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Abstract
In 1985, Ben-Or and Linial (Advances in Computing Research ’89) introduced the collective
coin-flipping problem, where n parties communicate via a single broadcast channel and wish to
generate a common random bit in the presence of adaptive Byzantine corruptions. In this model,
the adversary can decide to corrupt a party in the course of the protocol as a function of the
messages seen so far. They showed that the majority protocol, in which each player sends a
random bit and the output is the majority value, tolerates O(

√
n) adaptive corruptions. They

conjectured that this is optimal for such adversaries.
We prove that the majority protocol is optimal (up to a poly-logarithmic factor) among all

protocols in which each party sends a single, possibly long, message.
Previously, such a lower bound was known for protocols in which parties are allowed to send

only a single bit (Lichtenstein, Linial, and Saks, Combinatorica ’89), or for symmetric protocols
(Goldwasser, Kalai, and Park, ICALP ’15).
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1 Introduction

In the collective coin-flipping problem, introduced by Ben-Or and Linial [7], a set of n
computationally unbounded parties, each equipped with a private source of randomness,
are required to generate a common random bit. The communication model is the “full
information” model [7], where all parties communicate via a single broadcast channel. The
goal of the parties is to agree on a common random bit even in the case that some t = t(n) of
the parties are faulty and controlled by an adversary whose goal is to bias the output of the
protocol in some direction. We say that a protocol Π is resilient (or secure) to t corruptions
if for any adversary A that makes at most t corruptions it holds that

min
{

Pr [Output of A(Π) = 0] ,Pr [Output of A(Π) = 1]
}
≥ Ω(1),
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34:2 A Lower Bound for Adaptively-Secure Collective Coin-Flipping Protocols

where “Output of A(Π)” is a random variable that corresponds to the output of the protocol Π
when executed in the presence of the adversary A.

The adversary is Byzantine, namely, once it corrupts a party, it completely controls it
and can send arbitrary messages on its behalf. Usually, two types of Byzantine adversaries
are considered, static or adaptive ones. A static adversary is an adversary that chooses which
parties to corrupt ahead of time, before the protocol begins. An adaptive adversary, on the
other hand, is allowed to choose which parties to corrupt adaptively in the course of the
protocol as a function of the messages seen so far. In the case of static adversaries, collective
coin-flipping is well studied and almost matching upper and lower bounds are known; see
Section 1.1. However, the case of adaptive adversaries is much less understood. In this work,
we focus on the setting of adaptive adversaries.

In the seminal work of Ben-Or and Linial [7], they showed that the majority protocol
(in which each party sends a uniformly random bit and the output of the protocol is the
majority of the bits sent) is resilient to O(

√
n) adaptive corruptions. Moreover, with Ω̃(

√
n)

corruptions,3 one can break the security of this protocol. They conjectured that the majority
protocol is optimal: any collective coin-flipping protocol is resilient to at most O(

√
n) adaptive

corruptions, even if parties send multiple messages, each of which may be long.
The first step towards this conjecture was made by Lichtenstein, Linial, and Saks [19].

They proved that there is no single-bit and single-turn protocol which is resilient to more than
Ω̃(
√
n) adaptive corruptions. A single-bit protocol is one in which parties’ messages consist

of a single bit (perhaps over multiple rounds), and a single-turn protocol is such that each
party speaks at most once (perhaps with a long message). More recently, Goldwasser, Kalai,
and Park [15] proved another special case of the conjecture: Any symmetric4 single-turn
protocol cannot be resilient to more than Ω̃(

√
n) adaptive corruptions.

Despite significant efforts, more than three decades after posting the conjecture, fully
resolving it remains an intriguing open problem.

Our results. We prove that any n-party collective coin-flipping protocol in which each
party sends a single, possibly long, message cannot be secure against more than t = Ω̃(

√
n)

adaptive corruptions.

I Theorem 1. Any n-party single-turn collective coin-flipping protocol is insecure against
more than t = Ω̃(

√
n) adaptive corruptions.

As a warm-up, in Section 3, we recover the result of Lichtenstein et al. [19] for single-bit
single-turn protocols. Whereas the original proof of [19] is based on combinatorial arguments
in extremal set theory, our proof is elementary and uses basic tools from probability theory.
A different yet related variant to our simplification was previously given by Cleve and
Impagliazzo [11]; see Section 1.1 below.

1.1 Related Work
The full information model was introduced by Ben Or and Linial [7] to study the collective
coin-flipping problem. Since then, this problem was central in the study of distributed
protocols.

3 Throughout this work, the notation Ω̃ and Õ suppresses poly-logarithmic factors.
4 A symmetric protocol Π is one that is oblivious to the order of its inputs: namely, for any permutation
π : [n]→ [n] of the parties, it holds that Π(r1, . . . , rn) = Π(rπ(1), . . . , rπ(n)).
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Static adversaries. The case of static corruptions has been extensively studied since the
introduction of the collective coin-flipping problem. The original work of Ben-Or and Linial [7]
showed that a polynomial number (i.e., O(n.63)) of corrupted parties can be tolerated. Later,
Ajtai and Linial [1] showed a different protocol that withstands O(n/ log2 n) corruptions.
For single-round single-bit protocols, in which the global coin is obtained by each party
contributing one bit for an n-input predefined Boolean function, Kahn, Kalai and Linial [17]
showed that no protocol is resilient to more than Ω(n/ logn) corruptions. Saks [22] introduced
a multi-round protocol called the “Baton Passing” game5 and showed that it is resilient to
O(n/ logn) corruptions. The protocol of Saks was modified by Alon and Naor [3] such that
it tolerates a constant fraction of corrupted parties. The optimal resilience of t = (1/2− δ)n
for any δ > 0 was obtained by Boppana and Narayanan [8] shortly afterwards. Since then
the focus has been on improving the explicitness of the protocol, the round complexity, and
the bias of the output bit. Two of the most notable results are that of Feige [14] and of
Russell, Saks, and Zuckerman [21]. Feige gave an explicit (log∗ n+O(1/δ))-round protocol
that tolerates (1/2− δ)n corruptions for any constant δ > 0. Russell, Saks, and Zuckerman
proved that any protocol that is secure against Ω(n) corruptions must either have at least
(1/2− o(1)) · log∗ n rounds, or communicate multiple bits per round.

Interestingly, many protocols for collective coin-flipping that consist of more than one
round of communication per party, achieve a seemingly stronger goal. In these protocols, first
an honest leader is elected and then it outputs a bit that is taken as the protocol outcome.
This approach, while being useful for the static case, is unsuitable for adaptive adversaries,
since the adversary may always wait for the leader to be elected and then corrupt it.

Adaptive adversaries. The literature on collective coin-flipping with adaptive adversaries
is much more scarce. The best known protocol is the majority one suggested by Ben-Or and
Linial [7]. Lichtenstein, Linial, and Saks [19] proved that there is no protocol in which each
party is allowed to send one bit (in total) which is resilient to more than Ω(

√
n) corruptions.

The same lower bound was shown by Goldwasser, Kalai and Park [15] for any single-turn
symmetric protocol (where each message can be long).

Dodis [12] proved that through “black-box” reductions from non-adaptive collective
coin-flipping protocols, it is impossible to tolerate significantly more corruptions than the
majority protocol. His definition of “black-box” is rather restricted: It only considers
sequential composition of non-adaptive coin-flipping protocols, followed by a (non-interactive,
predefined) function operating on the coin-flips thus obtained.

Kalai and Komargodski [18] showed that for any collective coin-flipping protocol in which
messages are long there is a collective coin-flipping protocol with the same communication
pattern, the same output distribution, the same security guarantees, and where parties send
messages of length ` = polylog(n, d), where d is the number of rounds in the original protocol.
In particular, their transformation guarantees that the resulting protocol is resilient against
t adaptive (resp. static) corruptions as long as the original one is resilient against t adaptive
(resp. static) corruptions. The transformation is non-uniform, that is, they only show that
the required protocol exists.

More types of adversaries. En route to resolving the conjecture of Ben-Or and Linial,
stronger types of adversaries were considered.

5 In this game, each party receiving the baton, passes it to a random party that did not have it yet. The
last party having the baton is the leader, and the leader chooses the random bit to be outputted.

DISC 2018
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Cleve and Impagliazzo [11] studied re-sampling adaptive adversaries that can decide
whether to intervene in the next message or not after seeing it. More precisely, at the i’th
round, the adversary, after seeing all the messages exchanged in the first i− 1 rounds and
the message to be sent in the current round, can ask to rewind the process back to the
beginning of the i’th round and have the i’th message be re-sampled. They showed that for
any protocol whose expected output is 1/2 in an honest execution and in which each party
sends just one (possibly long) message, there is an adversary that corrupts a single party
and biases the expectation of the output of the protocol away from 1/2 by Ω(1/

√
n) in some

direction.
More recently, Goldwasser, Kalai, and Park [15] studied an even stronger variant called

strong adaptive adversaries in which the adversary sees all messages sent by honest parties in
any given round and, based on the message content, decide whether to corrupt a party or not
(and alter its message for that same round). Here, a corruption allows the adversary to send
any message on behalf of the party (and not only re-sample it, as in [11]). They proved that
any one-round protocol (i.e., all parties talk simultaneously once), in which messages can be
arbitrarily long, can tolerate at most Õ(

√
n) such (strong) adaptive corruptions. They got a

similar lower bound in the standard adaptive corruptions model for symmetric protocols.

Fair Coin-Flipping. There is a rich literature on coin-flipping protocols in settings with
dishonest majority (and static corruptions), starting from the seminal work of Cleve [10]. In
such protocols, the output of the protocol is a random bit, and the requirement is that even
in the presence of an adversary, the output cannot be skewed towards 0 or towards 1 except
with very small probability.6

Cleve [10] proved that for r-round coin-flipping protocol there exists a (static) adversary
corrupting 1/2 of the parties and efficiently biases the output by Θ(1/r). This lower bound
was shown to be tight in the two-party case by Moran, Naor, and Segev [20] and in the
three-party case (up to a polylog factor) by Haitner and Tsfadia [16]. In the general n-party
case, as long as n ≤ log log r, an almost tight upper bound was given by Buchbinder et al. [9].
When there are less than (2/3)n corruptions, Beimel et al. [6] have constructed an n-party
r-round coin-flipping protocol with bias 22k/r, tolerating up to t = (n+ k)/2 corrupt parties.
Alon and Omri [2] constructed an n-party r-round coin-flipping protocol with bias Õ(22n/r),
tolerating up to t corrupted parties, for constant n and t < 3n/4. Very recently, Beimel
et al. [5] gave an improved lower bound in the multi-party case: For any n-party r-round
coin-flipping protocol with nk ≥ r for k ∈ N, there exists an adversary corrupting n − 1
parties and biases the output of the honest party by 1/(

√
r logk r).

1.2 Proof Overview
Since we are in the full information model, we can assume (without loss of generality) that
any collective coin-flipping protocol (in which the parties do not have private inputs except
for a perfect source of randomness), can be transformed into a protocol in which the honest
parties’ messages consist only of uniformly random bits. A sketch of this folklore fact appears
in [18, Section 4]. Thus, from now on, we assume that each party sends a uniformly random
message chosen independently of the previous messages.

6 We emphasize that in our work, we only require that the adversary cannot skew the output with
probability 1− o(1), whereas in fair protocols the adversary should not skew the output with probability
greater than 1/2 + o(1).
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Concretely, we consider protocols in which each party sends a single message of length
`, possibly across n rounds. Such a protocol can be thought of as a complete 2`-ary tree
whose leaves are labeled by 0 and 1, and whose internal nodes are labeled by numbers in
[n]. If a node is labeled by i ∈ [n], then we say that the node is owned by party i. (Without
loss of generality, we can assume that the order in which the parties send messages is fixed
in advance). The protocol starts at the root and at each time step we are at an internal
node whose owner samples a random string in {0, 1}` to determine where the protocol
proceeds. The protocol ends once we reach a leaf and the output of the protocol is the bit b
corresponding to the label of that leaf.

Let us start with the simpler case where ` = 1. In this case, we present an attacker that
biases the outcome of any protocol towards 0 with probability 1− negl(n), while corrupting
at most Õ(

√
n) parties with probability 1− o(1). (An analogous adversary can bias towards

1 with similar parameters.) The adversary at any point in time computes its possible gain in
the expected output of the protocol by corrupting the next party (either to 0 or to 1). If
the gain is larger than ε = 1√

n·log2 n
, then the adversary corrupts and sends the maliciously

chosen bit (that biases the output towards 0). A standard application of Azuma’s inequality
shows that (with high probability) the influence of the parties that were not corrupted
on the expected output of the protocol is negligible, as there are at most n of them and
the contribution of each of them is at most 1√

n·log2 n
. Intuitively, this means that only the

corrupted parties influence the final output of the protocol and since the adversary controls
these parties, the adversary succeeds in forcing the output to be 0 with high probability.
Moreover, since the adversary gains at least 1√

n·log2 n
in the expected value of the protocol,

with the corruption of each party, and the total gain is at most 1, with high probability the
number of corruptions is at most Õ(

√
n). This gives an alternative (elementary) proof for

the result of [19]. This is formally proved in Section 3.
The proof for the case ` > 1 is more involved. We define two adversaries A0 and A1,

where Ab tries to bias the outcome of the protocol towards b. Here, as opposed to the case
` = 1, only one of the adversaries will be guaranteed to succeed. For A0, we associate with
each node v in the protocol tree three values (we do the same for A1):
1. αv : The expectation of the outcome of the protocol in the presence of the adversary A0,

given that the protocol is at node v.
2. c0v : A bit that is 1 if and only if the adversary A0 corrupts node v.
3. p0

v : A “penalty” value that is proportional to the expected number of corruptions made
by A0 from node v onward.

We set these values inductively from the leaves of the protocol tree to the root. For a
leaf labeled by b ∈ {0, 1}, we set αv = b and c0v = p0

v = 0.
Going one level up to the parents of the leaves, for each such node we compute the

expected α value if we proceed to a random child, compared with the minimal possible α
value over all children (this corresponds to the maximal gain possible via corruption). If
the possible gain by corruption is larger than ε = 1√

n·log3 n
, the adversary will corrupt v, so

we set c0v = 1, and we update the penalty value by setting it to be p0
v = ε, to appropriately

accommodate for this.
In the next levels, the situation is more complicated as we need to take into account the

penalty values. For example, if there is a strategy for corrupting the next message that will
increase our chance of outputting 0 by much, but has a high penalty (i.e., will require many
corruptions in the future), this move is not always worthwhile for the attacker. So, instead of
comparing only the expected outcome of the protocol, we take into account also the penalty.

DISC 2018
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For every node v, we define α′v = αv + p0
v, and compare the expected gain versus the

best possible gain with respect to α′v (rather than αv). Namely, we compute the expected α′
value if we proceed to a random child, and compare it to the minimal possible α′ value of
all children. If this gap is larger than ε, the adversary corrupts v, and thus we set c0v = 1
and we set the penalty value p0

v to be p0
v = p0

u + ε, where u is the child that the adversary
proceeds to.

The inductive process ends with a triple of values (αroot, c
0
root, p

0
root), corresponding to the

root node and the adversary A0. The penalty value p0
root is equal to ε times the expected

number of corruptions that the adversary A0 makes. The probability that the protocol
outputs 0 with adversary A0 is 1− αroot.

Similarly, we define the adversary A1 and obtain the values (βroot, c
1
root, p

1
root), where the

penalty value p1
root is equal to ε times the expected number of corruptions that the adversary

A1 makes, and the probability that the protocol outputs 1 with adversary A1 is βroot.
It is not possible to prove that both adversaries succeed with high probability (as there are

protocols that can only be biased towards one of the two possible values, with the corruption
of Õ(

√
n) parties). Technically, the problem with using an argument similar to the case ` = 1

is that we cannot apply Azuma’s inequality as before, because we do not have an upper
bound on the absolute value of each variable.

Nevertheless, we are able to prove that at least one of the two adversaries succeeds with
high probability, while corrupting Õ(

√
n) parties. This argument is more complicated, but

the main idea is to define another “adversary”, “in between” A0 and A1. (In the actual proof
we refer to that adversary as a random walk). The new adversary is defined similarly to A0
and A1, but instead of minimizing α′v (or maximizing β′v) it tries to minimize β′v − α′v (after
they were defined by the definitions of A0 and A1). Very roughly speaking, since the new
adversary is “sandwiched” between A0 and A1, we are able to apply Azuma’s theorem for
the new adversary and to derive a contradiction. Technically, the contradiction is derived by
showing that if α′root is not close to 0 and β′root is not close to 1, then the new adversary gets
(with high probability) to a leaf that is labeled with neither 0 nor 1.

The full proof is the technical heart of the paper and is given in Section 4.

2 Definitions & Preliminaries

For an integer n ∈ N, we denote by [n] the set {1, . . . , n}. Throughout the paper, we denote
by Π a collective coin-flipping protocol, denote by n ∈ N the number of parties participating
in the protocol, and denote the parties by P1, . . . , Pn. We assume that Π, when executed
honestly, outputs the bit 0 (and similarly for 1) with probability Ω(1).

Communication model. The full information model [7] is a synchronous model. Namely,
each protocol consists of rounds in which parties send messages. There exists a global counter
which synchronizes parties in between rounds but they are asynchronous within a round.
The parties communicate via a broadcast channel.

We define two restricted types of protocols: single-bit and single-turn.

I Definition 2 (Single-bit protocol). We say that a protocol is a single-bit protocol for n
parties if this protocol is executed in rounds such that in each round each party sends a
single random bit.

I Definition 3 (Single-turn protocol). We say that a protocol is a single-turn protocol for n
parties if this protocol is executed in n rounds such that party Pi sends a single (possibly
long) message at round i.
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The above two restricted families of protocols can be naturally described by a game tree
(of arity two in the single-bit case and bigger arity in the single-turn case) whose leaves are
labeled by 0 and 1, and whose internal nodes (including the root) are labeled by numbers in
[n].

Without loss of generality, we restrict our attention to public-coin protocols.

I Definition 4 (Public-coin protocol). A protocol is public-coin if each honest party broadcasts
all of the randomness he generates (i.e., his “local coin-flips”), and does not send any other
messages.

Corruption model. We consider the Byzantine model, where a bound t = t(n) ≤ n is
specified, and the adversary is allowed to corrupt up to t parties. The adversary can see the
entire transcript (i.e., all the messages sent thus far), has full control over all the corrupted
parties, and can broadcast any messages on their behalf. Moreover, the adversary has control
over the order of the messages sent within each round of the protocol (i.e., “rushing”).

Within this model, two main types of adversaries were considered in the literature: static
adversaries, who need to specify the parties they corrupt before the protocol begins, and
adaptive adversaries, who can corrupt the parties adaptively based on the transcript so far.
We focus on adaptive adversaries

I Definition 5 (Adaptive adversary). Within each round, the adversary chooses parties
one-by-one to send their messages; and he can perform corruptions at any point during this
process based on the messages sent thus far and the protocol specification.

Security. The security of a collective coin-flipping protocol is usually measured by the extent
to which an adversary can, by corrupting a subset of parties, bias the protocol outcome
towards his desired bit.

I Definition 6 (ε-security). Fix ε = ε(n) and t = t(n). A coin-flipping protocol Π is ε-secure
against t adaptive corruptions if for all n ∈ N, it holds that for any adaptive adversary A
that corrupts at most t parties,

min
{

Pr [Output of A(Π) = 0] ,Pr [Output of A(Π) = 1]
}
≥ ε(n),

where “Output of A(Π)” is a random variable that corresponds to the output of the protocol
Π when executed in the presence of the adversary A.

We next define a secure protocol as one where an adversary cannot “almost always" get
the outcome he wants.

I Definition 7 (Security). A coin-flipping protocol is secure against t = t(n) corruptions if it
is ε-secure against t corruptions for some constant ε ∈ (0, 1).

2.1 Azuma’s Inequality
We state Azuma’s inequality which is extensively used in our proofs. This formulation is
standard and can be found, for example, in Alon-Spencer [4] and in Dubhashi-Panconesi [13].

I Theorem 8. Let X1, . . . , XN be random variables, such that for every i ∈ [N ], |Xi| ≤ εi.
If for every i ∈ [N ] it holds that E[Xi | X1, . . . , Xi−1] ≤ 0, then for any s ≥ 0,

Pr
[

N∑
i=1

Xi ≥ s

]
≤ 2 · e

− s2

2
∑N

i=1
ε2
i

DISC 2018
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Similarly, if for every i ∈ [N ] it holds that E[Xi | X1, . . . , Xi−1] ≥ 0, then for any s ≥ 0,

Pr
[

N∑
i=1

Xi ≤ −s

]
≤ 2 · e

− s2

2
∑N

i=1
ε2
i

3 A Lower Bound for Single-Bit Single-Turn Protocols

In this section, we give a simplified proof for the following theorem, originally proved in [19]

I Theorem 9 ([19]). There does not exist a single-bit single-turn collective coin-flipping
protocol that is resilient to more than Ω̃(

√
n) adaptive corruptions.

Proof. Fix any single-bit single-turn collective coin-flipping protocol Π. Consider the binary
protocol tree of depth n corresponding to Π. We construct an adversary A0 that with
probability 1− o(1), biases the outcome towards 0 while corrupting at most Õ(

√
n) players.7

For each node v in the protocol tree, we associate a sequence of bits b1, . . . , bi that lead
to it from the root of the tree, and a value αv which stands for the probability that the
outcome of the protocol is 0, when executed honestly starting from the node v. Namely,
αv , Pr[Πv = 0], where Πv is a random variable that corresponds to the output of the
protocol Π when executed honestly starting from node v. Let p0 , Pr[Πroot = 0] ≥ Θ(1)
be the probability that the protocol, executed honestly from the root, outputs 0. Further,
observe that for every leaf v that is labeled by b ∈ {0, 1}, it holds that αv = 1− b.

Let ε , 1√
n·log2 n

. Given that the protocol is in node v, the adversary A0 computes two
values

αmin
v = min{αv0, αv1} and αmax

v = max{αv0, αv1},

where αv0 is the value associated with the left child of v and αv1 is the value associated
with the right child of v. Note that αv = (αv0 + αv1)/2. If αv ≥ αmin

v + ε (or, equivalently,
αv ≤ αmax

v − ε), then the adversary corrupts the party that is associated with node v and
sends b ∈ {0, 1} such that αvb > αvb̄ (where b̄ = 1−b). Otherwise, if αmax

v −ε < αv < αmin
v +ε,

then the adversary A0 does not corrupt the corresponding party and lets it send a random
bit. This completes the description of the adversary.

We next show that with overwhelming probability over the execution of the protocol with
the adversary A0, the leaf with which the protocol concludes is a leaf that is labeled with
0. In addition, with overwhelming probability, the number of corruptions along the way is
bounded by 1/ε.

Let (b1, . . . , bn) ∈ {0, 1}n be a random variable corresponding to the n bits sent during
the execution of the protocol ΠA0 . Namely, if A0 corrupts the party sending the i’th bit
in the protocol Π, given that the previous i− 1 bits sent were (b1, . . . , bi−1), and sends the
bit b∗ ∈ {0, 1} on its behalf, then we set bi = b∗. Otherwise, if A0 does not corrupt this
party, then bi is randomly chosen in {0, 1}. Every prefix of the n bits b1, . . . , bn sent during
the course of the protocol, corresponds to a node v in the protocol tree. Thus, we can write
αb1,...,bi for αv, where the vertex v corresponds to the path b1, . . . , bi from the root to v in
the protocol tree. Let δi be a random variable defined as

δi , αb1,...,bi − αb1,...,bi−1 .

7 One can analogously construct an adversary A1 that with probability 1 − o(1), biases the outcome
towards 1 while corrupting at most Õ(

√
n) players.
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Denote by I ⊆ [n] the set of indices in which the adversary A0 corrupts the corresponding
party. It holds that

n∑
i=1

δi =
∑
i∈I

δi +
∑
i/∈I

δi = αb1,...,bn − αroot. (1)

We first argue that with overwhelming probability
∑

i/∈I δi ≤ o(1).

I Claim 10. Pr
[∣∣∑

i/∈I δi

∣∣ ≥ 1
log n

]
≤ negl(n).

Proof. Define n random variables X1, . . . , Xn as follows: For every i ∈ I we set Xi = 0, and
for every i 6∈ I we define Xi = δi. Note that for every i ∈ [n], it holds that |Xi| ≤ ε and

E[Xi | X1, . . . , Xi−1] = 0.

Thus, by Azuma’s inequality, for any s > 0,

Pr
[∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ s
]
≤ 4 · e−

s2
2nε2 .

Setting s = ε ·
√
n · logn = 1

log n , we conclude that

Pr
[∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ 1
logn

]
≤ negl(n). J

We condition on the event that
∣∣∑

i/∈I δi

∣∣ ≤ 1
log n occurs. Also, recall that αroot = Θ(1).

Plugging these into Equation (1), we get that

αb1,...,bn ≥ αroot +
∑
i∈I

δi −
1

logn.

By the definition of A0, whenever it corrupts an index i, it causes δi to be positive. Thus,

αb1,...,bn ≥ αroot −
1

logn.

This implies that αb1,...,bn = 1 since αb1,...,bn ∈ {0, 1} and αroot ≥ Ω(1).
We proceed with the bound on the number of corruptions made by A0. By Equation (1),

the fact that αroot ∈ (0, 1), and that with overwhelming probability
∣∣∑

i/∈I δi

∣∣ ≤ 1
log n and

αb1,...,bn = 1, it holds that (with overwhelming probability)∑
i∈I

δi = αb1,...,bn − αroot −
∑
i/∈I

δi ≤ 1.

Since for each i ∈ I, it holds that δi ≥ ε, the number of corruptions is bounded by 1/ε, as
required. J

4 A Lower Bound for Single-Turn Protocols

In this section, we prove our lower bound for single-turn collective coin-flipping protocols.

I Theorem 11. There does not exist a single-turn collective coin-flipping protocol that is
resilient to more than Ω̃(

√
n) adaptive corruptions.
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Proof. Fix any single-turn collective coin-flipping protocol Π. Since we are in the full
information model, we can assume without loss of generality that the protocol is public-coin
(see Definition 4). Namely, each player sends a random message from some universe {0, 1}`.
We denote L , 2`.

Consider the L-ary protocol tree corresponding to Π. We define two adversaries A0 and
A1, where A0 tries to bias the output towards 0 and A1 tries to bias the output towards 1.
We prove that at least one of these adversaries succeeds with probability 1 − o(1) while
corrupting at most

√
n · polylog(n) players.

To this end, we associate with each node v in the protocol tree, three pairs of values

(αv, βv), (c0v, c1v), and (p0
v, p

1
v).

Intuitively, αv is the expectation of the outcome of the protocol in the presence of the
adversary A0, given that we are at node v, and βv is the expectation of the outcome of the
protocol in the presence of the adversary A1, given that we are at node v. The pair (c0v, c1v)
is a pair of bits, where c0v = 1 if and only if A0 corrupts node v, and c1v = 1 if and only if A1
corrupts node v.8 The pair (p0

v, p
1
v) are a pair of “penalty” values . Intuitively, the penalty p0

v

(resp. p1
v) is proportional to the expected number of corruptions the adversary A0 (resp. A1)

does, from node v onwards.
The penalty values {p0

v}v∈V , along with the values {αv}v∈V , are used by the adversary
A0 to decide which nodes to corrupt (i.e., for which nodes v to set c0v = 1). Similarly, the
penalty values {p1

v}v∈V , along with the values {βv}v∈V , are used by the adversary A1 to
decide which nodes to corrupt (i.e., for which nodes v to set c1v = 1).

Formally, the values (αv, βv), (c0v, c1v), and (p0
v, p

1
v) are defined by induction starting from

the leaves. For any leaf v labeled by 0 we define αv = βv = 0, and for any leaf v labeled by 1
we define αv = βv = 1. For all leaves v we define c0v = c1v = 0 and p0

v = p1
v = 0.

Let k =
√
n · log3 n and let ε = 1

k . For a non-leaf node v, suppose that its L children are
associated with

{(αi, βi)}L
i=1 and {(p0

i , p
1
i )}L

i=1.

For every i ∈ [L], define

α′i = αi + p0
i and β′i = βi − p1

i .

Let

αavg ,
1
L
·

L∑
i=1

αi , α′avg ,
1
L
·

L∑
i=1

α′i , α′min , min{α′1, . . . , α′L}

and let

βavg ,
1
L
·

L∑
i=1

βi , β′avg ,
1
L
·

L∑
i=1

β′i , β′max = max{β′1, . . . , β′L}

If α′min ≤ α′avg − ε, then set c0v = 1. In this case, if the protocol arrives at node v,
then the adversary A0 corrupts node v and proceeds to its child i∗ with minimal α′; i.e.,
i∗ = argmini∈child(v){α′i}, and we set αv = αi∗ and p0

v = p0
i∗ + ε. Otherwise, set c0v = 0. In this

8 When we say that an adversary corrupts node v we mean that it corrupts the party associated with
node v.
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case, the adversary A0 does not corrupt node v, and we set αv = αavg and p0
v = 1

L ·
∑L

i=1 p
0
i .

We denote

α′v = αv + p0
v.

Similarly, if β′max ≥ β′avg + ε, then set c1v = 1. In this case, if the protocol arrives at node v,
then the adversary A1 corrupts node v and proceeds to its child i∗ with maximal β′; i.e.,
i∗ = argmaxi∈child(v){β′i }, and we set βv = βi∗ and p1

v = p1
i∗ + ε. Otherwise, set c1v = 0. In this

case, the adversary A1 does not corrupt node v, and we set βv = βavg and p1
v = 1

L ·
∑L

i=1 p
1
i .

We denote

β′v = βv − p1
v.

In what follows, we denote by αroot and βroot the α and β values of the root, respectively.
Similarly, we denote by α′root and β′root the α′ and β′ values of the root, respectively. We
denote by p0

root and p1
root the penalty values of the root.

The following claim follows immediately from the definition of p0
root and p1

root.

I Claim 12. For every b ∈ {0, 1}, it holds that

pb
root = 1

k
· E[# of corruptions Ab makes].

In what follows, we denote by ΠA0 the random variable which is the outcome of protocol Π
with adversary A0, and similarly we denote by ΠA1 the random variable which is the outcome
of protocol Π with adversary A1 (in both ΠA0 and ΠA1 the randomness is over the coin
tosses of the honest players). In order to complete the proof of the theorem it suffices to
prove the following two lemmas.

I Lemma 13. Pr[ΠA0 = 0] = 1− αroot and Pr[ΠA1 = 1] = βroot.

I Lemma 14. α′root = o(1) or β′root = 1− o(1).

The reason why these two lemmas suffice is that for any node v in the protocol tree (and
in particular for the root), αv ≤ α′v and βv ≥ β′v. Thus, the two lemmas imply that either

Pr[ΠA0 = 0] = 1− o(1) or Pr[ΠA1 = 1] = 1− o(1).

Moreover, by definition, α′root = αroot + p0
root and β′root = βroot − p1

root. Thus, if α′root = o(1)
then Claim 12, together with the fact that αroot ≥ 0 (see Lemma 13), implies that the
adversary A0 is expected to make only o(k) corruptions. By Markov’s inequality A0 makes
o(k) corruptions with probability 1 − o(1). Similarly, if β′root = 1 − o(1) then Claim 12,
together with the fact that βroot ≤ 1 (see Lemma 13), implies that the adversary A1 is
expected to make only o(k) corruptions. By Markov’s inequality A1 makes o(k) corruptions
with probability 1− o(1). Since we set k =

√
n · log3 n, this completes the proof.

We proceed with the proof of Lemma 13, followed by the proof of Lemma 14.

4.1 Proof of Lemma 13
We prove the more general statement that for any node v in the protocol tree, the probability
that ΠA0 = 0 (respectively, ΠA1 = 1), conditioned on the event that the protocol arrives at
node v, is 1− αv (respectively, βv). To this end, for any node v in the protocol tree, denote
by Πv the protocol execution starting from node v. We prove that for every node v,

Pr[Πv
A0

= 0] = 1− αv and Pr[Πv
A1

= 1] = βv. (2)
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The proof is by induction from the leaves to the root. For leaf nodes, Equation (2) holds
trivially. Suppose that Equation (2) holds for nodes at layer d+ 1, and we shall prove that it
holds for nodes at layer d. To this end, fix a node v at layer d, and denote its L (layer d+ 1)
children by u1, . . . , uL. To be consistent with our previous notation, we denote αi , αui and
let αavg = 1

L

∑L
i=1 αi. We show that Pr[Πv

A0
= 0] = 1− αv and mention that the proof that

Pr[Πv
A1

= 1] = βv is analogous.
We distinguish between two cases:
Case 1: c0

v = 0. This case corresponds to the case where A0 does not corrupt node v.
In this case,

Pr[Πv
A0

= 0] = 1
L

L∑
i=1

Pr[Πui
A0

= 0] = 1
L

L∑
i=1

(1− αi) = 1− αavg = 1− αv,

where the second equality follows from the induction assumption, and the other equalities
follow from the definition of A0, αavg and αv.
Case 2: c0

v = 1. This case corresponds to the case where A0 corrupts node v. We
denote by i∗ the child with minimal α′. In this case,

Pr[Πv
A0

= 0] = Pr[Πui∗
A0

= 0] = (1− αi∗) = 1− αv,

where the second equality follows from our induction assumption, and the other equalities
follow from the definition of A0, and αv.

This completes the proof of the lemma.

4.2 Proof of Lemma 14
Suppose towards contradiction that there exists a constant c > 0 such that α′root > c and
β′root < 1 − c. We prove that at each layer of the circuit there exists a node v for which
α′v > c− o(1) and β′v < 1− c+ o(1). This would imply a contradiction since at each leaf v it
holds that either α′v = 0 or β′v = 1.

We define a random walk on the protocol tree from the root to the leaves. Since Π is a
single turn protocol on n players, the protocol tree is of depth n. We denote the nodes on
the walk by v0, v1, . . . , vn, where v0 is the root and vn is a leaf. The random walk is defined
as follows:
1. Let V1 be the set of all nodes v such that for every child u ∈ child(v) it holds that

|α′u − α′v| ≤ ε · logn and |β′u − β′v| ≤ ε · logn.

If we are at node vi ∈ V1, then vi+1 is a random child of vi.
2. Let V2 be the set of all nodes that are not in V1. If vi ∈ V2, then choose a child vi+1 ∈

child(vi) that minimizes the value β′u − α′u. Namely, vi+1 = argminu∈child(vi) {β
′
u − α′u}.

Recall that in order to get a contradiction, it suffices to prove that with overwhelming
probability, α′vn ≥ c− o(1) and β′vn ≤ 1− c+ o(1). To this end, we define n random variables
X1, . . . , Xn, and n random variables Y1, . . . , Yn, as follows:

Xi+1 = α′vi+1
− α′vi and Yi+1 = β′vi+1

− β′vi .

Notice that

α′vn = α′v0
+

n∑
i=1

Xi and β′vn = β′v0
+

n∑
i=1

Yi.
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To get a contradiction it suffices to prove that for any constant t > 0, with overwhelming
probability (over the random walk)

n∑
i=1

Xi ≥ −t and
n∑

i=1
Yi ≤ t. (3)

To this end, we partition the set [n] into two sets I1, I2 ⊆ [n], such that i ∈ Ib if and only
if vi ∈ Vb for b ∈ {0, 1} and i ∈ [n] and where V1 and V2 are the sets defined above. Namely,

I1 = {i : vi ∈ V1} and I2 = {i : vi ∈ V2}.

In order to prove Equation (3), it suffices to prove the following two claims.

I Claim 15. For any constant t > 0, with overwhelming probability (over the random walk),∑
i∈I1

Xi ≥ −t and
∑
i∈I1

Yi ≤ t.

I Claim 16. For any constant t > 0, with overwhelming probability (over the random walk),∑
i∈I2

Xi ≥ −t and
∑
i∈I2

Yi ≤ t. (4)

We start by stating the following claim which we will use in the proofs of Claims 15
and 16.

I Claim 17. For every node v in the protocol tree,

α′v ≤ α′avg and β′v ≥ β′avg,

where α′avg denotes the average of the values of {α′u}u∈child{v} over the children of v, and β′avg
denotes the average of the values of {β′u}u∈child{v} over the children of v.

Proof of Claim 17. Fix a node v in the protocol tree. We show that α′v ≤ α′avg and note
that the proof that β′v ≥ β′avg is analogous.

If c0v = 0, then α′v = α′avg and the claim holds. Suppose that c0v = 1. In this case,
α′v = α′min + ε, where α′min = minu∈child{v}{α′u} is the minimal value of α′ over all the children
of v. Also, by definition, α′min ≤ α′avg − ε. Thus, α′v ≤ α′avg − ε+ ε = α′avg, as desired. J

Proof of Claim 15. By definition, for every i ∈ I1, |Xi|, |Yi| ≤ ε · logn. Claim 17 implies
that

E[Xi | X1, . . . , Xi−1] ≥ 0 and E[Yi | Y1, . . . , Yi−1] ≤ 0.

We extend the series of random variables (Xi)i∈I1 and (Yi)i∈I1 , and define two sequences of
n random variables

(X ′1, . . . , X ′n) and (Y ′1 , . . . , Y ′n)

such that for every i ∈ [n] it holds that

X ′i =
{
Xi if i ∈ I1
0 otherwise

and Y ′i =
{
Yi if i ∈ I1
0 otherwise.
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Note that (by Claim 17) it still holds that for every i ∈ [n],

E[X ′i | X ′1, . . . , X ′i−1] ≥ 0 and E[Y ′i | Y ′1 , . . . , Y ′i−1] ≤ 0.

Thus, by Azuma’s inequality (see Theorem 8), for any real s > 0,

Pr
[

n∑
i=1

X ′i ≤ −s

]
≤ 2 · e−

s2
2n(ε·logn)2 and Pr

[
n∑

i=1
Y ′i ≥ s

]
≤ 2 · e−

s2
2n(ε·logn)2 .

By definition
∑

i∈I1
Xi =

∑n
i=1X

′
i and

∑
i∈I1

Yi =
∑n

i=1 Y
′

i and thus

Pr
[∑

i∈I1

Xi ≤ −ε ·
√
n · log2 n

]
= negl(n) and Pr

[∑
i∈I1

Yi ≥ ε ·
√
n · log2 n

]
= negl(n).

Since we set ε = 1
k = 1√

n·log3 n
, we have that ε ·

√
n · log2 n = o(1), which completes the

proof. J

We proceed with the proof of Claim 16. In the proof, we make use of the following two
claims.

I Claim 18. For any node v in the protocol tree and for any u ∈ child(v),

β′u ≤ β′v + ε and α′u ≥ α′v − ε.

Proof. Fix any node v in the protocol tree and fix any child u ∈ child(v). We prove that
β′u ≤ β′v + ε. The proof that α′u ≥ α′v − ε is analogous and thus omitted.

We distinguish between two cases. First, if c1v = 0, then β′v = β′avg and all the children
of v have β′ which is at most β′avg + ε which implies that β′u ≤ β′v + ε. Second, if c1v = 1,
then β′v = β′max − ε, where β′max = maxu∈child(v){β′u} is the maximal β′ of all the children of v.
This also implies that β′u ≤ β′v + ε. J

I Claim 19. For every node v in the protocol tree, it holds that β′v ≥ α′v.

Proof. The proof is by induction from the leaves to the root. For any leaf v, it holds that
β′v = α′v by definition, and in particular β′v ≥ α′v. Suppose that β′v ≥ α′v holds for every
node v in layer d+ 1 and we prove that it holds for every node in layer d.

To this end, fix any node v in layer d. Suppose that its L children (in layer d+ 1) are
associated with values {(α′i, β′i)}L

i=1, and denote

α′avg ,
1
L

L∑
i=1

α′i and β′avg ,
1
L

L∑
i=1

β′i.

The induction assumption implies that β′avg ≥ α′avg. This, together with Claim 17, implies
that

β′v ≥ β′avg ≥ α′avg ≥ α′v,

as desired. J

Proof of Claim 16. We first show that for every i ∈ I2,

β′vi+1
− α′vi+1

≤
(
β′vi − α

′
vi

)
− ε · (logn− 1). (5)
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Fix any vi ∈ V2. By definition of V2, there exists a child u ∈ child(vi) such that∣∣α′u − α′vi∣∣ ≥ ε · logn or
∣∣β′u − β′vi ∣∣ ≥ ε · logn.

Claim 18 implies that there exists a child u ∈ child(vi) such that

α′u ≥ α′vi + ε · logn or β′u ≤ β′vi − ε · logn.

For concreteness, suppose that α′u ≥ α′vi + ε · logn (the proof for β′u ≤ β′vi − ε · logn is
analogous). Claim 18 implies that β′u ≤ β′vi + ε. These two inequalities imply that

β′u − α′u ≤ β′vi + ε− α′vi − ε · logn = (β′vi − α
′
vi)− ε · (logn− 1).

This implies Inequality (5), since vi+1 was chosen to minimize the value of β′vi+1
− α′vi+1

.
Inequality (5) implies that, with overwhelming probability,

|I2| · ε · (logn− 1) ≤
∑
i∈I2

(
β′vi − α

′
vi

)
−
(
β′vi+1

− α′vi+1

)
≤
∑
i∈I2

(
β′vi − α

′
vi

)
−
(
β′vi+1

− α′vi+1

)
+

∑
i∈II

(
β′vi − α

′
vi

)
−
(
β′vi+1

− α′vi+1

)
+ 1

= (β′root − α′root)−
(
β′vn − α

′
vn

)
+ 1 ≤ 2, (6)

where the first inequality follows by Equation (5) and summing over all i ∈ I2, the second
inequality follows by Claim 15, and the last inequality follows by our assumption that
α′root > c and β′root < 1− c together with Claim 19.

Note that Claim 18 implies that for every i ∈ [n], it holds that Xi ≥ −ε and Yi ≤ ε. This,
together with Equation (6), implies that∑

i∈I2

Xi ≥ −ε · |I2| ≥ −
2

logn− 1 and
∑
i∈I2

Yi ≤ ε · |I2| ≤
2

logn− 1 ,

as desired. J

J
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