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ON THE SMALLEST NUMBER OF TERMS OF

VANISHING SUMS OF UNITS IN NUMBER FIELDS

CS. BERTÓK, K. GYŐRY, L. HAJDU, A. SCHINZEL

Abstract. Let K be a number field. In the terminology of Nagell a
unit ε of K is called exceptional if 1 − ε is also a unit. The existence
of such a unit is equivalent to the fact that the unit equation ε1 + ε2 +
ε3 = 0 is solvable in units ε1, ε2, ε3 of K. Numerous number fields have
exceptional units. They have been investigated by many authors, and
they have important applications.

In this paper we deal with a generalization of exceptional units. We
are interested in the smallest integer k with k ≥ 3, denoted by ℓ(K), such
that the unit equation ε1 + · · ·+ εk = 0 is solvable in units ε1, . . . , εk of
K. If no such k exists, we set ℓ(K) = ∞. Apart from trivial cases when
ℓ(K) = ∞, we give an explicit upper bound for ℓ(K). We obtain several
results for ℓ(K) in number fields of degree at most 4, cyclotomic fields
and general number fields of given degree. We prove various properties
of ℓ(K), including its magnitude, parity as well as the cardinality of
number fields K with given degree and given odd resp. even value ℓ(K).

Finally, as an application, we deal with certain arithmetic graphs,
namely we consider the representability of cycles. We conclude the paper
by listing some problems and open questions.

1. Introduction

Let K be a number field. We are interested in the smallest integer k
having the following property:

(1) there exist units ε1, . . . , εk ∈ K such that ε1 + · · ·+ εk = 0.

Observe that for any even integer k = 2t, we have a trivial assertion given
by t× 1 + t× (−1) = 0. So we shall use the following definitions.

Write ℓo(K) for the smallest odd k ≥ 3 for which (1) is valid. Further,
let ℓe(K) be the smallest even k ≥ 4 for which (1) is valid, such that the
sum appearing in (1) has no proper vanishing subsum. If no appropriate k
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exists at all, then we set ℓo(K) = ∞ or ℓe(K) = ∞, respectively. We put
ℓ(K) = min(ℓo(K), ℓe(K)).

Before proceeding further, we make a trivial observation. First note that
if k = ℓo(K), then the sum of units appearing in (1) has no proper vanishing
subsum. Indeed, otherwise we would have a proper vanishing subsum with
an odd number of terms, contradicting the minimality of k = ℓo(K).

The above notions can be generalized to orders of number fields. Let O
be an order of a number field K. Then we can define ℓo(O), ℓe(O), ℓ(O) in
the obvious way. Note that if O is the maximal order of K, then we clearly
have ℓo(O) = ℓo(K), ℓe(O) = ℓe(K), ℓ(O) = ℓ(K).

In this paper we obtain several results concerning ℓ(K), ℓo(K), ℓe(K) and
ℓ(O), ℓo(O), ℓe(O). We show among other things that ℓ(K) is finite for any
number field K, apart from the cases where K = Q or K is an imaginary
quadratic field. Further, we prove that for any integer k ≥ 3 there exists an
order of a real quadratic number field with ℓ(O) = k, and also a complex
cubic number field K with ℓ(K) = k - in the latter case excluding values k
of the form k = 4t4 − 4t + 2. On the other hand, we show that for each k,
there are only finitely many quadratic fields, complex cubic fields and (up
to certain completely described exceptions) totally complex quartic fields
with ℓ(K) ≤ k, and all these number fields can be effectively determined.
Furthermore, it is shown that for any number field K different from Q and
the imaginary quadratic fields we have ℓe(K) < ∞. Finally, we prove that for
d ≥ 3 there are infinitely many number fields K of degree d with ℓe(K) = 4,
and for d ≥ 2 there are infinitely many number fields K of degree d with
ℓo(K) = ∞.

We give some applications of our results to certain arithmetic graphs,
more precisely to graphs having vertices from the set of integers of K, in
which two vertices α, β are connected by an edge if and only if α−β is a unit
in K. We mention that Győry has several results about and applications
of such graphs (see e.g. [14] and the references given there), and recently
Győry, Hajdu, Tijdeman [16, 17] and Ruzsa [28] made a systematic study
of the representability of such graphs. Our results allow us to extend some
results from the mentioned papers, concerning representations of cycles.

Clearly, the existence of units appearing in (1) means that the unit equa-
tion

(2) ε1 + · · ·+ εk = 0

has a solution in units ε1, . . . , εk of K such that the left hand side has no
proper vanishing subsum. For k = 3, the solvability of (2) is equivalent to the
existence of a unit ε, called exceptional unit, see Nagell [26], such that 1−ε is
also a unit. Obviously, we have ℓ(K) = ℓo(K) = 3 if and only if K contains
an exceptional unit. There is an extremely rich literature on unit equations
of the form (2). For given k ≥ 3, there are results stating the finiteness of the
number of solutions up to a proportional factor. Further, there are explicit
upper bounds for the number of solutions and, for k = 3, even for the size
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of the solutions. Moreover, for k = 3 and for some special number fields K,
all the solutions have been determined. Many books and survey papers deal
with these equations, their generalizations and various applications; see e.g.
Lang [22], Győry [12, 13], Evertse [4], Mason [24], Shorey and Tijdeman
[35], Evertse, Győry, Stewart and Tijdeman [7], Schmidt [34], Smart [39],
Evertse and Győry [6] and the references given there.

We organize our paper as follows. First we present our main results, fol-
lowed by their proofs. After that we give applications to arithmetic graphs.
We conclude the paper with some open problems.

2. Main results

In this section we present our main results. We split them into two parts:
first we provide statements concerning the parameters ℓ(K), ℓo(K), ℓe(K)
and ℓ(O), ℓo(O), ℓe(O). Then we give results concerning so-called odd and
even units, since they play an important role in our proofs.

2.1. Results concerning ℓ(K), ℓo(K), ℓe(K) and ℓ(O), ℓo(O), ℓe(O). Our
first theorem is a simple, but important statement.

Theorem 2.1. For any number field K different from Q and the imaginary

quadratic fields, ℓ(K) is finite. Further,

ℓ(K) ≤ 2(d + 1) exp{cRK},
where

c =

{

1/d, if r=1,

29e
√
r − 1 · r!(log d), if r ≥ 2.

Here r, d and RK denote the unit rank, the degree and the regulator of K,

respectively.

We note that

RK ≤ |DK |1/2(log∗ |DK |)d−1,

where DK denotes the discriminant of K, and log∗(x) = max{log x, 1}. This
is an improvement of an inequality of Landau [20]; see (59) in Győry and
Yu [19].

Remark. Obviously, ℓ(K) = ∞ for K = Q and the same is true for all
imaginary quadratic fields (including the Gaussian field Q(i)), except for
K = Q(

√
−3). In the latter case we have ℓ(K) = 3.

We also mention that a statement similar to Theorem 2.1 could be for-
mulated for orders O of number fields, as well.

Our next result shows that ℓ(O) can be an arbitrary integer k ≥ 3.

Theorem 2.2. For any k ≥ 3 there exists an order O of some number field

K with ℓ(O) = k. In fact, O can be chosen as an order of a real quadratic

number field.
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Our next result shows that apart from the values k taken by a particular
quartic polynomial, ℓ(K) can also be an arbitrary integer k ≥ 3.

Theorem 2.3. For any k ≥ 3 which is not of the form 4t4 − 4t + 2 (t ∈
Z \ {0, 1}) there exists a number field K with ℓ(K) = k. In fact, one can

choose K to be a complex cubic number field.

We are sure that the above theorem is valid for all values of k. So we
propose the following

Conjecture. For any k ≥ 3 there exists a number field K with ℓ(K) = k.

We provide some numerical results to support our conjecture.

Proposition 1. Let Kt = Q(αt), where αt is a root of the polynomial

x3 + x2 + (4t4 − 4t− 1)x+ 1 for t ∈ {−20, . . . ,−1} ∪ {2, . . . , 20}. Then we

have ℓ(Kt) = 4t4 − 4t+ 2.

Our next theorem shows that under some restrictions, for any k, there are
only finitely many number fields K with ℓ(K) ≤ k. Clearly, some restriction
is needed to obtain such a result: for example, if ε is a root of the polynomial
xn + x + 1 with n ≥ 2, then for the number field K = Q(ε) we obviously
have ℓ(K) = 3. In what follows, we write ζn for a primitive root of unity of
order n.

Theorem 2.4. For any k ≥ 3, there are only finitely many quadratic fields,

complex cubic number fields and totally complex quartic number fields K with

ℓ(K) ≤ k, in the latter case assuming that K does not have a real quadratic

subfield and ζ3 /∈ K, and all such fields can be effectively determined.

Remark. There are infinitely many totally complex quartic fields K having
a real quadratic subfield L. As for all such fields K we have ℓ(K) ≤ ℓ(L), the
above statement is not valid for them. Similarly, there are infinitely many
totally complex quartic fields K with ζ3 ∈ K, and hence with ℓ(K) = 3.
Thus they also have to be excluded from Theorem 2.4.

The value of ℓo(K) can be infinite in non-trivial cases (i.e. excluding Q
and the imaginary quadratic fields) as well.

Theorem 2.5. Let d ≥ 2. There are infinitely many number fields K of

degree d with ℓo(K) = ∞.

Our final result in this subsection shows that ℓe(K) can take its minimal
value (that is 4) for infinitely many number fields, having any prescribed
degree ≥ 3. Note that in view of Theorem 2.4, the case d = 2 has to be
excluded, so our statement is best possible in this respect.

Theorem 2.6. Let d ≥ 3. There are infinitely many number fields K of

degree d with ℓe(K) = 4.
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2.2. Results concerning odd and even units. In this subsection we
investigate the existence of odd and even units in a number field K. This
is an important question from our viewpoint: as we shall see soon, if K
contains an odd unit then ℓo(K) is finite, and, similarly, if K contains an
even unit then ℓe(K) is finite.

We need a little preparation. For any integer polynomial

g(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0

write
L(g) = |bn|+ |bn−1|+ · · ·+ |b1|+ |b0|

for the length of g(x). The properties of lengths of polynomials have been
studied by several authors; see e.g. [8, 31, 32] and the references given there.

We call an algebraic integer α even, if L(f) is even, where f(x) is the
minimal monic polynomial of α (over Q); otherwise α is odd. Observe that
α is even if and only if f(1) is even.

Let ε be a unit of K, different from the roots of unity, and let f(x) =
xn+an−1x

n−1+· · ·+a1x+a0 be the minimal monic polynomial of ε. Observe
that then the equation

εn + an−1ε
n−1 + · · ·+ a1ε+ a0 = 0

shows that (1) is satisfied in K with k = L(f) terms, and also that there
cannot be proper vanishing subsums of the left hand side. In particular, we
have that if ε is odd then ℓo(K) < ∞, and if ε is even then ℓe(K) < ∞. In
what follows, this observation will be frequently used.

The next theorem shows that excluding the trivial cases, every number
field contains a non-trivial even unit.

Theorem 2.7. Every number field K different from Q and the imaginary

quadratic fields, contains an even unit different from ±1. In particular, we

have ℓe(K) < ∞.

As it was mentioned in the Remark after Theorem 2.1, for K = Q and the
imaginary quadratic fields with the exception of Q(ζ3), we have ℓ(K) = ∞.
Hence ℓe(K) = ∞ is also valid for these fields. Further, it is easy to check
that ℓe(Q(ζ3)) = ∞, too.

Theorems 2.5 and 2.7 imply that for d ≥ 3 and for d = 2 with K quadratic
real, ℓe(K) < ∞ holds, and there are infinitely many number fields K of
degree d with ℓo(K) = ∞.

For d ≤ 4, we have the following more explicit result.

Theorem 2.8. Let K be a real quadratic, a complex cubic or a totally

complex quartic field; in the latter case assume that K does not contain

roots of unity different from ±1. Suppose that K has a fundamental unit

which is even. Then all units of K are even. In particular, in these cases

we have ℓo(K) = ∞.

Our final result in this section shows that in general, cyclotomic fields
contain odd units.
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Theorem 2.9. In every cyclotomic field K = Q(ζn) except n | 4 there exists

an odd unit. In particular, in these number fields we have ℓo(K) < ∞ and

ℓe(K) < ∞.

By our previous remarks, for n = 1, 2, 4 we have ℓ(K) = ∞.

3. Lemmas, auxiliary results and proofs of our main results

We start with the proofs of our theorems concerning odd and even units.
For this, we need several lemmas.

Lemma 3.1. Let F be the minimal monic polynomial of a unit ε over Q
and n a positive integer. Then εn is even if

∏n−1
i=0 F (ζ in) is even, where ζn

is a primitive root of unity of order n.

Proof. Let G be the minimal monic polynomial of εn over Q. Since G(εn) =
0, we have F (x) | G(xn). It follows that for every i = 0, . . . , n − 1 we have

F (ζ inx) | G(xn) whence
∏n−1

i=0 F (ζ inx) | G(xn)n. If the assumption of the
lemma holds, then G(1) is even, thus εn is even. �

Let φ be the canonical map of Z[x] onto F2[x].

Lemma 3.2. Let ε be a unit of a number field K and F its minimal polyno-

mial over Q. Then ε2
n−1 is even, if n is the degree of an irreducible factor

over F2 of φ(F ).

Proof. By the theory of finite fields we have

x2
n − x =

∏

f(x),

where the product on the right hand side is taken over all distinct irreducible
polynomials over F2 whose degree divides n. Hence, over F2 we have

φ(Φ2n−1(x)) =
∏

f(x),

where Φm denotes the cyclotomic polynomial of order m, and the product
on the right hand side is now taken over all distinct irreducible polynomials
over F2 of degree n. By Dedekind’s theorem on congruences we have

(2) =
∏

(Gf (ζ2n−1), 2) with Gf ∈ Z[x], φ(Gf ) = f,

where the product on the right hand side is taken as before, and the ideals
are prime. Write Pf,n = (Gf (ζ2n−1), 2). It follows that if f | F over F2 with
deg(f) = n, then we have

2n−1
∏

j=1

F (ζj2n−1) ≡ NQ(ζ2n−1)/Q(F (ζ2n−1)) ≡ 0 (mod NQ(ζ2n−1)/Q(Pf,n)),

whence the congruence also holds modulo 2. This shows, by Lemma 3.1,
that ε2

n−1 is even, and the statement follows. �

Proof of Theorem 2.7. The statement is an immediate consequence of Lemma
3.2. �
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To prove Theorem 2.8, we need the following

Lemma 3.3. Let K be a real quadratic, a complex cubic or a totally complex

quartic field; in the latter case assume that K does not contain roots of unity

different from ±1. Let ε be a fundamental unit of K. Suppose that ε is even.

Then if ε1+ · · ·+εk = 0 holds for some units ε1, . . . , εk of K then k is even.

Proof. Suppose to the contrary that with some odd k, we have an equality
of the form ε1 + · · ·+ εk = 0. Let f(x) be the minimal monic polynomial of
ε over Z. By multiplying the equation by an appropriate power of ε (in view
of that the unit rank of K is one and K contains no roots of unity different
from ±1) we get an equation of the form h(ε) = 0, where h ∈ Z[x]. Dividing
h by an appropriate integer if necessary, we may further assume that it is
primitive. Then, by the Gauss lemma we easily deduce that h(x) = f(x)g(x)
holds, where g(x) ∈ Z[x]. However, since L(h) is odd and L(f) is even, it
yields a contradiction. Hence the lemma follows. �

Proof of Theorem 2.8. The statement is an immediate consequence of Lemma
3.3. �

Since we find it of independent interest, now we show that a statement
similar to Lemma 3.3 is true for totally real cubic fields (having already unit
rank 2).

Proposition 2. Let K be a totally real cubic field. Suppose that K has a

system of fundamental units which are even. Then all units of K are even.

Proof. Write ε, η for a system of fundamental units of K. Since ε is even,
either ε3 + ε2 + ε+ 1 ≡ 0 (mod 2), or ε3 + 1 ≡ 0 (mod 2), and the same is
valid with η in place of ε. If ε3 + 1 ≡ η3 + 1 (mod 2) then all units of K
are even. Indeed, if ν = ±εmηn (m,n ∈ Z) would be an odd unit of K with
minimal monic polynomial x3 + ax2 + bx± 1, then we would have

a+ b ≡ 1 (mod 2) and a(εmηn)2 + b(εmηn) ≡ 0 (mod 2),

which is impossible.
Thus without loss of generality we may assume that

ε3 + ε2 + ε+ 1 ≡ 0 (mod 2).

We have five cases, according to the splitting of the prime 2 (the principal
ideal (2)) in K:

• (2) = P1, P1 is a prime ideal,
• (2) = P1P2, Pi is a prime ideal of degree i (i = 1, 2),
• (2) = P1P2P3, the Pi are distinct prime ideals (i = 1, 2, 3),
• (2) = P2

1P2, the Pi are distinct prime ideals (i = 1, 2),
• (2) = P3

1 , P1 is a prime ideal.

Observe that in all cases, by

ε3 + ε2 + ε+ 1 ≡ (ε+ 1)3 ≡ 0 (mod 2),
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we obtain ε ≡ 1 (mod P1). If we had also η ≡ 1 (mod P1), then ±εmηn ≡ 1
(mod P1) (m,n ∈ Z) would follow, showing that

(3) a+ b ≡ 1 (mod 2) and a(εmηn)2 + b(εmηn) ≡ 0 (mod P1)

is impossible. It remains to check the case

ε ≡ 1 (mod P1) and η3 ≡ 1 (mod 2).

However, as one can easily check, (3) is also impossible in this case. Hence
our statement follows. �

Proof of Theorem 2.9. If n 6= 2α, one can take ε = ζn. Indeed, the minimal
monic polynomial of ζn is Φn(x) and we have

Φn(1) ≡ 1 (mod 2).

If n = 2α (α ≥ 3), one can take

ε = 1 + ζ8 + ζ28 =
ζ38 − 1

ζ8 − 1
.

Indeed, the minimal monic polynomial of ε is x4 +14x3 +5x2 +2x+1, and
the theorem follows. �

Now we turn to the proofs of our theorems concerning ℓ(K), ℓo(K), ℓe(K).
In fact, the proof of Theorem 2.1 is based upon a simple observation.

Proof of Theorem 2.1. Let ε be a unit of K, different from 1 and −1. Write
f(x) = xn + an−1x

n−1 + · · · + a1x+ a0 ∈ Z[x] for the minimal monic poly-
nomial of ε. Then the equality f(ε) = 0 can be considered as an equation of
the form (1), with k := 1 + |an−1|+ · · ·+ |a1|+ |a0| terms on the left hand
side. Since f(x) is the minimal monic polynomial of ε, it is obvious that this
equation has no vanishing subsums. This proves that ℓ(K) ≤ k. Since n ≤ d
and k ≤ (d + 1)H(f), where H(f) denotes the height (i.e. the maximum
absolute value of the coefficients) of f , it suffices to to give an upper bound
for the height of the minimal monic polynomial of an appropriate unit ε of
K.

It follows from Proposition 4.3.9 in Evertse and Győry [6], an improve-
ment of a classical result of Siegel [38], that there is a unit ε in K such that
h(ε) ≤ cRK with the constant specified in Theorem 2.1. Here h(ε) denotes
the absolute logarithmic height of ε. But by (1.9.3) of Evertse and Győry
[6], the height of the minimal monic polynomial of ε is at most 2 exp{h(ε)},
hence the claimed upper bound for ℓ(K) follows. �

To prove Theorem 2.2, we need two lemmas. The first one is due to
Louboutin [23].

Lemma 3.4. Let ε > 1 be a real quadratic unit. Then ε is the fundamental

unit of the quadratic order Z[ε], with the sole exception of ε = (3 +
√
5)/2.

Proof. The statement is an immediate consequence of Theorem 1 of [23]. �
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The next lemma shows that in case of some quadratic and cubic polyno-
mials f(x) ∈ Z[x] of special shape, L(fg) ≥ L(f) holds for all g(x) ∈ Z[x]
which is not identically zero.

Lemma 3.5. Let a be a positive integer, and f(x) be one of the polynomials

x2−ax−1, x3+ax+1, x3+x2+ax+1; in the latter case assume further that

a ≥ 3. Then for any g(x) ∈ Z[x] not identically zero, we have L(fg) ≥ L(f).

Proof. Let a be a positive integer, and g(x) = bnx
n + · · · + b1x + b0 with

n ≥ 0 and bn, . . . , b0 ∈ Z, bn 6= 0. Clearly, we may assume that n ≥ 1,
bn > 0 and b0 6= 0, whence L(g) ≥ 2. Further, we put h(x) = f(x)g(x).

First let f(x) = x2 − ax− 1. Then we have

h(x) = cn+2x
n+2 + · · ·+ c1x+ c0,

with

cn+2 = bn, cn+1 = bn−1 − abn, c1 = −ab0 − b1, c0 = −b0

and

ci = bi−2 − abi−1 − bi (i = 2, . . . , n).

Hence we get

L(h) =

n+2
∑

i=0

|ci| ≥ |bn|+ |b0|+ aL(g) −
n−1
∑

i=0

|bi| −
n
∑

i=1

|bi| ≥ (a− 2)L(g) + 4.

As L(g) ≥ 2 and L(f) = a + 2, this implies our claim for a ≥ 2. If a = 1
then L(f) = 3, and we are done unless L(h) = 2, that is, h(x) = xn+2 ± 1.
However, then f(x) ∤ h(x), which is a contradiction, proving our claim in
this case.

Assume now that f(x) = x3 + ax+ 1. Then we have

h(x) = cn+3x
n+3 + · · ·+ c1x+ c0,

with

cn+3 = bn, cn+2 = bn−1, cn+1 = bn−2 + abn,

c2 = ab1 + b2, c1 = ab0 + b1, c0 = b0

and

ci = bi−3 + abi−1 + bi (i = 3, . . . , n).

Similarly to the case f(x) = x2 − ax− 1, we get

L(h) ≥ |bn|+ |bn−1|+ |b0|+ aL(g) −
n−2
∑

i=0

|bi| −
n
∑

i=1

|bi| ≥ (a− 2)L(g) + 4.

This gives that the statement is valid for a ≥ 2. For a = 1, L(h) < L(f)
would imply x3 + x+ 1 | xn+3 ± 1, which does not hold. Hence the lemma
follows also in this case.

Finally, let f(x) = x3 + x2 + ax+ 1. Then we can write

h(x) = cn+3x
n+3 + · · ·+ c1x+ c0,
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with

cn+3 = bn, cn+2 = bn−1 + bn, cn+1 = bn−2 + bn−1 + abn,

c2 = b0 + ab1 + b2, c1 = ab0 + b1, c0 = b0

and
ci = bi−3 + bi−2 + abi−1 + bi (i = 3, . . . , n).

Similarly to the case f(x) = x2 − ax− 1, we get

L(h) ≥ |bn|+ |bn−1 + bn|+ |b0|+ aL(g) −
n−2
∑

i=0

|bi| −
n−1
∑

i=0

|bi| −
n
∑

i=1

|bi| ≥

≥ (a− 3)L(g) + 6.

As a ≥ 3, L(f) = a + 3 and L(g) ≥ 2, this gives L(h) ≥ L(f), and the
lemma follows. �

Proof of Theorem 2.2. Let k ≥ 3. Let ε be a root of the polynomial f(x) =
x2 − (k − 2)x − 1, and set O = Z[ε]. By Lemma 3.4 we know that ε is a
fundamental unit of O. Then, in the same way as in the proof of Lemma 3.3,
we see that all vanishing sums of units in K = Q(ε) are obtained from the
integer polynomial multiples h(x) of f(x). Now by Lemma 3.5 we get that
for all such h(x), L(h) ≥ L(f) = k holds. This implies the statement. �

To prove Theorem 2.3, we need a result concerning cubic factors of certain
special trinomials. For theorems on the reducibility of general trinomials,
see e.g. [29] and the corresponding chapter of [33].

Lemma 3.6. Let m,A,E be integers with m ≥ 2 and E ∈ {−1, 1}. Suppose

that x3m + Axm + E has an irreducible cubic factor in Z[x]. Then one of

the following cases occurs:

(i) m = 11, A = 67 and E = 1, when x3+x+1 is the only cubic factor,

(ii) m = 4, A = 1040 and E = −1,
(iii) m = 2, E = −1 and A is of the form A = 4t4 − 4t (t ∈ Z \ {0, 1}).

Proof. The statement is an immediate consequence of the Theorem in Tver-
berg [40]. Note that this result of Tverberg is an extension of the Theorem
in Bremner [2], where only the case E = 1 was considered. It is easy to
check (e.g. by Magma [1]) that the only cubic factor of the polynomial
x33 + 67x11 + 1 is x3 + x+ 1. �

Now we can give the

Proof of Theorem 2.3. For given k not of the form 4t4−4t+2, take A = k−2
and consider the polynomial f(x) = x3 + Ax + 1. As one can easily check,
f(x) (in view of A ≥ 1) is irreducible over Q, and has one real and two
complex roots. Let ε be a root of f(x), and put K = Q(ε). Write ε = ±ηm

with some m ≥ 2, where η is an appropriately chosen fundamental unit of
K. Let h(x) be the minimal monic polynomial of η. It is easy to see that
h(x) divides one of the polynomials x3m +Axm ± 1 in Z[x]. Noting that as
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1040 = 4(−4)4 − 4(−4) we have A 6= 1040, by Lemma 3.6 we obtain that if
A 6= 67 then m = 1 holds.

We conclude that if A is not of the form 4t4 − 4t (t ∈ Z \ {0, 1}), then ε
is a fundamental unit of K, unless A = 67. So in the cases where A 6= 67,
just as before, we get that any vanishing sum of units in K comes from a
multiple of f(x). However, by Lemma 3.5 we obtain that the number of the
terms in any such sum is at least L(f) = A+2 = k, and the theorem follows
in these cases.

Hence we are left with k−2 = A = 67. In this case consider the polynomial
f(x) = x3 + x2 + 66x + 1. A simple check by Magma [1] shows that this
polynomial is irreducible, has one real and two complex roots. Further,
taking a root ε of f(x), ε is a fundamental unit of K = Q(ε). By Lemma
3.5 we get that for any g ∈ Z[x] which is not identically zero, we have
L(fg) ≥ L(f) = 69. This in the same way as before shows that ℓ(K) = 69,
and the theorem follows. �

Now we give the proof of Proposition 1.

Proof of Proposition 1. A simple calculation with Magma [1] shows that αt

is a fundamental unit of Kt for the values of t under consideration. Hence
following the usual argument, the statement follows by Lemma 3.5. �

To prove Theorem 2.4 we need the following lemma, essentially due to
Mignotte [25]. It provides a weaker, but much more general lower bound for
L(fg) than Lemma 3.5.

Lemma 3.7. Let f ∈ Z[x] of degree n ≥ 0. Then for any g ∈ Z[x] which is

not identically zero, we have L(fg) ≥ 2−nL(f).

Proof. Write

f(x) = anx
n + · · ·+ a1x+ a0 and f(x)g(x) = bsx

s + · · ·+ b1x+ b0.

Theorem 2 of [25] gives

|ai| ≤
(

n

i

)

√

√

√

√

s
∑

j=0

b2j (i = 0, . . . , n).

Thus

L(f) = |an|+ · · · + |a0| ≤ 2n

√

√

√

√

s
∑

j=0

b2j ≤ 2nL(fg),

and the statement follows. �

The last assertion we need in the proof of Theorem 2.4 concerns lengths
of polynomials g(x) such that L(fg) is ”small” for a given f(x).

Lemma 3.8. Let f(x) ∈ Z[x] having no cyclotomic factors, and let N ≥ 1.
Then there exists an effectively computable constant C(L(f), N) depending

only on L(f) and N such that for any g(x) ∈ Z[x] with L(fg) ≤ N we
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have L(g) ≤ C(L(f), N). Further, at least one such g satisfies deg(g) ≤
C(L(f), N)(deg(f) + 1).

Proof. The first part of the statement is an immediate consequence of The-
orem 1 in [8]. Note that in [8] in place of the length the authors work
with another norm, however, it is easy to reformulate their result for L(g).
Further, C(L(f), N) is not claimed to be effective in [8], but following the ar-
gument there, one can easily see that this constant is effectively computable,
indeed. (See also Theorem 3 in [8], where in a special case a C(L(f), N) is
explicitly given.)

To prove the second statement concerning the degree of g, observe the

following. Writing n = deg(f), m = deg(g) and g(x) =
m
∑

i=0
bix

i, if n + 1

consecutive coefficients of g, say bi, . . . , bi+n are all zero, then clearly L(fg) =

L(fg∗) with g∗(x) =
n+i−1
∑

j=0
bjx

j+
m−1
∑

j=n+i
bj+1x

j. This shows that if L(fg) ≤ N

with L(g) ≤ C(L(f), N), then starting from g, we can construct a g0(x) ∈
Z[x] such that L(fg0) ≤ N , L(g0) ≤ C(L(f), N) and there are at most n
consecutive zeros among the coefficients of g0. Hence the statement follows.

�

Proof of Theorem 2.4. Let k ≥ 3 be fixed, and suppose that K is an alge-
braic number field as in the statement, with ℓ(K) ≤ k. Let ε be a fundamen-
tal unit of K, and write f(x) = xn + an−1x

n−1 · · ·+ a1x+ a0 ∈ Z[x] for its
minimal monic polynomial. Note that here n ∈ {2, 3, 4} and a0 ∈ {−1, 1}.
Further, since by our assumption K has no real quadratic subfields and Q(ε)
cannot be an imaginary quadratic field, we also have K = Q(ε).

Let ε1, . . . , εk be units in K with

(4) ε1 + · · · + εk = 0.

Assume first that K does not contain roots of unity different from ±1. By
the usual argument, since by our assumption K does not contain any roots
of unity different from ±1, this gives h(ε) = 0 with h ∈ Z[x] such that
L(h) = k. Hence for some g ∈ Z[x] not identically zero, we have L(fg) = k.
This by Lemma 3.7 yields L(f) ≤ 16k. So as K = Q(ε), there are only
finitely many such K. Checking all the possibilities with L(f) ≤ 16k, in
view of Lemma 3.8 these number fields can be effectively determined.

Suppose next that K contains some root of unity different from ±1. Then
K contains a primitive m-th root of unity η with some m ≥ 3. As we have
ϕ(m) ≤ 4, we get that

m ∈ {3, 4, 5, 6, 8, 10, 12}.
If m is one of 3, 6, 12, then ζ3 ∈ K, which is excluded. If m is 5 or 10, then
K is defined by the polynomial x4 + x3 + x2 + x + 1. However, then (as

one can readily check e.g. by Magma [1]) K has Q(
√
5) as a subfield, which

is excluded again. If m = 8, then K is defined by x4 + 1, and using again
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Magma, we see that Q(
√
2) is a subfield of K, which is also excluded. So

we are left with the only possibility m = 4, and the roots of unity of K are
precisely ±1,±i.

In this case, one can do the following.1 First note that every polynomial
R(x) ∈ Q(i)[x] can be written as R(x) = P (x) + iQ(x) with P,Q ∈ Q[x].
With this notation, put R̄(x) = P (x)− iQ(x) and L∗(R) = L(P ) + L(Q).

Let ε be a fundamental unit of K. Then K = Q(ε), and K is a quadratic
extension of Q(i). As ε /∈ Q(i), ε is a quadratic element over Q(i). Let f∗(x)
be the minimal polynomial of ε over Q(i). Then the minimal polynomial
f(x) of ε over Q is f(x) = f∗(x)f̄∗(x). From (4) we infer that

(5) P (ε) + iQ(ε) = 0

with some P,Q ∈ Z[x] and L∗(P + iQ) = k. Note that thus we have
L(P ) + L(Q) = k. Further, equation (5) implies that

(6) P (x) + iQ(x) = f∗(x)g∗(x)

holds with some g∗(x) ∈ Z[i][x]. Letting g(x) = g∗(x)ḡ∗(x) (which is in
Z[x]) this implies

P (x)2 +Q(x)2 = f(x)g(x).

As by the well-known and trivial inequalities L(P 2) ≤ L(P )2 and L(Q2) ≤
L(Q)2 we have

L(P 2 +Q2) ≤ k2,

using Lemma 3.7 we get that L(f) ≤ 16k2.
Thus Lemma 3.8 implies that L(g) < C1(k), where C1(k), C2(k), C3(k)

denote explicitly computable constants depending only on k.
The following observation will be of great help: for any u, v, w ∈ Z[i][x]

and A > 0 we have

L∗(w(x)·(u(x)+xA+degw+deg uv(x))) = L∗(w(x)·(u(x)+x1+deg w+deguv(x))).

Thus for any g∗(x) with L∗(f∗g∗) ≤ k there exists a g∗0(x) ∈ Z[i][x] for
which L∗(f∗g∗0) ≤ k, with L∗(g∗0) = L∗(g∗) and deg g∗0 < C2(k). This
follows by noting that the number of non-zero coefficients of g∗ is bounded
by L∗(g∗), and further, by the above observation, (inductively) all the ’large
gaps’ among consecutive non-zero coefficients of g∗(x) (in view of deg f∗ = 2)
can be ’shortened’ below an effectively computable bound. So we can restrict
our attention to polynomials g∗(x) with degree bounded in terms of k; in
what follows, we assume that deg g∗ < C2(k).

The upper bounds established for L(f) and L(g) yield

max{L∗(f∗), L∗(g∗)} < C3(k).

This follows from the fact that for any h(x) ∈ Z[i][x], L∗(h) can be explicitly
bounded from above in terms of L(hh̄) and deg h (see Theorem 2 of Mignotte
[25]).

1Note that this paragraph is different (much shorter) in the published version of the
paper. We find that it is worth to give more explanation at this point.



14 CS. BERTÓK, K. GYŐRY, L. HAJDU, A. SCHINZEL

As clearly all such f∗(x) and g∗(x) can be explicitly listed, we can effec-
tively check the finitely many candidate number fields Q(ε) defined by f(x),
whether (5) may hold for them (where P (x) + iQ(x) is defined by (6)) or
not. �

Proof of Theorem 2.5. For an integer A set

fA(x) = xd + 2A2x+ 2.

Then by Eisenstein’s theorem fA(x) is irreducible over Q. Let α be a zero of
fA(x), and putKA = Q(α). Observe that NKA/Q(α) = 2(−1)d. Hence every
algebraic integer in KA is congruent to one of 0, 1 modulo α. Consequently,
any unit of KA is congruent to 1 modulo α. This immediately shows that a
sum of odd number of units cannot be zero; in other words, ℓo(KA) = ∞.

It remains to show that there are infinitely many number fields KA of
the above form. If there existed only finitely many number fields of the
form KA, then letting K be a number field containing all of them, we would
obtain that, for every integer A, the polynomial fA(x) would have a zero in
OK , the ring of integers of K. However, it is easy to see that the algebraic
curve

Xd + 2XY 2 + 2 = 0

is non-rational. Hence, by Siegel’s theorem [37], the set of points (x, y) ∈
OK × Z on this curve is finite which yields a contradiction. �

Proof of Theorem 2.6. Let a1 = 0, a2 = 2 and a3, . . . , ad−1 be fixed integers
with 2 < a3 < · · · < ad−1. (When d = 3, we have only a1 and a2.) For any
integer N > ad−1, set

fN (x) = x(x− 2)(x − a3) . . . (x− ad−1)(x−N)− 1.

Then fN (x) is irreducible (see Westlund [41] or Flügel [9], or for more general
results e.g. Győry and Rimán [18] or Győry, Hajdu and Tijdeman [15]
and the references there). Let ξN be a zero of fN (x), and KN = Q(ξN ).
Observe that −ξN and ξN − 2 are both (non-rational) units of K. Hence
(−ξN , ξN − 2, 1, 1) is a solution of the unit equation

(7) ε1 + ε2 + ε3 + ε4 = 0

in units ε1, ε2, ε3, ε4 of KN such that ε3 = ε4 = 1, ε1, ε2 are not rational,
and the left hand side of (7) has no vanishing subsum. This proves that
ℓe(K) = 4.

It remains to show that there are infinitely many distinct number fields
KN of the above type. Suppose, on the contrary, that there exist only
finitely many distinct number fields KN with the above properties. Then
there are infinitely many number fields KN ′ = Q(ξN ′) which coincide with
KN = Q(ξN ) for a fixed ξN . Here ξN ′ denotes a zero of fN ′(x).

The tuple (−ξN ′ , ξN ′ − 2, 1, 1) is also a solution of (7) for every N ′ under
consideration. But the tuples (−ξN , ξN − 2, 1, 1) and (−ξN ′ , ξN ′ − 2, 1, 1)
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coincide only if ξN ′ = ξN , when N ′ = N . Consequently, equation (7) has in-
finitely many distinct solutions (−ξN ′ , ξN ′−2, 1, 1) in KN , which contradicts
the finiteness results of Evertse [5] and van der Poorten and Schlickewei [27]
on unit equations. �

Remark. In the above proofs of Theorem 2.5 and 2.6 we could also use
Hilbert’s Irreducibility Theorem (see e.g. [30] Theorem 46) to prove the
irreducibility of fA(x) and fN (x). Further, the argument used in the second
part of the proof of Theorem 2.5 could also be applied at the end of the
proof of Theorem 2.6 as well.

4. An application to arithmetic graphs - representing cycles

Let K be an algebraic number field, and let A = {α1, . . . , αm} be a finite
ordered subset of OK , the ring of integers of K. Denote by G(A) the graph
with vertex set A whose edges are the pairs [αi, αj ] with

αi − αj ∈ O∗
K ,

where O∗
K denotes the unit group of OK . The ordered subsets of the form

A = {α1, . . . , αm} and A′ = {α′
1, . . . , α

′
m} of OK are called equivalent if

α′
i = εαi + β (i = 1, . . . ,m) with some ε ∈ O∗

K and β ∈ OK . Clearly, in this
case the graphs G(A) and G(A′) are isomorphic. The concept of G(A) was
introduced in Győry [10, 11]. For given m ≥ 3, there are infinitely many
equivalence classes of ordered subsets A with |A| = m. Apart from finitely
many equivalence classes, the structure of these arithmetic graphs have been
described by Győry; see, say [14]. These graphs have many important appli-
cations to various and wide classes of Diophantine problems; see e.g. Győry
[14], Evertse and Győry [6] and the references given there.

Győry, Hajdu and Tijdeman [16, 17] performed a systematic study of
of the representability of arithmetic graphs over Q in the S-unit case, and
over algebraic number fields, respectively. Among other things, they have
generalized some results of Ruzsa [28].

Ruzsa [28] described the cycles2 which are representable by arithmetic
graphs over Q, using S-units. In this case the set of vertices A is a subset of
Z, and [ai, aj ] with ai, aj ∈ A is an edge if and only if all the prime divisors
of ai − aj belong to a fixed finite set of primes S = {p1, . . . , ps}. Ruzsa [28]
gave a complete characterization of cycles in this case, by proving that if
2 ∈ S then G(A) contains cycles of every length ≥ 3, while if 2 ∤ S then
G(A) contains cycles of every odd length ≥ 3, but none of even length. (See
also [3] for certain related problems and results.)

Now connecting to the above mentioned result of Ruzsa [28], we com-
pletely characterize the possible lengths of cycles among the graphs G(A)
over number fields K, where A is a finite subset of the ring of integers of K.

2A = {α1, . . . , αm} forms a cycle if αi and αj are connected with an edge if and only
if either {i, j} = {1, m} or |i− j| = 1.
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Theorem 4.1. Let K be an algebraic number field different from Q and the

imaginary quadratic fields. Then among the graphs G(A)
i) there are cycles of every even length ≥ 4,
ii) there are cycles of every odd length ≥ ℓo(K), but there are no cycles

of odd length < ℓo(K).

Proof. If ℓo(K) = ∞, then there is nothing to prove about odd cycles, so
throughout the proof we shall assume that ℓo(K) < ∞. (It will be clear
from the proof that this assumption has no effect at all on the statement
concerning even cycles.) Let ε ∈ O∗

K such that neither of 1 ± ε is a unit.
The existence of such units follows from deep finiteness results of Siegel [36]
and Lang [21] on unit equations. However, it can be seen also in many
elementary ways. For example, take a prime ideal P in K lying above 2,
and let η be any unit of infinite order. Then writing n for the order of η
modulo P, we have 1−ηn ∈ P and by 1+ηn = 2− (1−ηn), also 1−ηn ∈ P.
Hence taking ε = ηn, 1± ε are not units.

Then as one can readily check, A = {0, 1, 1 + ε, ε} is a cycle of length
4. Observe that the existence of an odd cycle of length < ℓo(K) would
contradict the minimality of ℓo(K). Let now ε1, . . . , εk ∈ O∗

K with k = ℓo(K)
such that ε1 + · · ·+ εk = 0, and let

αi = ε1 + · · ·+ εi (i = 1, . . . , k).

We claim that G(A) with A = {α1, . . . , αk} is a cycle. For this, first observe
that αi 6= αj for 1 ≤ i < j ≤ k. Indeed, otherwise we would have

εi+1 + · · ·+ εj = 0,

and consequently

ε1 + · · ·+ εi + εj+1 + · · ·+ εk = 0.

However, as one of j − i, i+ k − j is odd, this would violate the minimality
of ℓo(K). Then, also observe that [αi, αj ] with 1 ≤ i < j ≤ k is an edge in
G(A) if and only if either j − i = 1, or (i, j) = (1, k). Indeed, assume to the
contrary that [αi, αj ] is an edge with 1 ≤ i, i + 2 ≤ j and (i, j) 6= (1, k).
Hence αj − αi = ε0 ∈ O∗

K . Then αj − αi − (αj − αi) = 0 implies

εi+1 + · · · + εj − ε0 = 0,

whence also
ε1 + · · · + εi + εj+1 + · · · + εk + ε0 = 0.

Similarly as above, we see that one of j − i + 1 and i + k − j + 1 is odd.
Further, 2 ≤ j − i ≤ k − 2 shows that max{j − i + 1, i + k − j + 1} < k.
This violates the minimality of ℓo(K) once again. That is, G(A) is a cycle
(of length ℓo(K)), indeed.

Now we prove that if G(A) is a cycle of length t ≥ 3, then there exists a
cycle G(A′) of length t + 2. This clearly finishes the proof. To prove this
assertion, we adopt the construction of Ruzsa from the proof of Theorem
3.1 in [28].
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Suppose that

A = {α1, α2, . . . , αt−1, αt}
is a subset of OK such that G(A) is a cycle (of length t). Let ε ∈ O∗

K be such
that αi + ε 6= αj and αi + ε− αj /∈ O∗

K (i = 1, . . . , t− 1, j = 1, t− 1, t with
i 6= j). By the already mentioned finiteness results of Siegel [36] and Lang
[21] on unit equations, such an ε exists. (Note that this assertion could also
be proved by simpler tools.) Put

A′ = {α1, α1 + ε, α2 + ε, . . . , αt−1 + ε, αt−1, αt}.
Now by the choice of ε, using that G(A) is a cycle of length t, we easily see
that G(A′) is a cycle of length t+ 2. Hence the proof is complete. �

Remark. The cases where K = Q or K is an imaginary quadratic field,
can be handled easily. The only cases that need some simple considerations
are K = Q(i),Q(ζ3).

As an immediate consequence of Theorems 2.3 and 4.1 we obtain

Corollary 4.1. For every odd t ≥ 3 there exists a number field K with the

following properties: among the graphs G(A)
i) there are cycles of every even length ≥ 4,
ii) there are cycles of every odd length ≥ t, but there are no cycles of

odd length < t.

5. Problems and open questions

In this concluding section we list some problems and open questions, and
we also give a remark about a possible continuation of our research.

Problems and open questions.

i) Prove that for all k of the form k = 4t4 − 4t + 2 (t ∈ Z \ {0, 1})
there exists a number field K with ℓ(K) = k. (That is, prove the
Conjecture after Theorem 2.3).

ii) Is it true that for any d with d ≥ 2 and a ∈ Z≥4 even, b ∈ Z≥3∪{∞}
odd, there exist infinitely many number fields such that deg(K) = d,
ℓe(K) = a and ℓo(K) = b?

iii) Can we say something about the distribution of ℓ(K) (mod n), where
n ≥ 3 is an integer?

iv) Are there infinitely many totally real quadratic, cubic (both totally
real and complex) and totally complex quartic fields K, in the latter
case assuming that K contains no nontrivial roots of unity, with a
system of fundamental units, consisting of even units? (This ques-
tion is related to Theorem 2.8 and Proposition 2.)

Remark. In a forthcoming paper, we plan to describe the properties of the
set L(K) of those integers k ≥ 3 for which the unit equation (2) is solvable in
units ε1, . . . , εk of K such that the left hand side of the above equation has
no proper vanishing subsum. If ℓ(K) < ∞ then ℓ(K) is the minimal element
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of L(K). It is clear that if K is different from Q and the imaginary quadratic
fields, then the set L(K) contains arbitrarily large values k. Indeed, take
an arbitrary unit ε in K, with minimal monic polynomial f(x) = xn +
an−1x

n−1 + · · · + a1x + a0. Observe that f(ε) = 0 can be considered as
an equation of the form (2) with k = kε = 1 + |an−1| + · · · + |a0| terms,
clearly with no proper vanishing subsums. Since kε < C can be valid only
for finitely many ε for any constant C, but K contains infinitely many units,
|L(K)| = ∞ follows. We (at least some of us) intend to study L(K) further.
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