
Brief Announcement: Generalising Concurrent
Correctness to Weak Memory
Simon Doherty1

Department of Computer Science, University of Sheffield, UK
s.doherty@sheffield.ac.uk

Brijesh Dongol2

Department of Computer Science, University of Surrey, Guildford, UK

Heike Wehrheim
Department of Computer Science, Paderborn University, Paderborn, Germany

John Derrick
Department of Computer Science, University of Sheffield, UK

Abstract
Correctness conditions like linearizability and opacity describe some form of atomicity imposed
on concurrent objects. In this paper, we propose a correctness condition (called causal atomicity)
for concurrent objects executing in a weak memory model, where the histories of the objects in
question are partially ordered. We establish compositionality and abstraction results for causal
atomicity and develop an associated refinement-based proof technique.

2012 ACM Subject Classification Theory of computation → Concurrency, Theory of computa-
tion → Shared memory algorithms

Keywords and phrases Weak Memory, Concurrent Object, Execution Structure

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.45

1 Foundations

Correctness conditions like linearizability for data structures and opacity for software transac-
tional memory (STM) specify atomicity for concurrent objects. They are developed under the
assumption that the underlying memory model is sequentially consistent. Our objective here
is to generalise such notions to weak memory models. We develop a new notion of correctness:
casual atomicity3, which we show is compositional and ensures client abstraction. Causal
atomicity applies to both concurrent objects and transactional memory, thus it encompasses
both linearizability and opacity. Causal linearizability is covered earlier [1]; here we specialise
causal atomicity to causal opacity and develop a proof technique for it.

Our framework is based on object executions given as execution structures [4]. They
describe the usual precedence order between events as well as a communication relation.
Informally, a communication relation between two events arises when some low-level op-
eration of the first event synchronises with some operation belonging to the second event.
Events describe e.g. transactions in an STM or operations on a data structure, and their

1 Simon Doherty and John Derrick are funded by EPSRC Grant EP/M017044/1.
2 Funded by EPSRC Grant EP/R019045/1.
3 This notion is related to, but different from causal atomicity defined by Farzan and Madhusudan [3].

For example, their notion is not compositional.

© Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 45; pp. 45:1–45:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/161589449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:s.doherty@sheffield.ac.uk
https://doi.org/10.4230/LIPIcs.DISC.2018.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Generalising Concurrent Correctness to Weak Memory

implementations give arise to the execution of low-level operations. In prior work [1], we
have used this technique to define a causal version of linearizability. Here, we generalise the
methods and define a notion of atomicity that is also applicable to transactional memory.

I Definition 1. An execution structure is a tuple (E, ,) consisting of a finite set of
events E, a strict order ⊆ E × E and a relation ⊆ E × E satisfying:
1. If t1 t2, then both t1 t2 and ¬(t2 t1).
2. If t1 t2 t3 or t1 t2 t3, then t1 t3.
3. If t1 t2 t3 t4, then t1 t4.
Like other concurrent correctness conditions, we employ some sequential object on a fixed
alphabet to compare the executions of the concurrent object against. A sequential object S
specifies a set of legal sequential executions denoted legalS. Syntactically, each element of
legalS is a sequence of events that are labelled with operations that the object provides.

2 Contributions

Causal atomicity. When comparing concurrent executions against sequential ones, some
key orders of the concurrent execution need to be preserved. In our case, these are the
relations and of the execution structure. We say < is a logical order of an execution
structure E = (E, ,) iff < ⊆ E × E is a strict order such that ⊆ < ⊆ . For a
partial order < ⊆ E×E, we let LE(<) = {w ∈ E∗ | < ⊆ w} be the set of linear extensions
of <, where w is the total order corresponding to the (total) order on the elements of w.

I Definition 2. Let S be a sequential object. An execution structure E is causally atomic
w.r.t. S iff there exists a logical order < of E such that LE(<) ⊆ legalS.

The logical order at least needs to contain the precedence order and at most the commu-
nication relation . Note that the logical order (induced by a specification) can introduce
additional communication in an implementation (see example below).

Compositionality. A key requirement on every correctness condition is compositionality:
when a program employs operations from two different concurrent objects, these objects
individually satisfy the correctness condition if, and only if, their combined usage also satisfies
the correctness condition. Technically, we use a composition operator ⊗ on sequential objects
to compute the interleavings of sequential executions, and an operator | to restrict execution
structures to events from a given alphabet.

I Theorem 3. Let S1 and S2 be sequential objects with disjoint alphabets Σ1 and Σ2 and let
E = (E, ,) be an execution structure. Then E|Σ1 and E|Σ2 are causally atomic w.r.t. S1
and S2, respectively, iff E is causally atomic w.r.t. S1 ⊗ S2.

For example, consider the execution structure below, which comprises a stack object S and
an STM, where we assume memory values are initialised to 0. The event W (x, 1);W (y, 1)
corresponds to a transaction consisting of a write to x followed by a write to y. Similarly,
R(x, 1);R(y, 1) corresponds to a transaction comprising a read of x followed by a read of y.

S.Push(1) W (x, 1);W (y, 1)

R(x, 1);R(y, 1) (S.Pop, empty)

The execution should not be allowed since there is no total ordering of events that re-
spects the existing precedence order . Causal atomicity necessitates a communication
relation W (x, 1);W (y, 1) R(x, 1);R(y, 1) which, together with axiom A3 induces order

S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick 45:3

S.Push(1) (S.Pop, empty). Thus, when considering the full execution structure the
composition execution restricted to the stack object is not causally atomic. A more detailed
example composition of concurrent objects is given in [1].

Abstraction. Another property of causal atomicity is abstraction, which formalises a notion
of substitutability: when a client uses the operations that an object provides in its interface,
then it should not be able to distinguish the implementation from its sequential specification.
To formalise this, we represent a client C as a set of client executions, each of which is
simply a partial order over events labelled with operations from the alphabet of the object
and other client-local events such as reads and writes to client variables. Suppose O is
a set of execution structures over Σ. The client-object composition of C and O is the set
CJOK = {≺ ∈ C | ∃ ((dom(≺) ∪ ran(≺)) ∩ Σ, ,) ∈ O.≺|Σ ⊆ }.

Given a sequential object S, we let CA[S] be the set of execution structures that are
causally atomic w.r.t. S. Furthermore, we lift sequential objects to sets of execution structures
by letting E [S] be the set of execution structures such that there is some w ∈ legalS where
both the precedence order and communication relation is the total order w. Our goal is to
compare, for any client C, the client-object composition CJCA[S]K with the corresponding
composition with the sequential object, CJE [S]K. To do so, we define a notion of observational
refinement, denoted v, such that CJCA[S]K v CJE [S]K holds if for every execution in CJCA[S]K,
there is an observationally equivalent execution in CJE [S]K. Our notion of observational
equivalence requires that any pair of equivalent executions must have compatible orders
when restricted to client-local events. We then prove the following.

I Theorem 4. If C is a client and S a sequential object, then CJCA[S]K v CJE [S]K.

Transactional Memory. We use causal atomicity to obtain a correctness condition for
transactional memory, which we call causal opacity. To do so, we first define a transactional
sequential object, denoted T, whose alphabet is made up of entire blocks of reads and writes,
and whose semantics requires that each block executes atomically. Causal opacity itself is a
condition on transactional operations rather than atomic blocks, thus allowing concurrent
transactions. It is defined in terms a transformation called µ-abstraction [4], that combines
these operations into a block from the alphabet of T. An execution structure is said to be
causally opaque whenever its µ-abstraction is causally atomic w.r.t. T.

We show how to verify causal opacity using a sequential object, C, such that the µ-
abstraction of every execution structure in CA[C] is causally atomic w.r.t. T. The object C
is adapted from TMS2 [2], and like its predecessor, is given in an operational fashion which
enables simulation-based refinement proofs.

References
1 S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick. Making Linearizability Compositional

for Partially Ordered Executions. In iFM, volume 11023 of LNCS, 2018.
2 S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and

verifying transactional memory. Formal Asp. Comput., 25(5):769–799, 2013.
3 A. Farzan and P. Madhusudan. Causal atomicity. In CAV, volume 4144 of LNCS, pages

315–328. Springer, 2006.
4 L. Lamport. On interprocess communication. part I: basic formalism. Distributed Comput-

ing, 1(2):77–85, 1986.

DISC 2018

	Foundations
	Contributions

