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A connectionist and a traditional AI quantizer, 
symbolic versus sub-symbolic models of rhythm 
perception 

Peter  Desain  

Utrecht School of Arts, The Netherlands and Music Department, City University, 
London, UK 
The Symbolic AI paradigm and the Connectionist paradigm have produced some incompatible models 
of the same domain of cognition. Two such models in the field of rhythm perception, namely the Longuet- 
Higgins Musical Parser and the Desain & Honing connectionist quantizer, were studied in order to find 
ways to compare and evaluate them. Different perspectives from which to describe their behavior were 
developed, providing a conceptual as well as a visual representation of the operation of the models. With 
these tools it proved possible to discuss their similarities and differences and to narrow the gap between 
sub-symbolic and symbolic models. 

KEY WORDS: Rhythm perception, quantization, (sub-)symbolic processing, connectionism 

Introduction 

The so called Good Old Fashioned Artificial Intelligence has established itself 
firmly in the past decades as a research methodology. The methods and tools it uses 
are symbolic, highly structured representations of domain knowledge and trans- 
formations of these representations by means of formally stated rules. These rule 
based theories can function (and are vital) as abstract formal descriptions of aspects 
of cognition, constraining any cognitive theory. However, some authors go beyond 
that and claim that metal processes are symbolic operations performed on mental 
representations of rules (see Fodor, 1975). Until the connectionist paradigm emerged 
there was no real alternative to that view. But now, in this new paradigm, the 
departure from reliance on the explicit mentalrepresentation of rules is central, and 
thus the conception of cognition is fundamentally different (Bharucha & Olney, 
1989). This holds regardless of the fact that the behavior of connectionist models 
could be formally described in rules. These distributed models consistent of a large 
number of simple elements, or cells, each of which has its own activation level. 
These cells are interconnected in a network, the connections serving to excite or 
inhibit others. Connectionism opened the possibility of defining models which 
have characteristics that are hard to achieve in traditional AI, in particular robust- 
ness, flexibility and the possibility of learning (Rumelhart & McClelland, 1986). The 
connectionist boom brought forth much interesting work, also in the field of music 
(Todd & Loy, forthcoming). Although many researchers lost their critical attitude, 
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240 Peter Desain 

impressed by the good performance of some (prototypical) models, it became soon 
clear that more study was needed to the limitations of these models. A connectionist 
model that 'works" well, constitutes in itself no scientific progress, when questions 
like the sensitivity to parameter changes, the scalability to larger problems and the 
dependancy of the model on a specific input representation, cannot be answered. 
However,  it is possible to describe the behavior of a connectionist model from 
different abstract perspectives that provide more insight in its limitations and its 
validity as a cognitive model than simulations or test runs alone. These perspectives 
are also fruitful for the analysis of traditiOnal AI models. In this article we pursue 
this approach for a connectionist and a traditional AI model of rhythm perception 
as a case s tudy for the wider issue how the paradigms themselves relate. 

The quantization problem 

In performed music there are large deviations from the time intervals as they 
appear in the score (Clarke, 1987). Quantization is the process by which the time 
intervals in the score are recovered from the durations in a performed temporal 
sequence; to put it in another way, it is the process by Which performed time 
intervals are factorized into abstract integer durations representing the notes in the 
score and local tempo factors. These tempo factors are aggregates of intended 
timing deviations like rubato and unintended timing deviations like noise of the 
motor system. This process of separating different discrete and continuous aspects 
of musical timing, however simple at first sight, and indeed forming a rather basic 
musical skill, proved to be very hard to model (Desain & Honing, forthcoming). As 
an example one could try to recover the intended rhythmic interpretation of the 
following temporal sequence (in milliseconds): 

476 : 237:115 : 135 : 174:135 : 155 : 240:254:118:112:118:138:476 

This task, however hard by calculation, yields an obvious and simple answer when 
the data is converted to an auditory stimulus: a sequence of drumbeats (the solution 
is given in note 1). 

Known methods 

The simplest method of quantization, used by most commercially available music 
transcription programs, is the round-offof any point in time to the nearest point on 
a fixed time grid, with a resolution equal to, or an integral factor smaller than, the 
smallest duration to be expected. This method is totally inappropriate: even when  
enhanced with facilities like user control over the grid resolution, it yields results 
that makes no musical sense, even when the performer is forced to play along with 
a metronome. 

However,  this method can serve as the basis of more reasonable models in which 
the time grid is adapted if consistent deviations (notes being late or early) are 
detected. In this so called 'tempo-tracking' the design of the control behavior 
becomes crucial: the extraction of an error signal between time grid and note onsets, 
and the way  in which this error influences the tempo of the grid. The most elaborate 
example is the 'real time foot tapper' (Dannenberg & Mont-Reynaud, 1987 and 
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Symbolic vs sub-symbolic models 241 

Boulanger, 1990), but still a 30% error ratio is reported for this system. 
A symbolic, rule based system for quantization was in place at the Stanford 

automatic transcription project (Chowning, Rush, Mont-Reynaud, Chafe, Schloss 
& Smith, 1984). It used knowledge about preferable ratios between time intervals 
as a basis for an optimal quantized description of the data. In such a knowledge 
based system it is relatively easy to use information from other domains (e.g. 
dynamic, harmonic) to help the quantization process, but one has to keep in mind 
that this increases the risk of style dependency and therefore brittleness. Because of 
its design as an unordered collection of rules it is, like all rule based systems, 
impossible to characterize its behavior in non-operational terms. 

The musical parser (Longuet-Higgins, 1987) comprises another symbolic AI 
approach to quantization, besides methods of tonal and articulation analysis that 
will be ignored here. It is highly hierarchical in its music representation and has a 
reasonable good performance. Furthermore it had the advantage of a published 
program being available. A Lisp version of this program is published in Desain 
(1990). 

The connectionist quantizer (Desain & Honing, 1989,1991; Desain, Honing & de 
Rijk, 1989) is a distributed model of fairly simple processing elements. This model 
displays desirable properties like robustness, graceful degradation and precedence 
of local context, but as a model it is hard to understand why it works so well, and 
what  its limitations are. 

These last two methods will now be described in more detail. 

The Longuet-Higgins Musical Parser, a symbolic model 

Using just a little knowledge about meter, and exploiting that to the extreme, the 
Longuet-Higgins Musical Parser builds a metrical tree from performance data, and 
thus implicitly manages to quantize it. This method is supplied with an initial 
notion of a time interval called the beat. This interval is subdivided recursively in 
2 or 3 parts looking for onset times near the start of each part, until the interval 
contains no more onsets. The 'best' subdivision is then returned. At each recursive 
level the interval length is adjusted on the basis of the onsets found,just as in simple 
tempo-tracking models. 

The output of the system consists of a list of trees, one for every analyzed beat. 
Each tree is of a combined binary-ternary nature, which means that each node has 
0 (in case it is a leaf of the tree) or 2 or 3 sub-trees. During the construction of the tree 
there is a horizontal flow of information through the layers of the tree, seeking to 
maintain the same kind of subdivision at a certain level as long as possible. The 
description of the proposed subdivisions at each level of the tree is called meter. 
During the construction of the tree a strict left to right order is maintained, and new 
sub-trees are created on a generate-and-test basis. This means that a proposed (and 
constructed) binary sub-tree may be rejected in favour of a tertiary one. The 
generate and test procedure is non-standard in that it may, after checking and 
rejecting the first alternative, still reject the second in which case as yet the first 
alternative is chosen. 

There is one parameter (called tolerance) identified in the program. It is used in 
different places as the allowed margin of deviation in deciding if notes start or stop 
at a certain time. In this way the model does depend elegantly on global tempo by 
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242 Peter Desain 

limiting the possibility of further subdivisions when an absolute time span (the 
tolerance) is reached: onsets that happen within the tolerance interval are consid- 
ered synchronous. 

The Desain & Honing connectionist quantizer: a sub-symbolic model 

A class of connectionist models, known as interactive activation and constraint 
satisfaction networks generally behave so as to converge towards an equilibrium 
state given some initial state. The connectionist quantization model is designed to 
converge from non-metrical performance data to a metrical equilibrium. The 
network topology is fixed (hard-wired) and so is the kind of interaction between 
cells: no learning takes place. 

The net comprises cells for each time interval in a temporal sequence, be it basic (one inter- 
onset: interval) or compound (spanning several notes). Two cells representing neighboring 
time intervals may interact and push each other to their 'perfect' values implied by an integer 
ratio~ propagating the changes through the net. After a while the net stabilizes and a quantized 
temporal sequence can be read out. The interaction between cells, the change of their ratio, 
depends on the ratio of their durations, via a so called interaction function. Since the ratio of 
two time intervals is the only determinant of local behavior, the quantization result does not 
depend on absolute global tempo, nor can it handle polyphony. The interaction function is 
a section-wise polynomial with 2 parameters called peak and decay; the first reflects the size 
of the 'capture' range around an integer ratio, the second represents the decreasing influence 
of higher ratios. It has to be stressed that all aspects of the global behavior of the system are 
determined completely by these parameters. 

A model that takes a whole temporal sequence into consideration at once is not 
feasible .when the aim is to develop a cognitive model. Luckily, it proved quite 
simple to design a version of the quantizer which operates upon a window of 
events. In such a model tempo tracking can handle slow global tempo changes. For 
reasons of space this part of the connectionist quantizer will not be described here. 

Differences 

The models described can be characterized as complete antipoles in a number of 
aspects. They are summarized roughly in the table in figure 1. The huge differences 
made comparing them quite hdtd, but in the end the work was gratifying. Because 
the systems are prototypical for the two main AI paradigms the results may  well 
generalize to other cases. 

Different perspectives 

Different perspectives for describing these models will now be given, each at its 
own level of abstraction. Some perspectives will generalize over sets of inputs or 
parameters, some will reduce the amount of variability by keeping certain concepts 
fixed. I hope to show that this search for different representations of the behavior 
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Symbolic vs sub-symbolic models 243 

Longuet-Higgins musical parser Desain & Honing connectionist quantizer 
symbolic numerical 
central distributed 
search optimization 
hierarchical heterarchical 
knowledge based knowledge free 

Figure I A summary of the differences of the two models under study 

of a computational cognitive model, conceptual as well as visual, is fruitful, even 
for analyzing traditional symbolic AI programs. 

The most direct and raw representation of a computational model is a trace of the 
computation itself, an overview of how the internal state of the system changes in 
the course of a complete calculation as a function of the computation-time or the 
number of computation steps taken. A visualization of such a trace for the 
connectionist model is shown in Desain & Honing, (1989) and for the Longuet- 
Higgins parser similar graphic representations can be devised. 

A deficit of these representations is that they can only be given for one example 
input  at a time, and thus are extremely dependent on the choice of input - in a sense 
it is easy to 'lie' with these examples by picking one that behaves well. But, on the 
other hand, these representations show in full detail the ongoing processes and 
thus enable interpretations and hypothesis forming. 

At the other end of the spectrum of possible perspectives is the statistical method, 
reducing all the information to a number of correct responses. We can assume that, 
when a skilled performer plays a rhythm, the performed temporal sequence should 
be quantized as the presented score. Collecting a set of performances and counting 
the numbers quantized correctly by the model gives us then an indication of its 
validity. The number of correct quantizations will in general be a function of the 
possible parameter values given to the model. Visualization of this dependency is 
useful in the study of the parameter-sensitivity of the models. Often connectionist 
models behave badly in this respect. They might need specific parameter settings 
for different problems. Or they might not 'scale-up': for larger problems the model 
only works for an increasingly smaller range of parameter settings specific to the 
problem at hand. Parameters might also have no cognitive relevance, and as such 
could not be used to control the global emerging behavior of the model, or they 
might be highly dependent. A visualization of the parameter space can detect such 
problems. Both models behave well in this respect, but because of space limitations 
we cannot present the parameter spaces here. 

Both perspectives have their drawbacks, one being too specific, the other one too 
general. If we give up some detail on the speed and order of processing that was 
available in the computation trace, and give up the free choice of musical material 
that was available in the parameter space we can characterize the precise behavior 
of the system for a family of sequences: all possible sequences of a fixed small 
length. This set can be considered to constitute a rhythm space: the problem space 
of quantization. 

Rhythm space perspective 

Let us consider the 3 dimensional space of all possible temporal sequences of 3 
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244 Peter Desain 

inter-onset intervals (four bangs on a drum). Every point in this space represents 
a unique temporal sequence. One could envisage this space projected in a room, 
with one comer as the origin. The distance along one wall represents the length of 
the first time interval, the distance along the second wall represents the length of the 
second interval, and the height above the floor represents the third. In this space 
certain points will be perfectly metronomical sequences, other points will represent 
performed deviations from them. Let us call this space 'rhythm space' although 
'temporal sequence space' would be more appropriate. A quantization process 
maps each point in this space to another; it assigns to each sequence a solution of 
the quantization. Thus the problem space of a quantization method is the whole 
rhythm space, the solution space is a set of points within this rhythm space. A 
further characterization of the solution space (e.g., what constraints limit the set of 
permisible quantizations - is, for instance, a complex temporal pattern such as 
7:11 : 2tobeconsideredallowable?)cannotbegivenatthemoment, whichispart 
of the reason why quantization is a difficult problem to define. 

Trajectories in rhythm space 

If the model has intermediate processing states that are temporal sequences 
themselves, as is the case with the connectionist model, the computation trace 
becomes a trajectory through this rhythm space. Otherwise a simple straight line 
can indicate the mapping from problem to solution. Easy visualization requires 
mapping of this space to 2 dimensions which can be done by assuming that the 
whole time-length of the temporal sequence is kept constant, the third interval then 
follows from the first two and the first two durations can be taken as the only 
independent variables: the x and y axes of a diagram. This normalization, which 
factors out global tempo, reduces the general applicability of the method if the 
theory is itself dependent on global tempo. The connectionist quantizer does not 
(but we admit that to model human rhythm perception accurately, it should). The 
Longuet-Higgins model does depend on global tempo and for this model the 
rhythm space can only be shown for one global tempo at a time. 

If all three intervals are restricted between a minimum and a maximum time 
span, the allowed portion of the 2 dimensional projection forms a parallelogram. In 
figure 2a and 2b the rhythm space for the two models is shown, given an input 
sequence of three notes between a sixteenths and a double dotted quarter note. The 
whole sequence has a total duration of three quarter notes. The different solutions 
are indicated by small circles. Note that in the Longuet-Higgins model some 
solutions contain inter-onset intervals of length zero. That is because this model 
interprets two onsets that happen within the tolerance as synchronous. 

Regions in rhythm space 

Because the behavior of the connectionist model is completely determined by a 
temporal sequence, any point on a trajectory willbe mapped to the end point of that 
trajectory. This means that the connectionist model 'carves up' rhythm space into 
little compartments around each solution. Each compartment or region contains a l l  

the sequences that will be quantized equivalently. Now we can abstract from the 
trajectory from initial state to solution and only characterize the compartments. 
These areas, the so called basins of attraction, can be shown as a partitioning of the 
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Symbolic vs sub-symbolic models 245 
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Figure 2a Trajectories through rhythm space in the connectionist model 
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Figure 2b Mapping in rhythm space in the traditional AI model 
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246 P. Desain 

rhythm space, as is depicted in figure 3a. The Longuet-Higgins model does not 
behave such that the solution itself will always lie within the region that will map 
to that solution. But still the region of all points that map to the same solution (the 
equivalence classes of the mapping) can be shown as in figure 3b. We can now check 
the differences between the models. E.g. the region that maps to the rhythm of three 
quarter notes (marked A in the figures) is much larger in the Longuet-Higgins 
model than it is in the connectionist model. Another difference is the behavior 
around the region marked C in figure 3a, which corresponds to a 2:1:2 rhythm. 
This solution is not present in the Longuet-Higgins model, because it is based on a 
five-fold division. 

Influence of co ~l text 

A good way to understand the influence of context (previously presented musical 
material) is to consider how these maps change under the influence of it. In figure 
4 a context of two dotted quarter notes was presented before the notes shown in the 
rhythm space. This context heavily biases the behavior of the connectionist model 
to quantize the following inter-onset intervals in subdivisions thereof as is shown 
by the enlargement of the area marked B. The area marked C completely disappears 
in the light of the contextual evidence for these subdivisions. Also in the Longuet- 
Higgins model the quantization is influenced (or even guided) by context. It does 
so by propagating the established meter to the processing of the remaining data. 
Using a duple meter as context, a very similar distortion of the regions in rhythm 
space can be seen (figure 4b). 

Influence of parameters 

These maps can also be used to understand the influence of the parameters of the 
model by interpreting their changes under the influence of different values. In 
figure 5a the so called peak parameter of the connectionist quantizer is slightly 
increased. This yields a denser map of smaller regions and adds new regions 
around "difficult' rhythms. In the Longuet-Higgins model we can achieve a similar 
change by decreasing the tolerance. Now the model will behave more 'precisely' 
and new solutions and small regions around them emerge. 

Cognitive interpretation 

We really need to compare these maps now to the corresponding maps for the 
human listener to be able to judge the cognitive validity of the models. In principle 
it is possible to obtain this empirical data in categorical perception experiments, 
presenting subjects with temporal sequences from the space in a transcription task. 
But mapping out the whole space will be a paramount task, even for such short 
sequences. Data about the borderlines between some regions can be found in 
Schulze (1989) and Clarke (1987). 
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J. 
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Figure 3a Regions in rhythm space of the connectionist model 
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Figure 3b Regions in rhythm space in the traditional AI model 
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248 P. Desain 

Figure 4a Influence of context (two dotted quarter notes) in the connectionist model 

J 

Jof 

J. 

JJ~ 

J 

Figure 4b Influence of context (duple meter) in the traditional AI model 
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J 

Figure 5b Influence of the tolerance parameter in the traditional AI model 
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250 P. Desain 

Expectancy space perspective 

The previous representations were based on the abstraction of a whole temporal 
sequence that served as input of the system. Since the full models work incremen- 
tally, a representation that makes explicit how a previously established context 
influences future decisions would be useful. We ha~;e to ignore here any influence 
of new incoming data back to the previously processed results, which is a reduction 
for both models. In the full process model of the connectionist quantizer we can 
'clamp' the whole of the network state to the partial solution obtained and s tudy 
what  would  happen to a new incoming onset. This virtual new onset, acting as a 
measuring probe, will be moved by  the model to an earlier or a later time. If it is 
given a positive time shift to a later time, the model clearly had not yet 'expected' 
an event. If we postulate a measure of expectation of an event, it has to be larger at 
a later time for this 'early' event. Vice versa: a negative movement,  a shift to an 
earlier time, indicates a dropping expectancy: the event is late. So we can integrate 
the movement  to yield an expectancy measure. It forms a curve with peaks at places 
where an event, were it to happen there, would stay in place. We could also 
reph~rase this explanation in terms of potential and energy. The potential curve 
projected into the future by the network is then the inverse of the expectancy. But 
in the context of cognitive models expectancy seems a more appropriate concept. 
This process of calculating an expectancy can even be done in an incremental way: 
the expectancy is calculated until a real new event happens, that event is added to 
the context, and the process starts all over again. In figure 6 this curve is shown for 
a rhythm in 2 /4  and the peaks in between and at the note onsets clearly are 
positioned at important metrical boundaries. Note that for the sake of clarity the 
input sequence is already idealized here to a metronomical performance. 

To show that these curves capture indeed an abstract property of the input data 
we can look at the last part of the curve in figure 6 (the last measure between time 
16 and 20), and study that for different 2 /4  contexts as is done in figure 7. It shows 
how the different rhythms project a very similar expectancy into the future. This 
even prompts the challenging thought that these curves constitute a kind of 
rhythmic 'signature' that can be compared to produce a kind of distance measure, 
a metric, of rhythms. 

One further corroboration of the usefulness of these curves is shown in figure 8. 
Here the expectancies of two rhythms are compared: one in 6 /8  (a division in 2 and 
then in 3) and the other with time signature 3 /4  (a division in 3 and then in 2). The 
prominent peak in the curve o.f.the first one is located at half the measure length, 
lesser peaks appear at 1 /6  and 2,)6, and at 4 /6  and 5/6. The curve of the secondone 
has prominent peaks at 1/3 and 2 /3  Of the measure, and somewhat less pro- 
nounced peaks at 1/6, 1/2 and 5/6. These findings clearly correspond with the 
musical notion of the importance of the different points in time given these meters. 

For the Longuet-Higgins model it is a bit difficult to 'clamp' the internal state to 
a partial solution because of possible backtracking. However,  no backtracking can 
take place across beat boundaries, and after each beat the model only propagates 
the established meter and the length of a beat (the tempo) to the processing of the 
next beat, expecting them to apply there too. So given a beat length and a meter, they 
will determine the points in time where notes will be found and assigned to a 
metrical level. Together with the resolution of this decision (the tolerance), a 
comparable kind of expectancy of future onset times can be postulated. Of course 
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0 4 8 12 16 

.I ) . i .  >) .1  ;. > ;  
time 

Figure 6 Expectancy of onsets in the connectionist model 

20 

l 2 3 
time 

Figure 7 Expectancy of onsets in different 2/4  contexts in the connectionist model 
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Figure 8 Expectancy of onsets in 6/8  versus 3 /4  rhythm in the connectionist model 

i 2 3 
time 

Figure 9 Expectancy of onsets in 2 /4  context of the two models 
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Symbolic vs sub-symbolic models 253 

the expectancy can only be given on an ordinal scale: onsets at higher metrical levels 
are expected 'more'. In figure 9 such a measure is shown for a twofold two-division 
(2/4 meter) and at a beat length of one bar, together with the expectancy curve of 
the connectionist model from figure 6. It is striking to see how the peaks in both 
curves now coincide. I feel that this is the point where the two models meet. Meter, 
a symbolic, structural concept at the very heart of the Longuet-Higgins parser, 
emerges out of the global and abstracted behavior of the connectionist quantizer. 
Here we are on the verge of the possibility of 'reading-out' symbolic representa- 
tions from a sub-symbolic model. 

Conclusion 

It is possible to represent the behavior of two incompatible models of rhythm 
perception, the symbolic Longuet-Higgins musical parser and the Desain & Hon- 
ing connectionist quantizer in different perspectives that make them comparable. 
These perspectives - the process state trace, the parameter and rhythm space, and 
the expectancy perspective - highlight different aspects of the models. Visualizations 
of these representations turned out to be crucial - even if the dimensionality or the 
flexability had to be reduced. 

These methods also showed the richness of the topic of quantization, a process 
that lies at the heart of rhythm perception. It is central because it separates two fairly 
different kinds of timing data: the discrete and the continuous, each of which forms 
the postulated input of different theories of temporal perception. It is well known 
that the concept of meter is of great importance in encoding, interpretation and 
memory  in musical tasks (Palmer & Krumhansl, 1990) and it is not surprising that 
this symbolic concept, even though not represented explicitly in the connectionist 
models is still present implicitly and can emerge from the net with the help of an 
appropriate measuring method. 
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Notes 

1. The solution is the rhythm: 
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