
Distributed Set Cover Approximation:
Primal-Dual with Optimal Locality
Guy Even
Tel-Aviv University, Israel
guy@eng.tau.ac.il

Mohsen Ghaffari
ETH Zurich, Switzerland
ghaffari@inf.ethz.ch

Moti Medina
Ben-Gurion University, Israel
medinamo@bgu.ac.il

https://orcid.org/0000-0002-5572-3754

Abstract
This paper presents a deterministic distributed algorithm for computing an f(1+ε) approximation
of the well-studied minimum set cover problem, for any constant ε > 0, in O(log(f∆)/ log log(f∆))
rounds. Here, f denotes the maximum element frequency and ∆ denotes the cardinality of the
largest set. This f(1 + ε) approximation almost matches the f -approximation guarantee of
standard centralized primal-dual algorithms, which is known to be essentially the best possible
approximation for polynomial-time computations. The round complexity almost matches the
Ω(log(∆)/ log log(∆)) lower bound of Kuhn, Moscibroda, Wattenhofer [JACM’16], which holds
for even f = 2 and for any poly(log ∆) approximation. Our algorithm also gives an alternative
way to reproduce the time-optimal 2(1+ε)-approximation of vertex cover, with round complexity
O(log ∆/ log log ∆), as presented by Bar-Yehuda, Censor-Hillel, and Schwartzman [PODC’17] for
weighted vertex cover. Our method is quite different and it can be viewed as a locality-optimal
way of performing primal-dual for the more general case of set cover. We note that the vertex
cover algorithm of Bar-Yehuda et al. does not extend to set cover (when f ≥ 3).

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis, Math-
ematics of computing → Graph algorithms, Theory of computation → Distributed algorithms

Keywords and phrases Distributed Algorithms, Approximation Algorithms, Set Cover, Vertex
Cover

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.22

Acknowledgements Part of this work was done while the authors were visiting the Max Planck
Institute for Informatics.

1 Introduction and Related Work

The set cover problem is one of the central problems in the study of approximation algorithms.
For instance, the first chapter of the textbook of Williamson and Shomoys [27] is dedicated to
illustrating “several of the central techniques of the book applied to a single problem, the set
cover problem.” In this paper, we present the first time-optimal distributed approximation
algorithm for the set cover problem, with an approximation guarantee that essentially matches
the best known centralized approximation. Let us elaborate on this by first recalling the
problem statement and centralized approximation bounds, as well as the distributed model
of computation in the study of this problem.

© Guy Even, Mohsen Ghaffari, and Moti Medina;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guy@eng.tau.ac.il
mailto:ghaffari@inf.ethz.ch
mailto:medinamo@bgu.ac.il
https://orcid.org/0000-0002-5572-3754
https://doi.org/10.4230/LIPIcs.DISC.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

1.1 Background
Set Cover. We are given a ground set of elements U and some sets S1, S2, . . . , Sk ⊆ U . The
objective is to find a minimum-cardinality collection of the sets that covers all the elements,
i.e., a collection I ⊆ {1, . . . , k} that minimizes |I| subject to ∪i∈ISi = U .

Known Centralized Approximations and Inapproximability Bounds. For each element
u ∈ U , we use fu = |{i | u ∈ Si}| to denote the frequency of this element, i.e., the number of
sets that contain u. We also use f to denote the maximum frequency among all elements,
i.e. f = maxu∈U fu . A standard approximation guarantee for the set cover problem is
an f -approximation, see e.g. [4, Theorem 2] or [27, Theorem 1.6] or [26, Theorem 15.2].
Moreover, this approximation is known to be nearly the best possible for polynomial-time
central algorithms: For the special case f = 2 (when the problem is better known as the vertex
cover problem), Dinur and Safra [9] proved NP-hardness of 1.36 approximation, improving
on a 7/6− ε hardness by Hastad [14]. For general f , the inpaproximately has been improved
in a sequence of papers: Trevisan gave an Ω(f1/19) bound [25]; Holmerin gave an Ω(f1−ε)
bound [15]; Dinur, Guruswami, and Khot improved that to f−3−ε; which was then improved
by Dinur, Guruswami, Khot, and Regev to f − 1− ε [8]. Furthermore, assuming the Unique
Games Conjecture, Khot and Regev proved an inapproximability of f − ε [16]. We remark
that another approximation bound for the set cover is ln |U | – see [27, Theorem 1.11]. This
bound is of interest when the frequency of appearances of the elements in different sets is
large. Moreover, this bound is also known to be the nearly the best possible in the worst-case:
A series of works by Lund and Yannakakis [21], Feige [10], and Moshkovitz [22] showed that
it is NP-hard to always approximate set cover to within (1− ε) ln |U |, for any constant ε > 0.
We note that although the standard way of formulating the upper bound is ln |U |, the actual
bound can be written more precisely as ln ∆ where ∆ denotes the cardinality of the largest
set.

Distributed Computation Model. We consider the CONGEST [23] model, which is the
standard synchronous message passing model in distributed computing. In this model, the
network is abstracted as a simple graph G = (V,E) where n = |V |. There is one processor on
each node of the network, which initially does not know the topology of the network. These
processors can communicate in synchronous rounds where per round each processor/node
can send one O(logn) bit message to each of its neighbors.

Distributed Formulation of Set Cover. The standard distributed formulation of the set
cover problem (see, e.g., [19]) is that we have one processor for each element in the ground
set U , and also one processor for each of the sets S1, S2, . . . , Sk ⊆ U . The network is the
natural corresponding (bipartite) graph where each element-processor is connected to the
set-processors whose set contains this element. Communications on this network follow the
CONGEST model of synchronous message passing, as explained above.

The above is a natural formulation. As prototypical examples, it captures the following
settings: cases where we want to select as few as possible of the servers so that they can
serve all of the clients, when each element can be served only by certain servers; and cases
where we want to select as few as possible of monitoring agents who can control all workers,
where each worker can be controlled only by certain monitoring agents1.

1 Of course, in the practical version of each of these problems, there might be many more constraints or
optimization objectives. However, that goes beyond the objective of our paper, which is to characterize
the complexity of a basic and fundamental problem in distributed approximation algorithms.

G. Even, M. Ghaffari, and M. Medina 22:3

1.2 Our Result
We present a deterministic distributed algorithm that almost matches the f -approximation
mentioned above, up to a (1 + ε) factor for any arbitrary small constant ε > 0, in a
time-complexity that is provably optimal:

I Theorem 1. There is a deterministic distributed algorithm in the CONGEST model that
computes an f(1 + ε) approximation of minimum set-cover, in O

(
log(f∆)

ε log log(f∆)

)
rounds, in

any set-system of frequency f and maximum set size ∆, and for any 0 < ε < 1. Moreover, the
algorithm operates on an anonymous network and uses messages of length O(ε−1 · log(f ·∆)).

The matching lower bound is due to a celebrated work of Kuhn, Moscibroda, and
Wattenhofer [19]: they show that even the simple case of f = 2, where the set cover problem
boils down to vertex cover, has a lower bound of Ω

(
log ∆

log log ∆

)
rounds, for any approximation

up to poly(log ∆). Moreover, for all cases of interest for f -approximation – i.e., when f

is smaller than the other known approximation bound ln ∆ – , the O
(

log(f∆)
log log(f∆)

)
round

complexity of the above algorithm asymptotically matches the Ω
(

log ∆
log log ∆

)
lower bound.

We note that coming up with a deterministic distributed algorithm that achieves poly log ∆
(or even poly logn) approximation for set cover, even with unbounded size messages, with
poly logn number of rounds, where n is the number of processors in the network, would
be a major breakthrough: as shown recently in [12, Theorem 7.5], it would imply that any
randomized distributed algorithm with poly logn number of rounds for any locally checkable
problem can be derandomized and solved in poly logn number of rounds deterministically.
This includes computing a Maximal Independent Set in poly logn number of rounds, which
is an open question by Linial since the 80’s [20].

1.3 The Main Related Work and Comparison of Techniques
Sequential Primal-Dual. A standard centralized approximation algorithm that gives an
f -approximation for set cover is the one based on the primal-dual schema. See, e.g., Bar-
Yehuda and Even [4] or Vazirani’s textbook [26, Section 15.2] for a comprehensive description.
Summarized, this schema works roughly as follows: there is a variable yu ∈ [0, 1] for each
element u ∈ U ; these are known as dual variables. Until all elements are covered, we
iteratively pick an uncovered element, say u, and we raise its variable yu until for one of
the sets containing u, say Si, we have

∑
u′∈Si

yu′ = 1. We call such a set tight (because
its constraint in the primal linear program is tight). Then we add this tight set to the set
cover to be outputted at the end, and we consider all of its elements covered. As shown
in [4, Theorem 2], and [26, Theorem 15.3], this method gives an f -approximation.

Standard Distributed Primal-Dual. The above method is clearly sequential. However, one
can easily adapt it to the distributed setting2, when we relax the approximation factor
to f(1 + ε) for any arbitrarily small constant ε > 0. Initially, set yu = 1/∆ for each
element u ∈ U . Then, in each iteration, we do as follows: (1) for each set Si that has∑
u′∈Si

yu′ ≥ 1 − ε/2, add this set Si to the output set cover (all at the same time) and
consider all of its elements covered. Then, for each uncovered element u, set yu ← yu · 1

1−ε/2 .
The method terminates in O(log ∆/ε) rounds and outputs an f(1 + ε) approximation.

2 In fact, this adaptation is so simple and well-known that we are not sure what is the reference for it (or
its first appearance). The analysis follows directly from [26, Proposition 15.1].

DISC 2018

22:4 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

As a side comment, we add that Kuhn et al. [18,19] give a general algorithm for obtaining
a (1 + ε) approximation of fractional packing linear programs, which can then be turned
into an integral solution for f(1 + ε) approximation of set cover via a simple deterministic
rounding. However, the resulting algorithm would be slower than the above.

Sped-up Distributed Solution, via the Local-Ratio Method. In an elegant recent work,
Bar-Yehuda, Censor-Hillel, and Schwartzman [3] presented an improved algorithm for the
special case of f = 2 (i.e., vertex cover), based on the local-ratio method [5] which itself
is closely related to the primal-dual scheme [6]. Their algorithm improves the round
complexity for f(1 + ε) = 2(1 + ε) approximation of vertex cover to the optimal bound of
O(log ∆/(ε log log ∆)). Their algorithm also works for the weighted variant of the vertex
cover problem. This round complexity matches the lower bound of Kuhn, Moscibroda, and
Wattenhofer [19]. However, the algorithm of [3] seems especially crafted for the case of f = 2
and it does not generalize3 to even f = 3. In a very rough sense, the limitation is as follows:
the method works by dividing the leftover space in dual constraints (i.e., 1 −

∑
u′∈Si

yu′)
into two parts, a vault and a bank. The vault is used to initiate requests for increases in the
dual variables (i.e., yu′) and the bank is used to securely accept these dual variable increases,
while making sure that

∑
u′∈Si

yu′ ≤ 1. When trying to extend this to f = 3 or higher, it
is not clear how to make all the sets containing one element agree consistently with the
amount of the raise in the dual variable, while respecting their own individual

∑
u′∈Si

yu′ ≤ 1
constraints, and without slowing down the process too much.

Our Method, in a Nutshell. We also follow the primal-dual schema. But our method can
be viewed as an improved and more general way of performing primal-dual distributedly,
with optimal locality (i.e., round complexity) for set cover. In a very rough sense, it is based
on a natural dynamic process that, over time, flexibly adjusts the amount of increase per
each dual variable, while (1) not violating any of the constraints, (2) maintaining a large
step of increase for most variables at most times. We are hopeful that dynamics of the same
style may lead to improvements for many other optimization problems.

A conceptual contribution, in the context of randomized Maximal Independent Set
Algorithms [2, 11]. Besides the improvement in the round complexity of the set-cover
problem, we think of our solution as shedding some light on some other known prior work [2,11].
The dynamic process that we use for adjusting the increase steps in dual variables is closely
related to the randomized maximal independent set algorithm of Ghaffari [11]. We note
that a parameter-optimized version of the latter was used by Bar-Yehuda, Censor-Hillel,
Ghaffari, and Schwartzman [2] to obtain a 2(1 + ε) approximation of maximum matching in
O(log ∆/ log log ∆) rounds. However, the place where we use the general dynamic process
appears quite different than those of [2, 11]. While in those previous papers the dynamic
process was set up to adjust the probability of trying to join the MIS (or the nearly maximal
matching), in our current paper, the dynamic process is used in a fully deterministic way and
it governs the adjustments in the increase step of dual variables. In hindsight, this suggests
(in an informal way) that one can view the probabilities in Ghaffari’s MIS algorithm [11]
as fractional solutions to some linear program. The dynamic process tries to adjust these
probabilities towards the “sweet spot” where per round many nodes get hit (by either joining

3 We have also double checked this with Gregory Schwartzman, through personal communication.

G. Even, M. Ghaffari, and M. Medina 22:5

MIS or having a neighbor join MIS). This is reminiscent of the standard randomized rounding
method in design of approximation algorithms, where one first finds a good fractional solution
to a suitable linear program formulation, and then performs a randomized rounding to turn
these fractional solutions to integral; see e.g., [27, Section 1.7]. The difference is that the
algorithm of [11] does not wait for these fractional variables to reach the sweet spot and
only then do the rounding (i.e., deciding probabilistically for various elements). It instead
performs a certain “iterative rounding” where even the interim fractional values are used for
attempts of forming a good integral solution (an independent set that is adjacent to a large
set of vertices).

1.4 Other related work
In this section we survey other related work. We start with results where f = 2, i.e.,
vertex cover. Recently, Ben-Basat, Even, Kawarabayashi, and Schwartzman [7] presented
a 2-approximation algorithm for minimum weighted vertex cover in CONGEST with round
complexity of O

(
logn log ∆
(log log ∆)2

)
. Their approach generalizes the (2+ε)-approximation algorithm

of [3] and improves the dependency on ε−1 to logarithmic. For a detailed overview of work
on vertex cover we refer the reader to [1, 3].

We now turn to results for general f : Koufogiannakis and Young [17] presented a
distributed algorithm for weighted set cover in the LOCAL model. Their algorithm achieves
an approximation ratio of f in O(log2m) rounds w.h.p, where m is the number of elements.
Kuhn et al. [18, 19] studied covering and packing linear programs in the LOCAL model and
obtained a (1 + ε)-approximation algorithm in O(ε−1 logn) rounds w.h.p., where n is the
number of primal and dual variables. Ghaffari, Kuhn, and Maus [13] presented a randomized
distributed approximation scheme (i.e., (1 + ε)-approximation) for arbitrary distributed
covering and packing integer linear programs in the LOCAL model with round complexity
O(poly log(n/ε)) w.h.p., where n is the number of primal and dual variables. For more
results in the LOCAL model we refer the reader to the survey by [24].

2 Problem Definition and Model of Computation

In this section we introduce the problem of vertex cover in hypergraphs (VCH). Designing a
distributed CONGEST algorithm for VCH directly translates to an algorithm for set cover.

2.1 Preliminaries
A hypergraph H is a pair (V,E) where V denotes the set of vertices and E ⊆ 2V . Every
hyperedge e ∈ E is a nonempty subset of vertices. The maximum degree of the graph G is
denoted by ∆, and defined by ∆ , maxv |{e ∈ E | v ∈ E}|. The rank of H is denoted by f ,
and defined by f , maxe∈E |e|.

2.2 Vertex Cover in Hypergraphs (VCH)
A subset C ⊂ V is a vertex cover in H = (V,E) if C ∩ e 6= ∅, for every hyperedge e ∈ E.
The minimum cardinality vertex cover problem in hypergraphs is defined as follows.

Problem: Minimum Cardinality Vertex Cover in Hypergraphs (VCH)
Instance A hypergraph H = (V, E).
Solution: A vertex cover C.
Objective: Minimize the cardinality of the cover C.

DISC 2018

22:6 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

We denote the cardinality of an optimal vertex cover by opt.

Note that the VCH problem translates to set cover as follows:
(i) Each element in the ground set U is an hyperedge in the VCH formulation, and every

set in the set cover problem is a vertex in VCH.
(ii) Indeed, the maximum rank of a hyperedge in VCH translates to the maximum frequency

of an element in set cover and that the maximum degree in VCH translates to the
maximum cardinality of a set in the set cover problem.

Also note that VCH is identical to the hitting set problem in set systems.

2.3 The Network
The network that corresponds to a hypergraphH = (V,E) is a bipartite graph N = (V ∪E,L),
where there is a processor for every vertex v and a processor for every hyperedge e. The set
of links L consists of all the pairs (v, e) ∈ V × E such that v ∈ e. Our algorithm does not
require distinct IDs, namely, the network is anonymous. Moreover, the algorithm does not
even rely on numbering of ports.

3 Algorithm Description

The algorithm is a primal-dual algorithm that updates the primal and dual variables in
iterations. Each hyperedge has two variables: an auxiliary variable x(e) and an edge packing
variable y(e). We denote the value of the variables in iteration t by xt(e) and yt(e).

The dual variable y(e) is a nonnegative edge packing variable. By an edge packing
variable we mean that, for every vertex v and in every iteration t,

∑
e3v yt(e) ≤ 1. The

variable y(e) is monotone non-decreasing over time.
The auxiliary variable x(e) is initialized to x0(t) = 1/K. The dynamics of x(e) allow
to either divide or multiply x(e) by K in each iteration as long as it is bounded by
1/K. Here, K ≥ 2 is a free parameter that is to be fixed later. The role of the auxiliary
variables x(e) is to control the increase of the dual edge packing variables y(e).

I Definition 2. A vertex v is ε-tight if
∑
e3v yt(e) ≥ 1− ε.

Following the primal-dual approximation scheme, a vertex v joins the vertex cover as soon
as it becomes ε-tight. The algorithm terminates when the set of ε-tight vertices covers all
the hyperedges.

The following terminology is used in the algorithm and its analysis.
1. The set of edges that contain a vertex v is denoted by E(v).
2. For a subset of edges A ⊆ E, let xt[A] ,

∑
e∈A xt(e).

3. For a vertex v let yt[v] ,
∑
e3v yt(e).

I Definition 3. The effective degree of an edge e is defined by

dt(e) =
∑
v∈e

xt[E(v)].

Note that dt(e) =
∑
e′:e′∩e 6=∅ |e ∩ e′| · xt(e′). The “natural” definition of effective degree

dt(e) =
∑
e′:e′∩e 6=∅ xt(e′) works as well. However, it is not clear how to implement the natural

definition in CONGEST.

I Definition 4. An edge e is light (in iteration t) if dt(e) < K. If dt(e) ≥ K, we say that
the edge is heavy.

G. Even, M. Ghaffari, and M. Medina 22:7

3.1 The Algorithm (ALG)

Input: Hypergraph H = (V,E) and 0 < ε < 1.
Output: A vertex cover C ⊆ V .
Initialization: For every e ∈ E, x0(e)← 1/K, y0(e)← 0, C ← ∅, E′ ← E.
Invariants: (1) The variables y(e) constitute a feasible edge packing. (2) C equals the set
of ε-tight vertices.
ALG: The algorithm works by iterations until E′ = ∅. Iteration t works as follows:
1. For each light edge e ∈ E′, set yt+1(e)← yt(e) + xt(e) · ε/K.
2. Add all the new ε-tight vertices to C.
3. Remove covered edges: E′ ← E′ \ {e ∈ E : e ∩ C 6= ∅}.
4. Update the auxiliary variables of edge e ∈ E′, as follows:

xt+1(e) =
{
xt(e)/K, if dt(e) ≥ K //heavy edge rule

min{K · xt(e), 1/K}, if dt(e) < K //light edge rule.

The following simple observation bounds dt(e) for every edge e and iteration t.

I Observation 5. For all e ∈ E, and for all iterations t it holds that

dt(e) ≤
f∆
K
, and (1)

dt(e)
K
≤ dt+1(e) ≤ K · dt(e) . (2)

4 Analysis

The analysis consists of two parts. In the first part, we prove that if the algorithm terminates,
then it finds a vertex cover that is a (1 +O(ε)) · f -approximation of a minimum cardinality
vertex cover. In the second part, we prove an upper bound on the number iterations of the
algorithm. Every iteration requires a constant number of communication rounds, and hence
the bound on the number of communication rounds follows.

4.1 Approximation Ratio
I Claim 6. Throughout the algorithm, the variables yt(e) constitute a feasible edge packing.

Proof. Fix a vertex v. The proof is by induction on t. Initially, y0(e) = 0, hence, y0 is clearly
a feasible edge packing. Assume that {yt(e)}e is an edge packing (i.e., yt[v] ≤ 1, for every v),
we now prove that {yt+1(e)}e is an edge packing. If yt+1[v] > yt[v], then v is not ε-tight in
the end of iteration t, and thus yt[v] < 1− ε.

Let e∗ denote an arbitrary edge such that v ∈ e∗ and yt+1(e∗) > yt(e∗). In particular,
this implies that e∗ is light (see Step 1 of the algorithm), i.e., dt(e∗) < K.

We conclude that

yt+1[v]− yt[v] = ε

K
·

∑
e3v,e light

xt(e)

≤ ε

K
· dt(e∗) < ε ,

where the second inequality holds because every light edge e that contains v contributes at
least xt(e) to dt(e∗). Since yt[v] < 1− ε, the claim follows. J

DISC 2018

22:8 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

I Claim 7. At the end of every iteration t of the algorithm, the cardinality of the set of
ε-tight vertices is at most f

1−ε · opt.

Proof.

|{v | yt[v] ≥ 1− ε}| ≤
∑

v|yt[v]≥1−ε

1
1− ε

∑
e3v

yt(e)

≤ 1
1− ε

∑
e∈E

∑
v∈e

yt(e)

≤ f

1− ε
∑
e∈E

yt(e) ≤
f

1− ε · opt ,

where the first inequality follows from the definition of ε-tight vertices, the third inequality
follows from the fact that |e| ≤ f , and the fourth inequality follows from weak. J

Note that throughout the algorithm, C is the set of ε-tight vertices. Upon termination,
E′ = ∅, and thus C is a vertex cover. Hence, by Claim 7, it follows that when the algorithm
terminates, the set C is vertex cover and its cardinality is (1 +O(ε)) · f · opt.

4.2 Bounding the Number of Rounds

In this section we prove the following theorem. Recall that the algorithm terminates when
E′ = ∅.

I Theorem 8. Let K ≥ 2, the algorithm terminates after O
(

log(f∆)
logK + K3

ε

)
iterations.

4.2.1 Golden Iterations

Let Lightt , {e ∈ E | dt(e) < K]}, and Heavyt , {e ∈ E | dt(e) ≥ K]}.

I Definition 9. An iteration t is a Type-1 iteration with respect to hyperedge e if it satisfies:

dt(e) < K and xt(e) = 1/K.

I Definition 10. An iteration t is a Type-2 iteration with respect to hyperedge e if it satisfies:

dt(e) ≥ 1 and
∑
v∈e

xt[E(v) ∩ Lightt] ≥
1

2K2 · dt(e).

An iteration t is a golden iteration with respect to e if it is a Type-1 or Type-2 iteration with
respect to e.

Our goal is to bound the number of iterations until termination. Throughout the analysis,
fix a hyperedge e, and assume that it is not covered after T iterations (i.e., e ∩ C = ∅).

I Definition 11. For a fixed hyperedge e not covered after T iterations, define the following

G. Even, M. Ghaffari, and M. Medina 22:9

subsets of iterations.

G1 ,

{
t ∈ [T] | dt(e) < K and xt(e) = 1

K

}
Type-1

G2 ,

{
t ∈ [T] | dt(e) ≥ 1 and

∑
v∈e

xt[E(v) ∩ Lightt] ≥
1

2K2 · dt(e)
}

Type-2

H , {t ∈ [T] | dt(e) ≥ K} Heavy
L , {t ∈ [T] | dt(e) < K} Light
U , {t ∈ [T] | xt+1(e) = K · xt(e)} Up

S ,

{
t ∈ [T] | xt(e) = 1

K

}
Saturated

4.2.2 Useful Claims
We denote the cardinalities of these subsets using lower case letters, e.g., g1 = |G1|, h = |H|,
etc.

I Claim 12. H = {t ∈ [T] | xt+1(e) = xt(e)/K} and u ≤ h.

Proof. The first part follows from Line 4 of the algorithm. The variable x0(e) is initialized
to 1/K, never exceeds 1/K, is divided by K in iterations in H, and multiplied by K in
iterations in U . Hence, 1/K ≥ xT (e) = x0(e) ·Ku−h, and u ≤ h, as required. J

I Claim 13. T ≤ 3h+ g1.

Proof. Note that ` ≤ u+s. Indeed, If t ∈ L, then either t ∈ U or xt(e) could not be multiplied
by K, hence t ∈ S. Since T = h+ `, by Claim 12 we conclude that T ≤ h+ u+ s ≤ 2h+ s.

To conclude the proof, we show that s ≤ g1+h. This holds simply because, S\G1 ⊆ H. J

I Claim 14. max{g1, g2} ≤ 2K3

ε .

Proof. For each Type-1 iteration t ∈ [T], the update of yt(e) due to Steps 1 and 4 is

yt+1(e) = yt(e) + xt(e) ·
ε

K
= yt(e) + ε

K
· 1
K
.

Hence yT+1(e) ≥ g1 · ε
K2 . Claim 6 implies that the yT+1(e′) variables constitute a feasible

edge packing, i.e., yT+1[v] ≤ 1 for every v, then yT+1(e) ≤ 1, and hence g1 ≤ K2/ε, as
required.

We bound g2 as follows. Consider a Type-2 iteration t ∈ [T]. Then,

∑
v∈e

yt+1[v]− yt[v] =
∑
v∈e

 ∑
e′3v,e′∈Lightt

ε

K
· xt(e′)


= ε

K
·
∑
v∈e

xt[E(v) ∩ Lightt]

≥ ε

K
· 1

2K2 · dt(e) ≥
ε

2K3 ,

where the last two inequalities follow from the definition of a Type-2 golden round (see
Definition 10). This implies that g2(e) ≤ 2K3/ε, as required. J

DISC 2018

22:10 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

I Claim 15. If dt(e) ≥ 1, and t 6∈ G2, then

dt+1(e) < 3
2K · dt(e). (3)

Proof. If dt(e) ≥ 1 and t is a not Type-2 iteration with respect to e, then
∑
v∈e xt[E(v) ∩

Lightt] < 1
2K2 · dt(e). Since xt+1(e) ≤ K · xt(e) if e ∈ Lightt, and xt+1(e) = xt(e)/K if

e ∈ Heavyt, we conclude that

dt+1(e) ≤ 1
K
·
∑
v∈e

xt[E(v) ∩Heavyt] +K ·
∑
v∈e

xt[E(v) ∩ Lightt]

≤ 1
K
· dt(e) +K · 1

2K2 · dt(e).

The claim follows. J

I Claim 16. h ≤ log(f∆/k2)
log(2K

3) + 4g2.

Proof. Partition H into maximally contiguous (disjoint) intervals H = H1∪· · ·∪Hz. Denote
the endpoints of Hi by [ti, bi]. Define

ai ,

{
t1 if i = 1
min{t < ti | ∀r ∈ [t, ti − 1] : 1 ≤ dr(e) < K} if z ≥ i > 1.

Note that, if i > 1, then the set {t < ti | ∀r ∈ [t, ti − 1] : 1 ≤ dr(e) < K} is not empty.
Indeed, ti − 1 belongs to this set as dti(e) ≥ K and 1 ≤ dti−1(e) < K.

Let Ii , [ai, bi]. Note that the intervals {Ii}zi=1 are pairwise disjoint.
Since x0(e) = 1

K for every e ∈ E and since
∑
v∈e |E(v)| ≤ f ·∆ we get that dai

(e) ≤ f∆/K.
Hence, by the definition of ai, we have

dai(e) ≤
{
f∆/K if i = 1
K if i > 1

By the definition of bi we have

dbi
(e) ≥ K.

Now,

dbi(e) ≤ dai(e) ·
(

3
2K

)|Ii∩G2|

·K |Ii∩G2|

≤ dai
(e) ·

(
2K
3

)3·|Ii∩G2|−|Ii∩G2|

.

The first inequality follows from Claims 5 and 15. The second inequality follows from
K < (2K/3)3, as K ≥ 2. Hence,

|Ii ∩G2| ≤ 3 · |Ii ∩G2|+
log
(
dai

(e)
dbi

(e)

)
log(2K/3)

Since

dai
(e)

dbi
(e) ≤

{
f∆/K2 if i = 1
1 if i > 1

,

G. Even, M. Ghaffari, and M. Medina 22:11

by summing up over all the disjoint intervals we obtain
z∑
i=1
|Ii ∩G2| ≤ 3g2 + log(f∆/K2)

log(2K/3) .

Since h ≤ g2 +
∑z
i=1 |Ii ∩G2|, the claim follows. J

4.2.3 Proof of Theorem 8
Proof of Theorem 8. Suppose that the algorithm does not terminate after T rounds because
the edge e remains uncovered. Claims 13, 16, and 14 and the fact that K ≥ 2 and 0 < ε < 1
imply that

T ≤ 3h+ g1

≤ 3
(

log(f∆/K2)
log(2K

3)
+ 4g2

)
+ g1

= 3 · log(f∆/K2)
log(2K

3)
+ 12g2 + g1

≤ 3 · log(f∆/K2)
log(2K

3)
+ 26K3

ε
.

Since log(2K/3) = Ω(logK), the theorem follows. J

5 Distributed Implementation

In this section we present a distributed implementation of the algorithm. To simplify the
presentation, we present the sequence of computations and messages performed by the
vertices and the edges in a combined fashion.

States. Every vertex v has three states: “active” - means that v did not decide yet if it
is in the cover or not, “in cover” - means that v decided to join the cover, “not in cover” -
means that v decided that it will not join the cover. Every edge e has two states: “uncovered”
and “covered”.

Distributed Implementation.
1. Every edge processor e maintains the variables x(e) and y(e). These variables are

initialized as follows: x(e)← 1/K and y(e)← 0. The initial state of e is “uncovered”.
2. Every vertex processor v maintains a variable E′(v) ⊆ E(v), where E′(v) denotes the

subset of edges that are not covered yet. Initialize E′(v)← E(v). The initial state of a
vertex is “active”.

3. Each iteration consists of the following steps:
a. For every uncovered e, send x(e) and y(e) to every v ∈ e.
b. For every active v, if

∑
e3v y(e) ≥ 1− ε, then v changes its state of v to “in cover” and

sends every edge e ∈ E(v) a message “in cover”. 4

c. For every active v, send x[E(v)] =
∑
e∈v x(e) to every edge e′ ∈ E(v).

4 The value used for y(e) is the last value received from e. If e is uncovered, then it sends y(e) in the
previous round. If e is covered, then v remembers the last received value.

DISC 2018

22:12 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

d. For every edge e, if e received an “in cover” message, then e changes its state to
“covered”, and sends a “covered” message to every v ∈ e.

e. For every active vertex v, if v received a “covered” message from e, then deletes e from
E′(v). If E′(v) = ∅, then v changes its state to “not in cover”.5

f. For every uncovered edge e, let d(e) =
∑
v∈e x[E(v)]. Update x(e) as follows:

x(e)←
{
x(e)/K, if d(e) ≥ K
min{Kx(e), 1/K}, if d(e) < K

The algorithm terminates when all the edges are covered and all the vertices are not active.

Bound on Message Length. The messages in the algorithm are x(e), y(e), x[E(v)] and
information about the state. Our goal is to bound the length of these messages.

I Observation 17. For every edge e and iteration t, 1
Kt ≤ xt(e) ≤ 1

K .

I Observation 18. For every vertex v and iteration t, 1
Kt ≤ xt[E(v)] ≤ ∆

K .

I Observation 19. For every edge e and iteration t, if yt(e) > 0, then ε
K ·

1
Kt ≤ yt(e) ≤ ε

K ·
t
K .

The following lemma is implied by the observations above and by the fact that the number
of bits required for encoding the numbers in [a, b] where consecutive numbers differ by 1/K
is log(bK/a).

I Lemma 20. Let T denote the number of rounds of the algorithm until it terminates. Then
the message length of the vertex cover algorithm is O(log ∆ + T · logK).

6 Proof of the Main Result

Proof of Theorem 1. Setting K = 3
√

log(f∆)
log log(f∆) in Theorem 8, implies that the round

complexity of the algorithm is O
(

log(f∆)
ε log log(f∆)

)
.

Claim 7 implies that the set C computed by our algorithm is indeed a vertex cover, and
that this cover is an f(1 +O(ε))-approximate solution.

Lemma 20 implies that the message length of our algorithm is O(ε−1 · log(f∆)), as
required. J

7 Discussion

In this paper we prove that an approximation of the minimum set cover (or the equivalent
vertex cover in hypergraphs) can be computed in CONGEST in a locality-optimal way of
performing the primal-dual scheme. The attained approximation ratio and number of rounds
are f(1 + ε) and O

(
log(f∆)

ε log log(f∆)

)
respectively, where ε is a constant in (0, 1). Hence, for

f ≤ poly(log ∆) the round complexity matches the lower bound of Ω
(

log ∆
log log ∆

)
by Kuhn,

Moscibroda, and Wattenhofer [19].

5 In fact, v only needs to count the number of received “covered” messages. Hence, IDs and port numbers
are not required.

G. Even, M. Ghaffari, and M. Medina 22:13

The updates of the dual set variables are governed by the effective degrees of its elements e,
the natural definition of which is (roughly) the summation over the elements which share a set
with e. Unfortunately, it is not clear how to implement this natural definition in CONGEST.
A nice observation is that the analysis also works with an approximated definition of the
effective degree above (e.g., it allows double counting of elements) which is implementable
in CONGEST. Another outcome of this relaxed definition of the effective degree is that our
algorithm does not require distinct IDs, namely, the network is anonymous. Moreover, the
algorithm does not even rely on numbering of ports. We are hopeful that dynamics of the
same style may lead to improvements for other optimization problems.

References

1 Matti Åstrand and Jukka Suomela. Fast distributed approximation algorithms for vertex
cover and set cover in anonymous networks. In Proceedings of the twenty-second annual
ACM symposium on Parallelism in algorithms and architectures, pages 294–302. ACM,
2010.

2 Reuven Bar-Yehuda, Keren Censor-Hillel, Mohsen Ghaffari, and Gregory Schwartzman.
Distributed approximation of maximum independent set and maximum matching. In Pro-
ceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017,
Washington, DC, USA, July 25-27, 2017, pages 165–174, 2017. doi:10.1145/3087801.
3087806.

3 Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartzman. A Distributed (2+ε)-
Approximation for Vertex Cover in O(log ∆/ε log log ∆) Rounds. J. ACM, 64(3):23:1–23:11,
2017. doi:10.1145/3060294.

4 Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the
weighted vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981.

5 Reuven Bar-Yehuda and Shimon Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Technion-Israel Institute of Technology. Department of Computer
Science, 1983.

6 Reuven Bar-Yehuda and Dror Rawitz. On the equivalence between the primal-dual schema
and the local ratio technique. SIAM Journal on Discrete Mathematics, 19(3):762–797, 2005.

7 R. Ben-Basat, G. Even, K. Kawarabayashi, and G. Schwartzman. A Deterministic Dis-
tributed 2-Approximation for Weighted Vertex Cover in O(logn log ∆/ log2 log ∆) Rounds.
ArXiv e-prints (Appeared in SIROCCO 2018), 2018. arXiv:1804.01308.

8 Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilayered
pcp and the hardness of hypergraph vertex cover. SIAM Journal on Computing, 34(5):1129–
1146, 2005.

9 Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover.
Annals of mathematics, pages 439–485, 2005.

10 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

11 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 270–277, 2016. doi:10.
1137/1.9781611974331.ch20.

12 Mohsen Ghaffari, David G Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. arXiv preprint arXiv:1711.02194, 2017.

13 Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 784–797. ACM, 2017.

DISC 2018

http://dx.doi.org/10.1145/3087801.3087806
http://dx.doi.org/10.1145/3087801.3087806
http://dx.doi.org/10.1145/3060294
http://arxiv.org/abs/1804.01308
http://dx.doi.org/10.1137/1.9781611974331.ch20
http://dx.doi.org/10.1137/1.9781611974331.ch20

22:14 Distributed Set Cover Approximation: Primal-Dual with Optimal Locality

14 Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

15 Jonas Holmerin. Improved inapproximability results for vertex cover on k-uniform hyper-
graphs. In International Colloquium on Automata, Languages, and Programming, pages
1005–1016. Springer, 2002.

16 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2−ε.
Journal of Computer and System Sciences, 74(3):335–349, 2008.

17 Christos Koufogiannakis and Neal E Young. Distributed algorithms for covering, packing
and maximum weighted matching. Distributed Computing, 24(1):45–63, 2011.

18 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted.
In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm,
pages 980–989. Society for Industrial and Applied Mathematics, 2006.

19 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower
and upper bounds. J. ACM, 63(2):17:1–17:44, 2016. doi:10.1145/2742012.

20 Nathan Linial. Distributive graph algorithms global solutions from local data. In Founda-
tions of Computer Science, 1987., 28th Annual Symposium on, pages 331–335. IEEE, 1987.

21 Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM (JACM), 41(5):960–981, 1994.

22 Dana Moshkovitz. The projection games conjecture and the np-hardness of lnn-
approximating set-cover. Theory of Computing, 11:221–235, 2015. doi:10.4086/toc.2015.
v011a007.

23 David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.
24 Jukka Suomela. Survey of local algorithms. ACM Computing Surveys (CSUR), 45(2):24,

2013.
25 Luca Trevisan. Non-approximability results for optimization problems on bounded degree

instances. In Proceedings of the thirty-third annual ACM symposium on Theory of comput-
ing, pages 453–461. ACM, 2001.

26 Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.
27 David P Williamson and David B Shmoys. The design of approximation algorithms. Cam-

bridge university press, 2011.

http://dx.doi.org/10.1145/2742012
http://dx.doi.org/10.4086/toc.2015.v011a007
http://dx.doi.org/10.4086/toc.2015.v011a007

	Introduction and Related Work
	Background
	Our Result
	The Main Related Work and Comparison of Techniques
	Other related work

	Problem Definition and Model of Computation
	Preliminaries
	Vertex Cover in Hypergraphs (VCH)
	The Network

	Algorithm Description
	The Algorithm (ALG)

	Analysis
	Approximation Ratio
	Bounding the Number of Rounds
	Golden Iterations
	Useful Claims
	Proof of Theorem 8

	Distributed Implementation
	Proof of the Main Result
	Discussion

