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Abstract
We study stability of local packet scheduling policies in a distributed system of n nodes. The
local policies at nodes may only access their local queues, and have no other feedback from
the underlying distributed system. The packets arrive at queues according to arrival patterns
controlled by an adversary restricted only by injection rate ρ and burstiness b. In this work, we
assume that the underlying distributed system is a shared channel, in which in order to get rid of
a packet from the queue, a node needs to schedule it for transmission on the channel and no other
packet is scheduled for transmission at the same time. We show that there is a local adaptive
scheduling policy with relatively small memory, which is universally stable on a shared channel,
that is, it has bounded queues for any ρ < 1 and b ≥ 0. On the other hand, without memory
the maximal stable injection rate is O(1/ logn). We show a local memoryless (non-adaptive)
scheduling policy based on novel idea of ultra strong selectors which is stable for slightly smaller
injection c/ log2 n, for some constant c > 0.
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1 Introduction

Queuing processes have been in the heart of computing and communication for decades.
Queues are governed by scheduling algorithms, and the desired property is stability – meaning
that there is an upper bound on the numbers of packets queued at devices at any time.
Recently, due to rapidly growing number of devices and popularity of distributed protocols,
the impact of congestion on stability of queuing processes has become a vibrant research
topic. In this work, we study stability of local packet scheduling policies in the process of
dynamic broadcasting on a shared channel. A shared channel, also called a multiple access
channel, is a broadcast network with instantaneous delivery of transmitted messages to every
device (also called a node or a station) in the system and a possibility of conflict for access to
the transmitting medium. A message sent via a channel by a station is received successfully
by all the stations when its transmission has not overlapped with transmissions by other
stations.
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28:2 Local Queuing Under Contention

The traditional approach to modeling dynamic broadcasting and the corresponding
queuing process on a shared channel has assumed continuous packet injection subject to
stochastic constraints (typically, Poisson arrival rates). Recent papers, inspired by adversarial
queuing theory for store-and-forward packet networks, studied stability of deterministic
broadcasting on a shared channel in adversarial settings. An adversary is determined by two
parameters: injection rate ρ, which is the average number of injected packets, and burstiness
b, which is the maximum number of packets that may be injected in a round. To the best of
our knowledge, all previous work assumed that scheduling policies receive some feedback from
the channel that help them in achieving stability. Our approach is the first that considers
local schedulers without any feedback from the channel.

1.1 Our results
This paper investigates stability and other properties of deterministic local packet schedulers
which are used for distributed broadcasting on a shared channel. The stability is studied in
adversarial setting, defined in terms of global injection rate ρ and burstiness b. We consider
two classes of local schedulers: adaptive and non adaptive. The former allows stations to
monitor and store some digest of the local queue history, especially its size, while the latter
allows the policy only to check whether the current local queue is empty or not. We show that
there is a local adaptive scheduling policy with relatively small memory, which is universally
stable on a shared channel, that is, it has bounded queues for any ρ < 1 and b ≥ 0. On the
other hand, we prove that without memory the maximal stable injection rate is O(1/ logn),
more precisely, than any local non-adaptive scheduler can be stable only for injection rates
O(1/ logn). We also show a local non-adaptive policy based on novel idea of ultra strong
selectors, which is stable for slightly smaller injection rate c/ log2 n, for some constant c > 0.

1.2 Previous and related work
There is a rich history of research on broadcasting dynamically generated packets on multiple
access channels. Early work in this direction included developing and studying properties of
protocols like Aloha [1] and binary exponential backoff [23]. Most prior research on this topic
has concentrated on scenarios when packets were injected subject to statistical constraints.
Stability has been the basic quality criterion to achieve, understood in the sense that the
input and output rates were equal. See the paper by Gallager [12] for an overview of early
research; recent work includes the papers of Goldberg et al. [14], Goldberg et al. [15], Håstad
et al. [17], and Raghavan and Upfal [24].

Adversarial queuing was introduced by Borodin et al. [8] as a framework to study stability
of routing protocols in (point-to-point connected) networks under worst-case traffic scenarios
modeled by adversaries. Andrews et al. [5] defined a greedy protocol to be universally stable
when it was stable in all networks for any injection rate ρ < 1.

Bender et al. [6] studied stability of randomized backoff on a shared channel in adversarial
settings in the queue-free model in which each packet is handled independently as if by a
dedicated station. Stability was defined to mean that output rate was as large as injection
rate. Some aspects of dynamic selection on multiple access channels by deterministic protocols
were considered by Kowalski [21]. Both above approaches differ from the one in this paper,
as they did not consider individual local queues.

Chlebus at al. [10] were the first who studied adversarial queuing on a shared channel.
They however, similarly to all the follow up work (cf., [4, 3, 9]), assumed that schedulers
are embedded into the channel, in the sense that they can receive channel feedback or
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even attach and read additional information bits. Two of their results, however, could be
transferred to the model of local scheduler assumed in this paper. Mainly, they showed
that no acknowledgment-based protocol can be stable for injection rates larger than 3

1+lgn ,
and that there is a stable acknowledgment-based protocol for rates at most 1

cn lg2 n
, for a

sufficiently large c > 0. This class of acknowledgment-based protocols is however different
from the classes considered in this work, in the sense that the non-adaptive protocol restarts
each time a new packet is considered by a scheduler – as such, it is difficult to compare
their results with the ones in our work, and the only note we could make here is the huge
exponential gap between the lower and upper bounds on stability rates.

Broadcasting on a shared channel with static input (i.e., when some k stations hold
packets at the beginning of an execution) was also widely studied. The goal is to transmit
either at least one of them, which is the selection problem, or all of them in the k-broadcast
problem, in both cases as quickly as possible. Kushilevitz and Mansour [22] proved the lower
bound Ω(logn) for the selection problem on the channel with n stations if collision detection
was not available. Willard [25] developed protocols solving the selection problem in the
expected time O(log logn) in the channel with collision detection. This demonstrates that
there is an exponential gap between models with collision detection and without it, with
respect to the selection problem. The k-broadcast problem was studied by Greenberg and
Winograd [16], Komlós and Greenberg [20], and Kowalski [21]. A related leader election
problem was studied by Jurdziński et al. [18] for channels without collision detection. The
related problem of wake-up, where stations become activated at possibly different times
and have to transmit or exchange information, was also considered in the literature. It was
introduced by Gąsieniec et al. [13]. They showed that if stations had access to a global clock
then wakeup could be completed in the expected time O(logn) by a randomized protocol; this
was later strengthened by Jurdziński and Stachowiak [19] who showed that the assumption
about the global clock could be omitted. Czyżowicz et al. [11] studied deterministic solutions
for the mutual exclusion and consensus problems on multiple-access channels when the
adversary wakes up stations in arbitrary rounds. They considered various model settings,
determined by the availability of three independent features: collision detection, global clock
and knowledge of the number n of stations. In particular, they showed that if none of the
three features is available then the problems are not solvable, while even a single of these
features makes these problems feasible, with complexity of solutions depending on which
combination of features is available. Bieńkowski et al. [7] analyzed randomized protocols for
mutual exclusion under the model settings of [11].

2 Model

There are n stations attached to a shared channel. The stations have distinct names in the
interval [0, n− 1]. Each station v knows its name v and also the number of all the stations n,
in the sense that these parameters can be used in code of protocols.

2.1 Shared channel
Shared channel, also called a multiple access channel, is a communication medium with
some special properties. We assume that the channel operates synchronously. Every device
connected to it, called a node or a station, has its clock and the clock cycles are all of exactly
the same length and synchronized. An execution of a protocol is partitioned into rounds – it
takes precisely one round to transmit a message. We assume that stations have access to a
global clock, meaning that all the local clocks at stations give the same round numbers.

DISC 2018



28:4 Local Queuing Under Contention

Every station occasionally receives packets to broadcast. Packets are stored in a local
queue. Stations use local scheduling algorithms to decide whether to schedule a packet
from the queue for transmission in the current round or not. When exactly one station
schedules a packet for transmission in a round, then the message containing this packet is
successfully delivered and the packet disappears from the queue. Unlike in the previous
work, we assume that local schedulers do not receive any feedback from the channel – they
could only make their decisions based on examining local queue. When at least two stations
transmit simultaneously in a round then conflict for access or collision occurs in the round
and none of the transmitted packet is successful (i.e., all remain in their local queues).

2.2 Adversaries injecting packets

Packets are injected into stations in a dynamic fashion in the course of an execution of a
broadcasting protocol. Packet injection is modeled by an adversary. Adversaries are specified
by constraints on the maximum rate of injection ρ and by the burstiness of traffic b. An
adversary generates a number of packets in each round and for each packet assigns a station
to inject the packet in this round. The number of packets an adversary can inject into
stations in one round is called the burstiness of the adversary. The adversary of type (ρ, b)
can inject at most ρt+ b packets to stations, in total, during any time interval of t rounds.
This type of adversary is typically called leaky bucket.

2.3 Local schedulers

A broadcast algorithm is determined by the work of local scheduling algorithms at each
station. A local scheduler is a deterministic and distributed algorithm, which has only access
to the current local queue, global clock, and potentially some additional internal memory
(different from the local queue), but does not receive any feedback from the channel. It
decides whether to schedule a packet for transmission in the current round or not. A packet
scheduled for transmission is removed from the queue automatically if the transmission was
successful (i.e., no other packet was scheduled for transmission in the same round), and the
scheduler is aware of it.

W.l.o.g. we assume that the queue at a station operates in the first-in-first-out (FIFO)
fashion, as we are only interested in stability (i.e., bounded queue sizes).

We focus on two classes of local schedulers. First class, adaptive schedulers, allows the
algorithm to access the current queue (in particular, knows its size) and can use additional
local memory (different from the local queue) to store some digest of queue history. The
second class, non-adaptive schedulers, requires that the scheduler knows only if the current
queue is empty or not and does not use local memory to record any digest of the history of
local computation.

2.4 Quality of service

We say that a local scheduler is stable for injection rate ρ if in any execution of the scheduler
against a (ρ, b)-adversary, for any b, queues are bounded at all times. Universal stability
means stability for any injection rate ρ < 1.
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3 Universally stable algorithm with (small) memory

In this section we build a universally stable algorithm under the assumption that nodes can
collect information about history of an execution in their local memory.

We construct the algorithm gradually: first, we describe the basic window-base brute-force
idea for known injection rate 0 < ρ < 1 and burstiness b ≥ 0 and under assumption that a
node has an additional feedback from the channel; second, we modify it to get rid of the
above mentioned assumptions.

3.1 Window-based algorithm under additional assumptions
As mentioned earlier, the first algorithm will be designed for known injection rate ρ and
burstiness b. Additionally, in this part we only consider the beeping channel feedback model,
where a node can distinguish between no transmitting nodes and at least one transmitting
node on the channel; in other words, a node can use so called “beeps” (i.e., at least one
transmission on the channel) to encode some control information to other nodes.

The algorithm partitions time into windows of length L. Each window consists of a gossip
stage and a transmission stage. In the gossip stage, the nodes learn the queue sizes of other
nodes. Then they use this knowledge to compute locally an optimal schedule – as we will
argue later, it will be the same at each node. In the transmission phase, the nodes use the
schedule they computed in the preceding gossip phase to transmit all packets that were
injected in the previous window. Below we specify the two stages in details.

Gossip phase

Let f(L) = logL denote the maximal number of bits that any node must exchange in a
gossiping algorithm in order to share its queue size taken from the beginning of the window
(i.e., the size just at the beginning of the window); if the queue size is greater than L, the
node only announces it has L packets. A node may require f(L) packets just to transmit the
information in the gossip phase. Therefore each node actively participates in communication
within a window only if it has at least f(L) packets at the beginning of the window. Round
robin algorithm is used for this purpose, repeated f(L) times – a node transmits a packet only
if it actively participates in the current window and it is its turn on the list of stations used
by the round robin algorithm and it has 1 on the i-th position of the binary representation of
its queue size from the beginning of the window, where i is the current number of iterations
of round robin. In order to perform this algorithm, memory size f(L) is required at each
node.

Transmission phase

Each node has full knowledge about the queue states of all active nodes in the system (subject
to restrictions that for queues larger than L the value L is known) at the beginning of the
transmission phase. Note that memory size n · f(L) is needed for it. Therefore all active
nodes can compute the same transmission schedule to be used in the remainder of the window.
The nodes use a brute force algorithm to find the shortest schedule that transmits all packets
injected before the end of the previous window and not yet transmitted, and then follow this
schedule. There are at most ρL+ b packets injected into the system in the previous window,
therefore a window of length T (ρ, b) +G(n,L) is long enough, where T (ρ, b) = ρL+ b is the
length of the transmission phase, while G(n,L) is the length of the gossiping phase (in the
gossiping phase the propagated queue sizes are capped by L, hence logL bits are enough in
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28:6 Local Queuing Under Contention

Algorithm 1 Local Scheduling with Memory for a station v.
1: Lv ← min_length
2: loop
3: oldv ← number of packets in the queue
4: qv ← number of packets injected in the previous window
5: if oldv > f(n,Lv) then
6: (schedule, increase?)← Gossip(Lv)
7: if increase? then
8: Lv ← 2Lv
9: Idle until round t such that t is divisible by the new Lv

10: else
11: Transmit(schedule)

each such transmission). Therefore, if we use window length L ≥ (b+G(n,L))/(1− ρ), there
is enough time to transmit all packets from the previous window. Indeed, for such values of
L we have the desired property L ≥ T (ρ, b) +G(n,L).

Since we iterate round robin algorithm f(L) times for gossiping, we get G(n,L) = n logL.
Therefore, there exists a sufficiently large window length L such that L ≥ (b+n logL)/(1−ρ)
and consequently the above algorithm transmits all packets injected in a window during the
next window from all active nodes. This proves (recursively) that all packets in queues at
the beginning of a window have been injected during the previous window (except for at
most f(n,L) packets in each station, which could be injected earlier without activating the
station), automatically implying stability.

3.2 Modified algorithm

The above brute-force window-based algorithm has a number of weaknesses:
1. ρ and b are known
2. users need to listen to the channel feedback (as opposed to only detecting own collisions)

Next we modify the above algorithm to get rid of these weaknesses. A high-level description
of algorithm executed by a node is presented below, as Algorithm 1., with subprocedures
Gossip (Procedure 2), Exchange (Procedure 3) and Transmit (described only in words).

Each node v knows its previous window size Lv (different nodes may have different
window lengths). At the start of the algorithm, each node starts with a window of length
min_length = n(n− 1) · 8. To minimize desynchronization that occurs, a node v only starts
a window of length Lv if the current round t is divisible by Lv.

Only nodes that started their window with at least n(n − 1) · logLv packets in their
queues participate in the window – these are called active nodes. Each inactive node u idles
until it gets enough packets to become active (and then it idles until such a round t that is
divisible by Lu).

In a window all active nodes learn eachother’s fresh packets – packets injected in the
previous window – and decide on a common transmission schedule that transmits all fresh
packets. If the computed schedule is too long to fit by the end of their window, each active
node v doubles its window size (and idles until the next window starts). Otherwise they
transmit according to this schedule. If an active node v learns that some other active node u
uses a shorter window than Lv, then v informs u about this and u doubles its window length
(and idles until the next window starts).
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Algorithm 2 Procedure Gossip(Lv).

1: ignore← Exchange(~1)
2: ignore← Exchange(~1)
3: ~die?← Exchange(~0)
4: if ~die? 6= ~0 then
5: Idle for 3(dlogWve+ 1) phases
6: return (null, true)
7: q1, q2, . . . , qdlogWve ← bits of min(qv, 2dlogWve)
8: for i← 1; i ≤ dlogWve; + + i do
9: if qi = 1 then

10: ~x← Exchange(~1)
11: ~y ← Exchange(~0)
12: else
13: ~x← Exchange(~0)
14: ~y ← Exchange(~1)
15: for j ← 1; j ≤ n; + + j do
16: if xj = yj then
17: zj ← 1
18: else
19: zj ← 0
20: ~die?← Exchange(~z)
21: if ~die? 6= ~0 then
22: Idle for 3(dlogWve+ 1− j) phases
23: return (null, true)
24: ignore← Exchange(~0)
25: ignore← Exchange(~0)
26: ~die?← Exchange(~0)
27: if ~die? 6= ~0 then
28: return (null, true)
29: schedule← compute(exchange_results)
30: return (schedule, false)

Exchange subprocedure. Exchange subprocedure’s goal is to transmit a single bit of
information to and from each active node (it can transfer different bits to each node) and
therefore implements beeps from the previous section.

It takes n(n− 1) rounds. This timeframe is divided into n intervals of n− 1 rounds each.
In the i-th interval a i-th node has a chance to transmit a bit to each of the n−1 other nodes.
i-th node transmitting a packet in j-th round of i-th interval means that i-th node rties to
transmit a binary signal 1 to the j-th node (to the j + 1-th node if j ≥ i). No transmission
in j-th round of interval i from node i means that either i-th node transmits a binary 0 to
the j-th node (or j + 1-th node) or it is inactive.

Furthermore, the active nodes need to be able to receive these bits of information. Each
active node j transmits a packet in j-th round of every interval i for i < j and of every
interval i + 1 for i ≥ j. If a collision occured in j-th round of interval i, then either (for
j < i) j-th node interprets this as i-th node transmitting a bit 1 or (for j ≥ i) j-th node
interprets this as i+ 1-th node transmitting a bit 1.

DISC 2018



28:8 Local Queuing Under Contention

Algorithm 3 Procedure Exchange(~x) for a node v.
1: for block ← 1; block ≤ n; + + block do
2: if block = v then
3: for j ← 1; j ≤ n− 1; + + j do
4: if xj = 1 then
5: Send a packet
6: else
7: Idle for 1 round
8: else
9: for j ← 1; j ≤ n− 1; + + j do

10: if (v < block and v = j) or (v > block and v = j + 1) then
11: Send a packet
12: else
13: Idle for 1 round

Note that the exchange procedure has no guarantees about successful transmissions. It
is used solely for communication.

Gossip stage. Gossip stage is used to share queue sizes of al active nodes, so that they can
agree on a common schedule. Furthermore it is used to find out whether some nodes should
increase their window sizes.

Gossip stage is divided into logLv + 2 phases. Each phase consists of 3 exchange routines.
The first phase and the last phase are used to inform other gossiping nodes about v’s start
and end of gossiping stage. The middle logLv phases are used to transmit v’s queue size,
each phase for one bit.

The first phase of gossip of node v is always exchanging 110 to each other node. The
last phase of gossip is always exchanging 000 to each other node. In the middle phases, a
transmission of a bit 1 is encoded as exchanging 10? to each other node, while a transmission
of a bit 0 is encoded as exchanging 01? to each other node, where the third exchange of these
phases will be described later.

This kind of coding is used to ensure that nodes with different window lengths, and
therefore desynchronized gossiping phases, find out about eachother and learn which one
has shorter window length. Indeed, if another node u with a shorter window length starts
a gossip stage at the same time as v, v learns that u has a shorter gossip (and therefore a
shorter window Lu) after 2 exchanges of the last u’s phase (00 are enough to identify the
finishing phase). If u starts a gossip during v’s gossip stage, within 2 exchanges (11 at the
start of u’s gossip) v learns about it.

For every node u that starts of finishes a gossip during v’s gossip, v exchanges kill to node
u – a bit 1 on the third exchange of the phase when v found out that u is desynchronized
(this was denoted earlier by a ‘?’. A node that hears a kill from any other node immediately
stops its transmissions, doubles its window size and waits until the next start of a window.

If the nodes after a gossiping phase find out that they are not able to transmit all packets
from the previous window (i.e., the computed schedule would be too long for the allocated
length of transmitting stage), then they double their window lengths.
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Transmission stage. Transmission stage is used to transmit all fresh packets, according to
a schedule found during a gossip stage. Note that gossip stage may successfuly transmit
some fresh packets or packets injected in earlier windows. Therefore a node may have not
enough fresh packets to use the schedule, but that means that in this window it successfuly
transmitted all fresh packets.

Note that the schedule guarantees no collisions between nodes that started their windows
at the same time. However, a collision may occur with a node which started its window at
a different time, so with a different window length. If a node v detects a collision during
its transmission stage, it stops following its schedule, and instead transmits kill messages
to all other nodes until it runs out of packets or the window ends. These kill messages are
transmitted in all rounds during intervals I = [t + 2n(n − 1), t + 3n(n − 1)), for every t
divisible by 3n(n− 1) (these are the rounds reserved for kill messages in gossiping nodes).

These transmissions will cause collisions with other active nodes u in their transmission
stage or in their gossip stage. So u will either start transmitting kill messages (in case it
happened during the transmission stage), or it will interpret this collision as a kill message
(if it happened during the gossip stage).

3.3 Analysis of the modified algorithm

I Theorem 1. There exists an adaptive scheduler against any adversary with injection rate
ρ < 1 and burstiness b.

We show that the algorithm described above is a scheduler satisfying requirements of the
theorem. We need to prove 2 lemmas:

I Lemma 2. For any ρ and b there exists a window length Lmax, such that it is never
exceeded.

I Lemma 3. In every window of length Lmax either all nodes transmit all packets injected
in the previous window of length Lmax or some node decides to increase its window length.

If both lemmas hold, then there is a finite number of windows where packets are processed
slower than they are injected. Therefore the queues are bounded and the algorithm is
universally stable. It remains to show that both above lemmas hold.

Proof of Lemma 2. For every n, ρ, b there exists a window length L such that if every node
achieves it, all the nodes transmit all the packets injected in the previous window, without
collisions during transmission stages (see the explanation in the base algorithm, Section 3).
Observe that a node v increases its window length in two cases:

Case 1: During Gossip stage it heard a kill message from another node u.
Case 2: During Gossip phase it found out that it has too many packets to transmit in a
window of current length.

Note that the 1st case can only occur if u has a longer window than v, therefore Lv < L,
so 2Lv ≤ L.

The 2nd case allows a node with the longest window in the entire network to increase its
window length. This however happens only if the current window length is insufficient and
therefore shorter than L.

Therefore the lemma holds for Lmax = L. J
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28:10 Local Queuing Under Contention

Proof of Lemma 3. If a node is unable to transmit all fresh packets, then in the gossip
phase it doubles its window length. If a node v was unable to successfully transmit all fresh
packets due to collisions during v’s transmissions stage with a node u that has a different
window length, one of the cases below occured:
1. Lu < Lv and u started its window before (or in the same phase) v finished its gossip

stage – u receives a kill from v at the start of u’s gossip.
2. Lu < Lv and u started its window after v finished its gossip stage – v detects a collision

during its transmission stage and starts transmitting kill messages instead of following its
schedule. Either u heard a kill message from v or v ran out of packets (transmitted all
fresh packets).

3. Lu > Lv and u started its window at the same time that v – v receives a kill at the end
of its gossip stage.

4. Lu > Lv and u started its window before v and u finished its gossip stage after (or in the
same phase) v started its gossip stage – v receives a kill at the start of its gossip

5. Lu > Lv and u started its window before v and u finished its gossip stage before v started
its gossip stage – u detects a collision during its transmission stage and starts transmitting
kill messages instead of following its schedule. Either v heard a kill message from u or u
ran out of packets (transmitted all fresh packets).

Therefore any active node v during its window either:
transmits all its fresh packets,
finds out its window length is too short to transmit its packets,
receives a kill message,
transmits a kill message that is received by another node.

So either all active nodes transmit all their fresh packets in their every window during interval
of length Lmax or there exists a node that increased its window length. J

Memory usage. Note that a node remembers queue sizes of all other nodes, where queue
sizes are bounded by Lmax (a value dependent on b, ρ and n). So each node uses at most
n · logLmax bits of memory.

4 Unknown queue size

In this section we consider a class of protocols where stations do not know how many packets
they have themselves. Each station decides whether to send a packet or not based only on
the current round number. If such station has no packets to send, it simply fails.

4.1 Impossibility result
In this subsection we will show that no oblivious algorithm can be stable against an adversary
with injection rate ρ = ω(1/ logn). Firstly, we introduce some auxiliary terminology and
provide a high level description of the proof of the result. Then the formal proof follows.

4.1.1 Auxiliary terminology and high level description of the
impossibility result

For a given set X, let 2X denote the set of all subsets of X.

I Definition 4. A scenario is a class of packet arrival patterns where only a specific subset
of stations have packets injected into them.



P. Garncarek, T. Jurdziński, and D. R. Kowalski 28:11

According to the above definition, each scenario can be identified with a subset of [n]
corresponding to nodes to which packets can be injected. And therefore, there are 2n possible
scenarios.

Consider a fixed oblivious algorithm A for a system which consists of n > 0 nodes. Then,
for a fixed set of scenarios S ⊂ 2[n] (i.e., subsets of U = [n]), let us build a bipartite graph
G(U ∪ S,E), where (u, s) ∈ E iff u ∈ s. That is, (u, s) denotes the fact that an adversary
can inject packets to the node u in the scenario s. [Observe that each bipartite graphs with
partition of nodes U ∪ S and U = [n] uniquely describes a set of scenarios and each set of
scenarios S uniquely determines the graph G(U ∪ S,E).]

We say that an execution of a system is saturated with respect to a scenario s ⊆ [n] in
some period of time when each queue i ∈ s is nonempty at each round of the given period.

For a given schedule A, let us restrict to its saturated executions on some set of scenarios.
Then, one can characterize succesful rounds of schedule A (i.e., such that a packet is
transmitted) in saturated executions for various scenarios, using the following terminology.

We say that a set H ⊆ [n] hits a scenario s ⊆ [n] iff |H ∩ s| = 1. Now, for a given
round t, let At ⊆ [n] be the set of nodes which transmit a message in round t according to
the schedule A (provided their queues are not empty). We also say that the scenario s is
successful in round t of A if a packet is successfully transmitted in round t of a saturated
execution of A in the scenario s. One can easily observe that s is successful in round t of A
iff At hits s, i.e., |At ∩ s| = 1. Thus, the number of (saturated) executions from a given set
S in which a packet is successfully transmitted in round t is equal to the number of elements
of S which are hit by At.

Interestingly, the above characterization of successful transmissions in saturated executions
in the scenarios from the set S is closely related to broadcasting in radio networks. Let us
consider a restricted broadcasting problem, where all nodes from U know a messageM and
the goal is to deliverM to all nodes from S in a radio network described by G(U ∪ S,E).
The radio network [2] is the model of distributed networks, where node u of a graph G

receives a message from v in a round t iff v is the only (in)neighbor of u in G transmitting a
message in r. One can observe that, for the set of transmitters At,

the number of successful scenarios from S in round t,
the number of elements of S which receive a message (from nodes in U) in the radio
network G(U ∪ S,E) in a round in which the set of transmitters is equal to At, and
the number of elements of S hit by At

coincide. Using this relationship, we will be able to use the lower bound for broadcasting in
radio networks from [2], which in particular implies that the above restricted broadcasting
problem requires Ω(log2 n) rounds.

In the nutshell, the proof of our impossibility goes as follows. Firstly, we focus merely
on saturated executions. For a given set of scenarios S, we say that a round t is c-sparse
if the number of successful scenarios from S in t wrt saturated executions is at most
O(|S|/(c log |S|)). (Recall that the set of successful scenarios from S in round t is equal to
the set of those elements of S which are hit by the set of transmitters At.) A set of scenarios
S is universally c-sparse if it is c-sparse for each possible round of each schedule (i.e., for
each possible set of nodes transmitting in a round).

The main technical step towards our result is phrased in the lemma (Lemma 8) which
says that, for some constant c2 ≥ 1 and for some arbitrarily large n, there exists a universally
c2-sparse set of scenarios of size polynomial wrt n. Intuitively, this technical claim says that
only a fraction of 1

c2 log |S| scenarios from S are successful in each round of each oblivious
schedule A. We prove this particular lemma by contradiction: assuming that it is false, we
build a schedule for the restricted broadcasting problem in radio networks of length O(log2 n),
which contradicts the lower bound for this problem from [2].
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The above described technical result implies that, on average, a scenario from a certain
set S is successful once in each c2 log |S| rounds. This in turn implies that, for each oblivious
algorithm A and each round t, there exists a scenario v ∈ S and time period [t, t+ s) (s ≥ n)
such that at most sρ′ packets are successfully transmitted during a saturated execution of A
in the period [t, t+ s) for the scenario v and some ρ′ = 1

c2 log |S| = O(1/ logn).
However, the above reasoning holds only for saturated executions. In order to generalize

this idea for arbitrary executions, we need to show that an adversary is able to inject packets
in such a way that an actual executions worsk as an suturated one, for arbitrary long period
of time. We deal with this challenge in Lemma 6, proved by contradiction.

4.1.2 Formal proof of the impossibility result
Let n be the number of stations, ρ = δ/logn for some constant δ be the injection rate of an
adversary ADV and b > n be the burstiness of the adversary ADV . Let us fix an algorithm
ALG. Let f(x) be an arbitrary function such that f(x)→∞ if x→∞ and f(x) = o(x).

I Theorem 5. There exist arbitrarily large numbers of stations n such that no non-adaptive
scheduler can have bounded queues against an adversary with injection rate ρ = 1/ logn and
burstiness b > n.

To prove Theorem 5, we will need additional definitions and Lemma 6.
Let Alg(v, I) for some scenario v and time interval I be the number of packets successfuly

transmitted by ALG during interval I under a saturated execution.
An interval I = [tb, te] is a ρ-bounded interval if there exists a scenario v ∈ S and a

constant s∗ = b− n ≥ 1 such that for every time t ∈ I:

Alg(v, [tb, t))− ρ′ · (t− tb) < s∗.

I Lemma 6. Consider ρ′ = c/ logn < ρ. There exist arbitrarily large numbers of stations
n and an infinite sequence of time prefixes Ti such that for each prefix Ti there exists a
ρ′-bounded interval I ⊆ Ti of length f(τi), where τi = |Ti|.

Proof of Theorem 5. Consider an adversary ADV ′ with injection rate ρ′ = O(1/ logn) and
burstiness b = n + s∗. Let T be one of the prefixes Ti whose existence is postulated in
Lemma 6 and τ = |T |. Let v be the scenario and I = [tb; te) – the interval of length f(τ) that
correspond to T . ADV ′ will wait without injecting any packets until tb. Then in one round
it will inject 1 packet to each station in scenario v (using at most n from its burstiness).
After that (until te), whenever ALG successfuly transmits a packet in the scenario v, ADV ′
injects a new packet to the station that just transmitted. According to Lemma 6 ADV ′ can
do this using at most additional s∗ of its burstiness.

Therefore an adversary ADV with injection rate ρ = ω(1/ logn) and burstiness b = n+s∗
can inject an additional (ρ−ρ′) · f(τ) packets into the system that will not be transmitted by
time te. So as we pick longer prefixes T (that exist according to Lemma 6), we get f(τ)→∞
and thus (ρ− ρ′) · f(τ)→∞. So the queues are not bounded. J

Before we prove Lemma 6, we introduce a new structure and more auxiliary lemmas.

I Definition 7. A connected graph G is (n, c2)-good if:
1. G is bipartite, with partition U and S,
2. |U | = n,
3. |S| = s = poly(n) ≤ nc2 ,
4. |S| ≥ |U |,
5. each node in S has at least one neighbour in U .



P. Garncarek, T. Jurdziński, and D. R. Kowalski 28:13

The set U represents original stations. Each element a ∈ S represents a scenario, where
only the nodes adjacent to a in graph G receive packets.

I Lemma 8. There exist arbitrarily large numbers n, such that there exists a (n, c2)-good
graph G = (U ∪ S,E) such that in one round U can transmit a packet to at most s

c2 log s
nodes in S, where s = |S| and c2 ≥ 1 is some constant.

We will prove the above lemma later (but we use it now).

Proof of Lemma 6. Proof by contradiction.
Consider an adversary ADV ′ with injection rate ρ′ < ρ. According to Lemma 8 there

exists arbitrarily large n and a (n, c2)-good graph G such that in one round U can transmit
a packet to at most s

c2 log s nodes in S.

Contrary, assume that for all scenarios v ∈ S, all intervals I = [tb, te] ⊆ T such that
te − tb = f(τ), there exists t ∈ I such that

Alg (v, [tb, t))− ρ′ · (t− tb) ≥ s∗.

Then we can split almost entire prefix T ′ = T \ (τ −f(τ), τ ] into small intervals J1, J2, . . . , Jk
for some k, where Ji = [ti−1, ti) ends at time ti for which the above inequality holds, where
t0 = 0 is the beginning of prefix T and tk ∈ [τ − f(τ), τ ] ⊆ T . So for all i we have |Ji| ≤ f(τ)
and Alg(v, Ji)− ρ′ · (|Ji|) ≥ s∗. For each Ji we have Alg(v, Ji) ≥ ρ′ · |Ji|. We can sum this
over all Ji to get

Alg(v, T ′) ≥
∑
i

ρ′ · |Ji| ≥ ρ′ · (τ − f(τ) + 1).

Let B be the sum of all succesful transmissions by the algorithm ALG across all considered
scenarios S. So

B ≥
∑
v∈S

ALG(v, T ′) ≥ s · ρ′ · (τ − f(τ) + 1)

On the other hand, since the set of scenarios S is represented by a (n, c2)-good graph G, in
at most s

c2 log s scenarios a packet can be sent in one round of the algorithm (we picked our n
and G according to Lemma 8). Therefore in τ rounds there are at most τ · s

c2 log s packets
sent across all scenarios. So

B ≤ τ · s

c2 log s

Then we must have τ · s
c2 log s ≥ s · ρ

′ · (τ − f(τ) + 1), and thus ρ′ ≤ τ
(τ−f(τ)+1)·c2 log s . Since

f(τ) = o(τ), for large enough τ we have τ
(τ−f(τ)+1) < 2 and so

ρ′ ≤ 1
c2 log s = 1

c2 lognc2
= 1
c2c2 logn

However ρ′ = c/ logn and for c > 1/(c2)2 we have a contradiction! J

Proof of Lemma 8. Proof by contradiction.
Suppose that for all s, for all (n, c2)-good graphs G = (U ∪ S,E) where |S| = nc2 = s,

there exists a subset of transmitters U that in one round can transmit a packet to more
than s

h(n) log s receivers in S, where h(n) = ω(1) and h(n) = o(logn). We will build a
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broadcasting algorithm for a graph H = (V, F ) with source a, where V = U ∪ S ∪ {a} and
F = E ∪ {(a, v)|v ∈ U} that requires o(log2 n) rounds, which contradicts the result of Alon
et al. [2].

The broadcasting algorithm. According to our assumption we can inform in one
round s

h(n) log s nodes in S. Let us define new sets S′ and U ′:

set S′ consists of all uninformed nodes from S (so |S′| ≤ s− s

h(n) log s ),

each node in S′ has at least one neighbour in |U ′| (for each node v ∈ S′ we take v’s
arbitrary neighbour and add it to U ′; so far |U ′| ≤ |S′|),
if |U ′| ≤ |S′|1/c2 then we take arbitrary nodes v ∈ U and add them to U ′ until |U ′| =
|S′|1/c2 (note that |S′|1/c2 ≤ |S′|).

Let G′ be a subgraph of G induced by nodes U ′ ∪ S′. Let s′ = |S′| and n′ = |U ′|. Then the
graph G′ is a (n′, c2)-good graph.

We repeat our algorithm recursively until the size of set S is constant. Let T (s) be the
number of iterations required. T (s) = 1+T (s− s

h(n) log s ). The value of s will be halved after

every s/2 · log(s/2)
h(s/2) iterations. So T (s) ≤ s/2 · log(s/2)

h(s/2) + T (s/2). Thus T (s) = o(log2 s).

Each iteration takes only 1 round, so we only used o(log2 s) = o(log2 n) rounds. J

4.2 Algorithm

In this section we show that there exists an oblivious algorithm which is stable for injection
rates ρ = O( 1

log2 n
). Recall that we consider such protocols that the transmission pattern of

each node is determined by ID of the node and the number of nodes n. That is, the pattern
for a node is a 0-1 sequence.

I Theorem 9. There exists a stable algorithm for injection rates ρ = O( 1
log2 n

), such that
transmission pattern of each node is determined by its ID.

We describe the proof of Theorem 9 in the remaining part of this section. More precisely,
we show that a stable algorithm exists for each n. In the proof, we use Probabilistic Method.

The schedule for each ID i ∈ [n] will be just a 0-1 sequence of length W = O(n2) repeated
infinite number of times. (The exact value of W will be determined later.)

Let l = logn (more precisely, l = blognc). For a given W ∈ N, we build a 0-1 sequence Xi

of length W for each ID i ∈ [n] such that Prob(Xi[t] = 1) = 1
21+i mod l for each i ∈ [W ] and

all probabilistic choices are independent. Moreover, we split W into consecutive phases of
length l. That is, the first l elements ofW form the first phase, the next l elements ofW form
the second phase, and so on. And, the number of phases is equal to F = W/l = W/ logn.
Consider an execution of a schedule of lenght W determined by the above defined random
sequences under the assumption that the number of injected packets during an execution of
a schedule is at most ρW , where ρ = O(1/ log2 n). (The actual value of the constant hidden
in the big-O notation will be determined later.) Thus, an adversary can inject packets in at
most ρW = O

(
1

log2 n
F logn

)
= O(F/ logn) phases. Thus, no packet is injected in at least

F (1− 1
logn ) ≥ 1

2F phases. A phase in which
no packet is injected, AND
no queue becomes empty

is called a clear phase.



P. Garncarek, T. Jurdziński, and D. R. Kowalski 28:15

Now, let us consider a clear phase. Let m be the number of nodes with non-empty queues
at the beginning of such a phase. Moreover, let k ≤ l = blognc be such that 2k < m ≤ 2k+1.
Consider two cases:
(i) no packets are successfully transmitted in the first k − 1 rounds of the phase,
(ii) at least one packet is transmitted in the first k − 1 rounds of the phase.
For (i), the probability that a packet is successfully transmitted in the kth round of the
phase is m · 1

2k+1 ·
(
1− 1

2k+1

)m−1 ≥ 1
4e = c, where e is the base for natural logarithms. In

the case (ii) we are guaranteed that at least one packet is transmitted in a phase. Thus, the
probability that (at least one) packet is transmitted in a clear phase is at least c, where c is
a constant.

As the number of clear phases is at least 1
2F and the probability of a successful transmission

in a clear phase is ≥ c, the expected number of successful transmissions in W rounds (i.e., F
phases) is ≥ F

2c = W
2c logn ≥ 4ρW , provided ρ = O(1/ logn) is sufficiently small. Significantly,

as all the random choices are independent, we can use Chernoff bounds to estimate the
probability that the actual number of transmitted packets is close to its expectation. More
precisely, let X denote the number of transmitted packets in the considered W rounds. As
we have shown, X is bounded from below be the sum X of F/c independent 0-1 random
variables such that E[X] ≥ F

2c , where c is a fixed constant. Thus,

Prob(X < 4ρW ) < Prob
(
X <

F

4c

)
< Prob

(
X < (1− 1

2)E[X]
)
< e−E[X]/8 = e−

W
16c log n .

(1)

Derandomization. Now, our goal is to show that, with non-zero probability, a randomly
chosen oblivious schedule of length W (i.e., n random 0-1 sequences of length W ) guarantees
≥ 4ρW successful transmissions irrespective of the injection pattern, provided the number of
packets in queues at the beginning of an execution of this schedule is at least ≥ F/(4c) ≥ 4ρW
and the number of injected packets is at most ρW . By Probabilistic Method, this fact will
imply that there exists an oblivious schedule which guarantees 4ρW successful transmissions
in W rounds, provided there are at least 4ρW packets at the beginning and at most ρW
packets are injected during the considered period of W rounds.

Let a injection event denote the event that a packet is injected in some round to some
node. Moreover, let a deletion event denote the fact that the queue of a particular node
becomes empty at particular round. Observe that the actual behaviour of a fixed schedule in
a particular period T of W rounds can be determined by the following factors:

the set of nodes with non-empty queues at the beginning of T ,
injections events during T , where each injection event is described by: the ID v of the
node, the number of the round in which a packet is injected to v,
deletion events during T , where each deletion event is described by: the ID v of the node
and the number of the round in which the queue of v becomes empty.

According to our assumptions, the number of injection events is at most ρW . Each deletion
event corresponds to a unique successful transmission of a packet. Thus, if the number of
deletion events is larger than 4ρW , then the number of transmitted packets is also ≥ 4ρW.
Therefore, it is sufficient to consider the case that the number of deletion events is ≤ 4ρW
and therefore the number of all events is at most 5ρW .

According to the above description of events, each event can be described in

dlogne+ dlogW e+ 1 < 2(logW + logn) ≤ 6 logn
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bits. This bound follows from the fact that dlogne bits are sufficient to encode ID, dlogW e
bits are sufficient to encode the round number in the schedule of length W and one bit can
encode the type of the event, either an injection event or a deletion event. (Let us stress
here that we do not need the actual information about the sizes of queues at the beginning,
since we assume that deletion events can be determined by an adversary. This assumption
generalizes the scenario, where the queue becomes empty only after transmitting all packets
in it.) Thus, finally, the size of the set of all possible scenarios is at most

2n · 25ρW ·6 logn < 231ρW logn,

for large enough n, where
2n is the number of possible sets of non-empty queues at the beginning;
25ρW ·6 logn is the upper bound on the size of the set of possible events,
the inequality follows from the fact that W = n2 and ρ = Θ(1/ log2 n).

As the probability that the number of transmitted packets is smaller than 4ρW is at most
e−

W
16c log n for a fixed scenario (see (1)), the probability that a random schedule does not

guarantee at least F
4c successful transmissions is at most

231ρW logn · e−
W

16c log n < 231ρW logn− W
16c log n < 1,

provided ρ = O(1/ log2 n) is small enough. Thus, by Probabilistic Method, there exists a
schedule S of lengthW which guarantees that at least ρW packets are successfully transmitted
provided that the number of packets at the beginning is at least ρW and the number of
injected packets is at most ρW .

In the above reasoning we assumed that at most ρW packets can be injected in W rounds.
This is very restrictive, since the adversary can actually inject ρW + b packets in W rounds,
where b is the burstiness. Significantly, b is unknown and therefore a schedule is independent
of b. In order to take this circumstance into account, let us consider any fixed b ∈ N. Let S
be a schedule of length W which guarantees that 4ρW packets are transmitted during S,
provided there are at least 4ρW packets in queues at the beginning. We will analyze the
schedule S in consecutive stages of length T = 2bW . Thus, the schedule S is repeated 2b
times in a stage. We will show that the number of packets in queues is smaller than 2T at
the beginning of each stage which in turn implies that the number of packets in queues is
smaller than 3T in each round. Consider two cases:
(a) The number of packets in queues at the beginning of a stage is at least T and at most

2T .
(b) The number of packets in queues at the beginning of a stage is smaller than T .
For (b) observe that the adversary can inject at most ρT + b < T packets in a stage and
therefore the number of packets at the beginning of the next stage is at most 2T . Thus, it
remains to consider (a). We say that an execution of S is safe if the number of injected packets
during that execution is at most ρW . As an adversary can inject at most ρT +b = 2b ·ρW +b

packets in the stage, at least b out of 2b executions of S are safe. As shown above, at least
4ρW packets are transmitted during a safe execution of S. Eventually, the number of packets
transmitted in a stage of length T is at least b · 4ρW ≥ 2ρT > ρT + b. Thus, the number of
successfully transmitted packets is the stage is larger than the number of injected packets
and therefore the number of packets in all queues at the beginning of the next stage is at
most 2T .
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5 Conclusions

In this work we investigated how stability of local schedulers run on a shared channel depends
on their adaptivity. A natural research direction includes studying of other types of schedulers,
as well as delivering more quantitative measurements of schedulers’ quality (such as latency,
queue sizes, local memory size, etc.). Schedulers could also be studied in the context of other
related models with contention, such as SINR or dependency-graph models.
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