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Abstract

Automatic Music Transcription is the extraction of an acceptable notation from performed music. One important task
in this problem is rhythm quantization which refers to categorization of note durations. Although quantization of a
pure mechanical performance is rather straightforward, the task becomes increasingly difficult in presence of musical
expression, i.e. systematic variations in timing of notes and tempo changes. For quantization of natural performances,
we employ a framework based on Bayesian statistics. Expressive deviations are modelled by a probabilistic performance
model from which the corresponding optimal quantizer can be derived by Bayes theorem. We demonstrate that some
simple quantization schemata can be derived in this framework by simple assumptions about timing deviations. A gen-
eral quantization method, which can be derived in this framework, is vector quantization (VQ). The algorithm operates
on short groups of onsets and is thus flexible in capturing the structure of timing deviations between neighbouring onsets
and thus performs better than simple rounding methods. Finally, we present some results on simple examples.

1 Introduction

Automatic Music Transcription is the extraction of an ac-
ceptable musical description from performed music. The
interest into this problem is motivated by the desire to
design a program which creates automatically a notation
from a performance. In general, e.g. when directly op-
erating on an acoustical recording of polyphonic music
(polyphonic pitch tracking), this task proved to be a very
difficult one and stays yet as an unsolved engineering prob-
lem. Surprisingly, even a virtually simpler subtask still
remains difficult, namely, producing an acceptable nota-
tion from a list of onset times (e.g. a sequence of MIDI
events) under unconstrained performance conditions.

Although quantization of a “mechanical” performance
is rather straightforward, the task becomes increasingly
difficult in presence of expressive variations which can be
thought as systematic deviations from a pure mechanical
performance. In such unconstrained performance condi-
tions, mainly two types systematic deviations from exact
values do occur. In the small scale notes can be played
accented or delayed. In the large scale tempo can vary,
for example the musician(s) can accelerate (or decelerate)
during performance or slow down (ritard) at the end of the
piece. In any case, these timing variations usually obey
a certain structure since they are mostly intended by the
performer. Moreover, they are linked to several attributes
of the performance such as meter, phrase, form, style etc.
(Clarke, 1985). To devise a general computational model
(i.e. a performance model) which takes all possible back-
ground factors into account, seems to be quite hard. On
the other hand if the quantizer does not incorporate any

model for these deviations, the results are usually unsat-
isfactory. Another observation important for quantization
is that we perceive a rhythmic pattern not as a sequence
of isolated onsets but rather as a perceptual entity made of
onsets. This also suggests that attributes of neighbouring
onsets such as duration, timing deviation etc. are corre-
lated in some way. A good quantization schema should
and must exploit this correlation structure. This struc-
ture is not fully exploited in commercial music packages
which do automated music transcription and score type
setting. The usual approach taken is to assume a con-
stant tempo throughout the piece, and to quantize each
onset to the nearest grid point implied by the tempo and a
suitable pre-specified minimum note duration (e.g. eight,
sixteenth e.t.c.). Such a grid quantization schema implies
that each onset is quantized to the nearest grid point inde-
pendent of its neighbours and thus all of its attributes are
assumed to be independent, hence the correlation struc-
ture is not employed. The consequence of this restric-
tion is that users are restricted to play along with a fixed
metronome and without any expression. From another
point of view, the musician has to fit her performance to
the performance model of the program. The quality of
the resulting quantization is only satisfactory if the music
is performed according to the assumptions made by the
quantization algorithm. In the case of grid-quantization
this is a mechanical performance with small and indepen-
dent random deviations.

More elaborate models for rhythm quantization indi-
rectly take the correlation structure of expressive devia-
tions into account. In one of the first attempt to quantiza-
tion, Longuet-Higgins (1987) described a method which



uses hierarchical structure of musical rhythms to do quan-
tization. Desain et al. (1992) use a relaxation network in
which pairs of time intervals are attracted to simple in-
teger ratios. Pressing and Lawrence (1993) use several
template grids and compare both onsets and inter onset in-
tervals (IOI’s) to the grid and select the best quantization
according to some distance criterion. The Kant system
Agon et al. (1994) developed at IRCAM uses more so-
phisticated heuristics but is in principle similar to (Press-
ing and Lawrence, 1993).

The common critic to all of these models is that the
assumptions about the expressive deviations are implicit
and are usually hidden in the model, thus it is not always
clear how a particular design choice effects the overall
performance for a full range of musical styles. In this
paper we describe a framework which makes the assump-
tions more explicit. In the following section we state the
transcription problem along with some simple examples.
We give a brief summary of Bayesian statistics and graph-
ical models. Using this framework, we describe several
performance models and show how different quantizers
can be derived from them. Finally, we compare the re-
sults.

2 Problem Description

We defined automated music transcription as the extrac-
tion of an acceptable description (music notation) from
performed data. In this study we concentrate to a simpli-
fied problem, namely extraction of an acceptable notation
for a performed simple rhythm (e.g. tapped by a pen).
We assume that a list of onset times is provided excluding
tempo, pitch or note duration information.

Given any sequence of onset times, we can in prin-
ciple easily find a notation (i.e. a sequence of rational
numbers) to describe the timing information arbitrarily
well. Equivalently, we can find several scores describing
the same rhythmic figure for any given error rate, where
by error we mean some suitable distances between onset
times of the performed rhythm and the mechanical per-
formance (e.g. as would be played by a computer). Con-
sider an example from Desain and Honing (1991). We
are given a segment of a performed rhythm as in Fig-
ure 1. A simple grid quantizer may produce the result in
Figure 2.(a). Although this is a very accurate representa-
tion, musicians would probably agree that the “smoother”
score shown in Figure 2.(b) is a better representation.
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Figure 1: Example: A performed rhythm

This suggests that a good score must be “easy” to
read while representing the timing information accurately.
This is apparently a trade-off and a quantization schema
must balance these two conflicting requirements.

� � � � � � ��� � � � � � � � � � � � � � � � � �

� � � � � ��� � � � � � � � �
(a)

(b)

Figure 2: (a) “Too” accurate quantization (b) Desired
quantization

3 Bayesian Statistics

An approach in solving difficult real world problems which
require artificial intelligence techniques, involves to de-
vise a model of the phenomenon, discuss its assumptions,
and try to make predictions to test the its validity and ap-
plicability. This is a rather incremental process, in which
the model is refined with the increasing domain knowl-
edge. This domain knowledge can be roughly classified as
experimental evidence (collected data) and expert knowl-
edge (designers intuitions). One difficulty appears in the
formal representation and application of expert knowl-
edge, since it is usually in terms of a verbal description
which can be prone to misinterpretation or can be hard to
validate computationally. The other difficulty is in getting
useful information out of the collected data. For this task,
several different pattern recognition techniques (such as
Neural Networks) can be used, which can capture the
underlying structure of the phenomenon with quite gen-
eral computational models, provided that enough exper-
imental data is available. However, in the design of a
working real world system one would like to combine ex-
pert knowledge with experimental evidence and Bayesian
statistics provides a consistent and practical alternative for
this requirement.

3.1 Bayes Theorem

The joint probability �	��

����� of two discrete random vari-
ables 
 and � defined over the respective state spaces�����	�����������

and
� ���	�����!��"#�

can be factorized in two ways:

�$�%
&�'���)(*�	�+�-, 
.�%�$�%
/�0(1�$�%
2, ���%�	�+��� (1)

where �$�%
2, ��� denotes the conditional probability of
 given � .
The marginal distribution of a variable can be found

from the joint by summing over all states of the other vari-
able, e.g.:

�	��
.�0(43�51�	��

���6( � 5 �7(43�51�	��
8, �9( � 5 �%�$�:�;( � 5 � (2)

It is understood that summation is to be replaced by
integration if the state space is continuous.

Bayes theorem appears from Eq. 1 and Eq. 2:

�	�:�<, 
/�0( �$�%
8, �����	�+���= 5 �	�%
2, �6( � 5 �%�	�+�9( � 5 � (3)



This rather simple looking “formula” has surprisingly
far reaching consequences. One reason is the interpreta-
tion of Eq. 3 as:

�	���������	�', 
 ���'� ��
 �$��
 ���'� , ���������:�%�$�����������:� (4)

posterior 
 likelihood � prior (5)

which combines “the amount of fit” (the likelihood) with
the initial “subjective belief” (prior) to give the new (pos-
terior) belief into the model after we see the data. In par-
ticular, if the model is an element of a class of models
indexed by some parameters finding the most probable
model is equivalent to finding the most probable set of
parameters.

4 Rhythm Quantization Problem

4.1 Definitions

In this section we will give formal definitions of the terms
that we will use in derivations to follow. A performed
rhythm is denoted by �2(�� � � � ����� � � 5 � ���������	� 1 where

� 5
is

the time of occurrence of the � ’th onset (measured in sec-
onds). The time between two consecutive onsets is de-
noted as an inter onset interval (IOI) which is defined as� 5 ( � 5�� � 5�� �

. For example, the rhythm in Figure 1 is
represented by

� � (�� � �! , �!" ($# �&%(' , �	) (*# �&+(' ����� , and� � (,# , � " (-� � �! , � " ($� �&.(. , � ) ( +�� #0/ ����� .
We found it convenient to make a distinction between

a score and a performance, although a score corresponds
directly to a mechanical performance when played with a
constant tempo. We define a score 12(2�&3 5 � �4� (5� �����76
as a sequence of occurrence times of onsets as a multiple
of some basic unit (e.g quarter note, eight note etc.).
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Figure 3: Representation

Figure 4: Two equivalent representations of the notation
in Figure 3 by a code vector sequence

1We will denote a set with the typical element @�A as BC@DACE . If the
elements are ordered (e.g. to form a string) we will use F @(A�G .

A score 1 can also be viewed as a concatenation of
some basic buildingblocks HDI.($�&J �4K I��4J " K I ����� JCL K I � , which
we call code vectors. For example, the notation in Fig-
ure 3 can be represented by a code vector sequence as in
Figure 4. Note that the representation is not unique, both
code vector sequences represent the same notation. We
call a set of code-vectors a codebook.
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Figure 5: Depth of J by subdivision schema M1(N� O�� + � +P�
In music, notations are usually generated by regular

subdivisions of a time interval so the locations of onsets
(in a score) can be described by simple rational numbers.
For this reason, it is also convenient to generate code-
vectors by regular subdivisions. This subdivision schema
is usually related to the time signature of the bar. As an
example, consider a codebook which contains only one
onset code-vectors generated according to a 3/4 time sig-
nature. A possible subdivision schema could be M (�&O � + � +D� . The interval is divided first to 3, then resulting
three intervals into 2 and etc. At each iteration, the end-
points of the generated intervals, which are not already
in the codebook are added to the codebook. The result-
ing codebook is depicted in Figure 5. The filled circles
correspond to the code-vectors and are arranged by the
location of the onset (horizontal) and by their depth (ver-
tical). The depth of an onset (with respect to a subdivision
schema M (Q�&R 5 � ) is the index of the iteration at which it
is added to a codebook as � ��J�, M � . A code-vector with N
onsets can be build by combining of such one onset code-
vectors. For such a code-vector we define the depth as the
sum of the depths of its onsets:

� ��H , M �0( 3S4T0U�V � ��JCW , M � (6)

For simplification of notation, we will represent a perfor-
mance � as a sequence of non-overlapping segments. The
length of the X ’th segment is denoted as Y I and the onsets
in this segment are denoted as � I . The segmentation of a
performance is given in Figure 6. The onsets are normal-
ized by Y I so an onset at the beginning of the segment is
mapped to zero and one at the end to one.

4.2 Performance Model

In general terms, a performance model describes how a
score is mapped into a performance. (Figure 3). As de-
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Figure 6: Segmentation of a performance by constant Y .

scribed in the introduction section, natural musical per-
formance is subject to several systematic deviations. In
lack of such deviations, every score would have only one
possible interpretation. Clearly, two natural performances
of a piece of music are never the same, even performance
of very short rhythms show deviations from a strict me-
chanical performance and a performance model is a de-
scription of such deviations. In this section we describe a
probabilistic model which can capture some of the prop-
erties of expressive timing deviations.

In the probabilistic framework, a performance model
is the probability distribution �	��� �4H ��� � � � , where H is a
code-vector sequence corresponding to a score 1 and � (���4I ��� #�� X is a tempo curve (measured in beats/sec). If
the tempo �CI is constant we drop the index X and use �
or its reciprocal Y (2�
	�� .

�
is a set of background pa-

rameters which can include several aspects such as style,
instrument etc. In our subsequent derivations we will sim-
ply ignore it. A performed rhythm � is viewed as a single
realization from a performance model.

The form of a performance model can be in general
very complicated. However, in this article we will con-
sider a subclass of performance models where the the ex-
pressive timing is assumed to be an additive noise com-
ponent. The model is given by

�4I/( H I
� I ��
 I (7)

where

 I is a random variable denoting the expressive tim-

ing deviation, and � I � # is a tempo curve. Note that
when


 I is zero and � is constant, the model reduces to a
so-called “mechanical” performance. Although this sim-
ple additivity assumption can be restrictive, this model is
still quite general since we haven’t yet made any assump-
tions about the dependence between tempo, code-vectors
and expressive timing deviations.

4.3 Formal statement of the Rhythm Quan-
tization Problem

Given a performed rhythm � , (or equivalently correspond-
ing IOI’s

�
) find a code-vector sequence H�� and a tempo

curve ��� s.t. �	��H ��� , � � � � is maximized, i.e. :

��H � ��� � �7(������������V K � �	��H ��� , � � � � (8)

This problem can be viewed as a maximum a-posteriori
(MAP) estimation problem if we regard H and � as param-
eters of the performance model and determine the values

which maximize a-posteriori probability given in Eq. 9.

�	��H ��� , � � � ��
 �	��� , H���� � � �%�$��H���� , � � (9)

Score and Tempo 
 Performance Likelihood

� Score and Tempo Prior(10)

We can also define a related quantity � (minus log-
posterior) and try to minimize this quantity rather then
maximizing Eq. 9 directly. This simplifies the form of
the objective function without changing the locations of
local extrema since ��� � �"! � is a monotonicly increasing
function.

� ( � �#���	�$��H���� , � �	( � ��� �	�	��� , H����)� � ��� �	�	��H ���7�(11)

4.4 Derivation of a Vector Quantizer with
constant Tempo

We will now demonstrate the derivation of a quantizer
using the performance model in Eq. 7 but with constant
tempo � :

� I ( H I 	�� ��
 I (12)

Since the tempo is constant, we have to specify only
a scalar � as the tempo, i.e. we have to specify the tempo
prior �	�"� � which should reflect our preferences toward
slower tempos, or equivalently to longer beat lengths. Oth-
erwise any rhythm can be notated by a simple score (e.g.
tied whole notes) if the tempo is very fast. Clearly, there
must be a penalty term to avoid this undesired situation. A
reasonable choice for the prior seems to be the exponen-
tial distribution �	�"� �-(%$ �

�'&
(
where $ is the expected

grid length, which determines the rate of decay of the ex-
ponential. If $ is big, the exponential approaches zero
quickly and the probability mass assigned to faster � de-
creases.

The code-vectors are assumed to be independent, i.e.�	��H	I �4H�)�� ( �	��H	I����	��H*) � . The expressive noise component
is assumed to be Normal distributed with zero mean and
covariance matrix +-, , i.e. �$� 
 � (/.6��# �0+1,�� .

If we substitute these assumptions to Eq. 11 we get

� ( � 3 I
� �#� � �$� �4I , H�I �2� � � �#� �	�	��H	I�� � �43 ��� �	�	�5���(13)

( 3 I
�
� " ��� I��

� H	I��768+
� �
, ��� I�� � H	I��

� 3 I �#��� ��	��H	I�� �
3 $9� (14)

( Quantization Error�
Score Complexity

�
Tempo Penalty (15)

The first term in Equation 14 is the square of a weighted
Euclidian distance (Mahalanobis distance (Duda and Hart,
1973)) measuring how far the rhythm is played from the
perfect mechanical performance. The covariance matrix



+1, is determined by the correlation structure of the ex-
pressive noise and will be explained in the next section.
The second term, which is large when the prior probabil-
ity �	��H�I�� of the codevector is low, is the length of a Shan-
non code in bits (Cover and Thomas, 1991). This term
can be interpreted as a complexity term, which penalizes
complex notations. Finally, the third term prefers slower
tempos. The best quantization balances these three terms
in an optimal way.

4.5 A Special case: Regularized Grid Quan-
tizer

The equation 14 can be shown to reduce to a grid quan-
tizer under the assumption that expressive deviations of
individual onsets are independent, i.e. + , ( � ", � if the
codebook is taken to be � ( � �&# � �D� � � �	��� �+� .
� 	 3 (��2�5� �4H��0( �+ 3 � ", 3 I

�"��� I � H	I � "
� " � $9� � J���R 3 � (16)

H � I.( ���	��
��	��� I���� (17)

4.6 Vector Quantizer

In this section we will demonstrate the advantages of quan-
tization of onsets in groups (vector quantization) and the
flexibility of this schema by a simple example. To sim-
plify the derivation further, we will only consider the quan-
tization of a single segment �	I .
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Figure 7: Two Onsets

Consider the normalized segment � I � I ( �&# � 
�% �4# �&%(+��
depicted in Figure 7. Suppose we wish to quantize the
onsets only to one of the endpoints, i.e. we are using ef-
fectively the codebook � ( � � #�� # � �!� # �D� � ��� � �	� �+� . The
simplest strategy is to quantize every onset to the nearest
grid point (e.g. a grid quantizer) and so the code-vectorH*( �&# �D� � is the winner. However, this result might be
not very desirable, since the IOI has increased more than
14 times, (from 0.07 to 1). This is less likely since it is
perceptually not very realistic. We could fix this problem
by employing another strategy : If

� � # �&% , we use the
code-vector �&# �D� � . if

� ( � " � � ��� # �&% , we quantize to
one of the code-vectors �&# �4# � or � � �!� � depending upon the
average of the onsets. In this strategy the quantization of�&# � 
�% �4# �&%(+P� is �&#��!� � .

Although considered to be different in the literature,
both strategies are just special cases which can be derived
from the equation 14 by making specific choices about
the complexity prior and the correlation structure (covari-
ance matrix +-, ) of expressive deviations. The first strat-
egy ( � ( # ) assumes that the expressive deviations are
independent of each other and distributed by .6��# � � " � .
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Figure 8: Tilings for choices of � and constant �	��H��
The latter corresponds to the case where onsets are as-
sumed to have a linear functional dependence; which is
indeed true since this strategy considered that

� " ( � � � � .
Different strategies, which can be quite difficult to state
verbally, can be specified by different choices of + , and

�	��H�� . Some examples for the choice + , ( � ���� ���
with constant �	��H � are depicted in Figure 8. The ellipses,
who’s orientation is determined by the covariance matrix,
denote the set of points which are equidistant from the
center. The interested reader is referred to Duda and Hart
(1973) for a detailed discussion of the underlying theory.

4.6.1 Likelihood and Prior for the Vector Quantizer

To choose the likelihood �	� � , J �0��� and the prior �	��J � in a
way which is perceptually meaningful, we analysed data
from an experiment where subjects are asked two notate
short rhythms Desain et al. (1999).
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Figure 9: Correlations estimated from the perceptual ex-
periment

Analysis of data suggests that onsets which are close



to each other tend to be highly correlated. This can be in-
terpreted as follows: if the onsets are close to each other,
it is easier to quantify the IOI and then select an appro-
priate translation for the onsets by keeping the IOI con-
stant. If the difference is large, the correlation tends to be
weak (or sometimes negative), which suggests that onset
are quantized independently of each other with respect to
the tactus (i.e. the grid) only.

By this observation we found it useful to define the
covariance matrix as:

+1, ( � � "� W � (18)� "� W ( � �5� , � � � � W , � (19)

where
�

is a monotonically decreasing function where� ��# �1( � and
� �����1( # . We have choosen

� �"! �1(� � � ! ��� where � � # . In practice it is taken around
1.

The choice of the prior �$��H�� reflects the complexity ofH . We think that the complexity can be related to the num-
ber of subdivisions required to encode the onset. Another
factor in the determination of the complexity of code-
vectors is how the onsets of a code-vector are distributed
on the interval. As an example consider two code-vectorsH � ($�&# �D� 	 + � O 	 
 �	� � and H " ($� #��!�
	 
 � O 	 
 ��� � which cor-
respond to notations (211) and (121). We consider the
latter to be more complex since it contains more onsets
which are located on “deeper” locations.

The prior probability of a code-vector with respect toM is choosen as

�$��H , M �)( ����
�	��
 V
� ���

(20)

where
�

is a normalizing constant. Note that if � ( � ,
then the depth of the codevector has no influence upon its
complexity. If it is large, (e.g. � ( +

) only very sim-
ple rhythms get reasonable probability mass. In practice,
we choose ��� � � # + . This choice is also in accordance
with the intuition and experimental evidence that simpler
rhythms are more frequently used then complex rhythms.

5 Simulations

We implemented the grid quantizer with regularized tempo
detector and tested it on the example in Figure 1. The
regularized error is ploted in 10. The form of the error
curves demonstrates the effect of the prior and how quan-
tization error and tempo penalty are balanced. In any case
a grid length Y is found which is a suitable subdivision
of the onset sequence. This is demonstrated in Figure 11
where the optimal grid length estimate as a function of
the expected grid length $ is ploted. Note that the valuesY ( 0.15 0.3 and 0.4 correspond to 1/32, 1/16, and 1/12
notes. By varying $ , one can balance accuracy against
complexity. Varying this parameter is similar to select-
ing the grid size of a grid quantizer but on a continuous
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Figure 10: Regularized Error � 
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Figure 11: Dependence upon the Prior

scale. The method then searches over possible tempi and
chooses the one which minimizes Eq. 16.

A resulting quantization ( $9( # � 
 ) is given in Fig-
ure 12. The output differs from the desired notation in
the 3. segment, which is quantized as (323) instead of a
triplet (111). This is to be expected since a simple grid
quantization schema can not recognize different notations
which require different subdivisions. The vector quanti-
zation does not suffer from this drawback and produces
exactly the desired notation (Fig. 13).

We have also tested the algorithm on data recorded
from a solo piano performance (Fig. 14). The melody is
actually an accompaniment melody which has only a reg-
ular beat (3 eight notes in each segment) however it is very
expressively played and is difficult to quantize for a sim-
ple quantizer. This example compares the vector quan-
tizer ( � ( � � # � ) with an onset and ioi quantizer which
have the same degree of freedom (i.e. uses the same code-

8 4 2 2 3 2 3 4 4 2 2 2 2 8

Figure 12: Quantized Rhythm (Grid quant.)
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Figure 13: Quantized Rhythm (Vector quant.)

vectors).
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Figure 14: Quantization of real performance

The original performance suggests that the onsets are
indeed correlated (we observe shifts in the same direc-
tion). By controlling the complexity with the prior and
coding the correlation structure in the likelihood, the reg-
ularized vector quantizer produces a quantization which
is very close to the original score.

6 Discussion and Conclusions

In this article, we developed a vector quantization schema
for quantization of musical rhythms. We made use of
Bayesian statistics where we proposed prior and expres-
sive noise distributions based on observations from an
perceptual experiment. It must be noted that the form of
the likelihood and prior proposed in this paper resulted
from subjective observations which are to be validated ex-
perimentally. Nevertheless, an advantage of this approach
is that since the assumptions are stated as probability dis-
tributions, the parameters can be learned, if more experi-
mental data is available.

In the simulations, we have observed that the com-
plexity prior plays an important role when the subdivision
schema is long (e.g. there are many small subdivisions).
Then the particular choice of the correlation matrix does
not play a crutial role. This is to be expected, since the
volume of the space, where the quantization of an onset
quantizer differs from an ioi quantizer goes to zero in lack
of a complexity prior when there are increasingly many
codevectors.

An important note is that in the derivation we did not
used any other attributes of notes (e.g. duration, pitch),

which can give additional information for quantization.
This information can also be integrated into the frame-
work by modifying the likelihood and prior suitably. Cur-
rent research is directed towards investigation of this is-
sue.
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