.1    2 18   33    0.4     8
Scombrus sp. 24       30 0.1     4     11          2  <0.1     1 22   28    0.3     3
Hemiramphus brasiliensis 25       29 0.1     7       9        27    0.5      6    21         2    <0.1    1
Plectorhinchus macrolepis 26       20 0.1     6         27          1   <0.1     1 23   19    0.2     5
Hippocampus algiricus 27       13    0.1     9     16          1  <0.1      1 24   12    0.1     8
Stephanolepis hispicus 28       13 0.1   10     12          2  <0.1      2    19         3    0.1      2 26     8    0.1     6 
Coryphoblennius gelerita 29       8 <0.1     5 25     8    0.1     5
Gobiidae sp.3 30         8  <0.1     4         20          2   <0.1     1 27     6    0.1     3
Ephippion guttifier 31         6  <0.1     3         23          1   <0.1     1 28     5    0.1     2
Ephippus goreensis 32         5  <0.1     2 29     5    0.1     2
Cheilopogon sp. 33         4  <0.1     2     10          3    0.1      1    24          1   <0.1     1
Trachinotus teraia 34         3  <0.1     3 30     3  <0.1     3
Drepane africana 35         3  <0.1     1 31     3  <0.1     1
Polydactylus quadrifilis 36         1  <0.1     1         26          1    <0.1    1
Sphyraena afra 37         1  <0.1     1 34     1  <0.1     1
Tylosurus crocodilus 38         1  <0.1     1     18          1  <0.1      1
Unknown 1 39         1  <0.1     1 35     1  <0.1     1
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Further identification of the larvae of Clupeidae, Gerreidae, and Mugilidae on a morphological 

basis was not possible inter alia due to the size of individuals, but DNA analyses performed on a 

random selection of specimens of these families indicated the presence of Ethmalosa fimbriata,

Sardinella maderensis, and Pellonulla leonensis for the Clupeidae, Gerres nigri and 

Eucinostomus melanopterus for the Gerreidae, and Liza dumerili and Liza grandisquamis for the 

Mugilidae, bringing the total number of larval fish species recorded in this system to 43. 

Unidentified fish larvae that could not be assigned to any taxon (unknown 1 and 2) accounted for 

only < 0.01 % of the total number caught. In terms of bioecological categories, larval fish 

composition was dominated by estuarine forms of marine origin (35.7 %), followed by marine-

estuarine species (28.6 %), marine species occasional to estuaries (14.3 %), marine species 

accessory in estuaries (14.3 %), and strictly estuarine species (2 %).  

3.3. Spatial, temporal, and species richness distributions of larval fish abundances

Fish larvae were captured at all of the sampling sites and during all seasons. Larval 

abundances per sites (expressed as individuals per 100 m3 and noted ind. 100 m-3) and across 

seasons are shown in Fig. 3. The Kruskal-Wallis test showed that there was a statistically 

significant difference in fish larvae abundance between the different seasons, with 
2(3) = 10.285, p = 0.02, with a mean rank abundance (100 ind. m-3) of 30.21 for November, 

30.62 for February, 42.63 for June, and 22.38 for August. A maximum of 1631.47 ind. 100 m-3

was recorded at station S3 in June and a minimum of 2.27 ind. 100 m-3 was observed at station 

D3 in November. The seasonal maximum was obtained in June 

(mean ± SD: 357.2 ind. 100 m-3 ± 490.8) and the minimum in August 

(mean ± SD: 23.7 ind. 100 m-3 ± 21.3). Intermediate values of 59.3 ind. 100 m-3 ± 96.4 and 58.8 

ind. 100 m-3 ± 77.9 were recorded in February and November, respectively. Despite these 

variations, an overall trend was evident across all seasons with the exception of August. The 

abundance in term of ind. 100 m-3 of larvae was pointedly higher in the lower estuary and 

declined with distance upstream. Fish larval richness (expressed as the total number of taxa) per 

sites and across seasons showed a similar trend, with decreasing richness with increasing distance 

from the open ocean (Fig. 4). A total of 20 taxa were recorded within the upper estuary region, 

whereas 29 and 37 taxa were observed in the middle and lower estuary regions, respectively. On 
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a seasonal base, 20 taxa were identified in November, 22 in February, 36 in June, and 24 in 

August. At the individual station level, a maximum of 25 taxa was observed at station B1 in June 

and a minimum of 2 taxa was observed at station D3 and S2 during the November campaign. 

Fig. 3. Spatial distributions of larval fish abundances (ind. 100 m-3) in the Sine Saloum System over the four sampling events. 
(a) November 2013, (b) February 2014), (c) June 2014, and (d) August 2014. Note: logarithmic (log) scaling of bubble sizes was 
used to respond to a few points that were much larger than the bulk of the data, allowing an all-encompassing visualisation of the 
large range of abundances values. 
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Fig. 4. Spatial distributions of larval fish richness (number of taxa) in the Sine Saloum System over the four sampling events. 
(a) November 2013, (b) February 2014), (c) June 2014, and (d) August 2014.

3.4 Vertical density and taxonomic composition of assemblages 

When the densities (expressed as individuals per 100 m3) of the various larval fish species 

in samples collected at each site in each net were subjected to an nMDS ordination, the samples 

showed a tendency to form groups on the basis of net type, in accordance to  their positions in the 

water column (Fig. 5). Samples from the Ring Trawl net formed a discrete group that was located 

furthest from those representing the Neuston Top and Neuston Bottom nets. Samples from the 
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Ring Trawl Surface lay between those of the Neuston and Ring Trawl nets. A significant level 

(p = 0.001 %) and a value of R (= 0.38) for the one-way ANOSIM global test 

(99999 permutations) of nets Neuston Top, Neuston Bottom, Ring Trawl Surface, and Ring 

Trawl established that there were statistically significant differences in species composition and 

densities between these nets and the ANOSIM pairwise test results are presented in Table 2. The 

species composition and abundances between the nets were all significantly different from one 

another with the exception of the Neuston Bottom and Ring Trawl Surface. Species composition 

and abundances between these two nets were not distinguishable (R = 0.04, p = 25.4 %) from 

each other and consequently, the data from these two nets were combined and referred to 

Neuston Bottom prior to undertaking SIMPER.

Fig. 5. Two-dimentional nMDS ordination showing larval fish assemblage structure in relation to the position in the water 
column.
 
 
 
Table 2  
ANOSIM pairwise Tests for differences between net types 
Net type        R       Significance Possible       Actual      Number 
Group       Statistics          Level %  Permutation Permutations      Observed 
Neuston Top, Ring Trawl      0.702         0.001    Very large     99999          0 
Neuston Bottom, Ring Trawl      0.550         0.001    Very large     99999          0 
Ring Trawl (Surface), Ring Trawl      0.338         0.001    Very large     99999          0 
Ring Trawl (Surface), Neuston Top 0.303         0.003    Very large     99999          2 
Neuston Top, Neuston Bottom      0.129         0.010    Very large     99999         10 
(Ring Trawl Surface), Neuston Bottom 0.038         25.40    Very large     99999      25440 
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The taxa identified by SIMPER as those which typified the distinct larval fish 

assemblages in the three net types (water strata) are presented in Table 3. Since, for all the 

previously identified type of nets (ANOSIM), the relative density and composition of the larval 

fishes were found not to differ significantly between June and August, SIMPER was used to 

typify the collective fish larval composition of those two seasons. Some taxa characterized more 

than one assemblage. For example, Gerreidae spp. and Hypleurochilus langi were regularly 

abundant at all three water strata. In contrast, other taxa typified only one of the water strata, such 

as Hyporamphus picarti and Mugilidae spp., regularly abundant only in the Neuston Top 

(surface stratum) catches and Enneacampus sp., Gobiidae sp.1, Clupeidae spp., and 

Cynoglossus senegalensis, regularly abundant only in the Ring Trawl catches 

(mid-water stratum). The number of species, found near the surface, representing the Neuston 

Top and Neuston Bottom assemblages was lower compared to the Ring Trawl assemblages 

representing species more commonly found in the mid-water stratum.

Table 3  
SIMPER similarity analysis of larval taxa within the different nets in each season 
Net type    November (End of wet season)   February (Cool & Dry)  June & August (Warm & Dry)  

   Species    Contrib% Cum.%  Species    Contrib%  Cum.% Species  Contrib%  Cum.% 
Neuston T.        Hyporamphus picarti         46.70   46.70 Gerreidae spp.         48.69   48.69 
      Mugilidae. spp.         30.32   77.01 Hyporamphus picarti         19.05   67.75 
      Hypleurochilus langi         20.50   97.52 Mugilidae. spp.         15.16   82.91 
         Hypleurochilus langi         14.64   97.55 
 
Neuston B.   Gerreidae spp.         55.28   55.28  Hypleurochilus langi         51.95   51.55 Gerreidae spp.         83.70   83.70 
    Hypleurochilus langi         19.56   74.85  Hyporamphus picarti         18.89   70.84 Hypleurochilus langi         9.98   93.68 
    Mugilidae. spp.         8.96   83.81    Mugilidae. spp.         15.92   86.76 
    Clupeidae spp.         5.25   89.06    
 
Ring Trawl       Enneacampus sp.         46.04   46.04 Gobiidae sp.1         33.17   33.17 
       Gerreidae spp.         19.77   65.81 Enneacampus sp.         24.44   57.61 
       Clupeidae spp.         13.30   79.11 Clupeidae spp.                13.96   71.58 
       Hypleurochilus langi         3.99   83.10 Cynoglossus senegalensis  6.18   77.76 
       Hyppocampus  algiricus   3.82   86.92 Hypleurochilus langi         5.11   82.86 
         Gerreidae spp.         4.22   87.09 
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3.5 Density and composition of larval fish related to environmental parameters

RELATE procedure showed that, when the similarity matrices produced from the larval 

fish species assemblage data recorded at the various sites in each net were correlated with the 

distance matrices constructed from the data set of the measured environmental parameters of 

these same sites, the Rho p < 0.001 %). The correlation 

view of these significant relationships between the larval fish and environmental data, the 

BIOENV analyses (Table 4) suggested salinity, water temperature, and dissolved oxygen for the 

Neuston Top (R = 0.34) and Neuston Bottom (R = 0.33) assemblages. Ring trawl assemblage was 

best correlated with salinity and water temperature (R = 0.33). pH and turbidity were not 

recognized as significant variables and did not significantly contribute to explain the structure of 

the larval fish assemblages.
 

Table 4 
Combinations of the 5 environmental variables yielding the best matches of biotic and abiotic similarity matrices for each net type, as measured 
by weighted Spearman rank correlation.

Net type  Environmental Parameters   Spearman correlation coefficient  Global test  
Neuston T.    Salinity, water temperature, dissolved oxygen       0.335   P = 0.07%   
Neuston B.    Salinity, water temperature, dissolved oxygen       0.334   P = 0.07% 
Ring Trawl  Salinity, water temperature           0.360   P = 0.05% 

Fig. 6 shows the individual relationships between the larval fish densities of the dominant 

taxa of the Neuston Top and Bottom assemblages and the environmental variables identified by 

the BIOENV analyses. No larvae of Hyporamphus picarti, Mugilidae spp., and Hypleurochilus 

langi were found at salinity above 45 and below salinity of 34. The highest densities were 

consistently obtained at salinity between 36 and 38. In regards to water temperature, all three taxa 

were found within the entire range encountered during the survey period and their densities were 

evenly spread across that range. No H. picarti larvae were found at dissolved oxygen 

concentrations lower than 5 mg l-1, while Mugilidae spp. and H. langi were found at 

concentrations of dissolved oxygen of 4.5 mg l-1 or above. The highest densities were also 

consistently observed in association with high dissolved oxygen concentration. In the same way, 

Fig. 7 shows the individual relationships between the larval fish densities of the dominant taxa of 

the Ring Trawl assemblages with those of the environmental variables identified by the BIOENV 
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analyses. Gerreidae spp. presented a narrow salinity range (from 35 to 41) where they were 

found, while Clupeidae and Gobiidae were collected at salinity up to 55. Gerreidae and Clupeidae 

were found throughout the entire water temperature range encountered during the survey period 

and their densities were evenly spread across that range, but Gobiidae spp. were not collected 

below 26 °C. Gerreidae were found within the entire range of dissolved oxygen concentration. 

The situation was similar for the Clupeidae spp. but had a lower limit of 4.3 mg l-1. Gobiidae 

were observed at low dissolved oxygen concentrations down to 3.25 mg l-1 and up to 6.25 mg l-1.

 

Fig. 6. Relationships between larval fish density of the dominant taxa of the Neuston Top and Bottom assemblages and 
environmental variables – salinity, water temperature, and dissolved oxygen of (a-c) Hyporamphus picarti, (d-f) Mugilidae spp., 
and (g-i) Hypleurochilus sp. Note: The x-axis scales indicate the minimum and maximum values of each of the environmental 
parameter where the larvae were sampled. 
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Fig. 7. Relationships between larval fish density of the dominant taxa of the Ring Trawl assemblage and environmental variables 
– salinity, water temperature, and dissolved oxygen of (a-c) Gerreidae spp., (d-f) Clupeidae spp., and (g-i) Gobiidae spp. Note: 
The x-axis scales indicate the minimum and maximum values of each of the environmental parameter where the larvae were 
sampled.

4. Discussion

The salinity regime of mangrove waterways can be influenced by interactions between 

catchment size, estuarine geomorphology, tidal range, and rainfall patterns (Wolansky, 1989).

While tropical estuaries generally present higher salinities than temperate estuaries 

(Blaber, 2000), precipitation deficits combined with intense evaporation have particularly 

affected estuarine ecosystems of West Africa (Pagès and Citeau, 1990). In the Sine Saloum 

estuary, these climate changes have resulted in a high overall salinity and an inversion of the 

salinity gradient (Fig. 2 and Table A1). However, as indicated by our results, if precipitations are 

sufficiently high, at the end of the rainy season this inversion of the salinity gradient is no longer 

observed. Then, as the dry season is progressing, the characterising inverse salinity is gradually 
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re-established. Ecoutin et al., (2014), have also reported for the Sine Saloum estuary some 

intermediate areas having salinities below 35 during the rainy season (from July to October), 

while our results showed salinity below 35 throughout the entire system at the end of the rainy 

season (November 2013). To our knowledge, this is a situation that was not observed and 

reported in previous studies carried within the Sine Saloum estuary. Highly variable 

environments, where physical conditions such as salinity fluctuates regularly, are known to affect 

the reproduction of resident fish species (Blaber, 2000). During the study period, the biota of the 

Sine Saloum waterways was subjected to salinities ranging from 25.6 to 56.1 (Table A1). This is 

an outstanding feature of this environment as most tropical mangrove estuaries have salinity 

regimes ranging from 0 to 35 (Robertson and Blaber, 1992). In high-salinity environments, 

modification in the ichthyofauna biodiversity, species composition, and their seasonal dynamics 

have been reported (Vega Cendejas and Hernández De Santillana, 2004; Simier et al., 2004; 

Diouf, 1996; Albaret, 1987; Severin-Reyssac and Bertrand Richer de Forges, 1985). As a

response to high salinity, low fish diversity and richness have been recognized. Until now, 

utilisations of these high-salinity environments by the early life stages of fishes and the 

associated changes in the ichthyoplankton composition remain very poorly studied. This 

knowledge is relevant and complementary to a better understanding of the quality of fish habitats 

(Brehmer et al., 2013; Mouillot et al., 2005), of the reproductive biology of fishes associated with 

estuaries (Blaber, 2000), as well as recruitment processes that help determine the nature of 

estuarine and coastal fish communities (Costa et al., 2002).

The larval fish community in the Sine Saloum estuary is comprised of a few species in 

large numbers and many rare species in low numbers. This is a common feature with those 

reported in many tropical estuarine larval fish assemblage studies (Barletta-Bergan et al., 2002; 

de Morais and de Morais, 1994; Tzeng and Wang, 1992; Yoklavich et al., 1992). Gobioid and 

Clupeoid larvae dominated the catches in most estuaries and the present study yielded 

comparable results. Despite these similarities, important differences were observed in the 

Sine Saloum estuary. As reported by Haedrich (1983), clupeids are less abundant at lower 

latitudes, where they are replaced by engraulids. The Sine Saloum estuary did not show a 

dominance of Engraulidae, instead Clupeidae comprised 28.9 % of the total catches. We can 

report a correspondence between dominance and occurrence of adult fishes in the Sine Saloum 

estuary; for instance, the dominance of Clupeids (80-88 %) is confirmed, by the results of the 

adult fish assemblages study of Simier et al., (2004) and fish sampling between 2003 and 2012 in 
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the Bamboung Marine Protected Area located within the Sine Saloum estuary 

(Sadio et al., 2015). In terms of bioecological categories, there is also a correspondence between 

the dominance and occurrence of a community essentially composed of species of marine origin 

with an unusually high contribution of marine species occasional in estuaries (14.3 %) and 

marine species accessory in estuaries (14.3 %). Since the salinity values throughout the system 

were usually greater than that of seawater, it may enhance the utilization of this system by the 

marine species occasional in estuaries and marine species accessory in estuaries. In an opposite 

manner, overall high salinities had a negative effect on species of freshwater origin as we noted 

their absence in all season. 

The ichthyoplankton community’s total number of families and species in the 

Sine Saloum estuary (24 families and 43 species) were lower than that of other tropical estuaries. 

For example, 68 families and 195 species were identified in the Pichavaram mangrove ecosystem 

of India (Krishnamurthy and Prince Jeyaseelan, 1981), 55 families and 105 species in the 

mangrove estuary of Tanshui River in Taiwan (Tzeng and Wang, 1992), 44 families and 85 

species in the St Lucia Estuary in South Africa (Harris and Cyrus, 1995), 28 families and 

63 species in the Caeté River Estuary in North Brazil (Barletta-Bergan et al., 2002), and 

59 species in the Cayenne River Estuary in French Guiana (de Morais and de Morais, 1994).

Taking into account the variations in sampling methods and efforts, differences in topography 

among systems, and the sparse and very uneven quality of literature on larval fish assemblages in 

West African estuaries, it is difficult to classify the situation in the Sine Saloum estuary and other 

estuaries in the region. A basic ichthyoplankton study in Guinean and Senegalese estuarine 

waters (Tamoikine and Pandare, 1994) reported 26, 7, 10, 19, 18, and 19 families in Conakry, 

Casamance, Sénégal, Fatala, Konkouré, and Tabounsou estuaries, respectively. Worthy of note, 

the Casamance estuary, also classified as an inverse estuary, had the lowest diversity at the family 

level (7), providing additional evidence that high salinity environment may harbour a less diverse 

ichthyoplankton fauna. For the Sine Saloum estuary, our study reports 24 families. Nevertheless, 

there are similarities in the taxonomic composition among the Sine Saloum estuary larval 

community with those described for other West African estuaries by Tamoikine and Pandaré 

(1994) with the most important groups including species representative of Carangidae, Clupeidae, 

Cynoglossidae, Gobiidae, Mugilidae, Scianidae, and Syngnathidae families. 

The results of this study have also shown that such ichthyoplankton sampling could be an 

effective means of determining and contributing on the knowledge of which species inhabit an 
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area because the plankton nets are in some ways less selective than various gears used to sample 

adult fishes. Small cryptic bottom fishes, not or rarely sampled as adults, have appeared in their 

larval forms relatively common in the plankton samples. Out of the 114 species reported in the 

Saloum by Diouf (1996), the 73 species reported by Simier et al., (2004), or the 85 species 

reported in Bamboung MPA by Ecoutin et al., (2014), the present study found ten species that 

were not previously reported by earlier studies assessing fish biodiversity in this system. Namely, 

Atherina sp., Bathygobius casamancus, Ephippus goreensis., Cheilopogon sp., Coryphoblennius 

galerita, Enneacampus sp., Hippocampus algiricus, Hypleurochilus langi, Hyporamphus picarti, 

and Trachinotus goreensis. Including these additional species to the 114 previously reported by 

Diouf (1996), the total number of fish species known to be found in and using this system 

elevates to 124 species. There are a few resident and abundant species known to reproduce in the 

Sine Saloum system (Diouf, 1996) that nevertheless did not occur in the ichthyoplankton 

samples. Reproductive specializations such as brooding strategies, egg type, and spawning origin 

of adults can influence descriptions of larval fish community surveys. The most prominent 

examples of this study are the two nesting species of Cichlidae, Sarotherodon melanotheron

(exhibiting mouth-brooding habit) and Tilapia guineensis (substrate brooder). Although relatively 

abundant in the Sine Saloum estuary, particularly in the upstream regions, the larvae are 

extremely scarce in the plankton and cannot be sampled effectively with the ichthyoplankton 

samplers used in this study.

The distributional pattern of fish larvae (Fig. 3 and Fig. 4) revealed that the total 

abundance and the richness in the estuary decreased from the lower to the upstream areas. This 

result contrasts with Barletta-Bergan et al. (2002), who reported high larval abundance in the 

most upstream sections of the Caeté River Estuary (North Brazil). Our results may indicate that, 

independently of the season, a relatively high number of fish larvae found in the Sine Saloum 

system originated from the surrounding coastal waters. This hypothesis is supported by the fact 

that in terms of bio-ecological categories (Albaret, 1999), the larval fish assemblages were 

greatly dominated by species of marine origin and that the freshwater species were totally absent. 

Past studies have shown that many coastal species often or always spawn in the ocean, but their 

larvae or early juveniles move to the estuary to spend their juvenile period 

(Tzeng and Wang, 1992; Gunderson et al., 1990). Elevated salinity could be in part responsible 

for the low densities and poor richness in the upstream regions. The lower estuary areas have 

much more stable salinities than the upper estuary areas which could in return enhance the 
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survival of eggs and larvae (Blaber et al., 1995). Whitfield (1999) suggested that species 

composition and abundance mostly respond to salinity changes because of osmoregulatory stress 

and/or disappearance of certain food resources, both plausible scenarios for the ichthyoplankton 

community in the Sine Saloum estuary.  

Part of the process of discriminating sites and/or type of environments in multivariate 

studies is the ability to identify the species most responsible for the observed pattern 

(Field et al., 1982). Foremost, larval fish assemblages showed a clear vertical structure 

corresponding to their position in the water column (Neuston Top, Neuston Bottom, and 

Ring Trawl). Since the water column in the Sine Saloum estuary is extremely well mixed 

(no vertical stratification), the abiotic factors measured in this study could not be directly held 

responsible for the observed disparities between the different water stratum catches. We 

acknowledge that sampling was carried out only during day light hours, so diel vertical migration 

of certain species could not have been tested and accounted in this study. It is know that many 

species such as those of Clupeidae tend to stay close to the bottom during the day and migrate 

close to the surface during the night. Nevertheless, having sampled simultaneously the three 

different positions in the water column at random times and tidal phases, the catches were 

consistently and independently different and distinguishable between the Surface and the mid-

water strata. Biological interactions such as trophic relationships (predator-prey), competition, 

and morphological adaptations must play an important part in defining and structuring these 

different communities (Leis, 1991). When assessing ichthyoplankton diversity and assemblages, 

the observed differences in vertical composition and structure of the larval fish community point 

to the practical and scientific importance of including neuston sampling.

The larval fish species found throughout the year such as Hypleurochilus langi, and 

Hyporamphus picarti, indicates that these species have protracted spawning strategies and are 

well adapted to the varying salinities. For the Gerreidae spp., Clupeidae spp., and Mugilidae spp., 

since these larvae could only be identified at the family level, it is not clear if at the species level, 

these have protracted spawning strategies. Their occurrence throughout the year might be an 

artefact of mixing and pooling the different species. Nevertheless, their occurrence over the 

seasons coincided with spawning activities observed by Panfili et al., (2004) in 

Ethmalosa fimbriata (Clupeidea), Trape et al., (2009) for mugilid fishes, and Diouf (1996) in 

Gerreidae species. These are part of a reduced group and are in accordance to the “resistance 

community” first identified in the inverse estuary of the Casamance River by Albaret (1987). 
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Importantly, they are also part of the fish species most commonly targeted by the artisanal 

fisheries taking place in the Sine Saloum estuary. These dominant species of the larval fish 

community belonged to species able to adapt their eco-physiological abilities and some of their 

life history attributes (Albaret, 1987; Simier et al., 2004). This is consistent with the fact that 

most freshwater species are usually not capable of osmoregulating in salt water and consequently 

tend to be found in estuaries only when salinities decline to low levels during regular periods of 

heavy freshwater discharge (Potter and Hyndes, 1999), a situation that is no longer observed in 

the Sine Saloum estuary. The net assemblages did not differ much across seasons as they were 

mostly composed of the same taxa between the seasons (Table 2); a situation that might be 

explained by the fact that only a few species are capable of coping with the high salinities 

characterizing, for most of the year, the Sine Saloum estuary.  

There are several abiotic factors that can produce negative or positive effects on the early 

life stages of fishes (Costa et al., 2002). Results of this study identified salinity, water 

temperature, and dissolved oxygen as the suite of best fitting environmental variables structuring 

the Neuston Top and Bottom larval assemblages, and salinity and water temperature for the Ring 

Trawl assemblage. These environmental parameters could have acted in a direct way via effect on 

the development rate, growth, and mortality of the larvae. Howbeit, water temperature and 

salinity, could have operated in an indirect way by having an influence on spawning induction. 

Moreover, faster growth at higher a temperature during the larval stage would reduce the time 

that larvae were exposed to predation. Coincidentally, the highest densities and diversity were 

observed in June, during the warm and dry season where the water temperature was high. 

Nevertheless, the results of our study are consistent with the hypothesis that abiotic factors as 

environmental stressors influence the spatial and temporal patterns in larval fish assemblages 

(Vega-Cendejas and Hernández De Santillana, 2004), which adjust constantly in response to 

changing seasons and especially the salinity gradients. With regards to salinity, both species

composition and abundance have responded to salinity changes. Our analyses indicate that 

variations in salinity influenced the larval fish distribution patterns, which may generate 

favourable or tolerable conditions for a reduced community of suitably adapted species, but is 

unfavourable for most of the species. The inverse relationship that we found between salinity and 

both species richness and abundance has been previously discussed for the adult fish fauna. For 

example, Van der Elst et al., (1976) have shown that there is an inverse relationship between 

salinity and number of fish species at Lake St Lucia (South Africa). This is important because 
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most estuaries are subject to periods of freshwater flooding, whereas salinities seldom rise above 

sea water level, again a situation no longer observed in the Sine Saloum estuary and an 

increasingly likely scenario for other areas in the context of global warming (IPCC, 2014). Not 

only salinity, but also turbidity has been previously reported as an important factor associated 

with larval fish abundance (Harris et al., 2001; Harris and Cyrus, 2000). The present study did 

not identify such a relationship, knowing that water turbidity could be the fact of different 

element (e.g. sediment or phytoplankton). A factor not investigated in the present study and 

potentially correlated to salinity and distance to the sea is food availability (nature and/or 

abundance) as well as water quality (Brehmer et al., 2013). Additionally, our result did not show 

a particular higher larval concentration in the mangrove rich parts of the estuary. Relatively low 

concentrations were consistently found in sites with rich mangrove cover such as B4, D3, D4, 

M2, while high concentration where observed in sites where mangrove cover was poor such as 

sites S1, S2, and S3 (Fig. 3 &Table A1). This suggests that the presence of mangrove alone 

cannot provide optimal conditions for the fish larvae in the Sine Saloum estuary. Similarly, 

Vidy (2000), reported that good estuarine conditions alone are sufficient for good nursery 

function but mangrove alone is not.  

The relative significance of each environmental parameter, in terms of larval densities, 

varied upon the different dominating taxa (Fig. 6 & 7). Importantly, it gave us a good indication 

of which taxa maybe more resilient to the environmental changes observe in the Sine Saloum. 

Highest densities situated at salinity between 37 and 38 were common to all of the dominating 

taxa, and can be an indication of their preferred spawning salinity. Generally, there were no 

larvae at salinities higher than 45. However, high salinity tolerance gives Clupeidae spp. and 

Gobiidae spp. (they are the only taxa found at salinities above 45) an adaptive advantage which is 

reflected by their high occurrence frequencies throughout the salinity range. This might be an 

important factor to insure high reproductive success within the system. Water temperature was 

identified as one of the best fitting environmental variable structuring larval assemblages, but 

when looking at its effect on the individual taxa, there were no evident trend. The larvae were 

found and densities were evenly spread across the range of temperature encountered during the 

survey periods. Gobiidea spp. were the exception with no larvae observed at water temperature 

below 26 °C. Unfortunately, limited information is available on dissolved oxygen concentration

values (DO) and their influence of larval fish abundance and diversity (Costa et al., 2002). When 

DO concentrations are unfavourable, because of their lower swimming capacities, fish larvae are 
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surely less successful than adult at leaving areas with low DO concentrations. Exposure to low 

concentration can lead to reduced survival and reduced feeding rates (Bishai, 1962; 

Breitburg, 1994). Hyporamphus picarti and Hypleurochilus langi seem to be particularly sensible 

to DO concentration as no individuals were caught at DO < 5.1 mg l-1 (Fig. 6c and f). 

Breitburg (1994) reported that the most preferred dissolved oxygen zones for larvae should be 

those at dissolved DO concentration of 3 mg l-1 and above. The lowest DO concentration 

recorded was 3.8 mg l-1 and well above the value reported by Breitburg (1994). Hence, the role 

and impact of dissolved oxygen remain unclear even if it seems that larval densities are 

increasing with it. BIOENV analyses showed that DO is not acting alone but in combination with 

salinity and temperature. An alternative explanation is that DO will be indicator of high 

phytoplankton or algae presence (source of dissolved oxygen in this system), and correlated to 

the availability of prey fish larvae reported in high density.

5. Conclusion

This is the first study documenting the spatial and temporal fish larvae assemblages in an 

inverse estuary. The Sine Saloum is an example of a system where reduced precipitation, coastal 

erosion, and global temperature increase have resulted in major environmental transformations. 

Salinity, water temperature, and dissolved oxygen were the variables that best explained the 

spatial and temporal larval fish assemblages. It is difficult to forecast the future situation for this 

system but so far, compared to other mangrove estuarine system, we have observed the loss of 

freshwater species in favour of species of marine origin. Depending on the strength of marine and 

freshwater respective influences, other West African estuaries and their larval fish species are 

likely to be affected by global climate change and similar modifications of the ichthyofauna are 

to be expected. Monitoring these modifications deserves special attention because of the high 

ecological and socioeconomic values of these tropical mangrove systems. The nursery function is 

one of their main services they provide and protection of suitable areas, therefore, seems to be 

eminent to preserve the diverse fish assemblages and their key species. The information provided 

in this paper constitutes an important contribution to the knowledge of tropical biodiversity and 

to biological databases available for management of the ichthyofauna in the context of climate 

change and future green fund action.
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Appendix B.1. 

 

 

Appendix B.1. Spatial distributions of Clupeidae larvae abundances (ind. 100 m-3) in the Sine 
Saloum System over the four sampling events. (a) November 2013, (b) February 2014), (c) June 
2014, and (d) August 2014. Note: logarithmic (log) scaling of bubble sizes was used to respond 
to a few points that were much larger than the bulk of the data, allowing an all-encompassing 
visualisation of the large range of abundances values.
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Appendix B.2.

 

 

Appendix B.2. Spatial distributions of Gerreidae larvae abundances (ind. 100 m-3) in the Sine 
Saloum System over the four sampling events. (a) November 2013, (b) February 2014), (c) June 
2014, and (d) August 2014. Note: logarithmic (log) scaling of bubble sizes was used to respond 
to a few points that were much larger than the bulk of the data, allowing an all-encompassing 
visualisation of the large range of abundances values.

 

  



75 
 

Appendix B.3. 

 

 

Appendix B.3. Spatial distributions of Hyporamphus picarti larvae abundances (ind. 100 m-3) in 
the Sine Saloum System over the four sampling events. (a) November 2013, (b) February 2014), 
(c) June 2014, and (d) August 2014. Note: logarithmic (log) scaling of bubble sizes was used to 
respond to a few points that were much larger than the bulk of the data, allowing an all-
encompassing visualisation of the large range of abundances values.
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Appendix B.4. 

 

 

Appendix B.4. Spatial distributions of Mugilidae larvae abundances (ind. 100 m-3) in the Sine 
Saloum System over the four sampling events. (a) November 2013, (b) February 2014), (c) June 
2014, and (d) August 2014. Note: logarithmic (log) scaling of bubble sizes was used to respond 
to a few points that were much larger than the bulk of the data, allowing an all-encompassing 
visualisation of the large range of abundances values.
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Appendix B.5.

 

 

Appendix B.5.1 On the left, the Diassanga, our towing boat and living and working platform 
while conducting fieldwork in the Sine Saloum estuary. On the right, the modified catamaran 
used for larval sampling.

Appendix B.5.2. This picture demonstrates the ability of the catamaran to sample in a
parallel route of the towing boat ensuring larval sampling well clear of its bow and wake.
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Abstract

The effectiveness of larval fishes in regulating transport between low-flow estuaries and coastal

waters in seasonally arid climates is poorly known. In July 2014, a field experiment

simultaneously measuring vertical current profiles (speed and direction) and larval transport was

implemented during ~ 2.5 semi-diurnal tidal cycles at three locations situated at the entrance an

important West African estuary, the Sine Saloum. We monitored four taxa: Clupeidae,

Cynoglossidae, Gerreidae, and Mugilidae; the selection was done due to their economic

importance, contrasted life-cycle, and usage of the estuary environment. The physical conditions

were characterised by a notable stratification in salinity, an up-estuary salinity gradient, and a

tidal-averaged circulation that was vertically sheared and directed toward the mouth of the

estuary near the surface. The “inverse estuary” conditions, due to higher salinity inside the

estuary, provide natural pathways in and out of the estuary to fish larvae that are able to maintain

themselves in a specific depth range. The distribution of fish larvae revealed depth range

preferences that did not change in time, independent from the diel and tidal period, and were

consistent with the use of these pathways by the organisms. In contrast, no support was found in

favour of a selective tidal stream transport mechanism (STST). From a behavioural perspective,

the proposed mechanism can be viewed as simpler than STST in that it does not require the

organisms to synchronise their vertical migrations with the phase of the tidal currents. The

prevalence of the gravitational circulation and the low energy cost for larvae to maintain

themselves over a defined depth range vs the desired direction of mean displacement make the

proposed larval transport mechanism potentially important most of the year.
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1. Introduction

It is during their early life stages that fishes are particularly vulnerable to ecological and

environmental related challenges. Underlining its significance for the fates of year classes

(Hjort, 1926), the vast majority of species suffer high mortality during this period (May, 1974).

Most marine fishes have non-swimming or weakly swimming pelagic early life stages, thus, fish

larvae have locomotion capabilities that drastically differ from larger juvenile and adult fishes

(Brehmer et al., 2011b). Accordingly, the distribution of larval fish is, at least, partially controlled

by passive transport mechanisms (Norcross and Shaw, 1984), and the term “larval transport” was

used to describe the movement of fish larvae in the marine environment (Pineda et al., 2007). At

first, the transport of larvae in coastal areas is largely due to passive advection by oceanographic

processes such as wind-driven circulations, convergence flows near river fronts and internal

waves, tidal currents, net currents, river plumes, upwelling or downwelling currents, and eddies,

which all can vary on a broad range of scales, from yearly, seasonally, daily, hourly, and down to

a few minutes (Teodosio et al., 2016). Under unfavourable flow conditions, fish larvae might be

transported to habitats less suitable for development, where they may fail to find appropriate

amounts and types of planktonic prey (Hjort, 1926) or survive the prevailing abiotic conditions

with respect to, for instance, temperature, salinity, dissolved oxygen, or UV-radiation

(Miller and Kendall, 2009).

Many inshore marine fishes in temperate and tropical environments spawn offshore, but

their larvae or juveniles use shallow habitats such as bays, mangroves, and other estuarine

regions as nurseries (Beck et al., 2001) before moving and returning to the adult habitats; a life

history pattern often observed in commercially and recreationally important fish species

(Haedrich, 1983). Hence, larval transport has central implications for recruitment, as the

maintenance of marine populations often depends on the completion of larval migration from the

open ocean spawning regions to estuarine nursery habitats. Limitedly well understood, but a

critical stage of this journey is ingress, retention, and movement between the coastal waters and

an estuary (Churchill et al., 1999).

Most estuaries present special challenges to larval transport for marine taxa using them

because their waters experience net seaward motion and current velocities frequently exceed

larval swimming speeds (Boehlert and Mundy, 1988; Brehmer et al., 2011a;

Forward Jr et al., 1999). Among fish species, different larval transport and resulting recruitment
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problems related to estuarine use have been identified. First, some species are resident in

estuaries throughout their life histories and their primary recruitment problem is to prevent the

export of their early life stages from the estuary. Second, other species that visit estuaries

periodically as adult for spawning face the same export problems as the residents. Finally, species

that spawn offshore and subsequently enter estuarine systems as larvae or early juveniles, face the

above-mentioned challenges of ingress to the estuarine nursery areas and prevention of export

once they have entered. An important question, therefore, is how do such larvae, with their

limited swimming capabilities, move in or out of these nursery areas? Theoretically, larval

transport can be influenced by a number of elements of estuarine circulation. The dominant

sources of water circulation in estuaries are tides, river flows, winds, non-tidal forcing from the

coastal ocean, and topographically induced circulations (Norcross and Shaw, 1984). In most

estuaries, the general pattern of circulation (“two-layer estuarine circulation”) is an outflow near

the surface that is partially balanced by a net inflow in the bottom layer (Dyer, 1997).

Accordingly, movement of larvae into an estuary can also be modified, and feasibly controlled,

by larval vertical behaviour. There has been a long history of investigating larval transport of

fishes in stratified estuaries that experience substantial freshwater input and the most commonly

cited behavioural mechanism leading to up-estuary movement by larvae is selective tidal stream

transport (STST), in which larvae are up in the water column during rising tides and low in the

water column during falling tides (Boehlert and Mundy, 1988; Forward Jr et al., 1999;

Weinstein et al., 1980). STST has been the suggested mechanism for movement and retention

within estuaries in several fish species such as young anguillid eels, herrings, shads, croakers, and

plaice (e.g. Fukuda et al., 2016; McCleave and Kleckner, 1982; Tanaka et al., 1989;

Weinstein et al., 1980). However, STST is constrained to certain hydrodynamic boundaries

(Forward and Tankersley, 2001).

In arid climates, where rainfall is extremely low and insufficient to stratify estuaries

during most of the year, the density of the water at the estuary’s mouth is often similar to that in

the ocean, and tidal diffusion rather than “two-layer estuarine circulation” may control exchange

between the estuary and the open coast (Largier et al., 1997; Nidzieko and Monismith, 2013).

However, excess evaporation over wide coastal or estuarine areas can also produce inverse

salinity gradients pointing toward the head of the water body, partially stratified conditions, and a

type of reverse thermohaline circulation with bottom outflow of salty water. This has been

observed in many parts of the (sub)-tropics (Hetzel et al., 2013; Lavín et al., 1998;
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Nunes Vaz et al., 1990). If present in the Sine Saloum, inverse estuary circulation is likely to

affect larval transport and in particular exchanges with coastal waters.

This study is a contribution to our understanding of the hydrography and the implications

of physical dynamics upon the potential pathways for larval fish transport at the interface of a

tropical estuary connected to the North Atlantic Ocean. Over the past decades, the Sine Saloum

estuary (Senegal) has been particularly affected by precipitation deficits, combined with intense

evaporation. This has resulted in a more extreme and prevalent low-flow regime and increasing

overall salinity (Mbow et al., 2008; Simier et al., 2004; Xenopoulos et al., 2005). What is

currently unidentified is how these changes are affecting the physical and behavioural processes

mediating larval transport between the estuarine waters and the open coast. These changes could

affect fisheries locally and regionally, and the impacts have the potential of being damageable,

especially in developing countries where the economic and social systems are greatly dependent

upon their fisheries. The input of fish larvae is one of the factors that determine the importance of

an estuary for many commercially important fish species. This study focused on a set of four fish

taxa, namely the Clupeidae, Cynoglossidae, Gerreidae, and Mugilidae, as they are the most

common exploited families of fishes in the estuary. A better understanding of these physical and

biological mechanisms will allow to assessing the impact of environmental changes.

2. Materials and Methods

In this study we first looked at the flow structure at the entrance of the Saloum branch of

the Sine-Saloum estuary. Second, we focused on the movement of fish larvae in and out of the

estuary by looking at the variation in the larval fish densities and transport as related to phase of

the tide, time of the day, and location within the entrance of the Saloum river branch. Finally, the

focus is on the physical and the possible impact of larval behaviour and other biological

mechanisms by which larval fishes are transported between the shelf and the estuarine areas.
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2.1. Study system: the Sine Saloum inverse estuary in West Africa

Situated in Senegal West Africa (13°30’-14°30’ N, 16°00’-16°80’ W), the Sine Saloum

system (Fig. 1a) is representative of estuaries that receive, except from seasonal local rainfall,

little or no freshwater input. Under intense evaporation, they have become in their entirety highly

saline and in their upper reaches hypersaline. Between 1951 and 1980, the average yearly

precipitation in the Sine Saloum estuary ranges from 880 mm in the southern part to 480 mm in

the northernmost part (Dacosta, 1993). The overall average of 828 mm recorded in the fifties

(Diaw et al., 1993), is now only about 500 mm, with rains concentrated over 3-4 months and

surrounded by prolonged drought periods. This recorded change in the precipitation rate

corresponds to a deficit of about 10 billion m3 of freshwater input (Diouf, 1996). Classified as an

inverse estuary (Pritchard, 1967), throughout the year, salinity ranges from 35 to 41 at the sea

mouth and can reach over 130 in the upstream areas. This study was conducted at the mouth of

the Saloum branch of the Sine Saloum estuary (Fig. 1a). The Saloum entrance connects the

Atlantic Ocean to the estuarine areas, as an average depth of 10 m, and takes a south-north

direction over approximately 3 kilometres (Fig. 1b). The west side of the entrance is bordered by

a sand spit (Pointe de Sangomar) and the east side of the entrance by patchy mangrove cover. The

average width on this reach is 1.5 km. Regional tides are semi-diurnal, having average tidal

amplitude of about 1.20 m. The Saloum region is economically strongly based on fishing

activities.



85 
 

Fig. 1. (a) Location of the study system and the three sectors (U: Upstream, M: Midstream, D: Downstream). (b) Zoom showing
the positions of the three sampling locations (W: West, C: Centre, E: East) in the Sine Saloum estuary (Senegal, West Africa).

2.2. Physical field sampling

2.2.1. Hydrodynamic data acquisition

Vertical current profiles (speed and direction) and bottom pressure were measured

continuously during ~ 2.5 semi-diurnal tidal cycles at three locations situated at the entrance of

the Saloum branch of the Sine Saloum estuary. Three upward-looking Acoustic Doppler Current

Profilers (ADCPs) fastened to the base of aluminium frames were deployed and anchored on the

sea floor (bottom mounted) with approximately uniform spacing across the channel’s western and

eastern flanks and near the centre; forming a transect line perpendicular to the entrance (Fig. 1b).

These locations were named West, Centre, and East, and their GPS coordinates, depths, and
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observation periods, as well as instrument specifications and configuration parameters (bin size,

blanking distance, and ensemble averaging) are provided in Table 1. As it is standard procedure

for ADCP’s data, near-surface data were discarded because of contamination from echoes

scattered back from the sea surface (the depth above which data were considered non-usable was

determined objectively; see Section 2.4.1). Near-bottom data are also not available because of the

depth at which the instrument head was located (~ 0.5 m above ground) and the additional

blanking distance. Consequently, the “West-Centre-East” deepest measurement cells were

centred at respectively 1.15, 2 and 1.5 m above the sea floor. Deployment of ADCPs took place

on 9 July 2014 for a period of ~ 30 hours starting at 09:00 UTC (Coordinated Universal Time)

until 10 July 2014, 15:00 UTC the next day. Despite being part of the climatological monsoon

season, no major rainfall had taken place in the months prior to our observational period, which

was characterised by the absence of freshwater run-off in the Sine Saloum estuary. Thus, our

observations are representative of the warm and dry conditions preceding the monsoon onset. It

also followed the seasonal maximum larval abundances that was observed in a previous study

(Sloterdijk et al., 2017). Tidal amplitude was close to average with a forecast tide coefficient of

72 (Pointe de Sangomar). Weather conditions were fair during the survey with winds

systematically below 10 knots (personal observation). 
 
 
 
 
 
 
 
 
Table 1  
Details of ADCPs deployment positions (degrees and decimal minutes), depth in meters, observation periods (day/month/year), frequency in 
kilohertz of the ADCPs (F), bin size in meters (BS), blanking distance in meters (BD), ensemble averaging in seconds (EA). Depths are obtained 
using ADCP pressure measurement over an exact tidal cycle to which we remove pressure; a +0.5 m correction is then applied to account for the 
depth of the instrument head.  
Stations           Position (DMM)  Depth (m)    Observation Periods F (kHz) BS (m) BD (m) EA (s)  
                  Latitude / Longitude 
West  13° 56.708'N / 16° 45.628'W       8    09/07/2014 – 10/07/2014 1000 0.5 0.4 60  
Centre  13° 56.764'N / 16° 45.114'W     13    09/07/2014 – 10/07/2014 400 1.0 1.0 60  
East  13° 56.807'N / 16° 44.884'W       9     09/07/2014 – 10/07/2014 600 1.0 0.5 60 
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2.2.2. Physicochemical data acquisition

One shallow boat (R/V Diassanga, 10m, IRD) was used to sample the West (W),

Centre (C), and East (E) locations. Salinity (PSU), water temperature (°C), and dissolved oxygen

(mg l-1) were measured using a hand held multi-parameter field instrument (WTW Multi 3430®).

Vertical profiles of the physicochemical variables were obtained by taking measurements starting

at the surface with depth intervals of one meter until the bottom was reached. Measurements of

each location occurred at approximately 2-hour intervals and were coincident with larval

sampling. Additionally, salinity measurements acquired during other field campaigns

(Sloterdijk et al., 2017) (November 2013, February, June, and August 2014) at locations along

the Saloum branch of the Sine Saloum estuary, were used in this study to assess bottom and

surface longitudinal salinity differences between pre-established sectors (downstream,

midstream, and upstream) as a function of season (Fig. 1a).

2.3. Fish larvae sampling

Fish larvae were actively sampled at each location at approximately 2-hour intervals. Two

types of nets, both with mesh size of 500 were used: a paired neuston net (opening 30x15 cm,

3 m long) stacked on top of each other for collecting fish larvae at and near the surface, and a ring

trawl ( 0.60 m, 3 m long) to collect fish larvae in the water column. Accordingly, 3 strata were

sampled and referred to: Surface (Neuston Top), Near Surface (Neuston Bottom), and Mid-Water

(Ring Trawl). Both nets were custom made to be operated from an adapted catamaran

(Hobie Cat 15®) deployed in a parallel route of a towing boat (R/V Diassanga) ensuring larval

sampling well clear of its bow wave and wake. Each sample consisted of a 5-minute horizontal

haul in the direction of the current at an average speed of 2-3 knots.

The volume of water filtered was calculated using mechanical flow meters (Hydro-Bios®)

attached to the centre of the nets, so the number of larvae caught, when needed, could be

standardized into the number of larvae per m3 for density measurements. Samples were

immediately preserved in 30 % alcohol/seawater and stored and cooled in an onboard electric

coolbox. In the laboratory, fish larvae were sorted from the catches and gradually transferred to

50 and 70 % alcohol. In addition, standard length (SL) to the nearest 0.01 mm (measured from
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the tip of the snout to the end of the notochord (Miller and Kendall, 2009)) was measured for all

larvae at each sampling locations.

Using the traditional morphological techniques, collected specimens were identified to the

lowest possible taxon using the following compendia: Leis and Carson-Ewart, 2004;

Moser, 1996; Richards, 2006; Tamoikine and Pandare, 1994. Due to the paucity of original

descriptions and illustrations of fish larvae found in the literature covering the area of interest,

especially the smaller individuals could not always be identified to the species or genus level, but

only to family level. Accordingly, a selection of the four most abundant taxa in the samples was

made and further analysis in this study concentrated on Clupeidae, Cynoglossidae, Gerreidae, and

Mugilidae larvae. Complementary to the morphological techniques, genetic identification using

DNA sequencing, was applied to representative individuals of the four pre-identified taxa to

assist and confirm successful identification. For this, DNA barcoding was based on sequencing

the commonly used barcode region, a ±600 base pair fragment of cytochrome c oxidase I

(COI/COX) (Aljanabi and Martinez, 1997; Hebert et al., 2003). For amplification, the COI-

primer pair FF2d + FR1d of Ivanova et al. (2007) was used. Samples that failed amplifying with

this primer pair were amplified using the primer pair of Folmer et al. (1994). DNA was extracted

(whole fish larvae) according to Aljanabi and Martinez (1997). All polymerase chain reactions

(PCR) were performed according to the protocols published with the primer pairs. Amplicons

were sequenced using the PCR primers. Sequences were compared with the National Center for

Biotechnology Information (NCBI) nucleotide collection database using BLAST

(Altschul et al., 1990). Additionally, the BOLD Identification System was used

(Ratnasingham and Hebert, 2007).

2.4. Data analyses

2.4.1. ADCP’s data processing

In a stratified estuary, we expect velocities ( ) to differ between the surface and the

bottom. This may have important implications because near-passive organisms such as eggs and

larvae can modulate their lateral transport by simply modifying their position in the water column

(e.g. through adjustments of their buoyancy or by vertical migration). To quantify this effect, we

wish to compute the vertical velocity shear at the mooring locations using the equation:( ) = ( )  ( )



89 
 

But because of ADCP limitations, none of these velocities are available and we instead computed= ( ) ( )  where and  are respectively the indices of the upper most

and lower most cells where valid ADCP currents are measured. is simply 1, i.e., the first

available measurement cell whose centre is situated at a distance from the bottom equal to the

blanking distance plus half the cell size. Differently, depends on many factors including the

tidal phase (which changes the position of the sea surface with respect to the bottom), and the

surface wave field (which affects the reflection of ADCP signals). To determine we used the

following methodology. For all possible integers we computed the for the velocity

difference between two consecutive cells:

= < + 1 >
where is the index of the cell whose centre is the closest to the air-sea interface in the water

and <. > is the time averaging operator over a M2 tidal cycle. is remarkably constant in

the subsurface and suddenly jumps to a significantly larger value (by a factor of three or more)

when approaching the surface. Although this discontinuity may partly be physical, we use it to

define above which ADCP data are considered as possibly contaminated by side-lobe

reflection and discarded. Corresponding  indices are respectively 4, 3, and 2
for the West, Centre and East moorings (see Fig. 2; note that the western ADCP has a smaller bin

size of 0.5 m so the West and East moorings have their upper most velocities at the same depth

below the sea surface).

2.4.2. Larval densities related to location and tidal cycle

A series of two-sample t-tests assuming unequal variance were conducted to compare the

densities (ind. m-3) of Clupeidae, Cynoglossidae, Gerreidae, and Mugilidae larvae in ebb and

flood tide conditions at the West, Centre, and East locations. Ebb and flood conditions were

determined using the meridional velocity (ebb when southward movement of water exiting the

estuary; flood when northward movement of water entering the estuary). Larval concentrations



90 
 

were transformed ( ( + 1)) to meet the assumption of normality and goodness of fit was

tested using Shapiro–Wilk test.

 

2.4.3. Vertical and length-frequency distribution of fish larvae

A two-way (factorial) analysis of variance (ANOVA) was conducted to compare the main

effects of the depth and tide and their interaction effect on the larval transport at the different

sampling locations. The larval transport (ind. m-3 s-1) was calculated by multiplying the current

velocity (from the ADCP moored at the sampling location; meters per second) by the larval

density (number of larvae per cubic meter). The larval transport data were transformed( ( + 1)) to meet the assumption of normality and goodness of fit was tested using

Shapiro–Wilk test.

Since various transformations failed to normalize the data and stabilize the variance,

nonparametric Mann-Whitney test was conducted to investigate whether the larval fish sizes

differed between those entering the estuary (flood condition) to those leaving the estuary (ebb

condition).

3. Results
3.1. Physical conditions during the high resolution July measurements

Current measurements at the three locations are shown in Fig. 2 and the time series of

surface salinity in Fig. 3. Salinity temporal changes appear similar at all three moorings with

salinity maxima that coincide with the reversal from ebb to flood (compare Figs. 2 and 3). This

quadrature phase between and salinity is consistent with the idea that the salinity field

(increasing toward the head of the estuary, see Fig. 4) is repetitively moved past the moorings by

the cyclic longitudinal barotropic flow. Integrating the tidal flow in time, we obtain longitudinal

ebb/flood tidal excursions of 10-12 km. This and the temporal change of salinity, allow us to

provide some estimates for the lateral salinity and density gradient present in the estuary in the

vicinity of the moorings, which are 0.25 PSU km-1 (or 0.2 kg m-3 km-1).
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Stratification varies greatly over the full observational period. Surface to bottom salinity

differences (not shown) range from 0 to 3 PSU but are frequently of the order of 0.5, which we

take as a typical value for the three moorings. Combining this number with the one for the lateral

salinity gradient provides us with an estimate for the isohaline slope of 0.5 %, e.g., quite similar

to those found for the Shark Bay (Australia) inverse system in Hetzel et al. 2013; (their figure 2).

Close inspection of the ADCP measurements (Fig. 2 lower panels) reveals the presence of

positive vertical shear, i.e., near-surface (resp. near-bottom) waters exhibit more pronounced

northward (resp. southward) velocities. This is confirmed by the examination of the time series of

velocity measured at the lowest and highest valid ADCP bins (Fig. 2 upper panels). Some spatio-

temporal complexity is evident in the vertical shear (which is proportional to the separation

distance between the red and blue curves). This is due to the variability of the turbulence induced

by bottom friction (which varies greatly over a tidal cycle, but naturally favours positive shear

during flood), of the turbulence induced by air-sea interactions, and also possibly due to pre-

existing small scale heterogeneities in stratification produced remotely, e.g., transported from

outside the estuary by the tidal flow. Lack of measurements in the surface and bottom layer

prevents us from presenting full water column transport budgets, but vertical shear averaged over

one tidal cycle is robustly positive at the West and Centre ADCPs, with a mean velocity

difference between near-surface and near-bottom equal to 0.09 m s-1 (west) and 0.05 m s-1

(centre). These differences would presumably be even larger if we had access to velocities closer

to the surface and bottom. At the East mooring, near-surface and near-bottom velocities differ

most of the time but their averages over a tidal cycle remain within 0.01 m s-1 of each other.

Averaging over all three mooring locations and assuming a near-zero net flow across our

measurement section, these numbers imply the existence of a mean southward (resp. northward)

flow with intensity of the order of 0.025 m s-1 near the bottom depth (resp. the surface). A slight

volume imbalance is possible over a couple tidal cycles, but additional arguments are offered in

the discussion section to support the significance of the flow vertical shear and its importance for

the reproduction of fish.
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Fig. 2. Meridional velocity [m/s] measured from ADCPs at the western (upper), centre (middle) and eastern (lower) mooring
locations. Time series of uppermost (red curve) and deepest (blue curve) valid velocities are shown in the upper panels. Complete
depth-time diagrams for the entire deployment period are shown in the lower panels (in colour). The undulating black line
represents the position of the air-sea interface. The step-like black line is situated at the top of the ADCP cell that is being used to
compute near-surface to near-bottom velocity shear. This upper most valid cell is the shallowest one situated at least 2 m
(ADCP: West, 1000 kHz and East, 600 kHz) or 3 m (ADCP: Centre, 400 kHz) below the free surface. Unit in [m/s] for the color
bar legend of the lower panels.
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Fig. 3. Salinity profiles for the three stations at the head of the Saloum branch of the Sine Saloum estuary. Note the approximately
quadrature phase between salinity and velocities, i.e., salinity maxima are obtained around 3PM and 3AM at the end of the ebb
phase when waters reaching the moorings area are the ones that have the most estuarine characteristics possible (for a given tidal
coefficient and excursion magnitude). Times are Coordinated Universal Time.

Fig. 4. November 2013 to August 2014 seasonal cycle for the (a) surface to bottom stratification due to salinity effects over the 3
different subareas referred to as downstream (Down), midstream (Mid) and upstream (Up) (see location in Fig 1), (b) lateral
surface (S) and bottom (B) salinity contrasts between the Midstream and Downstream, or Upstream and Midstream.
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3.2. The Sine-Saloum thermohaline seasonal cycle

For the sampling periods other than the one in July 2014, no current measurements are

available, but the nature of the estuarine circulation can be inferred from the analysis of the

vertical stratification (Fig. 4a) and longitudinal salinity gradient (Fig. 4b) as a function of season.

Bottom and surface longitudinal salinity differences are shown for the bottom and surface and

also for two different sectors, between the lower and middle estuary, and between the middle and

upper estuary (see Fig. 1 for locations). Vertical stratification higher than 0.5 PSU was present in

June, July and August at all locations. In November 2013, vertical stratification of similar

magnitude was only found in the downstream area. This observation was corroborated by CTD

profiles made 4 km north of the mooring area on 25 October and 13 November 2017 in ~12 m

water depth, with observed surface to bottom salinity differences around 0.4 PSU

(unpublished data). Horizontal contrasts of salinity shown in Fig. 4b reveal a noticeable shift in

the lower part of the Saloum from classical estuary conditions in November 2013 (Mid-Down

salinity values < 0 both at surface and bottom) to inverse estuary conditions (Mid-Down salinity

values > 0, albeit only slightly so in February 2014). The time series of salinity contrasts in the

upper Saloum differs in that no sign reversal is seen between November 2013 and February 2014.

More data points would be needed to accurately characterise the seasonal cycle but the robust

signs of vertical stratification of up-estuary salinity gradient and vertical stratification in Fig. 4

are consistent with the dominance of “inverse estuary” conditions accompanied by gravitational

sheared flow.

3.3. Larval densities related to location and tidal cycle

Densities (ind. m-3) of Clupeidae, Cynoglossidae, Gerreidae, and Mugilidae larvae

collected during ebb and flood tide conditions at the West, Centre, and East locations are

presented in Fig. 5. Visual trends were evident as for all taxa the densities were higher during

flood conditions in almost all cases. To test if these visual trends could be interpreted correctly

(i.e. there were statistical larval densities differences between tidal conditions), two-sample t-tests

were conducted for each species at each of the three sampling locations.

Although visual differences in densities between ebb and flood conditions could be

observed for Clupeidae larvae at all three stations (Fig. 5a), they were statistically not significant:
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West: t(5.7) = 0.07, p = 0.9496; Centre: t(6.6) = 0.78, p = 0.4616; East: t(8.7) = 1.29, p = 0.2316.

Therefore, no effects of tidal conditions could be statistically detected on the Clupeidae larval

densities. Regarding the Cynoglossidae larvae, no differences in larval densities were observed at

the West and East stations: West: t(7.8) = 0.58, p = 0.5763; East: t(9) = -0.11, p = 0.9121, but

only at the Centre location a significant difference was found: Centre: t(5) = 3.60, p = 0.0156.

This was expected, because at the Centre location, Cynoglossidae larvae were completely absent

in the catches during ebb tide (Fig. 5b). Densities of Gerreidae larvae at the West and Centre

locations were also visually higher (Fig. 5c) between the tidal cycles (ebb vs Flood), but again

significant differences were only found for the East station (East: t(6) = 4.61, p = 0.0037;

West: t(7.5) = 0.12, p = 0.9039; Centre: t(9.8) = 2.02, p = 0.0721.) where Gerreidae larvae were

absent in the catches during ebb tide (Fig. 5c). Lastly, the Mugilidae larval densities (Fig. 5d),

between the tidal conditions differed significantly for two locations, the Centre and East stations:

Centre: t(7.6) = 3.73, p = 0.0064; East: t(10) = 2.28, p = 0.0455. At the West location, no

significant differences between ebb and flood densities were detected: West: t(9.9) = -0.75,

p = 0.4726. A detailed t-test score statistics is presented in Table 2.

3.4. Larval transport related to location and time of day

Clupeidae, Cynoglossidae, Gerreidae, and Mugilidae larval transport (expressed as

ind. m-3 s-1) at the three locations and related to time of day for a ~ 24 h period are presented in

Fig. 6. Clupeidae larval transport showed a similar trend between the three sampling locations

(Fig. 6a). Maximum transport (0.34 ind. m-3 s-1) occurred at the Centre location, followed by the

West (0.16 ind. m-3 s-1) and East (0.10 ind. m-3 s-1) locations. For all three locations, highest

transport numbers were obtained shortly after sunset between 19:00 and 21:00 UTC.

Cynoglossidae larval transport did not show such a clear tendency to match between the locations

(Fig. 6b), and maximum transport (0.03 ind. m-3 s-1) occurred at the East location and shortly

before sunset between 16:00 and 18:00 UTC. Almost equally high, transport of 0.028 ind. m-3 s-1

occurred at the Centre location but this time shortly after sunset between 19:00 and 21:00 UTC.
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Fig. 5. Larval transport (ind. m-3) of four taxa of fish larvae collected during ebb and flood tides at the West, Centre, and East
stations located at the mouth of the Saloum branch of the Sine Saloum estuary. Each error bar is constructed using one standard
error from the mean.

Table 2 
Summary results of the two-sample t-tests for densities of the four taxa of fish larvae by tidal conditions at the three locations. Capital letters 
indicate significant differences with "A" being greater than "B". Non-significant is denoted with the abbreviation: ns. Mean expressed as ind. m-3.     
SD = Standard deviation. 
 Taxa  Ebb  Flood             t    p  
   Mean (SD)  Mean (SD)  Ebb Flood value value 

West 
 Clupeidae  0.753 (0.398) 0.777 (0.732) ns ns 0.07 0.9496 
  Cynoglossidae 0.204 (0.255) 0.301 (0.301) ns ns 0.58 0.5763 
 Gerreidae  0.293 (0.331) 0.320 (0.409) ns ns 0.12 0.9039 
 Mugilidae  0.383 (0.406) 0.241 (0.252) ns ns              -0.75 0.4726 
Centre 
 Clupeidae  0.665 (0.236) 0.867 (0.589) ns ns 0.78 0.4616 
  Cynoglossidae 0 (0)  0.498 (0.339) B A 3.60 0.0156* 
 Gerreidae  0.174 (0.425) 0.635 (0.366) ns ns 2.02 0.0721 
 Mugilidae  0.180 (0.207) 0.856 (0.393) B A 3.73 0.0064* 
East 
 Clupeidae  0.828 (0.305) 1.057 (0.303) ns ns 1.29 0.2316 
  Cynoglossidae 0.295 (0.304) 0.275 (0.315)            ns ns              -0.11 0.9121 
 Gerreidae  0 (0)  0.972 (0.558) B A 4.61 0.0037* 
 Mugilidae  0.241 (0.392) 0.902 (0.608) B A 2.28 0.0455* 
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Fig. 6. Larval transport (ind. m-3 s-1) of four taxa of fish larvae collected on a two-hour time interval frequency over the ~ 24 h
sampling period at the West, Centre, and East locations with darkness hours shaded. Times are Coordinated Universal Time.

In Gerreidae larvae (Fig. 6c) highest transport (0.13 ind. m-3 s-1) occurred at the East location

followed by the West location (0.03 ind. m-3 s-1) and Centre location (0.01 ind. m-3 s-1). For the

East location, highest transport were obtained shortly before sunset between 16:00 and 18:00

UTC, while the East and Centre locations got their highest transport rate was shortly after sunset

between 19:00 and 21:00 UTC. Larval transport of Mugilidae larvae showed a similar trend

between the West and Centre locations (Fig. 6d), with larval transport remaining low most of the

~ 24 h observation period. Highest density (0.21 ind. m-3 s-1) occurred at the East location

followed by the Centre (0.07 ind. m-3 s-1) and West (0.05 ind. m-3 s-1) locations. Highest densities

were obtained for the East location shortly after sunset between 19:00 and 21:00 UTC, for the

Centre location shortly after sunrise between 07:00 and 08:00 UTC, and for the West location in
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the middle of the day at about 12:00 UTC. Overall, for the four taxa, a similar trend could be

observed. Highest larval transport seems to be contained in a relatively short time window;

shortly before the sunset and after sunset between 16:00 and 21:00 UTC. Also, Clupeidae showed

highest larval transport measurements at the Centre location while the Cynoglossidae, Gerreidae,

and Mugilidae showed highest larval transport measurements at the East location. Furthermore,

what was observed, except for the Clupeidae, is a seemingly larval transport increase shortly after

the sunrise.

3.5. Vertical distribution of fish larvae

3.5.1. Patterns and periodicity in larval vertical distribution

Larval transport fluctuations and changes in the vertical distribution of Clupeidae,

Cynoglossidae, Gerreidae, and Mugilidae fish larvae over the ~ 24 h sampling period can be seen

in Fig. 7. None of the four taxa of fish larvae displayed apparent patterns of time or tide related

vertical movement throughout the water column. In all locations, Clupeidae and Cynoglossidae

larvae showed repeatedly higher larval transport in the Mid-Water stratum, while Mugilidae

larvae, and to lesser extent Gerreidae larvae, showed consistently higher larval transport in the

Surface stratum. For each of the four taxa, a two-way (factorial) analysis of variance was

conducted on the influence of larval position in the water column and the tide condition, on the

larval transport at the three sampling locations (Table 3). Larval position in the water column

was labelled “depth” and included three levels (Surface, Near Surface, and Mid-Water), and tide

condition consisted of two levels (ebb and flood). Across the taxa and location, not all effects

(Tukey post-hoc test) were found to be significant and summary results are detailed in Table 3

and 4.

At all three locations, the larval position in the water column (depth) returned a significant

effect on the larval transport of Clupeidae (West: F (2,30) = 8.80, p = 0.0010;

Centre: F(2,30) = 20.77, p = 0.0001; East: F(2,30) = 13.51, p = 0.0001). A post-hoc Tuckey test

indicated that the mean larval transport score for the Mid-Water stratum was significantly higher

than that of those of the Surface and Near Surface strata (Table 4). The same was observed for

the Cynoglossidae larvae (West: F (2,30) = 9.90, p = 0.0005; Centre: F(2,30) = 7.74, p = 0.0020;

East: F(2,30) = 9.84, p = 0.0005). A post-hoc Tuckey test indicated that the mean larval transport

score for the Mid-Water stratum was significantly higher than that of those of the Surface and
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Near Surface strata (Table 4). Gerreidae larval transport seemed to be somehow more equally

distributed in all three water strata as no effect of their position in the water column (depth) were

detected and, therefore, did not show any statistically detectable preferences for one stratum over

the other (West: F (2,30) = 0.47, p = 0.6324; Centre: F(2,30) = 1.62, p = 0.2152;

East: F(2,30) = 2.87, p = 0.0724). However, when looking at the number of individuals sample by

water stratum (Appendix 1), Gerreidae larvae were constantly more abundant at the Surface

stratum compared to the Near Surface and Mid-Water strata; indicating a preference of the

Surface strata. Mugilidae larvae were almost exclusively located at the surface stratum at the

Centre and East locations (Centre: F (2,30) = 18.48, p = < 0.0001; East: F(2,30) = 3.99,

p = 0.0291) but as the West location’s larval transport was mostly null throughout the ~ 24 h

sampling period, no significant difference could be detected at that location

(West: F(2,30) = 1.96, p = 0.1586). Appendix 1 provides further evidence for the depth

preference of all four taxa.

3.5.2. Length-frequency distribution of fish larvae

The length-frequency distributions of Clupeidae, Cynoglossidae, Gerreidae, and

Mugilidae larvae by tide condition (ebb and flood), depth (Surface, Near Surface, and Mid-Water

strata), and location (East, Centre, and West stations) are shown in Fig. 8. In addition to the size

distributions, the previously observed general patterns of vertical distribution of Clupeidae and

Cynoglossidae larvae predominantly distributed in the Mid-Water stratum, Gerreidae larvae more

evenly widespread across the three strata, and Mugilidae larvae essentially distributed at the

Surface stratum, can be further and differently visualized. The four taxa of fish larvae length-

frequency distributions, in term of the size range observed were quite homogenous across the

three strata and locations (Fig. 8). The differences in the size distribution were minimal between

samples categorized as ebb and flood conditions. Further, negligible differences in the size

distribution between the locations and the positions in the water column were apparent and

presented supporting evidences of strong depth preferences independent of the tidal condition and

the location at the mouth of the Saloum branch of the Sine Saloum estuary. Therefore, there was

no strong evidence of depth regulation. For all four taxa of fish larvae, larval size during ebb tide

was no greater or smaller than larval size during flood tide. This indicates that larvae entering and
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exiting the estuary are of similar size range and not from distinctly different cohort. Table 5

reports on the Mann-Whitney U test p-values and on the size range of the four fish larvae taxa.

Fig. 7. Densities (ind. m-3 s-1) of four taxa of fish larvae collected on a two-hour time interval frequency over the ~ 24 h sampling
period at the West, Centre, and East locations, and for the three vertical sampling position in the water column. Darkness hours
shaded and times are Coordinated Universal Time.
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Table 3 
Larval transport summary results from the two-way (factorial) analysis of variance and post-hoc connecting letter report for the four taxa of fish 
larvae collected at the surface, near-surface, and mid-water at the head of the Saloum branch of the Sine Saloum estuary. Non-significant results 
are abbreviated "ns", and capital letters indicate significant differences with "A" being greater than "B".  

 Taxa  Depth (D)      Tide (T)   D x T 
   p value Surface Near-Surface Mid-Water  p value Ebb Flood p value     
West 
 Clupeidae  0.0010 B B  A  ns ns ns ns  
  Cynoglossidae 0.0005 B B  A  ns ns ns ns 
 Gerreidae  ns ns ns  ns  ns ns ns ns 
 Mugilidae  ns ns ns  ns  ns ns ns ns 
Centre 
 Clupeidae  0.0001 B B  A  ns ns ns ns 
  Cynoglossidae 0.0020 B AB  A  0.0008 B A 0.0020 
 Gerreidae  ns ns ns  ns  0.0299 B A ns 
 Mugilidae  0.0001 A B  B  0.0011 B A 0.0001 
East 
 Clupeidae  ns ns ns  ns  ns ns ns ns 
  Cynoglossidae 0.0005 B B  A  ns ns ns ns 
 Gerreidae  ns ns ns  ns  0.0010 B A ns 
 Mugilidae  0.0291 A AB  B  0.0228 B A ns 
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Table 4
Results of Tukey’s Post Hoc Multiple Comparisons for larval position in the water column.   
 Taxa    Mean Diff.  Std. Err. Diff. Lower CL Upper CL  p value     
West 
 Clupeidae   
  Mid-Water – Surface  0.0323770      0.0170140                   -0.009372 0.0741259  0.0238* 

  Mid-Water – Near Surface 0.0349460  0.0170140                   -0.006803 0.0766950  0.0153 
  Near Surface – Surface 0.0025690  0.0170140                   -0.039180 0.0443179  0.9875 
 Cynoglossidae   
  Mid-Water – Surface  0.0027782  0.0008158  0.000776 0.0047801  0.0049* 

  Mid-Water – Near Surface 0.0027782  0.0008158  0.000776 0.0047801  0.0049* 

  Near Surface – Surface 0.0000000  0.0008158                   -0.002002 0.0020019  1.0000 
 Gerreidae   
  Mid-Water – Surface  0.0178396  0.0129114  -0.013842 0.0495216  0.3619 
  Mid-Water – Near Surface 0.0021371  0.0129114  -0.029545 0.0338190  0.9850 
  Near Surface – Surface 0.0157025  0.0129114  -0.015979 0.0473845  0.4522 
 Mugilidae   
  Mid-Water – Surface  0.0124209  0.0170643  -0.029451 0.0542931  0.7488 
  Mid-Water – Near Surface 0.0234178  0.0170643  -0.018454 0.0652900  0.3667 
  Near Surface – Surface 0.0109969  0.0170643  -0.030875 0.0528691  0.7968 
 
Centre 
 Clupeidae   
  Mid-Water – Surface  0.0531556  0.0327986                    -0.027325 0.1336365  0.0413* 

  Mid-Water – Near Surface 0.0531429  0.0327986                    -0.027338 0.1336239  0.0415* 

  Near Surface – Surface 0.0000126  0.0327986                    -0.080468 0.0804936  1.0000 
 Cynoglossidae   
  Mid-Water – Surface  0.2300352  0.0824502   0.027719 0.4323511  0.0230* 

  Mid-Water – Near Surface 0.1798635  0.0824502  -0.022452 0.3821794  0.0893 

  Near Surface – Surface 0.0501717  0.0824502  -0.152144 0.2524875  0.8165 
 Gerreidae   
  Mid-Water – Surface  0.0219452  0.0091690  -0.000554 0.0444439  0.0571 
  Mid-Water – Near Surface 0.0062059  0.0091690  -0.016293 0.0287046  0.7785 
  Near Surface – Surface 0.0157393  0.0091690  -0.006759 0.0382380  0.2142 
 Mugilidae  
  Mid-Water – Surface  0.1170195  0.0421444  0.013606 0.2204333  0.0238* 

  Mid-Water – Near Surface 0.1142773  0.0421444  0.010864 0.2176911  0.0277* 

  Near Surface – Surface 0.0027421  0.0421444                   -0.100672 0.1061559  0.9977 
 
East 
 Clupeidae   
  Mid-Water – Surface  0.0000501  0.0206713                   -0.050673 0.0507733  1.0000 
  Mid-Water – Near Surface 0.0072641  0.0206713                   -0.043459 0.0579873  0.9343 
  Near Surface – Surface 0.0072139  0.0206713                   -0.043509 0.0579372  0.9352 
 Cynoglossidae   
  Mid-Water – Surface  0.0079638  0.0030521  0.000475 0.0154530  0.0352*  
  Mid-Water – Near Surface 0.0079638  0.0030521  0.000475 0.0154530  0.0352* 

  Near Surface – Surface 0.0000000  0.0030521                   -0.007489 0.0074892  1.0000 
 Gerreidae   
  Mid-Water – Surface  0.1834352  0.0785744  -0.009370 0.3762406  0.0648 
  Mid-Water – Near Surface 0.1647609  0.0785744  -0.028044 0.3575663  0.1060 
  Near Surface – Surface 0.0186742  0.0785744  -0.174131 0.2114796  0.9694 
 Mugilidae   
  Mid-Water – Surface  0.2174856  0.1107491  -0.054270 0.4892410  0.0372* 

  Mid-Water – Near Surface 0.2113520  0.1107491  -0.060403 0.4831075  0.1522 
  Near Surface – Surface 0.0061336  0.1107491  -0.265622 0.2778890  0.9535 
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Fig. 8. Length-frequency distribution of fish larvae in three depth strata showing differences between ebb and flood tides samples.
Length corresponds to standard length (i.e. measured from the tip of the snout to the end of the notochord).
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Table 5  
Size range in standard length (mm), standard length means (mm) with standard deviation (SD) of the four taxa of fish larvae collected during  
ebb and flood conditions, and p value statistic testing for differences in the standard length distribution between ebb and flood conditions.  

                        Ebb            Flood    Mann-Whitney U test 
Taxa              Min. Max. Mean (SD)  Min. Max. Mean (SD)           p-value 
Clupeidae   11.25 22.40 14.02 (1.82) 11.88 22.38 13.82 (1.71)          0.0815  
Cynoglossidae  10.10 12.48 11.09 (0.61)   9.30 12.68 10.79 (0.83)          0.0614 
Gerreidae     4.17   7.08   5.50 (0.76)   3.08   7.08   5.20 (0.67)          0.0679 
Mugilidae     7.71 19.17 10.51 (2.75)   6.25 22.80 10.38 (2.43)          0.7286 

4. Discussion

The use of estuarine nursery areas is an important phase of the life history of many marine

organisms, including many commercially valuable fishes (Boehlert and Mundy, 1988;

Haedrich, 1983). Diouf (1996) showed that for the Saloum, it is the downstream part that presents

the most important reproductive activities. This is supported by the presence of high larval

abundance in the most downstream sections of the Sine Saloum estuary (Sloterdijk et al., 2017),

and the early life stages of Clupeidae, Cynoglossidae, Gerreidae, and Mugilidae fishes were

dominant in the larval community during this study. Their presence points to the possible

importance of the connectivity between the nearshore coastal and estuarine habitats.

Precisely, sampling was designed to test whether fish larvae utilized tidal currents

(ebb and flood) for their upstream or downstream transport in the estuary (Fig. 5 and 6), and if

so, whether the larvae predominantly entered the estuary in a specific horizontal location

(West, Centre, and East locations: see Fig. 1). For Clupeidae, Cynoglossidae, and Gerreidae,

there were no dominating and clear patterns of changes in fish larvae densities (Table 2) and

larval transport in relation to the tidal condition (Table 3). This means that despite some apparent

visual differences (e.g. Fig. 5) and based on larval transport; in most cases the amount of larvae

exiting the estuary during the ebb tide was roughly balanced by the amount of larvae entering the

estuary during flood tide. Moreover, no significant change in the vertical position of the larvae

was found (Fig. 7). With respect to the diurnal variations, a peak of abundance was observed at in

the hours preceding the sunset and shortly after (Fig. 6), but the shortness of the experiment

(~24 hours) did not allow us to observe if the pattern would have persist.

Accordingly, the most plausible interpretation consistent with these observations is that

larvae are passively transported by the tidal current. In particular, no support is found in favour of
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the selective tidal stream transport (STST) which requires some interplay between vertical

migration and the alternating tidal currents. In that respect, our conclusions are similar to those

reached by Roper (1986) at the entrance of the Whangateau Harbour, New Zealand where

conditions were comparable to ours and no differences were found in the densities of ebb and

flood tide catches of several species of fish larvae. This is in contrast with the findings of many

other studies conducted in “classical estuaries” where higher catches of fish larvae were generally

reported either during ebb or flood tides and characterised as ebb- or flood-tide transport

depending upon which phase of the tide is used for transport (see Holt et al., 1989; Joyeux, 2001,

1999; Lyczkowski-shultz et al., 1990; Melville-Smith et al., 1981; Pattrick and Strydom, 2014;

Teixeira Bonecker et al., 2009; Tzeng and Wang, 1997).

Compared to current speeds recorded in the Saloum entrance by the ADCPs (Fig.2), the

swimming ability of fish larvae is, however, of minor importance, limiting their capability to

influence their location by horizontal swimming. Therefore a mechanism alternative to STST is

needed for fish larvae to be able to preferentially enter or exit the estuary. Based on observed

currents and larval distributions, the alternative we hypothesise for larval transport into or out of

the estuary results from interactions between vertically sheared low-frequency currents present in

the estuary (i.e., ebb/flood tidal currents averaged out) and an appropriate positioning of the

larvae in the water column. From a behavioural perspective, this mechanism can be viewed as

simpler than STST in that it does not require the organisms to synchronise their vertical

migrations with the phase of the tidal currents. The results section described the pieces of

evidence, both physical and biological, that support the plausibility of our hypothesis. First, the

ADCP data we presented provided circumstantial evidence for the existence of a longitudinal

gravitational circulation in the Sine Saloum estuary, as in other inverse estuaries

(Hetzel et al., 2013; Nidzieko and Monismith, 2013; Nunes Vaz et al., 1990). This type of

vertically sheared circulation is of critical importance in the context of fish recruitment because it

offers a natural path into (resp. out of) the estuarine system for organisms that would be able to

maintain themselves in the upper (resp. lower) part of the water column. Second, the depth

distribution of fish larvae we presented exhibit two distinct patterns that varied depending on the

taxon. Clupeidae and Cynoglossidae larvae were almost exclusively distributed in the Mid-Water

stratum (Fig. 7a & b); Mugilidae larvae were exclusively distributed in the Surface and Near

Surface water strata (Fig. 7d); likewise, although a bit more broadly distributed in the three water

strata, Gerreidae larvae had all their peak densities and highest larval transport in the Surface
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stratum (Fig. 7c). Again, we stress that no significant changes in vertical distribution of the four

taxa of fish larvae with the tidal phase were noticeable (Table 3) which rules out that STST type

strategies were important for larval transport at the time of the experiment. On the other hand,

maintenance into their preferred stratum plausibly led Clupeidae and Cynoglossidae (resp.

Mugilidae) larvae to move toward the Saloum mouth and (resp. away from the Saloum mouth).

The general transport tendency for Gerreidae larvae cannot be determined with great confidence

given their more uniform distribution, but peaks in abundance were systematically close to the

surface so their mean displacement may have been into the estuary. For all taxa, it is unclear,

however, if the larvae actively maintained their position in the water column or if their specific

buoyancy allows them to do so. If the latter is true, the proposed mechanism would be a very

efficient and low cost way for fish larvae to move toward their nursery areas.

A caveat concerns the exact position of Clupeidae and Cynoglossidae larvae in the water

column. Indeed, lack of vertical resolution in larval sampling does not allow us to distinguish

larvae present in the water column away from the surface, where no or very weak gravitational

flow is expected, from larvae present adjacent to the bottom where the strongest outflow resides.

Another important limitation is that our ADCP and larval sampling data are only for the main

Saloum entrance and cover ~ 2.5 tidal cycles during the very end of the warm/dry and low wind

period, in July. Caution is thus needed in their interpretation, but less comprehensive

observations of salinity (Fig. 4) and temperature made during other field experiments

(Sloterdijk et al., 2017) taking place at different seasons and in several locations along the

Saloum branch of the Sine Saloum estuary offer robust evidence that stratified conditions are

prevalent in the estuary. Based on theoretical arguments as well as observations made in other

inverse estuaries, we thus expect the vertically sheared gravitational circulation that permits the

two-way larval transport between the estuary and the ocean to be a recurrent flow feature. Calm

atmospheric conditions (as during the ADCP and larvae sampling period) and neap tides

associated with weak oceanic turbulence favour the maintenance of some near-surface to bottom

stratification and are generally linked with the presence of vertically sheared gravitational

currents in estuaries (Hearn and Robson, 2002; Hetzel et al., 2015; Linden and Simpson, 1986).

The only exception was found during the cold season (in Feb. 2014) when fully mixed

temperature and salinity vertical profiles were encountered so that the gravitational circulation

may not have been present (Fig. 4a). Winter conditions when winds are strongest and heat fluxes

most prone to intense vertical mixing are expected to stop the gravitational circulation, albeit
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perhaps intermittently depending on synoptic variability (e.g., upwelling events or relaxations;

Ndoye et al., 2014). For the marine species taking advantage of the inverse estuary gravitational

circulation to achieve larval transport in or out of the Saloum, the cold/dry winter season would

thus be the one presenting, on average, particularly unfavourable recruitment conditions to be

avoided. In the Sine Saloum estuary, Sloterdijk et al. (2017) observed that the seasonal

abundance of the Clupeidae, Cynoglossidae, and Gerreidae larvae were lowest in February

(winter season), which may be seen as indirect support in favour of this hypothesis. We note that

winter reduction in larval abundance might be also due to other factors, for example, low

temperatures.

The larval transport tendency we infer from their depth distribution is broadly consistent

with the reproductive biology and ecology of several species representative of the Clupeidae,

Cynoglossidae, Gerreidae, and Mugilidae, as described in many studies worldwide. For example,

several species of adults and juveniles Clupeidae (such as Ethmalosa fimbriata and Sardinalla

spp.) and Cynoglossidae (such as Cynoglossus senegalensis) found in the Saloum are abundantly

found in the coastal waters outside the estuary and are known to enter estuaries to spawn, where

the larvae mature before being gradually transported back toward the coastal environment

(Albaret, 1999; Blaber, 2000; Charles-Dominique and Albaret, 2003). Conversely, Mugilidae

fishes generally remain in rivers and coastal lagoons during most of their life cycle and leave

these areas to spawn at sea (Chang et al., 2000; Koutrakis, 2004; McDonough et al., 2005, 2003;

McDonough and Wenner, 2003; Trape et al., 2009). After hatching and a short period of growth,

the larvae and juveniles start to recruit at 10–30mm SL into inshore coastal waters, primarily

lagoons and estuaries (Blaber, 1997; De Silva and Silva, 1979). As for Gerreidae, most of the

adult species occur in coastal system such as lagoon and estuaries bordered by mangroves but

spawning occur at sea throughout the seasons with larvae and juveniles entering estuaries until

they reach maturity (Blaber, 2000).

The stages of development at which fishes are present in inlets and estuaries may

determine their ability to behaviourally alter their transport (Boehlert and Mundy, 1988).

Consequently, our study also explored possible relationships between larvae length-frequency

distributions, and tidal phase or water stratum of sampling. No significant differences in standard

mean length of the four taxa of larvae caught on ebb and flood could be detected (Table 5). This

indicates that at least within the sampling period, a group of larvae entering the Saloum branch on

flood tide did not divide into one size group that was retained in the estuary and another size
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group that was transported back toward the entrance of the Saloum during ebb tide, or vice versa.

Statistical comparisons of the length-frequency distributions between the water strata were not

possible due to the strong depth preferences found for the different taxa resulting in the absence

or very low abundance in some of the water strata. In other words, no ontogenic behaviour

favouring either estuarine ingress or egress could be detected. This being said, our hypothesis of

larval transport without tidal vertical migration could be applicable to larvae of all size and

development stage because sensory and behavioural abilities may not be needed, thereby

removing the size-dependency associated with STST (Boehlert and Mundy, 1988).

5. Conclusion

The Sine-Saloum is categorized as an inverse estuary and its circulation dynamics suffers

from vast knowledge gaps despite some recent progress in the description and understanding of

the dynamics of other low-flow inverse estuaries (Largier et al., 1997;

Nidzieko and Monismith, 2013; Nunes Vaz et al., 1990). To our knowledge, the ADCP data we

presented for the period 9-10 July 2014 are the first current measurements in the area and we are

not aware of any previous study measuring simultaneously the estuarine physics (including

circulation) and larval transport. Our field experiment revealed that the circulation at the entrance

of the Saloum branch of the Sine Saloum estuary was characterized by the existence of a

longitudinal gravitational circulation with vertical shear and net near-surface inflow into the

estuarine system. In the context of fish recruitment, the general pattern of larval transport into and

out of the estuary appeared to have been tied to these characteristics of the flow. None of the taxa

of fish larvae that were examined displayed apparent patterns of tide related vertical movement

throughout the water column. Conversely, distribution of larvae showed clear and stable depth

preferences, thereby allowing them to exploit the gravitational flow to either enter or exit the

Saloum branch of the Sine Saloum estuary. The prevalence of the gravitational circulation and

the low energy cost for larvae to maintain themselves over a defined depth range vs the desired

direction of mean displacement make the proposed larval transport mechanism potentially

important most of the year. Especially in the context of increasing pressure, e.g. overfishing and

effect of climate change on fisheries in West Africa, the next step should focus on the acquisition

of additional inter-seasonal and inter-annual data assessing the variability of the physical
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environment and how these variations can modulate the effectiveness of this larval transport

mechanism and recruitment success for species dependent upon larval migration into or out of the

Saloum. Understanding the processes involved in establishing and modulating this connectivity is

of central ecological importance and motivates the investigation of larval transport and its

implications for larval survival (Norcross and Shaw, 1984).
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Appendix A

 
Rank by abundance (Rk), abundance (A), percentage contribution to the overall catch (%), and occurrence (O) of the four larval fish taxa in 
samples collected at the entrance of the Saloum branch of the Sine Saloum estuary. Abundance: total number of individuals. Occurrence: 
number of samples where the taxon was present. Surface: Neuston Top. Near Surface: Neuston Bottom. Mid-Water: Ring Trawl.  

            Total                                               Surface                                         Near Surface                                Mid-Water                    .                              
            Rk     A          %            O                Rk     A          %            O               Rk     A          %            O               Rk     A          %            O 
3 Stations Combined 
Clupeidae                   1      387       48.9       55/108       3      21       6.8           9/36  1        26    38.2        14/36        1      340     81.3    32/36         
Cynoglossidae           4        48         6.1        20/108      4         0          0           0/36  3          2      3.0          2/36        2         46       4.0    18/36 
Gerreidae                   3      169       20.2       33/108       2     114    37.4         15/36  1        26    38.2        11/36        3        20        4.8      7/36 
Mugilidae                   2      196       24.8       33/108       1     170    55.8         21/36  2        14    20.6          6/36        4        12        2.9      6/36 
 
West Station 
Clupeidae                   1      119       66.5         17/36       3        5       17.2           3/12  2          6    37.5          5/12        1      108     80.6      9/12         
Cynoglossidae           4        13         7.3            6/36      4         0            0           0/12  4          0          0         0/12         2        13       9.7      6/12 
Gerreidae                   3        22       12.2         10/36       2         9      31.0           4/12  3          3    18.7          3/12        3        10        7.5      3/12 
Mugilidae                   2        25       14.0           9/36       1       15      51.8           7/12  1          7    43.8          1/12        4          3        2.2       1/12 
 
Centre Station 
Clupeidae                   1      139       55.6         14/36       3        1         1.4           1/12  2          2    11.1          2/12        1      136     86.1     11/12         
Cynoglossidae           4        18         7.2            7/36      4         0            0           0/12  2          2    11.1          2/12        2        16     10.1       5/12 
Gerreidae                   3        37       14.8         12/36       2       20      27.0           6/12  1        12    66.7          4/12        3          5      31.2      2/12 
Mugilidae                   2        56       22.4         10/36       1       53      71.6           7/12  2          2    11.1          2/12        4          1        0.6       1/12 
 
East Station 
Clupeidae                   1      129       35.6         24/36       3       15         7.4           5/12  1        18    52.9          7/12        1        16     76.2     12/12         
Cynoglossidae           4        17         4.7            7/36      4         0             0           0/12  4          0          0          0/12        2        17     13.5       7/12 
Gerreidae                   3      101       27.9         11/36       2       85      42.1           5/12  2        11    32.4          4/12        4          5        4.0       2/12 
Mugilidae                   2      115       31.8         14/36       1     102      50.5           7/12  3          5    14.7          3/12        3          8        6.3       4/12 
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Abstract

West African tropical estuaries play an important role in the growth and survival of many

commercially exploited fish species and enable the sustainability of considerable artisanal fishery

yields. To be in a location that provides high quality feeding habitats is thus of vital importance

for larval and juvenile fishes. Unexplored in terms of its potential as an important micro-habitat

and food source for fish larvae and juveniles, the sea surface microlayer (SML) represents a

unique physical and chemical environment quite different from that of the underlying waters.

Here we present the first isotope data derived directly from the SML. At the entrance of the Sine

Saloum estuary in Senegal, we have quantified the SML contribution to the diet of

Hyporhamphus picarti larval and juvenile fish using two variants 13C and 15N) of a multi-

source Bayesian mixing model (SIAR). By obtaining statistically distinct 13C and 15N isotopic

signatures for the SML, we first confirmed its presence at the entrance of the estuary. Second, we

found that the SML presented an important food source for H. picarti larvae and juveniles,

contributing to more than 70% of their diets. Our results underline the importance of the SML

and the role of the Sine Saloum estuary as a spawning and nursery habitat for H. picarti. This is

an important first step to a better understanding of the different roles of the SML providing

insights and pushing the SML into a new and wider context that is relevant to fishery sciences

and management.
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1. Introduction

Recruitment variation in marine fishes can be enormous and consequently has major

biological and economic implications for the management of industrial and artisanal fisheries

(Leggett and Deblois, 1994). From the time when it became apparent that recruitment

fluctuations were largely due to events occurring during early life history, the search for causes of

larval and juvenile population fluctuations has occupied an important proportion of the fishery

science (Miller and Kendall, 2009). The link between recruitment and abundance/survival during

larval and juvenile life stages of marine fishes has since been sufficiently well documented to

justify a continued interest in factors regulating survival and abundance during those stages. One

of the principal agents of this regulation is hypothesized to be food-mediated mortality occurring

during the larval stages. Indeed, starvation have long been considered a major cause in larval

mortality (Hjort, 1914, 1926) and accordingly, food production in the sea and other coastal

ecosystems, larval feeding behaviour, and nutrition have been the objects of a large amount of

research to understand larval survival (Grote et al., 2012; Lehman, 2004; Munk and Kiorboe,

1985; Primo et al., 2017). It follows that inadequate food has commonly lead to starvation or

slow larval and juvenile growth, and thereby indirectly increasing their vulnerability to predation

and leading to high mortality rates. Consequently, larvae and juveniles rely on the production of

particular kinds and amounts of food for their survival.

Estuaries are transitional zones of interaction between land and sea that present a very

high level of productivity (Costanza et al., 1997). Because of some of their features, such as high

salinity variations, low depths, warm waters, the presence of various and rich habitats, and high

food availability; estuaries serve as nursery grounds for many marine fish species

(Elliott et al., 2007; Franco et al., 2008; McLusky and Elliott, 2004). They provide critical

habitats for species that are valued commercially, recreationally, and culturally. Larvae and

juveniles aggregate in these areas where their fitness is enhanced, for example through better

feeding conditions and optimal growth (Beck et al., 2001; Laegdsgaard and Johnson, 2001;

Nagelkerken et al., 2008; Verweij et al., 2006). For instance, Deegan (1993) states that “estuarine

fish faunas around the world are dominated in numbers and abundance by species which move

into the estuary as larvae, accumulate biomass, and then move offshore.” Clearly, they are

important natural places, directly and indirectly providing goods and services that are

economically and ecologically indispensable. First, the estuary as a whole was considered to be
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the nursery, and only later the focus shifted to specific areas within the estuary. For example,

areas of mangrove forests and seagrass meadows were often identified with higher nursery values

because evidence suggested that they supported much greater densities of organisms than

adjacent unvegetated substrates (Hutchings and Recher, 1974; Minello, 1999; Orth et al., 1984;

Turner, 1977).

Unexplored in terms of its potential as an important nursery habitat for fish larvae and

juveniles, the sea surface microlayer (SML) represents a unique physical and chemical

environment quite different from that of the underlying waters. The SML is the boundary

interface between the atmosphere and the water body and is generally defined as the uppermost

millimetre of water where its physicochemical and biological properties are measurably distinct

from the underlying waters (Cunliffe et al., 2013; Hardy, 1982; Wurl et al., 2017). Sea surface

observations by optical imagery indicate that SMLs are a frequent phenomenon, covering large

areas of coastal ecosystems and open oceans (John et al., 1984; Romano, 1996). The steep

gradient of physicochemical properties across the atmosphere-water boundary concentrates a

high amount of organic material in the SML, which attracts a variety of organisms of different

sizes. Various microorganisms use this organic matter directly, resulting in planktonic

communities in the upper 5 cm of the water column that are significantly different, both in

composition and abundance, from those in the layers below (Hardy, 2005). Consequently,

depending on the organism or ecological feature of interest, most processes at the SML occur

over gradients of varying thickness. Our knowledge on the biology of the SML is still in its

beginnings, but Zaitzev (2005) describes the SML and associated near surface layer (down to

5 cm) as an incubator or nursery for eggs and larvae for a wide range of aquatic organisms.

Moreover, Sloterdijk et al. (2017) found in the Sine Saloum estuary (Senegal), a distinct larval

fish assemblage and different abundances of larvae in the surface layer (down to 10 cm) from

those of the underlying water. Yet, the empirical evidences in support of the role and value of the

SML as a nursery habitat remain limited. In that sense, food availability and its dietary

importance can influence the nursery value of habitats (in this case the SML) and might

contribute to explain the very high abundance and distinct composition for certain larval and

juvenile fish found in the vicinity of the SML. To the best of our knowledge, the dietary

importance of the SML for larval or juvenile fish development has not been yet assessed.

Based on the adage that “you are what you eat”, scientists have widely used stable

isotopes analysis to quantify the contribution of multiple sources to a mixture, such as
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proportions of food sources in an animal’s diet (De Niro and Epstein, 1978; DeNiro and Epstein,

1980; Eggers, Jones, 2000; Layman et al., 2012; Phillips and Gregg, 2001; West et al., 2006).

The stable isotope ratios of carbon (13C/12C, reported as 13C) and nitrogen (15N/14N, reported as
15N) in animal tissues reflect the isotopic signature of diet and can be used to determine the

relative contributions of isotopically distinct food sources to an animal’s diet

(De Niro and Epstein, 1978; DeNiro and Epstein, 1980; Hobson, 1999; Post, 2002). In trophic

interactions, as one species feeds on another one, the consumer tends to be isotopically heavier

than its food source, a process called fractionation factor or trophic enrichment (Caut et al.,

2009). Consequently, the ratio of stable isotopes of nitrogen 15N) can be used to estimate

trophic position because the 15N of a consumer is typically enriched by 3–4 ‰ at each trophic

level (DeNiro and Epstein, 1980). In contrast, the ratio of carbon isotopes 14C) changes little as

carbon moves through food webs (Peterson and Fry, 1987) and, therefore, typically can be used

to evaluate the ultimate sources of carbon for an organism when the isotopic signature of the

sources are different. Based on this approach, through stable isotope analysis using diet-mixing

model, we looked at the contribution of the SML to the diet of Hyporhamphus picarti larval and

juvenile fish at the entrance of the Sine Saloum estuary, Senegal.

Our main objective was to gain initial insight into understanding the relative importance

of the SML in supporting larval and juvenile African halfbeaks (H. picarti), a species that nearly

exclusively lives in the SML. Larvae and juveniles of this species are found in very high

abundance in the Sine Saloum estuary (our study population) (Sloterdijk et al., 2017) and are

exploited commercially throughout the West African coast (Colette, 2016). For this, because

sampling the SML for isotope analysis was never done before, we (1) looked if significant

differences in stable isotopic signatures between the food sources, namely the sea surface

microlayer (SML), the underlying water (UW), and the water column (WC) could be detected

(see Materials and Methods section for a description of the water strata and sampling

procedures); (2) we looked at ontogenic shift in the isotopic signature of different size classes of

the larvae and juveniles (the consumers); (3) and we used a Bayesian mixing model (SIAR) to

estimate the proportion of the SML contributing to the larval and juvenile's diet.
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2. Materials and Methods
2.1. Study area

The study samples are all coming from the entrance of the Saloum branch

(13°55’ 13°57’ N, 16°44’-16°45’ W) of the Sine Saloum estuary, south of Dakar in Senegal

(Fig. 1b). The estuary plays an important role in the growth and survival of many commercially

exploited fish species and enables the sustainability of considerable artisanal fishery yields

(Diaw et al., 1993; Diouf, 1996; Simier et al., 2004; Sloterdijk et al., 2017). The estuary has three

main branches (Saloum, Diomboss, and Bandiala, from north to south), and a number of seawater

channels of different sizes (locally named “bolongs”) connecting in a complex manner (Fig. 1a).

The main channel at the entrance of the Saloum (where the samples were collected) is 10 to 15 m

deep (Sloterdijk et al., 2018). No river of significant size currently flows into the estuary. The

absence of river inflow, the intense evaporation, and a low gradient in the lower estuary have

resulted in seawater incursion, high overall salinity, and a positive upstream salinity gradient.

Consequently, the Sine Saloum is classified as an inverse estuary (Pagès and Citeau, 1990;

Pritchard, 1967), with salinity level at the mouth slightly higher than that of seawater, but up to

2-3 times higher in the uppermost upstream areas (Diouf, 1996; Simier et al., 2004; Sloterdijk et

al., 2017). The region has a Sahelo-Sudanian type climate (Köppen climate classification: BWh)

with a rainy season from July to October (where the summer rains provide the only freshwater

supply) and a dry season from November to June. The dry season is divided into a cold season

from November to March and a hot season from April to June. Mangroves cover almost the entire

southern and south-eastern portion of the system and progressively diminish upstream. The main

species are from three families: Rhizophoraceae, Verbenaceae, and Combretaceae. Diouf (1996)

gave a complete description of climate and environmental conditions in the Sine Saloum estuary.
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Fig. 1. (a) Location of the study system: Sine Saloum estuary; (b) Map showing the areas (zig zag pattern) where samples were
collected.

2.2. Study species

The African halfbeak Hyporhamphus picarti (Valenciennes, 1847) is an Eastern Central

Atlantic species known from Morocco and Dakar southward along the coast of the Gulf of

Guinea to Luanda (Angola) and also from the southern shores of the Mediterranean Sea from

Lebanon and Israel and west to Gibraltar (Colette, 2016). Their distributions are limited to

inshore waters and they are known to frequently enter estuaries. All along the West African coast,

they are exploited commercially and utilized fresh, dried, salted, smoked, and for fishmeal and oil

(Bellemans et al., 1988). They are also important bait fish when fishing for marlins, swordfishes,

and the like. Adults have an elongated body characterised by a greatly prolonged beak-like lower

jaw, hence the name halfbeak. Literature on the biology and ecology of their early life stages is

extremely scarce. A recent study has shown that H. picarti is the third most abundant species in
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the ichthyoplankton of the Sine Saloum estuary with an all year-round occurrence; peaking

especially from February (cool and dry season) to June (warm and dry season)

(Sloterdijk et al., 2017). Moreover, their vertical distribution is limited to the surface layer of the

water; down to 25 cm, but almost exclusively concentrated in the upper 10 cm. Larvae are well

developed at hatching with partially to fully pigmented eyes, an open mouth, fully flexed

notochord, developing rays in the dorsal, anal, and caudal fins, and a small to moderate yolk sac

(personal observation). During post-embryonic development, H. picarti larvae also undergo

growth of their lower jaw length. These are thought to be adaptations to access the potential rich

food source available in the SML.

2.3. Sample collection

Samples were collected early in the morning during periods of calm wind from the R/V

Diassanga, a small experimental fishing/oceanographic vessel of the Institut de Recherche pour le

Développement (IRD). Data collection occurred between the 5th and 10th of May 2014 during the

warm and dry season shortly after the Harmattan, a season in the West African subcontinent that

is characterized by a dry and dusty north-easterly trade wind (of the same name) which blows

from the Sahara Desert over West Africa and into coastal and ocean areas. Saharan desert dusts

are transported by these winds into the coastal waters providing pulses of nutrients, including

iron, to surface waters. These dust depositions are known to be important sources of essential

and limiting nutrients and metals to the ocean affecting the oceanic carbon uptake, phytoplankton

growth, and productivity (Jickells et al., 2005). Moreover, recent reports also suggest that dust

inputs may promote nitrogen fixation, by providing iron and other trace metals

(Duarte et al., 2006; Mark Moore et al., 2009). Consequently, the sampling period was chosen

accordingly as the SML might be enriched by these depositions, contributing to enhance their

special productivity and their high quality food source. Moreover, conditions for a rapid

H. picarti larval growth appear to be more favourable during this time of the year

(Döring et al., 2017).

H. picarti larvae and juveniles were sampled using a custom made paired neuston net

stacked on top of each other (opening 30x15 cm, 3 m long; mesh size of 500 and operated

from an adapted catamaran (Hobie Cat 15®) deployed in a parallel route of a towing boat
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(R/V Diassanga) moving at an average speed of 2-3 knots. In the briefest time possible, larvae

and juveniles were removed from the samples, kept in cryogenic vials, and frozen prior to

preparation for stable isotope analysis. In the laboratory, unfrozen fish larvae and juveniles were

first measured for standard length (SL) using the image analysis software ImageJ

(National Institutes of Health of USA, available at www://sb.info.nih.gov/ij/download.html).

Subsequently, larvae and juveniles were separated into one of five ontogenic categories based on

larval size and attainment of juvenile characteristics: 5-6 mm, 7-8 mm, 9-10 mm, 11-13 mm, and

juvenile individuals. Next, stomachs were removed from the fish and used separately for stable

isotope analysis of stomach contents. The samples were then dried in a drying oven at 40 ºC for

~ 48 hours and grounded into a fine and homogeneous powder using a combusted mortar and

pestle. Lastly, samples of larvae, juvenile, and stomach contents were weighed on a precision

balance with a precision of 1 μg.

As proxies of possible food sources for H. picarti larvae and juveniles, we used

collections of suspended particulate organic matter (SPOM) to obtain the isotopic signature of 3

distinct water strata, namely the sea surface microlayer (SML), the immediate and adjacent

underlying water (UW) (2 cm below the SML), and water from the deeper water column (WC)

(~ 5 m deep). SML water was collected using a glass plate (Cunliffe and Wurl, 2014;

Harvey and Burzell, 1972). For this, a custom-made glass plate (20 x 20 cm by 4 mm thick) was

gently plunged through the surface water and withdrawn vertically at a controlled rate of

~ 5 cm s-1. Following sample withdrawal, excess water was allowed to drain for ~ 20 s by holding

the plate vertically. The sample was then removed from both sides of the plate directly into a

sampling vial (1 litre glass bottle) with a non-contaminating wiper (neoprene squeegee).

Cunliffe et al. (2013) estimated that proper use of this technique allows to typically collecting the

uppermost 20-150 of the surface. This procedure was repeated until the desired amount of

sample was collected, i.e. until we obtained (after filtration, see below) filters with rich gold to

green colour. For sampling the UW, we used a sterile syringe pump apparatus

(Katznelson and Feng, 1998). The apparatus was constructed using 60 ml disposable syringe with

Luer-Lok tip (Becton-Dickinson No.309663) and clear PVC Nalgene® flexible plastic tubing

(diameter 3.2 mm; Nalge Nunc No.8000-1020). The end of the tubing was plunged at the desired

depth (in this case 2 cm below the surface) and only then water was pumped. By doing so, we

could get water samples at the desirable depth and avoid contamination by the SML. Once

collected, the sample was pumped out into a sampling vial (1 litre glass bottle). As with the SML
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method, this procedure was repeated until the desired amount of water was collected. To take

samples within the WC, we used a Niskin-Type Plastic Water Sampler (Hydro-Bios® 5 l Model),

a relatively simple device that can be opened at both ends. The open bottle was lowered into the

water until the desirable depth (~ 5 m) was reached and then the bottle was closed by a weighted

trigger that was sent down the cable from the surface.

SML, UW, and WC samples were filtered on pre-combusted (4 h at 450 °C) Whatman®

glass microfiber filters (Grade GF/F) and were preserved by freezing them immediately.

Afterwards, each filter was oven-dried (~ 48 h at 60 °C), weighed with a precision of 1 μg, and

ground to a fine powder prior to isotope analysis.

2.4. Stable isotope analysis

Because of the small size of the individual fish larvae, 13C and 15N analyses were

conducted on several individuals combined. For 13C analysis, sub-samples were placed in silver

cups (Ag 5x12 mm). To remove non-dietary inorganic carbon contained in calcified structures

(e.g. bones), chemical dissolution of the carbonates was done by adding 150 1N HCL

(hydrochloric acid) to the samples (Komada et al., 2008). Successively, the cups were placed in a

fume hood overnight. Elemental values for carbon and nitrogen were determined with a Euro

EA3000 Elemental Analyser. Samples for 13C and 15N were analysed with a Delta Plus isotope

ratio mass spectrometer connected to the Carlo Erba Flash EA elemental analyser via a Finnigan

ConFloII interface.

Ratios ( ) of 13C/12C and 15N/14N were expressed as the relative per mil (‰) difference

between the samples and international standards (Vienna PDB carbonate and N2 in air,

respectively) where:

  = 1 × 1000 (‰)
In addition to carbon and nitrogen isotopes from the same sample, continuous flow also

reported % C and % N data. Isotope ratio mass spectrometry precision was ~ 0.1 ‰ for carbon

and ~ 0.2 ‰ for nitrogen. Lipid extraction was not carried out on samples due to mean C : N

ratios being much lower than 3.5 (Logan et al., 2008; Post et al., 2007).
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13C and 15N values from sources and consumers were tested for normality and data was

analysed for differences between source types (SML, UW, WC), consumer’s ontogenic stages

(5-6 mm, 7-8 mm, 9-10 mm, 11-13 mm, juvenile), and stomach contents (larvae, juvenile) using

JMP® Pro 12.2.1 (SAS Institute).

The diet compositions of H. picarti larvae and juveniles were modelled using Stable

Isotope Analysis in R (SIAR), a Bayesian stable isotope mixing model that generates probability

distributions for prey items based on their relationship with consumer tissue values

(Parnell et al., 2010). SIAR models were generated using 13C and 15N values for the ontogenic

stages (5-6 mm, 7-8 mm, 9-10 mm, 11-13 mm, juvenile), stomach contents (larvae, juvenile), and

putative food sources (SML, UW, and WC), all sampled from the entrance of the Saloum branch

of the Sine Saloum estuary. Since fractionation values could not be determined from literature

sources, consumer’s trophic fractionation of 13C and 15N were assumed and adjusted to be

1.5 ‰ for 13C and 3.5 ‰ for 15N (Cabana and Rasmussen, 1996; DeNiro and Epstein, 1980).

No concentration dependence was used and the models were run for 500,000 iterations and the

first 50,000 iterations were discarded. Credibility intervals (CI) of 0.95, 0.75 and 0.25 were

computed and displayed on figures. Credibility intervals are used in Bayesian statistics to define

the domain of a posteriori probability distribution used for interval estimation (e.g., if the 0.95 CI

of a contribution value ranges from A to B, it means that there is a 95 % chance that the true

contribution value lies between A and B).

3. Results

A total of 128 larvae and 14 Juveniles were used for the stable isotope analyses; ranging

in size from 5.33 to 12.85 mm and 39.45 to 50.18 mm standard length, respectively.

3.1. Stable isotope signatures of composite food sources and consumers

Food sources 13C values ranged from -25.36 to -24.50 ‰ (SML), -23.89 to -23.05 ‰

(UW), -24.65 to -23.78 ‰ (WC) (Fig. 2a). We obtained significantly different 13C food source

signatures (Kruskal–Wallis test, X2(2) = 15.68, p = 0.0004) and comparisons for each pairs using

Wilcoxon method indicated that the SML was isotopically distinct from the UW and the WC. As
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a result, the SML was characterized by the most depleted mean (±SD) 13C value

(-24.86 ±0.34 ‰), followed by the WC (-24.26 ±0.31 ‰), and the UW (-23.48 ±0.32 ‰) (Fig. 4).

With reference to 15N values (Fig. 2b), the SML ranged from 8.14 to 9.13 ‰, the UW from 6.81

to 7.23 ‰, and the WC from 6.93 to 7.71 ‰. 15N isotopic signature of the food sources were

also statistically different (Kruskal–Wallis test, X2(2) = 14.32, p = 0.0008) with the SML being

characterized by the most enriched mean (±SD) 15N value (8.70 ±0.37 ‰), followed by the WC

(7.24 ±0.27 ‰), and the UW (7.03 ±0.22 ‰) (Fig. 4). Thus, our results clearly indicate that the

SML has its own carbon and nitrogen stable isotope ratios, providing indirect evidences for the

presence of its own biological community that is significantly different, both in composition and

abundance, from those in the layers below (UW and WC).

Fig. 2. Distribution of (a) 13C and (b) 15N values obtained for the food sources.

When looking at the consumers, H. picarti larvae presented a narrow range of 13C

values: 5-6 mm (-16.36 to -16.10 ‰), 7-8 mm (-16.52 to -16.41 ‰), 9-10 mm

(-16.62 to -16.32 ‰), and 11-13 mm (-16.74 to -16.52 ‰) (Fig. 3a). Stomach content samples
13C values also showed a narrow range of -21.20 to -21.05 ‰ and -19.45 to -19.16 ‰ for the

larvae and juveniles, respectively. Juvenile H. picarti 13C values were also small but broader

than those of the larvae, ranging from -18.18 to -17.03 ‰. With regards to 15N values, larvae

ranged from: 5-6 mm (11.79 to 12.26 ‰), 7-8 mm (10.18 to 10.22 ‰), 9-10 mm

(10.19 to 10.29 ‰), and 11-13 mm (10.12 to 10.20 ‰); stomach content larvae

(11.65 to 11.79 ‰) and stomach content juvenile (9.73 to 9.84 ‰); juvenile individuals
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(10.65 to 11.79 ‰) (Fig. 3b). The stable 13C and 15N mean (±SD) isotope ratios of the

consumers were -16.24 ±0.09 ‰ and 12.05 ±0.17 ‰ for 5-6 mm larvae, -16.44 ±0.05 ‰ and

10.19 ±0.02 ‰ for 7-8 mm larvae, -16.55 ±0.13 ‰ and 10.22 ±0.04 ‰ for 9-10 mm

larvae, -16.66 ±0.09 ‰ and 10.14 ±0.03 ‰ for 11-13 mm larvae, -17.62 ±0.36 ‰ and

11.23 ±0.36 ‰ for juveniles, -21.12 ±0.06 ‰ and 11.72 ±0.07 ‰ for stomach contents of larvae,

-19.32 ±0.12 ‰ and 9.78 ±0.05 ‰ for stomach contents of juveniles, respectively (Fig. 4). We

observed ontogenetic shifts in 13C and 15N values of H. picarti 13C: X2(6) = 40.54,

p < 0.0001; 15N: X2(6) = 39.75, p < 0.0001) and comparisons for each pairs using Wilcoxon

method indicated that groups were isotopically distinct from one another with the exception of

the larval groups 7-8, 9-10, and 11-13 mm, having similar isotopic signatures. Stomach contents

of larvae presented the most depleted 13C values, followed by the stomach contents of juveniles,

juvenile individuals, larvae 7-13 mm, and larvae 5-6mm (Fig. 4). Enriched 15N values were

highest in larvae 5-6 mm, followed by larvae stomach content, juvenile individuals, larvae 7-13

mm, and stomach contents of juveniles (Fig. 4).

Fig. 3. Distribution of (a) 13C and (b) 15N values obtained for the consumers and stomach contents.



132 
 

Fig. 4. Stable isotope signatures for the food sources and consumers at the entrance of the Saloum branch of the Sine Saloum
estuary. Vertical and horizontal error bars are constructed using a 95 % confidence interval of the mean.

3.2. SIAR results

The food source contributions to H. picarti larvae and juveniles diets for the five size

groups and for the stomach contents were calculated from stable isotope analysis using two

variants 13C and 15N) of a multi-source Bayesian mixing model (SIAR). The model predicted

that the SML comprised the largest diet contribution of the larvae and juveniles as well as their

stomach contents, with low percentage contributions of the UW and WC (Fig. 5). Mixing model

computations (mean ±SD) show relatively equal contributions of SML (38.59 ±1.9 %), UW

(31.65 ±1.8 %), and WC (29.76 ±2.0 %) as food sources for the larvae 5-6 mm (Fig. 5a). We



133 
 

then observed an increased and a clear domination of the SML as a contributor to the diet of

larger larvae and juveniles. SML contributions were high and very similar for the ontogenic

groups of larvae 7-8, 9-10, 11-13 mm; 74.44 ±1.6 %, 74.39 ±1.7 %, and 73.86 ±1.5 %,

respectively (Fig. 5b,c,d). Similar values were obtained for the juveniles with SML contribution

estimated at 69.84 ±2.2 % (Fig. 5e). SML contributions to the stomach contents of larvae and

juveniles were 57.32 ±1.4 % and 59.08 ±1.2 %, respectively (Fig. 5f,g). A detailed summary of

the model outputs including the 95 % credibility intervals values are presented in Table 1.

Fig. 5. Boxplot of the proportion (%) of potential food sources for each consumer size group (a: 5-6 mm, b: 7-8 mm, c: 9-10 mm,
d: 11-13 mm, e: juvenile, f: stomach contents larvae, and g: stomach contents juvenile) of Hyporamphus picarti produced by the
SIAR diet-mixing model. The food sources were SML: sea surface microlayer, UW: underlying water, and WC: water column.
0.95, 0.75, 0.25 credibility intervals are in dark grey, light grey, and white, respectively.



134 
 

Table 1. 
Summary of the predicted diet compositions of Hyporhamphus picarti larvae and juveniles at the entrance of the Sine Saloum estuary derived 

13 15N) of a multi-source Bayesian mixing model. Diet compositions were estimated using 
SIAR. Mean estimates with 95 % credibility intervals and modes are presented.   
      Contribution 
   Low 95 (%) High 95 (%)        Mode (%)       Mean  ±SD (%) 
H. picarti (5-6 mm) 
SML     0.06      74.32   38.63   38.59 ±1.9 
UW       0.00      62.92   36.61   31.65 ±1.8 
WC       0.00      59.71   33.11   29.76 ±2.0 
 
H. picarti (7-8 mm) 
SML    38.80      98.16   81.54   74.44 ±1.6 
UW       0.00      35.58       2.53   12.18 ±1.2 
WC       0.00      37.58       2.71   13.39 ±1.2 
 
H. picarti (9-10 mm) 
SML    36.76      98.42   83.10   74.39 ±1.7 
UW      0.00     37.34       0.44   12.39 ±1.2 
WC       0.00      38.50     0.59   13.23 ±1.2 
 
H. picarti (11-13 mm) 
SML    40.12      97.47   81.10   73.86 ±1.5 
UW       0.00      35.11     2.60    12.51 ±1.1 
WC       0.00      36.82     2.52    13.63 ±1.1 
 
H. picarti (juvenile) 
SML    29.48      99.12   90.40   69.84 ±2.2 
UW       0.00      48.10     0.77   16.58 ±1.6 
WC       0.00      40.67    0.29   13.58 ±1.3 
 
Stomach  
Contents (larvae) 
SML    30.83      86.28   52.29   57.32 ±1.4 
UW       0.00      31.30     4.77   13.35 ±0.9 
WC       0.01      55.02     4.75   29.33 ±1.6 
 
Stomach 
Contents (juvenile) 
SML    35.03      81.70   60.90   59.08 ±1.2 
UW       0.00      43.45   16.31   20.88 ±1.3 
WC       0.00      42.99     5.28   20.03 ±1.3 
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4. Discussion

Here we present the first isotope data derived directly from the SML; an important first

step towards a greater understanding of its function and derived dietary importance for organisms

such as larval and juvenile fishes. We hypothesized that the SML serves as an important food

source for H. picarti early life stages found at the entrance of the Saloum branch of the Sine

Saloum estuary, and to our knowledge, no information existed on the carbon and nitrogen

isotopic compositions of the SML and their fate in the associated food web. Representatively

sampling the SML is still one of the largest practical challenges in related studies and a tedious

task. This may partly explain the little attention and/or attempts towards assessing and

quantifying its importance and potential as a food source. Only recently, representative and

standardized procedures to sample the SML have been tested, accepted, and detailed by the

scientific community (see e.g., Cunliffe and Wurl, 2014). In this study, we have used a glass plate

sampler to collect SML samples, based on one of its advantage, as compared to other methods

(for example, the mesh screen), of collecting a thinner SML fraction (i.e. 20-150 vs 150-400

(Cunliffe and Wurl, 2014; Momzikoff et al., 2004). Therefore, it should have theoretically

given a better representation of the biological composition of the SML (Wurl et al., 2017).

Reflecting the origins and biological compositions associated with each of the three water

strata sampled in this study, 13C and 15N isotopic signatures obtained for the SML (Fig. 4) were

statistically different from those of the underlying water (UW) and those of the water column

(WC). Indeed, the identification of these distinct isotopic signatures between the water strata

(used as proxies of potential food sources) was crucial to the evaluation of their respective

contributions to the larval and juvenile’s diet. Consequently, 13C and 15N well discriminated the

SML samples from those of the UW and WC, and these differences were strong evidences for

confirming the presence of a SML at the entrance of the Saloum branch of the Sine Saloum

estuary, and as mentioned earlier, concomitantly highlighted its distinct origin and biological

composition. Although no direct quantitative measurements were made on the biological

composition of the SML, qualitative observations of selected samples under a microscope

revealed that the SML was characterized as being composed of a variety of micro-organisms such

as aggregates of bacteria, protozoans, phytoneuston, micro-zooneuston (auto- and heterotrophic

protists such as flagellates, dinoflagellates, ciliates, acantharids, radiolarians, foraminiferans, and

metazoans such as copepod nauplii), and detrital matter with relative contributions (life in the
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SML is dominated by organisms, which are collectively referred to as “neuston,” whereas the

term “plankton” is preferred and used for the organisms that inhabit the underlying water

column). Therefore, in this study the SML had to be considered as a composite food source. The

scientific literature on the biological communities of the SML have mostly focused on the

diversity and abundance of “bacterioneuston” assemblages and showed that the species

composition and activity can be very different compared to those of the underlying water column

(for a review see Cunliffe et al., 2011). Another major biological component of SML is

“phytoneuston”, historically studied using microscopes (Hardy, 1982), and more recently through

high-throughput sequencing (Taylor and Cunliffe, 2014). It has also been shown that

“phytoneuston” composition differed from the phytoplankton composition of those in the

adjacent underlying water and those of the remaining water column

(e.g. Taylor and Cunliffe, 2014). Lastly, “micro-zooneuston” forms the third important biological

component of the SML that has been described in the literature (Hardy, 1982). In that sense, by

obtaining distinct isotopic signatures, our study is in good agreement with previous studies

pointing out the unique and different biological composition of the SML. However, it is

important to consider that there is still a large fraction of the living and non-living organic matter

collected in the SML that remains to date unidentified, leaving some uncertainties about its total

composition.

Among the water strata, the SML was characterized by the most depleted mean (±SD)
13C (-24.86 ±0.34 ‰) and also by the most enriched mean (±SD) 15N (8.70 ±0.37 ‰). We

obtained for both a low standard deviation (SD), which indicates the narrow range of 13C and
15N values measured for the SML and attest of its well-defined isotopic composition. Direct

comparisons of carbon and nitrogen isotopic SMLs’ signatures were unfortunately not possible

because: (1) we are not aware of other published studies looking at the isotopic composition of

the SML and (2) the complicated nature of mixed samples such as SMLs, which comprised a

complex mixture of living and non-living organic matter that can include bacteria, phytoneuston,

micro-zooneuston, faecal pellets, and other organic detritus such as mangrove derived material

(Engel et al., 2017). Consequently, tracing the origin of the SML is complex due to the many

potential sources. However, indirect comparison were possible, for example, it is generally

accepted that marine phytoplankton from tropical regions shows a 13C signal between -18

and -22 ‰ (Fontugne and Duplessy, 1981; Goericke and Fry, 1994), whereas estuarine

phytoplankton may be more depleted in 13C due to the uptake of isotopically light dissolved
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inorganic carbon (DIC) resulting from the bacterial respiration of terrestrial detritus

(Mook and Tan, 1991). Our 13C values obtained for the SML were generally more depleted than

those reported from typical tropical marine phytoplankton, which is not completely unexpected

considering the estuarine nature of the Sine Saloum (geographical situation) and the mixed

biological composition of the SML. We conclude that because of its relatively depleted values,

terrestrial detritus (presumably including mangrove-derived material), dust inputs (possibly

Saharan dust), and its mix biological composition are likely to have influenced, directly and

indirectly, the isotopic values of the fraction of suspended biological matter that we were able to

detect in the SML. Despite our efforts, we were unable to find other sources of information

regarding the relative isotopic compositions specific to elements of the microbial loop.

Nevertheless, the 13C composition and qualitative microscopic observations of the SML were

still indicative that a variety of organisms contributed to the observed values and that

phytoneuston and micro-zooneuston contributions were likely important.

Mean (±SD) 15N of the SML (8.70 ±0.37 ‰) was higher than those of the UW

(7.03 ±0.22 ‰) and WC (7.24 ±0.27 ‰) (Fig. 4). Taking an average trophic-level increase in
15N of 3.5 ‰ for first level consumers (Cabana and Rasmussen, 1996;

DeNiro and Epstein, 1980), the observed differences (~ 2 ‰) between 15N values of the SML

and those of the UW and WC were small and did not span one average trophic level. Therefore,

these differences could not be completely explained by position dissimilarity in their respective

average trophic levels. Variations in 15N are difficult to resolve for the three water strata because

small organisms tend to have fast nitrogen turnovers that often translate in some 15N variability

(Cabana and Rasmussen, 1996; Paasche and Kristiansen, 1982). Moreover, since the biological

composition and the environmental conditions in the SML (e.g. higher solar irradiation, greater

temperature variability, and its boundary interface between air and water) are different than those

of the rest of the water column, 15N higher values might have been influenced by a number of

factors and processes: (1) the source of organic matter and the phytoneuston/plankton specific

species composition (Fontugne and Duplessy, 1981; Goericke and Fry, 1994); (2) 15N uptake by

organisms is influenced by their growth rates, and in return, growth rates are affected by factors

such as the amounts of sunlight, the water temperature, and the nutrient concentrations

(Jones and Stewart, 1969; Laws, 2013), all of which can vary based on its position in the water

column; (3) the isotopic composition of the locally available dissolved inorganic nitrogen

(Hadas et al., 2009; Owens, 1987); (4) the SML microbial composition differs from the rest of the
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water column (Cunliffe et al., 2013) and might have some consequences on the nitrogen cycle

(namely nitrogen fixation, nitrification, and denitrification), which in return impacts isotopic

fractionation during microbial nitrogen transformation and assimilation by other micro-organism

(Owens, 1987); (5) Saharan dust enrichment of the SML might have an effect on the 15N as land

derived nutrients have been shown to increase 15N values (Gritcan et al., 2016;

Moore and Suthers, 2005).

Regarding the different H. picarti ontogenic groups, the carbon stable isotope ratios

( 13C) showed little differences (Fig. 4), giving the first indications that the carbon sources were

similar across the whole size range. Especially, the larvae of size 7-8, 9-10, and 11-13 mm

clustered together and their values did not differ significantly. We obtained mean (±SD) values

that were lowest for juveniles (-17.62 ±1.6 ‰), intermediate for larvae 7-13 mm

(-16.55 ±0.13 ‰) and highest for larvae 5-6 mm (-16.24 ±0.09 ‰). Therefore, we did not

observed a clear length-dependent shift in 13C, reinforcing the idea that the larvae continued to

feed predominantly on the same food source during their development. Nevertheless, the slightly

depleted 13C values of the juveniles may indicate the beginning of a change in their food

selection or may reflect (giving their older age) a seasonal change of the SML biological

composition (Michener and Kaufman, 2007).

When comparing the 15N signatures between the ontogenic groups (Fig. 3b & 4), larvae

of 5-6 mm showed the most enriched values with a mean (±SD) of 12.05 ±0.17 ‰. Because the

ratio of stable nitrogen isotopes 15N) tends to increase with trophic level

(DeNiro and Epstein, 1980; Peterson and Fry, 1987), it might seem counterintuitive to have,

among the ontogenic groups, the smallest larvae associated with the highest trophic level.

However, these identified specific isotopic differentiations may be explained by a

transgenerational transmission of isotopes from the spawning stock to the newly hatched larvae.

Even if H. picarti newly hatched larvae (5-6 mm) begin consuming the same resource as the

older larvae (7-8, 9-10, and 11-13 mm), isotopic composition of their tissues will reflect a

mixture of food isotope ratios and isotope ratios at birth, until their tissues turnover and

equilibrate to the isotopic composition of their food resource (Pilgrim, 2007). This is because at

birth, their tissues are built from maternal resources transmitted in the yolk sac rather than food

resources of their immediate environment. Consequently, our results suggest that when

evaluating ontogenic shifts in isotopic composition of consumer tissues within the context of a

dietary analysis, the isotopic starting point of consumers in the population should always be taken
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in context (maternal transmission) and consideration (García et al., 2017). In this case, the

observed changes in the 15N isotopic composition of older larvae relative to the newly hatched

larvae (5-6 mm) should not be automatically interpreted as a shift in their resource use, but most

likely as a combination of maternal effect and yolk sac absorption. If it is the case, it highlights

the biological importance of maternal transmission and may be fundamental for larval survival of

H. picarti larvae as it transfers nutritional and immunological conditions to the larvae

(Green and McCormick, 2005; Marteinsdottir and Steinarsson, 1998; Perez and Fuiman, 2015;

Swain and Nayak, 2009).

The isotopic analyses of carbon and nitrogen presented here (Fig. 5 and Table 1)

suggested interesting features regarding the importance of the SML as a food source for

H. picarti larvae and juveniles in the Sine Saloum estuary; a key component for the nursery

assessment of this habitat. Although direct evaluation of the contribution of each habitat to adult

recruitment is necessary to identify the real nursery value (Beck et al., 2001), our overall results

indicate that the SML potentially holds an important contribution to the nursery value of the Sine

Saloum for species such as H. picarti. This is because the results from our stable isotope

measures of H. picarti larvae, juveniles, stomach contents, and their potential food sources were

applied to the trophic SIAR model and showed substantial contributions of the SML to the diet of

larval ontogenic stages 7-8, 9-10, 11-13 mm larvae and juveniles (Fig. 5 and Table 1),

contributing on average (±SD) for 74.44 ±1.6 %, 74.39 ±1.7 %, 73.86 ±1.5 %, and 69.84 ±2.2 %

of their diets, respectively. These outcomes are good indications that the organisms present in the

SML were likely the main energy sources for larvae of size 7-13 mm and juveniles. For the

newly hatched larvae (5-6 mm), the situation was not as clear. The SML was to a lesser degree

contributing to their diet as the model estimated that they obtained their nutrition more or less

evenly from all sources, obtaining on average (±SD) 38.59 ±1.9 %, 31.65 ±1.8 %,

and 29.76 ±2.0 % of their nutrition from biological organisms and materials found in the SML,

UW, and WC, respectively. It is unclear if the 5-6 mm larvae were indeed feeding on different

organisms than the larger larvae and juveniles or if the isotopic composition of their tissues

reflected a mixture of food isotope ratios and isotope ratios at birth. Halfbeaks hatch between

4.8-11 mm (Colette et al., 1984) and until their tissues turnover and equilibrate to the isotopic

composition of their food resource (García et al., 2017; Pilgrim, 2007), it is possible to obtain

values that reflect the retention of a maternal signal rather than clear differences in resource

utilisation among the larval ontogenic groups. On one hand, stomach contents of larvae had
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intermediate contribution from the SML with an average (±SD) of 57.32 ±1.4 % (Table 1), but

unfortunately, as the stomach content of 5-13 mm larvae were pooled together prior to the

analyses, these estimations could not provide clear or supporting information exclusive to the

5-6 mm larvae. In H. picarti juveniles, muscle isotopic turnover rates (i.e. the speed at which this

tissue reaches a new isotopic signature equilibrium after a shift to an isotopically distinct diet) are

not known and can possibly exceed one month (Carseldine and Tibbetts, 2005;

Tieszen et al., 1983). Likewise, we cannot exclude that the isotopic signatures of the juvenile

individuals might still partly reflect the ones acquired during their larval life and consequently

might overestimate (or alternatively underestimate) the juvenile exploitation of the SML

(69.84 ±2.2 %). However, the size range of juveniles used in this study (39.45 to 50.18 mm

standard length), their preference for the surface, and their morphology (elongated lower jaws

and heavy pigmentation) all points to the utilisation of the SML. So despite the general

categorization of adult H. picarti as bottom feeder (Colette, 2016), the SIAR model outputs and

their larvae and juveniles showed feeding behaviours (by their position in the water column) that

are consistent with the idea that they used the rich food source found within the SML. Though, it

is not clear yet in exactly what proportion of detritus, bacteria, phytoneuston, or zooneuston were

H. picarti larvae and juveniles' diets composed of. The literature on the diets of halfbeak larvae is

scarce and to the best of our knowledge absent for H. picarti. To compare with a close relative,

the main food items of the larvae Hyporhamphus sajori are reported in a few Japanese studies.

Oya et al., (2002) reported that H. sajori larvae smaller than 30 mm fed mainly on copepod

nauplii and copepodid and larger individuals on copepod and cladocera. Wada and Kuwahara

(1994) described their diets mostly composed of the copepod Euterpina acutifrons, and cladocera

such as Penilia avirostris, E. tergestina, and Podon polyphemoides. Lastly, Yamamoto and

Nishioka (1947) reported that the larvae took small crustaceans, especially copepodite and nauplii

of copepods, and mollusca larvae. We note that these studies were relying solely on gut content

analysis, and because small micro-organisms (e.g. heterotrophic protists) are rapidly digested, it

is possible that the contribution of these smaller organisms to the diet and growth of the larvae

were underestimated. Heterotrophic protists are part of the microbial loop, which is driven by the

recycling of dissolved organic matter by bacteria and the consumption of bacteria and pico/nano

size phytoplankton by microheterotrophs. For example, protists can be primary or secondary

consumers in the microbial loop, preying on autotrophic and heterotrophic flagellates as well as

on cyanobacteria and bacteria. If H. picarti larval fish indeed consumed heterotrophic protists
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present in the SML during at least part of their ontogeny, they would have effectively been

feeding at a higher trophic level than larvae feeding solely on copepod nauplii and copepodites,

which feed primarily on phytoplankton, although they may also rely on microzooplankton when

phytoplankton are less abundant (Turner, 2004). This may explain the relatively high values of
15N obtained for the larvae and for their stomach contents (Fig. 4). Although, we recognize that

in the case of H. picarti, for exact quantifications and to better elucidate their diet compositions,

combining traditional stomach content analysis and stable isotope analysis would be required.

With the presence of H. picarti larvae in the Sine Saloum estuary throughout all seasons

of the year (Sloterdijk et al., 2017), it is possible that SML conditions prevail most the year; a

situation that would offers advantageous feeding conditions for species able to exploit this

enriched micro habitat. It also seems that H. picarti is only using the system during its early life

stages as none of the previous studies assessing the ichthyofauna biodiversity in the system have

been recording the presence of adults (Diouf, 1996; Ecoutin et al., 2014; Faye et al., 2011;

Sadio et al., 2015; Simier et al., 2004), reinforcing the importance of the estuary as a nursery

ground for this species. Although other environmental parameters surely have important

influences on the early population dynamic of this species (Döring et al., 2017), we suggest that

the presence of the SML benefits H. picarti larval and juvenile development and survival and is

likely to positively influence their growth rate.

Lastly, concerning the model assumptions, even if the commonly assumed values of 3.5

‰ 15N) and 1.5 ‰ 13C) approximated the mean fractionation that we would normally expect,

the exact variability in fractionation could not have been considered (due to the nature of the

SML and because data are completely absent from SML alike samples) and consequently, it is

not known how much error the observed variation imparts to our quantitative stable isotope

model outputs. Although not presented here, sensitivity analyses of the SIAR model showed,

however, that shifts (±1.5 ‰ for 15N and ±0.5 ‰ for 13C) in the trophic fractionation factors

did not markedly change the outcome of the model. While sensitivities in models such as the

present one must be considered and choosing the correct isotopic fractionation is important in

diet reconstruction (Bond and Diamond, 2011), the resiliency of our SIAR model to shifts in

fractionation factors points to and reinforce our confidence concerning the importance of the

SML to the diet of H. picarti larvae and juveniles at the entrance of the Saloum branch of the

Sine Saloum estuary. The model is similar in principle to IsoSource (Phillips and Gregg, 2003)

but allows all sources of uncertainty such as in the sources or trophic fractionation values to be
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propagated through the model to return a true probability distribution of estimated dietary

proportions of mass-balanced solutions (Table 1) from a nominated set of possible contributions

(Phillips and Gregg, 2003). Moreover, Parnell et al. (2010) argued that this approach based on

Bayesian inference is also able to avoid the limitations linked to variability within sources and

among samples. Thus, our SIAR estimates of the dietary composition of H. picarti are likely

robust, even if the system was undetermined as it is likely that some of the potential sources were

missing.

5. Conclusion

Recent studies now indicate that the SML covers the ocean and coastal areas to a

significant extent, and evidence shows that it is an aggregate-enriched biofilm environment with

distinct biological communities. In this paper, by obtaining statistically distinct 13C and 15N

isotopic signatures for the SML, we confirmed its presence at the entrance of the Sine Saloum

estuary (Senegal). Subsequently, we have evaluated its contribution to the diet of Hyporhamphus

picarti larval and juvenile fish, by use of a Bayesian stable isotope mixing model (SIAR).

Overall, we found that the SML presented an important food source for H. picarti larvae and

juveniles, contributing to more than 70% of their diets. Our results underline the importance of

the SML and the role of the Sine Saloum estuary as a spawning and nursery habitat for H. picarti.

This study is a contribution to a better understanding of the different roles of the SML. Moreover,

it provides insights and pushes the SML into a new and wider context that is relevant to fishery

sciences and management.
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Synoptic Discussion

For several decades, the rainfall deficit experienced by the Sahelian zone has strongly 

disturbed the West African estuarine ecosystems and in particular the Sine Saloum estuary in 

Senegal. The most obvious changes of the environment are unquestionably the inversion of the 

salinity gradient, the hypersalinization of the upstream zones, and the associated mangrove 

degradation. Underlying these peculiarities, a key question motivated and served as a common 

thread in this thesis: have these environmental changes affected the estuary’s ecological 

function of nursery for fishes? By looking at components such as the larval diversity and 

community structure, transport of larvae in and out of the system, and feeding value of the sea 

surface microlayer, this thesis gain knowledge on a variety of important and complementary

environmental/physical factors influencing the diversity and distribution of the ichthyoplankton; 

thereby the nursery quality of this estuary for fishes. Importantly, knowledge gain in this thesis is 

not only relevant in the West African regional context, but also throughout the dry tropics as it is 

expected that such transformations are on their way or will be in the near future for several 

estuaries (Pagès and Citeau, 1990; Ridd and Stieglitz, 2002). In that sense, the Sine Saloum 

served as a case study for understanding and estimating future changes in estuaries vulnerable to 

similar environmental transformations. 

At the beginning of this thesis, published literature about larval fishes in the Sine Saloum

estuary was practically non-existent and consisted of one paper on the molecular identification of 

larvae of the order Clupeiformes (Durand et al., 2010). Considering the economic and ecological 

importance of this estuarine system, the difficulty of identifying fish larvae is probably one of the 

causes for this lack of data. Indeed, studies of the abundance and diversity of fish larvae were

completely lacking, thus what was first needed was baseline information on the utilization of the 

inverse estuary by early life stages of fishes; and a comparative approach with other tropical 

mangrove estuaries has been adopted. In this thesis, I have reported three features of the Sine 

Saloum larval fish community structure that are common to what is reported in many comparable 

studies in “undisturbed” tropical mangrove estuaries: (1) the larval fish community is comprised 

of a few species in large numbers and many rare species in low numbers, (2) Clupeoid and 

Gobioid larvae are one of the most abundant taxa in the catches, and (3) salinity, water 

temperature, and dissolved oxygen were important factors associated with larval fish abundance 

and diversity. (e.g. Barletta-Bergan et al., 2002; de Morais and de Morais, 1994; 
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Tzeng and Wang, 1992; Yoklavich et al., 1992). However, other aspects of the larval fish 

community structure differed considerably and I have identified five important differences with

other tropical mangrove estuaries: (1) the ichthyoplankton community’s total number of families 

and species in the Sine Saloum estuary (24 families and 43 species) is significantly lower, (2) fish 

larval richness is decreasing with increasing distance from the open ocean, (3) the abundance of 

larvae is pointedly higher in the lower estuary and declined with distance upstream, (4) in terms 

of bioecological categories, the larval community is essentially composed of species of marine 

origin and characterized by the complete absence of species of freshwater origin, and (5) larval 

fish assemblages do not differ much throughout the year as they are mostly composed of the 

same taxa between the seasons.

Despite some recent progress in the description and understanding of the dynamics of 

other low-flow inverse estuaries (Largier et al., 1997; Nidzieko and Monismith, 2013; 

Nunes Vaz et al., 1990), no comprehensive measurements on the Sine-Saloum circulation 

dynamics were available prior to this thesis. Moreover, this thesis has presented the first study 

measuring simultaneously the estuarine physics (including circulation) and larval transport in an 

inverse estuary. There has been a long history of investigating larval transport by fishes in 

“classic estuaries” that experience substantial freshwater inputs year-round, where rates and 

directions of larval transport are mediated by depth preferences of larvae and the timing, 

duration, and amplitude of their vertical migrations (e.g. Fukuda et al., 2016; Gibson, 2003; 

Kunze et al., 2013; McCleave and Kleckner, 1982; Morgan, 2006). Again adopting a comparative 

approach with what was observed in “classic estuaries”; for the period where the measurements 

were made, I have identified major differences concerning the physical and behavioural processes 

mediating larval transport between the estuarine waters and the open coast: (1) the Sine Saloum 

circulation at the entrance of the Saloum branch is characterized by the presence of a longitudinal 

gravitational circulation with positive vertical shear, i.e., near-surface (resp. near-bottom) waters 

exhibit more pronounced inflow (resp. outflow) velocities, and (2) none of the taxa of fish larvae 

that were examined have displayed apparent patterns of tide related vertical movement 

throughout the water column, and their distributions have shown clear and stable depth 

preferences. Therefore, no support was found in favour of a selective tidal stream transport

mechanism (Boehlert and Mundy, 1988) and in the context of successful recruitment, an

alternative mechanism is needed for fish larvae to be able to preferentially enter or exit the

inverse estuary. Based on the observed currents and larval distributions, I propose that suitable
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larval transport into or out of the estuary results from interactions between the longitudinal 

gravitational circulation with positive vertical shear currents and an appropriate positioning of the

larvae in the water column. I have demonstrated that the vertically sheared circulation offers a

natural path into (resp. out of) the estuarine system for organisms that are able to maintain

themselves in the upper (resp. lower) part of the water column and have shown that different taxa

are remaining in a specific position of the water column leading to a directional transport into the

estuarine waters (ingress) or out of the estuary (egress). From a behavioural perspective it can be

viewed as simpler than selective tidal stream transport in that it does not require the organisms to

synchronise their vertical migrations with the phase of the tidal currents.

Unexplored in terms of its potential as an important contributor of the nursery value of a

habitat for fish larvae and juveniles, the sea surface microlayer (SML) represents a unique

physical and chemical environment quite different from that of the underlying waters

(Wurl et al., 2017). As an important first step towards a better understanding of its function and 

derived dietary importance for organisms such as larval and juvenile Hyporhamphus picarti, in 

this thesis I have presented the first isotope data derived directly from the SML and showed: (1) 

the presence of a well-defined SML at the entrance of the estuary, and (2) that microorganisms 

contained in the SML are the major food source for H. picarti throughout the larval and juvenile 

stages, contributing to more than 70 % of their diets.

Based on the above mentioned findings, I have demonstrated that compared to

undisturbed tropical mangrove estuaries, the Sine Saloum has undergone clear modifications that

are reflected in the structure of the ichthyoplankton community and in the estuarine circulation.

However, a holistic view of the overall results still gives arguments for the presence of

circumstantial environmental and physical factors that contribute to the overall nursery value of

the Sine Saloum estuary for local fishes. There are a number of key considerations on the

variables that should be accounted when accessing the nursery value of an area and Beck et al.,

(2001) proposed that the term nursery implies a special place for early life stages of marine

organisms where functions and processes such as density, connectivity between early life stages

and adults habitats, and growth are enhanced over those in adjoining habitat types. Based on this

premise, these three aspects were highlighted in the results of this thesis and serves as arguments

in support of the attribution of some nursery values of the Sine Saloum estuary: (density) larval

densities were high throughout the year in the lower part of the estuary, (connectivity) the

circulation dynamic at the mouth of the Saloum branch offers a natural pathway in and out of the
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estuary, and (growth) the presence of the sea surface microlayer provides a rich food source that

is likely to enhance growth for species able to exploit it such as the very abundant

Hyporhamphus picarti. Ideally, these specific ecological processes operating in the Sine Saloum

estuary would be compared with other estuaries in the region to assess and quantified their

respective contribution to adult recruitment. However, at the moment direct comparisons of these

aspects are difficult due to the general absence of data and the lack similar studies in West

African estuaries. In that sense, I propose that because of the variety of estuary types and lagoons

(Albaret, 1999, 1987), West Africa is a privileged setting for studying these processes on the

early life stages of fishes.

The preservation of the nursery function of the Sine Saloum is strongly influenced by the

environmental and physical factors acting on the diversity and distribution of its early life stages

of fishes and salinity is an important limiting factor for fish larvae in the system. In high-salinity

environments, a reduction of the adult ichthyofauna biodiversity and modifications of species

composition have already been reported (Vega Cendejas and Hernández De Santillana, 2004;

Simier et al., 2004; Diouf, 1996; Albaret, 1987; Severin-Reyssac and Bertrand

Richer de Forges, 1985). Thus, in environments subjected to significant stress such as the high

salinity in the case of the Sine Saloum, a very severe selection of species should be expected and

this thesis shows that these reduction and modifications are also reflected in the diversity and

distribution of the ichthyoplankton, and that larval assemblages are not distributed randomly in

the system. In the lower part of the Sine-Saloum, moderate salinities allow the development of a

relatively species rich and abundant ichthyoplankton. On the other hand, high salinity conditions

have drastically limited the number of species and the abundance of larval fishes. Accordingly, in

the Sine Saloum, fish larvae that are the most abundant throughout the year and present in most

areas are composed of a small selection of species belonging to families such as Clupeidae,

Gerreidae, Hemiramphidae, Mugilidae, and Cynoglossidae. A likely key to their success, they

belong to species able to adapt their eco-physiological abilities (Potter and Hyndes, 1999) and

some of their life history attributes (Albaret, 1987; Simier et al., 2004). These are part of a

reduced group and are in accordance to the “resistance community” first identified in the inverse

estuary of the Casamance River by Albaret (1987). So although the diversity is relatively low in

this system, these species are able to tolerate the high salinity conditions and may benefit from

the absence of strong interspecific competition (Larkin, 1956), enabling them to thrive in great

numbers. Moreover, Diouf, (1996) claimed that the abundance of juveniles made up about 85 %
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of the Sine Saloum fish population with relatively strong year-round reproductive activities for

representative of the above mentioned families. These are also part of the most common families

of fishes in West African estuaries (Albaret, 1999; Haedrich, 1983) and are also targeted by the

artisanal fisheries (Campredon and Cuq, 2001). This can be seen as an encouraging sign for the

development of other estuaries where similar elevated salinities are predicted in the near future

(Ridd and Stieglitz, 2002), thus mitigating the negative impacts of such environmental

transformations.

The mangrove is a dominant feature of undisturbed tropical and subtropical estuaries 

around the globe (FAO, 2003). Whereas it is generally agreed that mangrove ecosystems absorb 

and transform nutrients and are inhabited by a variety of organisms, and although there is a 

general scientific consensus that mangroves are important nursery areas, to this day, opinions 

vary as to the exact importance of the mangrove habitats for fishes and by extension for 

mangrove fisheries (Faunce and Serafy, 2006; Nagelkerken et al., 2008). The results presented in 

this thesis did not show a particularly higher larval abundance in the mangrove-rich parts of the 

estuary. For example, relatively low concentrations were consistently found in sites with rich 

mangrove cover, while high concentrations where observed in sites where mangrove cover was 

poor such as at the entrance of the Saloum branch. This suggests that the presence of mangrove 

alone cannot provide optimal conditions for the fish larvae in the Sine Saloum estuary. Similarly, 

Vidy (2000), reported that good estuarine conditions alone are sufficient for good nursery 

function but mangrove alone is not.

This thesis, by describing indirect effects of climate change on the environmental and

physical factors affecting the diversity and distribution of larval fishes in the Sine Saloum

estuary, may give insights to the effect of regional climate change in other inverse estuaries along

the West African coast and throughout the world. Its relevance comes from the situation that

considerable decrease in water runoff in some major rivers of West Africa have already resulted

in the intensification of seawater intrusion processes for other estuaries such as the Senegal and

the Casamance rivers (Mikhailov and Isupova, 2008), but also globally, water bodies that exhibit

inverse estuarine characteristics across a variety of scales and times are becoming more and more

common and examples include: northern Gulf of California, Mexico (Lavín et al., 1998); Laguna

San Ignacio, Mexico (Winant and Gutiérrez de Velasco, 2003); Spencer Gulf, Australia (Nunes-

Vaz, 2012); and Shark Bay, Australia (Hetzel et al., 2015). It is difficult to forecast the future

situation and to quantify the amplitude of changes for other estuarine systems, but with a certain
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degree of confidence it is likely that their larval fish communities will face similar shifts in their

diversity and abundance. However, to a certain extent, oceanographic information at relatively

fine spatial scales is probably of critical importance because of the known role of the

oceanographic structure in shaping populations and assemblages of adjacent coastal ecosystem

(Woodson et al., 2012). The Sine Saloum estuary is located within the Senegalo-Mauritanian East 

border upwelling system, considered one of the most productive coastal waters in the world.

Various studies have established that upwelling-driven nutrient supply is the key factor regulating

chlorophyll concentration and primary production off NW Africa (Auger et al., 2016; 

Lathuilière et al., 2008; Messié and Chavez, 2015; Ohde and Siegel, 2010). So the Sine Saloum 

may benefit from the high productivity of its coastal waters, a situation that might help to

compensate or buffer the effect of some of the degradation taking place in the estuary. This might

not be the case for other estuaries in a different geographical context, for example situated next to

less productive and poorer coastal waters. Even if we do not have a clear understanding of the

roles of geographical location of the estuaries in community resiliency and stability, the results of

this thesis may be broadly applicable to coastal upwelling systems along the western margins of

continent and in arid climates where small, shallow, low-flow estuaries are common

(Largier, 2002). Thus, the validity and the predictive power of this thesis could be reinforced by

continuing similar studies in other inverse estuaries and at other times.

The fast rate of global change raises questions about the consequences for biodiversity in

terms of species diversity, distributions, and community structures (Walther et al., 2002). In the

context of climatic change and the resulting environmental transformations that have been taking

place in the Sine Saloum estuary, knowledge of local adaptation and adaptive potential of natural

populations is becoming increasingly relevant. Divergent natural selection due to transformation

of the environment is expected to promote adaptive evolutionary responses

(Kawecki and Ebert, 2004). In the dominant larval fishes identified in this thesis, adaptation to

salinity conditions is probably of high importance throughout pre-recruit life from the egg to the 

juvenile phase. The concern is that other species have been negatively affected by increasing

salinity without the capacity to adapt. In that sense, salinity-related adaptability in traits related to

early life history are expected to be particularly important in the dominant larval fishes found in

inverse estuaries. For future research, I propose to investigate populations of species of

Clupeidae, Gerreidae, Mugilidae, and Cynoglossidae for evidence of adaptations in early life-

history traits to their local environments, especially salinity regimes. For this, detailed and
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comparative studies on the physiological and ecological traits of the early life stages of these

species are missing and should be carried. This could be achieved with studies looking at their

trophic ecology, nutritional condition, and daily growth rates focusing on the associated

environmental conditions. Moreover, metabolic rates to estimate minimal energy requirements

and the response of respiration rates to high salinity concentrations can help to better determine

salinity tolerance of larval and juvenile key species (Hettler, 1976; Ismael and Moreira, 1997).

However, it should be noted that adaptive responses to climate change in traits related to

phenology, such as spawning time differences, may be at least as important as adaptability in

early life-history traits, and a comprehensive assessment of the evolutionary potential of

populations should ideally include both types of traits. Lastly, in ‘inverse estuary’ systems the

longitudinal density gradient, and thus density-driven circulation, seems to be often weaker than

in classic estuaries with freshwater input (Largier, 2010). Although not addressed in this thesis,

given the additional anthropogenic pressure and intense use of estuaries, this can be an additional

cause of concern as it can increase their vulnerability to ecological problems such as

accumulation of pollutants. Therefore, pollutant related studies in inverse estuaries should be

justified and implemented in the near future.

Particularly important in the context of the potential impacts of global climate change on 

fish populations, especially in high latitudes that are experiencing some of the most rapid and 

severe changes, I hope that the information contained in this thesis helps to address the dearth of 

information on early life history characteristics and their specific connections to new prevailing 

climatic and environmental conditions, and hopefully contributes to the development of 

meaningful ecological frameworks for predicting population responses to these environmental 

changes.  
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