
A Wealth of Sub-Consensus Deterministic Objects
Eli Daian
School of Computer Science, Tel-Aviv University, Israel
eliyahud@post.tau.ac.il

Giuliano Losa
Computer Science Department, University of California, Los Angeles, CA, USA
giuliano@cs.ucla.edu

Yehuda Afek
School of Computer Science, Tel-Aviv University, Israel
afek@post.tau.ac.il

Eli Gafni
Computer Science Department, University of California, Los Angeles, CA, USA
eli@ucla.edu

Abstract
The consensus hierarchy classifies shared an object according to its consensus number, which
is the maximum number of processes that can solve consensus wait-free using the object. The
question of whether this hierarchy is precise enough to fully characterize the synchronization
power of deterministic shared objects was open until 2016, when Afek et al. showed that there
is an infinite hierarchy of deterministic objects, each weaker than the next, which is strictly
between i and i + 1-processors consensus, for i ≥ 2. For i = 1, the question whether there exist
a deterministic object whose power is strictly between read-write and 2-processors consensus,
remained open.

We resolve the question positively by exhibiting an infinite hierarchy of simple deterministic
objects which are equivalent to set-consensus tasks, and thus are stronger than read-write re-
gisters, but they cannot implement consensus for two processes. Still our paper leaves a gap with
open questions.
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1 Introduction

Shared memory objects have been classified by Herlihy [19] by their consensus number, where
the consensus number of an object O is the maximum number of processes which can solve
the consensus task in the wait-free model using any number of copies of O 1. Herlihy also

1 Read-write registers are also usually allowed, in addition to copies of O, but this is superfluous since
any non-trivial object can implement bounded-use registers [7], and bounded-use suffices when solving a
task.
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17:2 A Wealth of Sub-Consensus Deterministic Objects

showed that n-consensus objects are universal for n processes, meaning that, for n processes,
any other object can be implemented wait-free using n-consensus objects.

Until recently, it was not known whether an object of consensus power n can be imple-
mented wait-free using n-consensus objects (i.e., objects that can be used to solve consensus
among at most n processes) in a system of more than n processes (as a special case, the
Common2 [2, 5] conjecture stipulates that all objects of consensus number 2 can be imple-
mented using consensus for 2 processes). If this were the case, then the consensus hierarchy
would offer a complete characterization of the synchronization power of distributed objects.

Addressing this question, requires first to precisely define the computation model used and
the notion of synchronization power. Several object binding models exists, e.g. with a notion
of ports, such as in the hard-wired and soft-wired binding models [11], or without ports,
such as in the oblivious model [20]. There are also several ways to compare synchronization
power, such as using non-blocking implementations or wait-free implementations, and by
restricting the comparison to the power to implement tasks.

In this paper, we work in the oblivious object model. Moreover, we are just concerned
with the power of objects to wait-free solve task defined over finite number of processors. It
is easy to see that for this if we have an implementation of the object the implementation
does not need to be a wait-free implementation, it is enough that it will be non-blocking, or
as called in other places lock-free.

In 2016, Afek et al. [1] constructed for every n ≥ 2 an infinite sequence of deterministic
objects (in the oblivious model) On,k, k ∈ N, of consensus number n, and such that On,k

cannot be used to obtain a non-blocking implementation of On,k+1 in a system of nk + n + k

processes. Thus, for every n, the On,k objects have strictly increasing synchronization power,
as measured by the non-blocking implementation relation. This shows that consensus number
alone is not sufficient to characterize the synchronization power of deterministic objects at
levels n ≥ 2 of the consensus hierarchy. As a special case, this also refutes the Common2
conjecture.

However, the case for consensus number 1 remained an open question, and it was
conjectured that any deterministic object of consensus number 1 is equivalent to read-write
registers, meaning that the object can solve exactly the same tasks that are solvable with
read-write registers, no more, no less.

Herlihy [18] presented a consensus number 1 object that cannot be implemented wait-free
from read-write register. But nevertheless it was implemented non-blocking (lock-free) from
read-write registers, thus it did not refute the conjecture that every consensus number 1
object can be implemented non-blocking from read-write registers. Chan et al. [12] showed
that for every set-consensus task, there exists an equivalent soft-wired non-deterministic
object.

The main result of this paper refutes the above conjecture by presenting a deterministic
object, Write and Read Next (WRNk), in the oblivious binding model, satisfying:

I Theorem 1. For all integers k ≥ 3, there is a deterministic object, WRNk, whose consensus
number is 1 but which cannot be implemented non-blocking from registers in a system of
n > k processes.

The second result of this paper applies to a one-shot variant, 1sWRNk, of WRNk.
Assuming that the object may be accessed at most once by each process and that no two
processes use the same argument in their invocation, we show the following theorem:

I Theorem 2. 1sWRNk and (k, k − 1)-set consensus have equivalent synchronization power
(i.e., each can implement the other).
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Since (k, k − 1)-set-consensus is strictly weaker than (k + 1, k)-set-consensus, this gives
rise to an infinite hierarchy among the WRNk objects, such that 1sWRNk′ objects are
stronger than (can implement but not be implemented from) 1sWRNk objects if k < k′.
Since 1sWRNk objects have more synchronization power than simple read-write registers,
and cannot solve the consensus task for 2 processes, this shows the existence of an infinite
number of object classes between simple read-write registers and 2-consensus.

The rest of the paper is structured as follows. The model is given in section 2. The
WRNk object and its one-shot variant 1sWRNk are presented in Section 3. We show two set
consensus implementations that use these objects in section 4. A construction of 1sWRNk

from (k, k − 1)-set consensus object is presented in section 5. WRNk is proved to be weaker
than 2-consensus in Section 6. The implied infinite hierarchy is presented in Section 7.
Finally, conclusions and open questions are discussed in section 8.

2 Model

We follow the standard asynchronous shared memory model with oblivious objects, as defined
in [1], in which processes communicate with one another by applying atomic operations,
called steps, to shared objects. Each object has a set of possible values or states. Each
operation (together with its inputs) is a partial mapping, taking each state to a set of states.
A shared object is deterministic if each operation takes each state to a single state and its
associated response is a function of the state to which the operation is applied.

A configuration specifies the state of every process and the value of every shared object.
An execution is an alternating sequence of configurations and steps, starting from an initial
configuration. Processes behave in accordance with the algorithm they are executing. If C is
a configuration and s is a sequence of steps, we denote by Cs the configuration (or in the
case of nondeterministic objects, the set of possible configurations) when the sequence of
steps s is performed starting from configuration C.

An implementation of a sequentially specified object O consists of a representation of O

from a set of shared base objects and algorithms for each process to apply each operation
supported by O. The implementation is deterministic if all its algorithms are deterministic.
The implementation is linearizable if, in every execution, there is a sequential ordering of all
completed operations on O and a (possibly empty) subset of the uncompleted operations on
O such that:

1. If op is completed before op′ begins, then op occurs before op′ in this ordering.
2. The behavior of each operation in the sequence is consistent with its sequential specification

(in terms of its response and its effect on shared objects).

An implementation of an object O is wait-free if, in every execution, each process that takes
sufficiently many steps eventually completes each of its operations on O. The implementation
is non-blocking if, starting from every configuration, if enough steps are taken, then there
exists a process that completes its operation. Note that a wait-free implementation is also a
non-blocking implementation. In the rest of this paper, we discuss only deterministic and
linearizable wait-free implementations.

A task specifies what combinations of output values are allowed to be produced, given
the input value of each process and the set of processes producing output values. A wait-free
or non-blocking solution to a task (both notion are equivalent when consider algorithms
that solve tasks) is an algorithm in which each process that takes sufficiently many steps
eventually produces an output value, and such that the collection of output values satisfies
the specification of the task given the input values of the process.

DISC 2018



17:4 A Wealth of Sub-Consensus Deterministic Objects

A task is solvable wait-free if and only if it is solvable non-blocking. This is because, in a
non-blocking implementation of a bounded problem, at least one processor eventually termin-
ates. A processor that terminates stops participating, and thus, because the implementation
is non-blocking, another process eventually terminates, and so on until all processes that
take sufficiently many steps have terminated, which fulfills the wait-free requirement. More
generally, for any problem in which there is a bound on the number of operations that
processors must complete, there is no difference between non-blocking ind wait-free.

In the consensus task, each process, pi, has an input value xi and must output a value yi

that satisfies the following two properties:

Validity. Every output is the input of some process.
Agreement. All outputs are the same.

We say that an execution of an algorithm solving consensus decides a value if that value
is the output of some process.

The k-set consensus task, introduced by [14, 15], is defined in the same way, except that
agreement is replaced by the following property:

k-agreement. There are at most k different output values.

Note that the 1-set consensus task is the same as the consensus task.
An object has consensus number n if there is a wait-free algorithm that uses only copies of

this object and registers to solve consensus for n processes, but there is no such an algorithm
for n + 1 processes. An object has an infinite consensus number if there is such algorithm for
each positive integer n.

For all positive integers k < n, an (n, k)-set consensus nondeterministic object [10]
supports one operation, propose, which takes a single non-negative integer as input. The
value of an (n, k)-set consensus object is a set of at most k values, which is initially empty, and
a count of the number of propose operations that have been performed on it (to a maximum
of n). The first propose operation adds its input to the set. Any other propose operation
can nondeterministically choose to add its input to the set, provided the set has size less
than k. Each of the first n propose operations performed on the object nondeterministically
returns an element from the set as its output. All subsequent propose operations hang the
system in a manner that cannot be detected by the processes.

A variant of the consensus task is the election task, in which all participating processes
propose their own identifiers (rather than proposing some value). It also has the variable of
k-set election task, that is basically a k-set consensus task, in which the identifiers of the
processes are proposed. It was shown in [3] that the k-set consensus task is computationally
equivalent to the k-set election task.

The k-strong set election task is a k-set election task, with the following self election
property:

Self Election. If some process pi decides on pj , then pj also decides on pj .

It was shown in [9] that the k-strong set election task can be implemented using k-set
election implementations, and thus the k-set election and k-strong set election tasks are
computationally equivalent.
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Algorithm 1 A sequential specification of the atomic WRN operation of a WRNk object.
1: function WRN(i, v) . i ∈ {0, . . . , k − 1}, v 6= ⊥
2: A [i]← v

3: return A [(i + 1) mod k]
4: end function

Algorithm 2 (k − 1)-Set consensus using a WRNk object.
1: function Propose(vi) . For process Pi, 0 ≤ i < k

2: t← WRN(i, vi) . t is a local variable.
3: if t 6= ⊥ then return t

4: else return vi

5: end if
6: end function

3 Write and Read Next Objects

For every k ≥ 2, we introduce the WriteAndReadNextk (or WRNk) object, that has a single
operation – WRN. This operation accepts an index i in the range {0, . . . , k − 1}, and a value
v 6= ⊥. It returns the value v′ that was passed in the previous invocation to WRN with the
index (i + 1) mod k, or ⊥ if there is no such previous invocation.

A possible implementation of WRNk consists of k registers, A [0] , . . . , A [k − 1], initially
initialized to ⊥. A sequential specification of the atomic WRN operation is presented in
Algorithm 1.

The OneShotWRNk (or 1sWRNk) object is similar to WRNk, but any index can be used
at most once. Any attempt to invoke 1sWRN with the same index twice is illegal, and hangs
the system in a manner that cannot be detected by any process.

Note that the requirement that processes do not use the same argument in their invocation
is reminiscent of the soft-wired model, in which there cannot be concurrency on a port. We
could have chosen to specify 1sWRNk in the soft-wired binding model. This would have
avoided ad-hoc assumptions about how processes use of the 1sWRNk object. We opted not
to do so in order to use the oblivious object-binding model exclusively.

For k = 2, WRN2 is simply a SWAP object, whose consensus number is known to be 2
[19]. From now on, we assume k ≥ 3, unless stated otherwise.

4 Solving (k, k − 1)-Set Consensus using WRNk Objects

4.1 Solution in a System of k Processes
For any k ≥ 3, a WRNk object can solve the (k, k − 1)-set consensus task for k processes
with unique ids taken from {0, ..., k − 1}, using the following algorithm (also described in
Algorithm 2): Assume the processes are P0, . . . , Pk−1, and their values are v0, . . . , vk−1.
Process Pi invokes a 1sWRN with index i and value vi. If the output of the operation, t, is ⊥,
Pi decides vi. Otherwise, it decides t.

Since it is illegal for a process to propose multiple values (with the same ID) in the set
consensus task, WRN can be replaced by 1sWRN, that is invoked at most once with each index.

I Claim 3. Algorithm 2 is wait free.

I Claim 4. The first process to perform WRN decides its own proposed value.

DISC 2018



17:6 A Wealth of Sub-Consensus Deterministic Objects

Proof. Since it is the first one to invoke WRN, the output of WRN is ⊥, and hence the process
decides on its own proposed value. J

I Claim 5. Let Pi be the last process to perform 1sWRN. So Pi decides the proposal of
P(i+1) mod k.

Proof. Since Pi is the last one to invoke WRN, P(i+1) mod k has already completed its WRN
invocation. Theretofore, Pi receives v(i+1) mod k as the output from WRN. Hence, Pi decides
the value of P(i+1) mod k. J

I Claim 6 (Validity). A process Pi can decide its proposed value, or the proposed value of
P(i+1) mod k.

I Claim 7. A process Pi decides its own proposed value if P(i+1) mod k have not invoked
WRN yet.

I Corollary 8 ((k − 1)-agreement). Assume the proposals are pairwise different (there are
exactly k different proposals). So at most k − 1 values can be decided.

Proof. Let Pi be the first process to invoke WRN, and Pj be the last process to invoke WRN.
From Claim 4, Pi decides its proposal. From Claim 5, Pj decides the proposal of P(j+1) mod k.
From claim 7, no process decides the proposal of Pj . J

I Corollary 9. Algorithm 2 solves the (k − 1)-set consensus task for k processes.

I Corollary 10. 1sWRNk and WRNk cannot be implemented from atomic read-write registers.
Hence, 1sWRNk and WRNk are stronger than registers.

4.2 Solution in a System with k Participating Processes Out of Many
Assuming that each process has a unique name in {0, . . . , k − 1} might be a strong limitation
in some models. In this section, we assume we have at most k participating processes, whose
names are taken from {0, . . . , M − 1}, where M � k.

In [4, 6], wait-free algorithms have been shown that use registers only to rename k

processes from {0, . . . , M − 1} to k unique names in the range {0, . . . , 2k − 2}. So we
shall relax our assumption, and assume now we have at most k participating processes,
whose names are in {0, . . . , 2k − 2}. Let us consider the set of functions {0, . . . , 2k − 2} →
{0, . . . , k − 1}, call it F . So |F| = (2k − 1)k is finite, and we can fix an arbitrary ordering of
F =

{
f1, . . . , f(2k−1)k

}
.

The (k − 1)-set consensus algorithm for k processes is described in Algorithm 3. It uses
(2k − 1)k instances of WRNk objects, W [1] , . . . , W

[
(2k − 1)k

]
. First, the process name is

renamed to be j ∈ {0, . . . , 2k − 2}. Then, for each ` ∈
{

1, . . . , (2k − 1)k
}

(in this exact
order for all processes), the process invokes W [`] .WRN with the index f` (j), and the proposed
value vj . If the result of such a WRN operation returns a value different than ⊥, the process
immediately decides on this returned value, and returns without continuing to the following
iterations. If the process received ⊥ from all the WRN operations on W [1] , . . . , W

[
(2k − 1)k

]
,

it decides its own proposed value.

I Claim 11 (Validity). Every decided value in Algorithm 3 was proposed by some process.
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Algorithm 3 (k − 1)-Set consensus for k processes out of many using WRNk objects.
1: shared array of WRNk objects W [`], 1 ≤ ` ≤ (2k − 1)k

2: function Propose(v) . For process whose name is in {0, . . . , M − 1}
3: j ← Rename . j ∈ {0, . . . , 2k − 2}
4: for ` = 1, . . . , (2k − 1)k do
5: i← f` (j) . i ∈ {0, . . . , k − 1} is a local variable.
6: t←W [`] .WRN(i, v) . t is a local variable.
7: if t 6= ⊥ then return t

8: end if
9: end for
10: return v . Reaching here means t was ⊥ in all iterations
11: end function

Proof. Each process can only write its proposal to the WRN objects, and hence only proposal
values or ⊥ can be returned from the WRN operations. Therefore, if a WRN operation performed
by the process P does not return ⊥, it returns a proposal of some process Q, and hence P

decides on the proposal of Q. If P gets only ⊥ from all the WRN invocations, it decides on its
own proposal. J

I Claim 12. For every iteration number 1 ≤ ` ≤ (2k − 1)k, there is a process that invokes
W [`] .WRN in Algorithm 3, and the first such process returns ⊥.

Proof. The first process to invoke W [`] .WRN returns ⊥ by the definition of the WRN objects,
and hence it also continues to the next iteration. Using induction, it is clear that a process
gets to the first iteration and continues to the second one, and hence there is a process that
accesses W

[
(2k − 1)k

]
, and the first such process returns ⊥. J

I Corollary 13. There is a process that invokes W
[
(2k − 1)k

]
.WRN in Algorithm 3, and the

first such process decides on its proposed value.

I Claim 14. Assume a process P got the output x 6= ⊥ from its invocation of
W
[
(2k − 1)k

]
.WRN. x is the value of another process Q, that invoked W

[
(2k − 1)k

]
.WRN

before P .

I Corollary 15. Assume exactly k inputs were proposed to Algorithm 3. Also assume the
processes P and Q proposed the values x and y, respectively, and assume P decides on y. Q

does not decide on x.

I Claim 16. Assume all k processes access the construction of algorithm 3, each with a
different input. There is a process P that decides on the value of another process Q.

Proof. Let R be the set of new names of the processes after renaming them in line 3, |R| = k.
Hence there is a mapping f`? ∈ F such that {f`? (i) | i ∈ R} = {0, 1, . . . , k − 1}. Either some
process returns before iteration `?, or all of them reach iteration `?.

In the former case, process P quits in iteration `′ < `?, and P gets a proposal v of another
process from W [`′], and decides v.

In the latter case, let jP be the name of P after the renaming in line 3. Let P be the
last process to invoke W [`?] .WRN. So P invoked it with the index f`? (jP ). Let Q be the
process that invoked W [`?] .WRN with the index (f`? (jP ) + 1) mod k (there is such process
because of the selection of `?). Q invoked W [`?] .WRN before P , and hence the P ’s invocation
of W [`?] .WRN results in the proposal of Q. Therefore, P decides on the proposal of Q. J

DISC 2018



17:8 A Wealth of Sub-Consensus Deterministic Objects

Algorithm 4 Implementing relaxed WRNk using 1sWRNk and registers.
1: shared 1sWRNk object
2: shared array of registers A [i], 0 ≤ i < k, initialized to 0
3: function RlxWRN(i, v) . 0 ≤ i < k, v 6= ⊥
4: Inc(A [i]) . Increment A [i] by 1.
5: c← Read(A [i]) . c is a local variable.
6: if c = 1 then return 1sWRN(i, v)
7: else return ⊥
8: end if
9: end function

I Corollary 17 ((k − 1)-agreement). Assume exactly k inputs were proposed to Algorithm 3.
So there is a process P whose proposal is not decided by any process.

Proof. Let vi and di be the proposal and decision values of process Pi. Let A be the set of
processes Pi such that xi 6= yi. From Claim 16, A 6= ∅.

Each process Pi ∈ A has an iteration `i in which di was returned from its invocation of
W [`i] .WRN. Let `′ be the minimal such iteration, and let Pi ∈ A be the last process to invoke
W [`′] .WRN.

No value was decided by any process in iteration ` < `′, and hence vi was not decided
by any process in these iterations. The value vi is unknown to W [`′] before Pi invokes
W [`′] .WRN. Therefore, vi cannot be returned by any W [`′] .WRN invocation prior to Pi’s
invocation. In Pi’s invocation the value di 6= vi is returned. From the selection of i, every
W [`′] .WRN invocation after Pi’s invocation returns ⊥, and hence no process returns vi in
iteration `′.

Pi have not participated in any latter iteration, and hence vi was not seen by any WRN
object in such an iteration, so it could not be returned from any WRN invocation. Therefore,
vi is not returned by any process also after iteration `′. J

I Corollary 18. Algorithm 3 solves the (k − 1)-set consensus task for k processes whose
names are taken from {0, . . . , M − 1}.

Algorithm 3 uses WRNk objects that cannot be trivially replaced by 1sWRNk objects,
since after the renaming, processes P and Q get the new names 0 ≤ i < j < 2k − 1, and
there is a mapping f` ∈ F such that f` (i) = f` (j). If both P and Q get to iteration `, both
invoke W [`] .WRN with the index f` (i) = f` (j).

Although this fact might pose a problem, the correctness of the algorithm is based on
the existence of an iteration `? such that f`? maps all the renamed process names onto
{0, 1, . . . , k − 1}. This fact is being used in the proof of Claim 16 in order to show that there
is a process that decides on the proposal of another process, and hence the (k − 1)-agreement
property is achieved.

A relaxed implementation of WRNk using 1sWRNk is enough for implementing Al-
gorithm 3. This relaxed implementation is described in Algorithm 4. The 1sWRNk object
is protected by a counter for every legal index. This counter is a simple atomic register
that can be incremented and read (each operation is a single step). When a process comes
with the index i, it first increments the counter of index i, and then reads the value of that
counter. If the read value is exactly 1, it is safe for the process to invoke 1sWRN (in a similar
manner to the flag principle [21]). Otherwise, the process cannot tell whether it is safe to
invoke 1sWRN or not, so it gives up, and returns ⊥ directly.
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I Claim 19 (Safety). At most one process invokes 1sWRN with an index 0 ≤ i < k in
Algorithm 4.

Proof. 1sWRN is invoked with an index i only by a process that read the value 1 (exactly)
from A [i]. By contradiction, assume both P and Q read 1 from A [i], and without loss of
generality, let Q be the last process to increment A [i]. Since A [i] is initialized to 0 and Q is
not the first process to increment it, Q must have read at least 2. J

I Corollary 20. Algorithm 4 is using the 1sWRNk object legally.

I Claim 21. If exactly k processes arrive with k different indices, 1sWRN is invoked by every
participating process in Algorithm 4.

Proof. Every process that comes with an index i is the only one that increments A [i], so it
is the only one to read the value 1 from A [i], and hence it will invoke 1sWRN. J

Algorithm 4 of a relaxed WRNk object can be used as a substitution for the WRNk

objects in algorithm 3; lines 1 and 6 should be replaced by the following lines:
1: shared array of WRNk objects W [`], 1 ≤ ` ≤ (2k − 1)k

6: t←W [`] .RlxWRN(i, v) . t is a local variable.
If at round ` two different processes access W [`] with the same index i, with the relaxed

WRNk the underlying 1sWRN operation might not even get invoked, in which case both
processes get ⊥ from their RlxWRN invocation, if a process accesses later W [`] .RlxWRN with
the index (i− 1) mod k, this process might get ⊥ and continue to the next iteration, which
is the opposite of the expected behavior with regular WRNk objects.

However, in the proof of Claim 16, iteration `? still exists, in which all k participating
processes invoke W [`] .RlxWRN with a different index, and claim 21 guarantees that in iteration
`?, the underlying 1sWRNk object gets accesses just like the regular WRNk object. Hence
Algorithm 3 solves the (k − 1)-set consensus task for k processes using 1sWRNk objects as
well.

5 Constructing 1sWRNk from (k, k − 1)-Set Consensus
Implementation

In this section we present an implementation of 1sWRNk object that uses (k, k − 1)-strong
set election (i.e., if process Pi decides in the proposal of Pj , then Pj also decides on its own
proposal), which can be implemented using (k, k − 1)-set consensus [9], and registers.

The base of the implementation is an array of registers, in which each process publishes
its value (using the index), and reads the published value of its successor (by the index) if
such a value is published, or ⊥ otherwise. Each process aims to return the read value of
its successor, whether it is ⊥ or not. However, the first linearized operation must return ⊥,
and if the processes return their read value, the following execution has no first linearized
operation: All processes write together their values, and then read together the values of
their successors.

In order to avoid such cases, the implementation uses a doorway register. This doorway
is initially open (i.e., the register value is opened), and once a process enters through the
doorway (i.e., reads the value opened), it closes the doorway (i.e., writes the value closed).
The processes that pass through the doorway use the strong set election implementation,
and return the read published value of their successor only if they do not win the strong set

DISC 2018



17:10 A Wealth of Sub-Consensus Deterministic Objects

Algorithm 5 Implementation of 1sWRNk using (k, k − 1)-Strong Set Election.
1: shared (k, k − 1)-strong set election implementation SSE

2: shared MWMR register Doorway, initially opened
3: shared SWMR register array R [i], 0 ≤ i < k; initially R [i] = ⊥ for every i

4: shared SWMR register array O [i], 0 ≤ i < k; initially O [i] = ⊥ for every i

5: function 1sWRN(i, v) . i ∈ {0, . . . , k − 1} is the index, v /∈ {⊥, ∅} is the value.
6: R [i]← v . v is announced at the index i.
7: if Read(Doorway) = opened then
8: Doorway ← closed

9: if SSE.Invoke(i) = i then
10: return ⊥
11: end if
12: end if
13: SR← Snapshot(R) . SR is a local array.
14: O [i]← SR

15: SO ← Snapshot(O) . SO is a local array.
16: for j = 0, 1, . . . , k − 1 do
17: if SO [j] [i] = v and SO [j] [(i + 1) mod k] = ⊥ then
18: return ⊥
19: end if
20: end for
21: return SR [(i + 1) mod k]
22: end function

election. If a process wins the strong set election, its 1sWRN invocation returns ⊥. Notice
that using the strong set election without the doorway might result in a non-linearizable
implementation: If a process completes its 1sWRN invocation with the index (i + 1) mod k

before another process issues its invocation with the index i, the latter is is expected to
return the value of the former. However, the latter invocation might win in the strong set
election as well, in which case it would return ⊥.

The described solution is not enough, since the result is non-linearizable. Consider the
case in which the doorway has already been closed by an early invocation. Since the read
and write operations are not atomic, the linearization might break between an invocation
announces its value, and reads the value of its successor index.

For example, consider the following execution: (1) an invocation w1 with the index 1
can announce its value. (2) an invocation w2 with the index 2 announces its value. (3) The
invocation w1 encounters a closed doorway, reads the value of w2 and returns it. (4) After
w1 completes, an invocation w3 announces its value. (5) w2 reads the announces value of w3
and returns it. In this described execution, w1 would be linearized after w2, that would be
linearized after w3. But w3 starts only after w1 has completed.

In order to overcome this kind of problem, two snapshots are being taken. The first
snapshot reads the announced values, and the second one is used for announcing the snapshot
every invocation observes, in order to detect scenarios similar to the one described above. If
an invocation wi observes the value of its successor invocation w(i+1) mod k, but it also sees
that there is another invocation wj that saw the value of wi, but did not see the value of
w(i+1) mod k, so wi knows that it has started before w(i+1) mod k finishes, and wi returns ⊥.
A pseudo code of the implementation is presented in algorithm 5.

Let e be a legal execution that contains invocations to 1sWRN, as described in Algorithm 5.
Denote by {wi} the invocations to 1sWRN, such that wi is the invocation with index i and
input value vi. Assume 1sWRN was invoked for every index 0 ≤ i < k (otherwise, append
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the missing invocations at the end of the execution). We will now see that Algorithm 5 is a
linearizable implementation of 1sWRN.

I Claim 22. wi returns v(i+1) mod k or ⊥.

I Claim 23. There is an index 0 ≤ i < k such that wi returns ⊥.

Proof. The first invocation to check the doorway status (in line 7) invokes the strong set
election, so the strong set election is invoked at least once. By definition, there is an
invocation wi that its strong set election invocation returns i, and then wi returns ⊥ from
Algorithm 5. J

I Claim 24. There is an index 0 ≤ i < k such that wi return v(i+1) mod k.

Proof. When some invocation takes a snapshot in line 13, all invocations that enter the
doorway have already registered their values in R: Assume wi does not read vj in R. When
wi takes the snapshot in line 13, the doorway is already closed, and vj is not written in R.
So wj writes vj to R in line 6 after the doorway is closed. So wj does not enter through the
doorway.

At least one invocation reads in line 13, because an invocation reads R if it does not enter
the doorway, or loses in the strong set election. Let wi be the last invocation to write in line
6 that also reads in line 13. Claim by contradiction that wi returns ⊥.

So there is a an index 0 ≤ j < k such that wi sees SO [j] [i] = vi and it also sees
SO [j] [(i + 1) mod k] = ⊥. In this case, when wj takes a snapshot of R in line 13, it sees vi

in R, but not v(i+1) mod k. So vi is written to R before v(i+1) mod k, and after the doorway
is already closed. So w(i+1) mod k writes to R after the doorway is closed, and after wi writes
to R, which is a contradiction to the selection of wi. J

I Lemma 25. If wi returns ⊥, then w(i+1) mod k finishes after wi starts.

Proof. By a contradiction assume w(i+1) mod k finishes before wi starts. In this case, when
wi starts, v(i+1) mod k is already written in R [(i + 1) mod k] and the doorway is closed,
and O [(i + 1) mod k] 6= ⊥.

Since wi returns ⊥, it must be done in line 18 in iteration 0 ≤ j < k, when wj saw vi, but
not v(i+1) mod k. Therefore, w(i+1) mod k starts after wi starts, that is after w(i+1) mod k

finishes, which is a contradiction. J

I Lemma 26. If wi returns v(i+1) mod k, then wi finishes after w(i+1) mod k starts.

Proof. Assume wi finises before w(i+1) mod k starts. In this case, when wi finishes, the value
in R [(i + 1) mod k] is ⊥, so wi returns ⊥ either if it wins the strong set election, or if it
reads it from R [(i + 1) mod k]. J

We now define a directed graph G = (V, E), where V = {wi | 0 ≤ i < k}, and the set of
edges is defined as follows:

If wi returns ⊥, there is an edge from wi to w(i+1) mod k.
If wi returns v(i+1) mod k, there is an edge from w(i+1) mod k to wi.

I Claim 27. There is an edge from wi to w(i+1) mod k if and only if there is no edge from
w(i+1) mod k to wi.

I Corollary 28. There are no directed cycles in G.
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Proof. The degree of each node in the graph is exactly 2, since the edges are between wi

and w(i+1) mod k. Therefore, with the combination of Claim 27, if there is a cycle in G, its
length is k.

Assume there is a cycle of length k in G. Using claim 23, let wi1 be a 1sWRN invocation
using Algorithm 5 that returns ⊥. Since wi1 returns ⊥, the cycle is in increasing order, e.g.,
for every 0 ≤ i < k, there is an edge from wi to w(i+1) mod k.

Using Claim 24, let wi2 be a 1sWRN invocation that returns v(i2+1) mod k. From the
construction of G, there is an edge from w(i2+1) mod k to wi2 , which is a contradiction to
claim 27. J

I Corollary 29. There is a source and a sink in G.

I Corollary 30. The edges of G form a partial order.

I Lemma 31. Let p be an increasing indices directed path from wi to wj. That is:

p =
〈
wi → w(i+1) mod k → w(i+2) mod k → · · · → wj

〉
Then wj finishes after wi starts.

Proof. In this case, every w ∈ p \ {wj} returns ⊥. We use induction on p to show that wj

finishes after every w ∈ P starts. The base case is trivial: wj finishes after it starts.
Inductively assume wj finishes after w(i+x+1) mod k starts. We now show that wj finishes

after w(i+x) mod k starts. If w(i+x) mod k enters through the doorway, it is impossible for
wj to finish before w(i+x) mod k starts. Let us now consider the case in which w(i+x) mod k

encounters a closed doorway.
If w(i+x) mod k reads ⊥ from R [(i + x + 1)] in line 13, then it must have started before

w(i+x+1) mod k starts, which is before wj finishes.
Consider the case in which w(i+x) mod k reads v(i+x+1) mod k from R [(i + x + 1)] in

line 13. Since w(i+x) mod k returns ⊥, it must have been in line 18 in iteration 0 ≤ ` < k

of the for loop of line 16. Therefore, w` sees v(i+x) mod k but not v(i+x+1) mod k. Hence,
w(i+x) mod k writes to R in line 6 before w(i+x+1) mod k does. It follows that w(i+x) mod k

starts before w(i+x+1) mod k starts, that is before wj finishes.
Hence wi ∈ p starts before wj finishes. J

I Lemma 32. Let p be a descending indices directed path from wi to wj. That is:

p =
〈
wi → w(i−1) mod k → w(i−2) mod k → · · · → wj

〉
Then wj finishes after wi starts.

Proof. In this case, every w ∈ p \ {wi} does not return ⊥. We use induction on the length
of p to show that wi starts before wj finishes. The base case is trivial: lemma 26 shows that
wi starts before wj finishes if the length of p is 1.

Assume the length of p is greater than 1. Inductively we assume that any decreasing
indices path shorter than p satisfies the lemma. Also assume by contradiction that wj

finishes before wi starts. Therefore, wj does not read vi from R in line 13. Since wj returns
v(j+1) mod k, it has to read v(j+1) mod k in R after w(j+1) mod k writes it there. So there is
an ` such that w` ∈ p, and wj reads R [`] = v` but R [(` + 1) mod k] = ⊥.

If operation w` reads O [j] 6= ⊥, w` would have to return ⊥ in line 18. Since w` ∈ p, it
returns v(`+1) mod k. Therefore, w` reads O [j] = ⊥ in line 15. So w` reads O before wj

finishes. Reading O in line 15 is the last operation in the shared memory, so w` finishes before
wj does. Since the path

〈
wi → w(i−1) mod k → · · · → w`

〉
is a decreasing path shorter than

p, from the induction assumption, wi starts before w` finishes, that is before wj finishes. J
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I Corollary 33 (Transitivity). Let p be a directed path from wi to wj in G. So wj finishes
after wi starts.

We build a total order of {wi | 0 ≤ i < k} inductively. For the base case, denote: S0 = ∅,
T 0 = {wi | 0 ≤ i < k}.

Given Sj and T j 6= ∅, 0 ≤ j < k, we build Sj+1 and T j+1 using the following construction:
denote by T̃j the set of invocations t ∈ T j , such that t has no incoming edges in G from
another invocation in T j . Since T j 6= ∅ then also T̃ j 6= ∅, because there are no cycles in
G. Let wj be the first invocation in T̃ j to perform the write in line 6 (that is, to starts
running). We define Sj+1 and T j+1 as follows: Sj+1 = Sj ∪ {wj} and T j+1 = T j \ {wj}.
Since

∣∣T j+1
∣∣ =

∣∣T j
∣∣+ 1, this construction is well defined for 0 ≤ j < k.

We define the total order � as follows: wi � wj if i ≤ j.

I Lemma 34. For every 0 ≤ j ≤ k, there are no edges from T j to Sj.

Proof. We use induction on j for the proof. The base case is trivial, since S0 = ∅.
Assume there are no edges from T j to Sj . Since wj ∈ T̃ j , there are no edges to wj from

T j (and there is also no edge from wj to itself). So there are no edges from T j+1 = T j \
{

wj
}

to Sj+1 = Sj ∪
{

wj
}
. J

I Corollary 35. w0 returns ⊥.

Proof. Assume w0 does not return ⊥. Following the construction of G, there is an incoming
edge to w0. From lemma 34, there are no incoming edges to S1 =

{
w0}, in a contradiction. J

I Corollary 36. wi returns ⊥ if and only if wi � w(i+1) mod k.

Proof. Assume wi returns ⊥. Assume wi = wj . So wi ∈ T j , but wi ∈ Sj+1. Since wi returns
⊥, following the construction of G, there is an edge from wi to w(i+1) mod k. Assuming
that w(i+1) mod k ∈ Sj would contradict lemma 34, so w(i+1) mod k ∈ T j , and therefore also
w(i+1) mod k ∈ T j+1. So wi � w(i+1) mod k. J

I Corollary 37. � is a linearization of 1sWRN. Therefore, algorithm 5 is a linearizable
implementation of 1sWRNk.

Corollary 37 shows that 1sWRNk can be implemented using a (k, k − 1)-set consensus
implementation. This implies that 1sWRNk is equivalent to (k, k − 1)-set consensus. In
particular, 1sWRNk cannot solve the 2-process consensus task where k ≥ 3.

6 WRNk is Weaker than 2-Consensus

Section 5 describes a linearizable construction of 1sWRNk using an implementation for
(k, k − 1)-set consensus. In this section we prove that neither WRNk objects can solve the
2-process consensus task for k ≥ 3, using a critical-state argument [17, 19].

We follow the standard definitions of bivalent configuration, v-univalent configuration and
critical configuration, as defined in [17, 19].

I Lemma 38. For each k ≥ 3, there is no wait-free algorithm for solving the consensus task
with 2 processes using only registers and WRNk objects.

Proof. Assume such an algorithm exists. Consider the possible executions of the processes P

and Q of this algorithm, while proposing 0 and 1, respectively. Let C be a critical configuration
of this run. Denote the next steps of P and Q from C as sP and sQ, respectively. Without
loss of generality, we assume that CsP is a 0-univalent configuration, and CsQ is a 1-univalent
configuration.

Following [19], sP and sQ both invoke a WRN operation on the same WRNk.
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Algorithm 6 m-set consensus for n processes using WRNk objects.
1: shared array W [j] of WRNk objects, 0 ≤ j <

⌈
n
k

⌉
2: function Propose(vi) . For process Pi, 0 ≤ i < n

3: t←W
[⌊

i
k

⌋]
.WRN(i mod k, vi) . t is a local variable.

4: if t 6= ⊥ then return t

5: else return vi

6: end if
7: end function

Case 1. Both sP and sQ perform WRN with the same index i.
The configurations CsP and CsQsP are indistinguishable for a solo run of P , but
a solo run of P from CsP decides 0, while an identical solo run of P from CsQsP

decides 1. This is a contradiction.
Case 2. sP and sQ perform WRN with different indices, iP and iQ, respectively.

Since k ≥ 3, either iP 6= iQ + 1 mod k or iQ 6= iP + 1 mod k. Without loss of
generality, assume that iQ 6= iP + 1 mod k. So the configurations CsP sQ and
CsQsP are indistinguishable for a solo run of P . However, the identical solo runs of
P from the configurations CsP sQ and CsQsP decide 0 and 1, respectively, which is
a contradiction.

Both cases resulted in a contradiction, and therefore no such algorithm exists. J

7 Implications

7.1 Set Consensus Ratio
A trivial implication of Section 4 is that WRNk objects can solve the m-set consensus task
for n processes as long as k−1

k ≤ m
n is satisfied. For instance, WRN3 objects can be used for

implementing (12, 8)-set consensus.
Algorithm 6 describes an implementation of the m-set consensus task for n processes

using WRNk objects. It uses an array W of
⌈

n
k

⌉
shared WRNk objects, where the process

named i, 0 ≤ i < n invokes the WRN operation of W
[⌊

i
k

⌋]
with its proposal and the index i

mod k. If ⊥ is returned, the process decides on its own proposal. Otherwise, it decides on
the returned value of the invocation.

Note that Algorithm 6 can be implemented using 1sWRNk objects instead of the WRNk

objects, since every index is accesses at most once.

I Lemma 39. For every 0 ≤ j <
⌈

n
k

⌉
, the set of processes P = {Pi | j · k ≤ i < (j + 1) · k}

solves the (k − 1)-set consensus task using algorithm 6.

Proof. This algorithm is similar to Algorithm 2, and since |P| ≤ k, corollary 9 shows
algorithm 6 solves the (k − 1)-set consensus task for P. J

I Corollary 40. Algorithm 6 solves the m-set consensus task for n processes.

7.2 Infinite Hierarchy
The combination of the results of Sections 4 and 5 imply that 1sWRNk objects have the
same computational power as (k, k − 1)-set consensus objects, e.g. 1sWRNk objects are
computationally equivalent to (k, k − 1)-set consensus objects.

The following relationship among set consensus objects is known [1, 16]:
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I Theorem 41. Let n > k and m > j be positive integers. Then there is a wait-free
implementation of an (n, k)-set consensus object from (m, j)-set consensus objects and
registers in a system of n or more processes if and only if k ≥ j, n

k ≤
m
j , and either

k ≥ j ·
⌈

n
m

⌉
or k ≥ j ·

⌊
n
m

⌋
+ n−m ·

⌊
n
m

⌋
.

I Corollary 42 (Hierarchy of 1sWRN objects). Let k < k′ be two positive integers. So:
1. 1sWRNk cannot be implemented using 1sWRNk′ objects and registers.
2. 1sWRNk′ can be implemented using 1sWRNk objects and registers.

This corollary forms an infinite hierarchy among the 1sWRN objects, such that 1sWRNk′

objects are considered to have more computational power than 1sWRNk objects if k < k′.
Since 1sWRN objects have more computational power than simple read-write registers, and
cannot solve the consensus task for 2 processes, this hierarchy shows the existence of an
infinite number of computational power classes between simple read-write registers and
2-consensus.

8 Conclusion

This paper advances our understanding of classification of deterministic shared objects. It
was an open question whether there are deterministic objects that are stronger than registers,
and yet incapable of solving the consensus task for two processes.

The answer to this question for nondeterministic objects is well known [18]. For the
deterministic case, only recently [1] it has been shown that the consensus task alone is not
enough for classifying the computational power of deterministic objects. It is suggested that
the set consensus task gives a more fine grained granularity for deterministic objects power
classification, however the layer of objects under 2-consensus was not discussed.

Our construction shows that set-consensus gives a more fine grained granularity in
understanding the computational power of objects, even between atomic read/write registers
and 2-consensus. Not only we show the existence of objects between both computational
classes, we also provide an infinite hierarchy of computational classes between the two classes,
defined by the set-consensus task, using the implications of [8, 9].

Even though we have a better understanding of the behavior of deterministic objects
under 2-consensus, our research leaves some open questions. We have shown that for every
k, there is a deterministic object that can solve the (k, k − 1)-set consensus task. This result
is extended to the (n, m)-set consensus task, where m

n ≥
k

k−1 ≥
2
3 . We do not show the

existence of deterministic objects that can solve the (n, m)-set consensus task where n
k < 2

3
without solving the 2-consensus task. More precisely, this paper does not show (or refutes)
the existence of a deterministic object that can solve the 2-set consensus task for any number
of processes, but is unable to solve the 2-consensus task. These questions remain open.

Finally, although the Consensus Hierarchy is not precise enough to characterize the
synchronization power of objects, we may conjecture that a hierarchy based on set-consensus
may be precise enough. Chan et al. [13] give an example in which set-consensus powers is
not enough to characterize the ability of a deterministic object to solve the n-SLC problem.
However, by definition, the n-SLC problem is not a problem in the wait-free model. Thus
the conjecture that set-consensus is enough to characterize the synchronization power of
deterministic shared objects in the wait-free model (in particular, their power to solve tasks
wait-free) is still open.
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