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Abstract
We identify a general principle of distributed computing: one cannot force two processes running
in parallel to see each other. This principle is formally stated in the context of asynchronous
processes communicating through shared objects, using trace-based semantics. We prove that it
holds in a reasonable computational model, and then study the class of concurrent specifications
which satisfy this property. This allows us to derive a Galois connection theorem for different
variants of linearizability.
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1 Introduction

A common setting to study distributed computing is the one of asynchronous processes
communicating through shared objects. In this context, the question of how to formally specify
the behavior of the shared objects arises: what we want is an abstract, high-level specification,
that does not refer to a particular implementation of the object. This is easy to achieve when
the objects that we consider are concurrent versions of sequential data structures, such as
lists or queues. Namely, we can simply take the usual sequential specification of the object,
and extend it to a concurrent setting using one of the many correctness criteria found in the
literature: atomicity [8], sequential consistency [5], serializability [10], causal consistency [11],
or linearizability [4]. However, we also want to be able to specify objects with an intrinsically
concurrent nature, such as those found in the area of distributed computability [3]: consensus
and set-agreement objects, immediate snapshot. Another example is Java’s Exchanger object:
two processes that call the Exchanger object concurrently can swap values. A process calling
the Exchanger alone fails and receives an error value.

A very general way of specifying such objects was proposed by Lamport [6]. The
specification of a concurrent object is simply the set of all the execution traces that we
consider correct for this object. For example, a correct execution trace of the Exchanger
object is depicted below:
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The trace T consists of invocation events ixi meaning that the object was called by process i
with input x, and response events ry

i meaning that process i returned with output value y.
This trace can be seen as an abstraction of the real-time execution pictured above, where the
horizontal axis represents global time. Formally, for a fixed set V of values and n processes,
the set of actions is:

A = {ixi | 0 ≤ i < n and x ∈ V} ∪ {ry
i | 0 ≤ i < n and y ∈ V}

A trace is a word T ∈ A∗ such that for every process i, the projection of T on i starts with
an invocation and alternates between invocations and responses. We write T for the set of
all traces. Then, a concurrent specification in the sense of [6] is simply a subset of T .

This notion of concurrent specification is not convenient to use when reasoning about
distributed systems. In fact, the correctness criteria such as linearizability can be regarded as
more convenient ways of defining such concurrent specifications: starting from a sequential
specification σ, we obtain Lin(σ) ⊆ T which is the set of all the traces that are linearizable
w.r.t. σ. The advantage of this is that sequential specifications are much easier to describe
than general concurrent specifications. To specify objects with a more concurrent flavor,
variants of linearizability have been described: set-linearizability [9] (a.k.a. concurrency-aware
linearizability [2]) and interval-linearizability [1]. The last one is the most expressive: it
captures all the distributed tasks, in the sense of [3].

Contribution. In the following, we restrict to a class of concurrent specifications: those
satisfying the undetectability of concurrency property. As it turns out, they correspond
exactly to the concurrent specifications definable using interval-linearizability. We show that
these are the only relevant concurrent specifications, and prove a theorem showing how the
different notions of linearizability relate to this property.

2 Results

A concurrent specification σ ⊆ T satisfies the undetectability of concurrency property if the
following two conditions hold, where a is an action of some process j 6= i.
(1) invocations commute to the left: if T · a · ixi · T ′ ∈ σ, then T · ixi · a · T ′ ∈ σ,
(2) responses commute to the right: if T · ry

i · a · T ′ ∈ σ, then T · a · r
y
i · T ′ ∈ σ.

Such properties come up in Lipton’s reduction proof technique [7]: (1) and (2) assert that
invocations and responses are left/right movers, respectively. Pictorially, these two properties
mean that if we take a correct execution trace (a) and “expand” the intervals, then the
resulting trace (b) must also be considered correct. Intuitively, in (b), the two processes failed
to see each other and acted as in the sequential trace (a).
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As a naive attempt at specifying the Exchanger object, we might have wanted to allow (a)
and forbid (b). But implementing such a specification would have been hopeless, as we show
in a reasonable trace-based computational model:

I Theorem 1. The semantics JP K of any program P satisfies properties (1) and (2).

Intuitively, the reason why Theorem 1 holds is that calling an object or returning a value
does not communicate any information to the other processes. If a process idles right after
invoking, or just before returning, it is invisible to the other processes.

The undetectability of concurrency property is naturally enforced by the usual specification
techniques such as linearizability, so by using these tools we do not have to worry about this
property: we get it for free.

I Proposition 2. Let σ be a sequential specification. Then Lin(σ), the set of all linearizable
traces, satisfies properties (1) and (2).

We now write SSpec for the set of sequential specifications, and CSpec for the set of concurrent
specifications which satisfy the undetectability of concurrency. Proposition 2 says that we
can view Lin as a map from SSpec to CSpec. Conversely, there is also a map in the other
direction U : CSpec→ SSpec which, given a concurrent specification, forgets about all the
concurrent behaviors and keeps only the sequential ones.

I Theorem 3. The functions Lin and U are monotonous w.r.t. inclusions, and form a Galois
connection, i.e., for every σ ∈ SSpec and τ ∈ CSpec, Lin(σ) ⊆ τ ⇐⇒ σ ⊆ U(τ).

The fact that we imposed the undetectability of concurrency property on CSpec is crucial in
order to establish Theorem 3. This theorem can be understood as follows: given a sequential
specification σ, we want to extend it to a concurrent one. Then any τ ∈ CSpec that contains σ
must also contain Lin(σ), i.e., Lin(σ) is the smallest extension of σ which is in CSpec. Thus,
Lin(σ) can be described as follows: we start with the set of all sequential traces of σ, then
close it under the two properties (1) and (2).

Finally, note that analogues of Proposition 2 and Theorem 3 still hold when we replace
linearizability by set- or interval-linearizability. In particular, Theorem 3 for interval-
linearizability gives us the following characterization of interval-linearizable objects:

I Corollary 4. The concurrent specifications which are definable using interval-linearizability
are exactly the ones satisfying the undetectability of concurrency.
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