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Abstract
In this paper we show a tight closed-form expression for the optimal clock synchronization in
k-ary m-cubes with wraparound, where k is odd. This is done by proving a lower bound of
1
4um

(
k − 1

k

)
, where k is the (odd) number of processes in each of the m dimensions, and u is

the uncertainty in delay on every link. Our lower bound matches the previously known upper
bound.
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1 Introduction

Synchronizing clocks in a distributed system in which processes communicate through
messages with uncertain delays is subject to inherent errors. A body of work has sought
bounds on how closely the clocks can be synchronized when there is no drift in the hardware
clocks and there are no failures. Lundelius and Lynch [5] showed that, in an n-process clique
with the same uncertainty u on every link, the best synchronization possible is u

(
1− 1

n

)
.

Subsequently, Halpern et al. [4] considered arbitrary topologies in which each link may have
a different uncertainty and showed that the optimal clock synchronization is the solution of
an optimization problem. This work was generalized by [1, 6] in which algorithms were given
for finding the optimal clock synchronization in any given execution. In contrast to the more
general lower bounds of [4, 1, 6], Biaz and Welch [3] gave a collection of closed-form upper
and lower bounds on the optimal clock synchronization in the worst case for k-ary m-cubes
(m-dimensional hypercubes with k processes in every dimension), both with and without
wraparound, in which every link has the same uncertainty, u. When there is no wraparound,
the tight bound is 1

2um (k − 1). When there is wraparound and k is even, the tight bound is
1
4umk. However, when there is wraparound and k is odd, there is a gap between the upper
bound of 1

4um
(
k − 1

k

)
and the lower bound of 1

4um (k − 1).
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47:2 A Tight Lower Bound for Clock Synchronization in Odd-Ary M-Toroids

In this paper, we consider k-ary m-cubes with wraparound (“m-toroids”) and odd k. We
show a lower bound of 1

4um
(
k − 1

k

)
, which matches the previously known upper bound. We

use the same shifting technique from previous lower bounds for clock synchronization (e.g.,
[5, 4, 3]). The key insight in our improved lower bound is to exploit the fact that the graph is
a collection of rings in each dimension and to use multiple shifted executions instead of one.

2 Preliminaries

We first present our model and problem statement (following [5, 2, 3]). We consider a
graph of km processes, where k ≥ 3 is odd and m ≥ 1, in which each process id is a tuple
〈p0, p1, ..., pm−1〉 where each pi ∈ {0, 1, ..., k − 1}. There are links in both directions between
any two processes ~p and ~q if and only if their ids differ in exactly one component, say the
i-th, such that pi = qi + 1 (addition on process id components is modulo k throughout).
Each process ~p has a hardware clock modeled as a function H~p from reals (real time) to reals
(clock time). We assume there is no drift, so H~p(t) = t + c~p for some constant c~p. Each
process is modeled as a state machine whose transition function takes as input the current
state, current value of the hardware clock, and current event (receipt of a message or some
internal occurrence), and produces a new state and a message to send over each incident link.

A history of process ~p is a sequence of alternating states and pairs of the form (event,
hardware clock value), beginning with ~p’s initial state. Each state must follow correctly
from the previous one according to ~p’s transition function and the hardware clock values
must increase. A timed history of ~p is a history together with an assignment of a real time t
to each pair (e, T ) in the history such that H~p(t) = T . An execution is a set of km timed
histories, one per process, with a bijection for each link between the set of messages sent
over the link and the set of messages received over the link. The delay of a message is the
difference between the real time when it is received and the real time when it is sent. An
execution is admissible if every message has delay in [0, u] where u is a fixed value called the
uniform uncertainty.

We assume each process ~p has a local variable adj~p as part of its state and we define
its adjusted clock A~p(t) to be equal to H~p(t) + adj~p(t). An execution has terminated once
all processes have stopped changing their adj variables. We say the algorithm achieves ε-
synchronized clocks if every admissible execution eventually terminates with |A~p(t)−A~q(t)| ≤ ε
for all processes ~p and ~q and all times t after termination.

“Shifting” an execution changes the real times at which events occur [5]. Let x be an
m-dimensional matrix of real numbers with k elements in each dimension, which we call a
shift matrix; elements of x are indexed by process ids. Define shift(α,x) be the result of
adding x~p to the real time associated with each event in ~p ’s timed history in α. Shifting
changes the hardware clocks and message delays as follows [5, 2]:

I Lemma 1. Let α be an execution with hardware clocks H~p and let x be a shift matrix.
Then shift(α,x) is a (not necessarily admissible) execution in which

(a) the hardware clock of each ~p, denoted H ′~p(t), equals H~p(t)− x~p and
(b) every message from ~p to ~q has delay δ − x~p + x~q, where δ is the message’s delay in α.

3 Lower Bound

I Theorem 2. For any algorithm that achieves ε-synchronized clocks in a k-ary m-toroid
with uniform uncertainty u, where k is odd, it must be that ε ≥ 1

4um
(
k − 1

k

)
.

The complete proof and an example for the k = 5 case are in the full paper.
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Proof sketch. Let A be any algorithm that achieves ε-synchronized clocks in a k-ary m-
toroid with uniform uncertainty u, where k = 2r + 1 for some integer r ≥ 1. Let α be the
admissible execution of A in which H~p(t) = t for each process ~p, every message from ~p to
~q, where ~q is ~p’s neighbor in the h-th dimension such that qh = ph + 1, has the same fixed
delay δ~p,~q, which is 0 if 0 ≤ ph < r and is u if r ≤ ph < k, and every message from ~q to ~p has
the same fixed delay δ~q,~p = u− δ~p,~q.

For 0 ≤ i < k, define αi = shift(α,xi), where the ~p-th element of the shift matrix xi,
denoted xi

~p, is defined as
∑m−1

j=0 Wi
pj
, where W is defined as follows:

range of i ∈ {0, . . . , m− 1}

0 ≤ i < r r ≤ i < k

range of pj Wi
pj

range of pj Wi
pj

0 ≤ pj ≤ i 0 0 ≤ pj ≤ i− r pju

i < pj ≤ r (pj − i)u i− r < pj ≤ r (i− r)u
r < pj ≤ r + i + 1 (r − i)u r < pj ≤ i (i− pj)u
r + i + 1 < pj ≤ 2r (2r − pj + 1)u i < pj ≤ 2r 0

The idea behind the shift amounts in W is to cause two processes that are farthest apart
in the graph to be shifted as far apart in real time as possible – thus achieving a large
skew between their adjusted clocks – while maintaining valid message delays between all
neighbors. By considering multiple shifted executions, we can cancel out terms involving
adjusted clocks, leaving behind only terms that involve the system parameters ε and u, and
the graph parameters k and m.

In the full paper we show that all shifted executions are admissible, i.e., that all message
delays are in [0, u]:

I Lemma 3. For all i, 0 ≤ i < k, αi is admissible.

Fix any i with 0 ≤ i < r. We focus on two processes that are maximally far away from each
other. Since αi is admissible by Lemma 3, A must ensure that Ai

〈i,...,i〉−A
i
〈i+r+1,...,i+r+1〉 ≤ ε,

where Ai
~p denotes the adjusted clock of process ~p after termination in αi. By definition of αi

and Lemma 1(a), Ai
〈i,...,i〉 = A〈i,...,i〉 and Ai

〈i+r+1,...,i+r+1〉 = A〈i+r+1,...,i+r+1〉 −m(r − i)u.
Thus by substituting we get A〈i,...,i〉 − A〈i+r+1,...,i+r+1〉 ≤ −m(r − i)u + ε, for 0 ≤ i < r.
Similarly, we can show A〈i,...,i〉 −A〈i−r,...,i−r〉 ≤ −m(i− r)u+ ε, for r ≤ i < k.

Adding together these k inequalities and simplifying gives ε ≥ 1
4um

(
k − 1

k

)
. J
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