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Abstract
The group mutual exclusion (GME) problem is a generalization of the classical mutual exclusion
problem in which every critical section is associated with a type or session. Critical sections
belonging to the same session can execute concurrently, whereas critical sections belonging to
different sessions must be executed serially. The well-known read-write mutual exclusion problem
is a special case of the group mutual exclusion problem.

In a shared memory system, locks based on traditional mutual exclusion or its variants are
commonly used to manage contention among processes. In concurrent algorithms based on fine-
grained synchronization, a single lock is used to protect access to a small number of shared
objects (e.g., a lock for every tree node) so as to minimize contention window. Evidently, a
large number of shared objects in the system would translate into a large number of locks. Also,
when fine-grained synchronization is used, most lock accesses are expected to be uncontended in
practice.

Most existing algorithms for the solving the GME problem have high space-complexity per
lock. Further, all algorithms except for one have high step-complexity in the uncontented case.
This makes them unsuitable for use in concurrent algorithms based on fine-grained synchroniza-
tion. In this work, we present a novel GME algorithm for an asynchronous shared-memory system
that has O(1) space-complexity per GME lock when the system contains a large number of GME
locks as well as O(1) step-complexity when the system contains no conflicting requests.
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1 Introduction

The group mutual exclusion (GME) problem is a generalization of the classical mutual
exclusion (ME) problem in which every critical section is associated with a type or session [7].
Critical sections belonging to the same session can execute concurrently, whereas critical
sections belonging to different sessions must be executed serially. The GME problem models
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49:2 Fast and Scalable Group Mutual Exclusion

situations in which a resource may be accessed at the same time by processes of the same
group, but not by processes of different groups. As an example, suppose data is stored on
multiple discs in a shared CD-jukebox. When a disc is loaded into the player, users that need
data on that disc can access the disc concurrently, whereas users that need data on a different
disc have to wait until the current disc is unloaded [7]. The well-known readers/writers
problem is a special case of the group mutual exclusion problem.

In a shared memory system, locks based on traditional mutual exclusion or its variants
are commonly used to manage contention among processes. A lock grants a process exclusive
access to a shared object, preventing any other process from modifying the object. This
makes it easier to design, analyze, implement and debug lock-based concurrent algorithms.

With the wide availability and use of multicore systems, developing concurrent data
structures that scale well with the number of cores has gained increasing importance. Many of
the best performing concurrent algorithms for data structures use fine-grained synchronization
in which a single lock is used to protect access to a small number of shared objects so as
to minimize contention window [5]. In order to perform an operation, a process typically
needs to lock only a small number of objects, thereby allowing multiple processes whose
operations do not conflict with each other to manipulate parts of the data structure at the
same time. Typically, in such a system, most lock accesses are expected to be uncontended
in practice [5]. Recently, GME-based locks have been used to improve the performance of a
concurrent skip list using the notion of unrolling in which multiple key-value pairs are stored
in a single node [8].

All existing algorithms for solving the GME problem have either high space-complexity
of Ω(n) per lock or high step-complexity of Ω(n) in the uncontented case or both, where n

denotes the number of processes in the system [7, 6, 2, 1, 4]. This makes them unsuitable
for use in lock-based concurrent data structures that employ fine-grained synchronization to
manage contention. In this work, we present a novel GME algorithm for an asynchronous
shared-memory system that has O(1) space-complexity per GME lock when the system
contains a large number of GME locks as well as O(1) step-complexity when the system
contains no conflicting requests.

2 The Group Mutual Exclusion Algorithm

Our GME algorithm is inspired by Herlihy’s universal construction for deriving a wait-free
linearizable implementation of a concurrent object from its sequential specification using
consensus objects [5]. Roughly speaking, the universal construction works as follows. The
state of the concurrent object is represented using (i) its initial state and (ii) the sequence of
operations that have applied to the object so far. The two are maintained using a singly linked
list in which the first node represents the initial state and the remaining nodes represent the
operations. To perform an operation, a process first creates a new node and initializes it with
all the relevant details of the operation (type, input arguments, etc.). It then tries to append
the node at the end of the list. To manage conflicts in case multiple processes are trying
to append their own node to the list, a consensus object is used to determine which of the
several nodes is chosen to be appended to the list. Specifically, every node stores a consensus
object and the consensus object of the current last node is used to decide its successor (i.e.,
the next operation to be applied to the object). A process whose node is not selected simply
tries again. A helping mechanism is used to guarantee that every process trying to perform
an operation eventually succeeds in appending its node to the list.
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We modify the aforementioned universal construction to derive a GME algorithm that
satisfies several desirable properties. Intuitively, an operation in the universal construction
corresponds to a critical section request in our GME algorithm. Appending a new node to
the list thus corresponds to establishing a new session. However, unlike in the universal
construction, a single session in our GME algorithm can be used to satisfy multiple critical
section requests. This basically means that every critical section request does not cause a
new node to be appended to the list. This requires some careful bookkeeping so that no
“empty” sessions are established. Further, a simple consensus algorithm, implemented using
LL/SC instructions, is used to determine the next session to be established. Helping is used
to ensure that every request is eventually satisfied.

If the node for a critical section request is appended to the list, then the process that
owns the node is said to enter the session as a leader; otherwise it is said to enter the session
as a follower. A leader process, on leaving its critical section, relinquishes the ownership of
its current node and claims the ownership of the node for the previous session instead. This
enables us to bound the length of the linked list and make our algorithm space-efficient.

More details of our GME algorithm are available in [3], where we also describe a way to
bound the values of all the variables used in our GME algorithm.

I Theorem 1 (multi-lock space complexity). The space complexity of our GME algorithm
is O(m + n2 + n`) space, where n denotes the number of processes, m denotes the number
of GME objects and ` denotes the maximum number of locks a process needs to hold at the
same time.

I Theorem 2 (concurrent entering step complexity). The maximum number of steps a process
has to execute in its entry and exit sections provided no other process in the system has an
outstanding conflicting request during that period is O(1).

Note that the above theorem also implies O(1) step complexity in contention-free case.
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