
The Role of A-priori Information in Networks of
Rational Agents
Yehuda Afek
Tel-Aviv University, Tel-Aviv, Israel
afek@post.tau.ac.il

Shaked Rafaeli
Tel-Aviv University, Tel-Aviv, Israel
shakedr@mail.tau.ac.il

Moshe Sulamy
Tel-Aviv University, Tel-Aviv, Israel
moshe.sulamy@cs.tau.ac.il

Abstract
Until now, distributed algorithms for rational agents have assumed a-priori knowledge of n, the
size of the network. This assumption is challenged here by proving how much a-priori knowledge is
necessary for equilibrium in different distributed computing problems. Duplication – pretending
to be more than one agent – is the main tool used by agents to deviate and increase their utility
when not enough knowledge about n is given.

We begin by proving that when no information on n is given, equilibrium is impossible for
both Coloring and Knowledge Sharing. We then provide new algorithms for both problems when
n is a-priori known to all agents. However, what if agents have partial knowledge about n? We
provide tight upper and lower bounds that must be a-priori known on n for equilibrium to be
possible in Leader Election, Knowledge Sharing, Coloring, Partition and Orientation.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases rational agents, distributed game theory, coloring, knowledge sharing

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.5

Related Version A full version of the paper is available at [6], https://arxiv.org/abs/1711.
04728.

Funding This research was supported by the Israel Science Foundation (grant 1386/11).

Acknowledgements We would like to thank Doron Mukhtar for showing us the ring partition
problem and proving it is unbounded, when we thought such problems do not exist. We would
also like to thank Michal Feldman, Amos Fiat, and Yishay Mansour for helpful discussions.

1 Introduction

The complexity and simplicity of most distributed computing problems depend on the inherent
a-priori knowledge given to all participants. Usually, the more information processors in a
network start with, the more efficient and simple the algorithm for a problem is. Sometimes,
this information renders an otherwise unsolvable problem, solvable.

In game-theoretic distributed computing, algorithms run in a network of rational agents
that may deviate from an algorithm if they deem the deviation more profitable for them.
Rational agents have always been assumed to know the number of participants in the

© Yehuda Afek, Shaked Rafaeli, and Moshe Sulamy;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/161589409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:afek@post.tau.ac.il
mailto:shakedr@mail.tau.ac.il
mailto:moshe.sulamy@cs.tau.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2018.5
https://arxiv.org/abs/1711.04728
https://arxiv.org/abs/1711.04728
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 The Role of A-priori Information in Networks of Rational Agents

network [1, 4, 7, 24, 43], when in fact this assumption is not only very unrealistic in today’s
Internet, but also provides agents with non-trivial information which is critical for equilibrium.

Consider for example a large world-wide social network on which a distributed algorithm
between a large portion of its members is run. It does not necessarily have the time to verify
the number of participants, or the service it provides with the algorithm will be irrelevantly
slow. If n is known to all participants, as was assumed in previous works about rational
agents, that would not be a problem. However, what if n is not known beforehand and this
allows one of the participants to skew the result in his favor?

The problems we examine here can be solved in the game-theoretic setting when n is
a-priori known. However, learning the size of the network reliably is not possible with rational
agents and thus we show that some a-priori knowledge of n is critical for equilibrium. That
is, without any knowledge of n, equilibrium for these problems is impossible. In contrast,
these problems can be solved without knowledge of n if the participants are not rational,
since we can acquire the size of the network using broadcast and echo.

When n is not a-priori known, agents may deviate from the algorithm by duplicating
themselves to affect the outcome. This deviation is also known as a Sybil Attack [20],
commonly used to manipulate internet polls, increase page rankings in Google [15] and affect
reputation systems such as eBay [14, 16]. In this paper, we use a Sybil Attack to prove
impossibility of equilibria. For each problem presented, an equilibrium when n is known
is provided here, or in previous work. Thus when n is not known an agent must duplicate
to increase its utility, or otherwise if no agent duplicates and the network is 2-connected, a
simple broadcast and echo would reveal the actual network size n and the existing equilibrium
would apply. Obviously, deviations from the algorithm that include both duplicating and
additional cheating, such as lying about the input of duplicated agents or fixing the result of
a random coin flip, are also possible. When considering a deviation, an agent assumes it is
the only deviating agent, and we assume that there are no coalitions of cheating agents.

Intuitively, the more agents an agent is disguised as, the more power to affect the output
of the algorithm it has. For every problem, we strive to find the maximum number of
duplications a cheater may be allowed to duplicate without gaining the ability to affect the
output, i.e., equilibrium is still possible. This maximum number of duplications depends on
whether other agents will detect that a duplication has taken place, since the network could
not possibly be this large. To detect this situation they need to possess some knowledge
about the network size, or about a specific structure.

We translate this intuition into a precise relation between the lower bound α and the
upper bound β ≥ α on n, that must be a-priori known in order for equilibrium to be
possible. We denote this relation f -bound. These bounds hold for both deterministic and
non-deterministic algorithms.

These bounds show what algorithms may be used in specific networks. For example,
in an internal business network, some algorithms may work because every member in the
network knows there are no more than several thousand computers in the network, while for
other algorithms this knowledge is not tight enough.

Table 1 summarizes our contributions and related previous work (where there is a citation).
Known n refers to algorithms in which n is a-priori known to all agents. Unknown n refers
to algorithms or impossibility of equilibrium when agents a-priori know no bound on n. The
f -bound for each problem is a function f for which there is an equilibrium when the a-priori
bounds on n satisfy α ≤ β ≤ f(α), and no equilibrium exists when β > f(α). A problem
is ∞-bound if there is an equilibrium given any finite bound, but no equilibrium exists if
no bound or information about n is a-priori given. A problem is unbounded if there is an
equilibrium even when neither n nor any bound on n is given.

Y. Afek, S. Rafaeli, and M. Sulamy 5:3

Table 1 Summary of paper contributions, equilibria and impossibility results for different problems
with different a-priori knowledge about n.
* f -bound proven for a ring graph, otherwise holds for any 2-connected graph

Problem Known n Unknown n f -bound

Coloring
X

Section 4
Impossible
Section 3 ∞*

Leader Election
X

ADH’13 [4]
Impossible
ADH’13 [4] (α+ 1)

Knowledge Sharing X
AGLS’14 [7]

Impossible
Section 3

(2α− 2)*
2-Knowledge Sharing ∞

Partition, Orientation
X

Section 5
X

Section 5 Unbounded

1.1 Related Work

The connection between distributed computing and game theory stemmed from the problem
of secret sharing [37]. Further works continued the research on secret sharing and multiparty
computation when both Byzantine and rational agents are present [2, 18, 21, 22, 23, 31].

Another line of research presented the BAR model (Byzantine, acquiescent and rational)
[8, 33, 42], while a related line of research discusses converting solutions with a mediator to
cheap talk [2, 3, 12, 13, 19, 27, 32, 38, 40, 41].

Abraham, Dolev, and Halpern [4] were the first to present protocols for networks of rational
agents, specifically protocols for Leader Election. In [7] the authors continue this line of
research by providing basic building blocks for game theoretic distributed algorithms, namely
a wake-up and knowledge sharing equilibrium building blocks. Algorithms for consensus,
renaming, and leader election are presented using these building blocks. Consensus was
researched further by Halpern and Vilacça [24], who showed that there is no ex-post Nash
equilibrium, and a Nash equilibrium that tolerates f failures under some minimal assumptions
on the failure pattern. Yifrach and Mansour [43] studied fair Leader Election protocols,
giving an almost tight resilience analysis. Bank, Sulamy, and Waserman [11] examined the
case where the id space is limited, calculating the minimal threshold for equilibrium.

Coloring and Knowledge Sharing have been studied extensively in a distributed setting
[9, 10, 17, 26, 28, 29, 39]. An algorithm for Knowledge Sharing with rational agents was
presented in [7], while Coloring with rational agents has not been studied previously, to the
best of our knowledge.

Distributed algorithms in which n is not known either implicitly or explicitly have been
extensively studied in many other contexts, see for example [5, 25]. In last year’s DISC in
the permisionless network model and the context of consensus for blockchain [34, 35, 36]
similar bounds (factor 2 in their case) on the number of cheating agents have been proved
for the consensus task, in the synchronous case.

2 Model

We use the standard message-passing, synchronous model, where the network is a bidirectional
graphG = (V,E) with n nodes, each node representing an agent with unlimited computational
power, and |E| edges over which they communicate in rounds. G is assumed to be 2-vertex-

DISC 2018

5:4 The Role of A-priori Information in Networks of Rational Agents

connected1. Throughout the entire paper, n always denotes the actual number of nodes in
the network.

Initially, each agent knows its own id and input, but not the id or input of any other
agent. For any information that an agent does not know, we assume its prior is uniformly
distributed over all possible values. For example, considering the prior of an agent over the
ids of all other agents, at round 0 each possible permutation of the n− 1 ids in the network
is equally possible. Similarly for all possible sets of input vectors, preference vectors, network
size, etc. Furthermore, we assume all agents start the protocol together at round 0, i.e., all
agents wake-up at the same time. If not, we can use the Wake-Up [7] building block to relax
this assumption.

2.1 Equilibrium in Distributed Algorithms
Informally, a distributed algorithm is an equilibrium if no agent at no point in the execution
can do better by unilaterally deviating from the algorithm. When considering a deviation,
an agent assumes all other agents follow the algorithm, i.e., it assumes it is the only agent
deviating. We assume there are no coalitions of cheating agents.

Formally, let oa be the output of agent a, let Θ be the set of all possible output vectors,
and denote the output vector O = (o1, . . . , on) ∈ Θ, where O[a] = oa. Let ΘL be the set of
legal output vectors, in which the protocol terminates successfully, and let ΘE be the set of
erroneous output vectors, such that Θ = ΘL ∪ΘE and ΘL ∩ΘE = ∅.

Each agent a has a utility function ua : Θ→ N. The higher the value assigned by ua to
an output vector, the better this vector is for a. As in previous works [4, 7, 43], the utility
function is required to satisfy the Solution Preference which guarantees that an agent never
has an incentive to fail the algorithm. Otherwise, they would simply be Byzantine faults.
An agent fails the algorithm only when it detects that another agent had deviated.

I Definition 1 (Solution Preference). The utility function ua of an agent a never assigns a
higher utility to an erroneous output than to a legal one, i.e.:

∀a,OL ∈ ΘL, OE ∈ ΘE : ua(OL) ≥ ua(OE)

We differentiate the legal output vectors, which ensure the output is valid and not
erroneous, from the correct output vectors, which are output vectors that are a result of a
correct execution of the algorithm, i.e., without any deviation. For example, in a Consensus
protocol that decides by a majority and a network where the majority of agents received 1
as input and at least one agent received 0, deciding on 0 is legal, as it is a valid output for
Consensus, but incorrect, as it necessarily resulted in a deviation from the protocol in use.
The Solution Preference guarantees agents never prefer an erroneous output. However, they
may prefer a legal but incorrect output.

The Solution Preference property introduces the threat agents face when deviating:
Agents know that if another agent catches them cheating, it outputs ⊥ and the algorithm
fails. In other words, the output is erroneous, i.e., in ΘE .

For simplicity, we assume agents only have preferences over their own output, i.e., for
any O1, O2 ∈ ΘL in which O1[a] = O2[a], ua(O1) = ua(O2). Additionally, each agent a has a

1 This property was shown necessary in [7], since if a bottleneck node exists it can alter any message
passing through it. Such a deviation cannot be detected since all messages between the sub-graphs
this node connects must traverse through it. This node can then skew the algorithm according to its
preferences.

Y. Afek, S. Rafaeli, and M. Sulamy 5:5

single preferred output value pa, and we normalize the utility function values, such that2:

ua(O) =
{

1 oa = pa and O ∈ ΘL

0 oa 6= pa or O ∈ ΘE

(1)

Our results hold for any utility function that satisfies Solution Preference. For clarity
and ease of presentation we assume Equation 1.

I Definition 2 (Expected Utility). Let r be a round in a specific execution of an algorithm.
Let a be an arbitrary agent. For each possible output vector O, let xO(s, r) be the probability,
estimated by agent a at round r, that O is output by the algorithm if a takes step s 3, and
all other agents follow the algorithm. The Expected Utility a estimates for step s in round r
of that specific execution is:

Es,r[ua] =
∑
O∈Θ

xO(s, r) · ua(O)

An agent will deviate whenever the deviating step has a strictly higher expected utility
than the expected utility of the next step of the algorithm, even if that deviating step also
increases the risk of an erroneous output.

Let Λ be an algorithm. If by deviating from Λ and taking step s, the expected utility of
a is higher, we say that agent a has an incentive to deviate (i.e., cheat). For example, at
round r algorithm Λ may dictate that a flips a fair binary coin and sends the result to all of
its neighbors. Any other action by a is considered a deviation: whether the message was
not sent to all neighbors, sent later than it should have, or whether the coin toss was not
fair, e.g., a only sends 0 instead of a random value. If no agent can unilaterally increase its
expected utility by deviating from Λ, we say that the protocol is an equilibrium. Equilibrium
is defined over a single deviating agent, i.e., there are no coalitions of agents.

I Definition 3 (Distributed Equilibrium). Let s(r) denote the next step of algorithm Λ in
round r. Λ is an equilibrium if for any deviating step s̄, at any round r of every possible
execution of Λ:

∀a, r, s̄ : Es(r),r[ua] ≥ Es̄,r[ua]

2.2 Knowledge Sharing
The Knowledge Sharing problem (adapted from [7]) is defined as follows:
1. Each agent a has a private input ia, in addition to its id, and a function q, where q is

identical at all agents.
2. A Knowledge Sharing protocol terminates legally if all agents output the same value, i.e.,
∀a, b : oa = ob 6= ⊥. Thus the set ΘL is defined as: O ∈ ΘL ⇐⇒ ∀a, b : O(a) = O(b) 6= ⊥.

3. A Knowledge Sharing protocol terminates correctly (as described in Section 2.1) if each
agent outputs at the end the value q(I) over the input values I = {i1, . . . , in} of all other
agents4.

2 This is the weakest assumption since it still leaves a cheating agent with the highest incentive to deviate,
while still satisfying Solution Preference. A utility assigning a lower value for failure than oa 6= pa would
deter a cheating agent from deviating.

3 A step specifies the entire operation of the agent in a round. This may include drawing a random
number, performing any internal computation, and the contents and timing of any message delivery.

4 Notice that any output is legal as long as it is the output of all agents, but only a single output value is
considered correct for a given input vector.

DISC 2018

5:6 The Role of A-priori Information in Networks of Rational Agents

Figure 1 Agent a acting as separate agents a1, a2.

4. The function q satisfies the Full Knowledge property:

I Definition 4 (Full Knowledge Property). A function q fulfills the full knowledge property if,
for each agent that does not know at least one input value of another agent, any output in the
range of q is equally possible. Formally, for any 1 ≤ j ≤ m, fix (x1, . . . , xj−1, xj+1, . . . , xm)
and denote zy = |{xj |q(x1, . . . , xj , . . . , xm) = y}|. A function q fulfills the full knowledge
property if, for any possible output y in the range of q, zy is the same5.

We assume that each agent a prefers a certain output value pa.

2.2.1 2-Knowledge Sharing
The 2-Knowledge Sharing problem is a Knowledge Sharing problem with exactly 2 distinct
possible output values.

2.3 Coloring
In the Coloring problem [17, 28], ΘL is any O such that ∀a : oa 6= ⊥ and ∀(a, b) ∈ E : oa 6= ob.
We assume that every agent a prefers a specific color pa.

3 Impossibility With No Knowledge

Here we prove that the common assumption that n is known is the key to the possibility of
equilibrium for many problems: Without any a-priori knowledge about n, neither Knowledge
Sharing nor Coloring have equilibria.

Let a be a malicious agent with δ outgoing edges. A possible deviation for a is to simulate
imaginary agents a1, a2 and to answer over some of its edges as a1, and over the others as
a2, as illustrated in Figure 1. From this point on a acts as if it is 2 agents. Here we assume
that the id space is much larger than n, allowing us to disregard the probability that the
fake id collides with an existing id, an issue dealt with in [11].

In our proofs we consider a weakened cheating agent that must decide on its duplication
scheme at the very beginning of the algorithm, before any messages are exchanged. Thus,
when the algorithm begins, it runs in a modified graph G′ that is not the true graph G

and contains duplications, but cannot be altered further by a cheater during the run of the
algorithm. If this weakened cheater contradicts the possibility of equilibria, then surely a
cheater that can make additional duplications while the algorithm runs would be able to

5 The definition assumes input values are drawn uniformly, otherwise the definition of zy can be expanded
to the sum of probabilities over every input value for xj .

Y. Afek, S. Rafaeli, and M. Sulamy 5:7

Figure 2 Graph H created by two arbit-
rary sub-graphs D,E.

Figure 3 Example of agent a pretending
to be E′ = E ∪ {a1, a2}.

adapt to the information it receives and increase its utility by creating more duplications6.
This weakening only strengthens our impossibility proofs.

Regarding the output vector, notice that an agent that pretends to be more than one
agent still outputs a single output at the end. The duplication causes agents to execute
the algorithm as if it is executed on a graph G′ (with the duplicated agents) instead of the
original graph G; however, the output is considered legal if O = (oa, ob, . . .) ∈ ΘL rather
than if (oa1 , oa2 , ob, . . .) ∈ ΘL.

It is important to emphasize that for any non-trivial distributed algorithm that is an
equilibrium, the outcome cannot be calculated using only private data without communication.
For rational agents, no agent can calculate the output privately at the beginning of the
algorithm, since if it could calculate the output and know that its resulting utility will be 0,
it would surely lie over its initial information to avoid losing, preventing equilibrium. If it
knows its resulting utility is 1, it has no incentive to cheat. But there isn’t always a solution
in which everyone gains. This means that at round 0, for any agent a and any step s of the
agent that does not necessarily result in algorithm failure, it must hold that: Es,0[ua] /∈ {0, 1}
(a value of 0 means an agent will surely not get its preference, and 1 means it is guaranteed
to get its preference).

In this section we label agents in the graph as a1, ..., an, set in a clockwise manner in a
ring and in an arbitrary order in any other topology. These labels are not known to the
agents themselves.

3.1 Impossibility of Knowledge Sharing

I Theorem 5. There is no algorithm for Knowledge Sharing that is an equilibrium in a
2-connected graph when agents have no a-priori knowledge of n.

Proof. Assume by contradiction that Λ is a Knowledge Sharing algorithm that is an equi-
librium in any graph of agents who have absolutely no knowledge about n. Let D, E be
two arbitrary 2-connected graphs of rational agents. Consider the execution of Λ on graph
H created by D,E, and adding two nodes a1, a2 and connecting these nodes to 1 or more
arbitrary nodes in both D and E (see Figure 2).

Recall that the vector of agents’ inputs is denoted by I = i1, i2, · · · , in, and n = |H| =
|D|+ |E|+ 2. Let tD be the first round after which q(I) can be calculated from the collective
information that all agents in D have (regardless of the complexity of the computation), and

6 A cheater can be forced to commit using a Wake-Up protocol. Since no mechanism exists to ensure
authenticity, an agent will choose what information to send (false ID, false input, false neighbors). The
exchanged information, as Theorem 5 shows, is already altered by a cheater and the process is not an
equilibrium.

DISC 2018

5:8 The Role of A-priori Information in Networks of Rational Agents

similarly tE the first round after which q(I) can be calculated in E. Consider the following
three cases:
1. tE < tD: q(I) cannot yet be calculated in D at round tE . Let E′ = E ∪ {a1, a2}. Since

E ⊂ E′, the collective information in E′ at round tE is enough to calculate q(I). Since n
is not known, an agent a could emulate the behavior of E′, making the agents believe the
algorithm runs on H rather than D. In this case, this cheating agent knows at round
tE the value of q(I) in this execution, but the collective information of agents in D is
not enough to calculate q(I), which means the output of agents in D still depends on
messages from E′, the cheater. Thus, if a learns that the output q(I) 6= pa, it can simulate
all possible runs of the algorithm in a state-tree, and select a course of action that has at
least some probability of leading to an outcome q(I) = pa. Such a message surely exists
because otherwise, D would have also known the value of q(I). In other words, a finds
a set of messages that might cause the agents in D to decide a value x 6= q(I). In the
case where pa = x, agent a increases its expected utility by sending a set of messages
different than that decreed by the protocol. Thus, agent a has an incentive to deviate,
contradicting distributed equilibrium.

2. tD = tE : both E and D have enough collective information to calculate q(I) at the same
round. The collective information in E at round tE already exists in E′ at round tE − 1.
Since tD = tE , the collective information in D is not enough to calculate q(I) in round
tE − 1. Thus, similarly to Case 1, a can emulate E′ and has an incentive to deviate.

3. tE > tD: Symmetric to Case 1.

Thus, Λ is not an equilibrium for the Knowledge Sharing problem. J

I Corollary 6. When a cheating agent pretends to be more than n agents, there is no algorithm
for Knowledge Sharing that is an equilibrium when agents have no a-priori knowledge of n.

Proof. Let H be a graph such that |D| = |E|. Follow the proof of Theorem 5. J

3.2 Impossibility of Coloring
The proof of Theorem 5 relies on the Full Knowledge property of the Knowledge Sharing
problem, i.e., no agent can calculate the output before knowing all the inputs. Recall that
the Coloring problem, however, is a more local problem [30], and nodes may color themselves
without knowing anything about distant nodes.

I Theorem 7. There is no algorithm for Coloring that is an equilibrium in a 2-connected
graph when agents have no a-priori knowledge of n.

Proof. Our proof is constructed by showing a type of graph in which a cheater could deviate
to increase its expected utility, regardless of the algorithm. Surprisingly, this graph is simply
a ring. Recall that an agent outputs a single color, even if it pretends to be several agents. In
Coloring, a cheating agent only wishes to influence the output color of its original neighbors
to enable it to output its preferred color while maintaining the legality of the output. The
key to showing an incentive to deviate is defining a way to assess the precise point in which
a cheater gains an advantage. We do this by generalizing the notion of expected utility:

I Definition 8 (Group Expected Utility). Let r be a round in an execution ε, and let M be a
group of agents. For any set S = {s1, . . . , s|M |} of steps of agents in M , let Ψ be the set of
all possible executions for which the same messages traverse the links that income and outgo
to/from M as in ε until round r, and in round r each agent in M takes the corresponding
step in S. For each possible output vector O, let xO be the sum of probabilities over Ψ that

Y. Afek, S. Rafaeli, and M. Sulamy 5:9

Figure 4 Ring with 3 agents a9, a10, a1

colliding on their preferred color.
Figure 5 Ring with 3 agents colliding on

their preferred color, with groups L′, R′.

O is decided by the protocol. For any agent v, the Group Expected Utility of uv by M taking
steps S at round r in execution ε is: EM,S,r[uv] =

∑
O∈Θ

xOuv(O).

Note that agents can also estimate the expected utility of other agents by considering a
different utility function over the same output vectors of the execution ε.

Assume by contradiction that Γ is a Coloring algorithm that is an equilibrium in a ring
with n agents {a1, . . . , an}. Let G be a ring with a segment of k consecutive agents, k ≥ 3,
all of which have the same color preference p. Assume w.l.o.g., they are centered around an
if k is odd and around an, a1 if even. Let L be the group of agents {an−1, . . . , abn2 c+1}, and
R the group of agents {a1, . . . , adn2 e−1}. Denote L′ = L ∪ {adn2 e, an} and R

′ = V \ L′ (see
Figures 4 and 5).

I Definition 9. Let Y be a group of agents (e.g., L or R). In any round r in an execution,
let Sr(Y) denote the vector of steps of agents in Y according to the protocol. We say Y
knows the utility of agent a if it holds that EY,Sr(Y)[ua] ∈ {0, 1}. We say Y does not know
the utility of agent a if 0 < EY,Sr(Y)[ua] < 1.

Recall that at round 0 no agent (or group of agents) knows its utility or the utility of any
other agent. Consider an execution of Γ on ring G and the groups L,R in the following cases:
1. L does not know uan throughout the entire execution of the algorithm, i.e., for agents in

L it holds that 0 < Pr[on 6= p] < 1. Then if L is emulated by a cheating agent, it has an
incentive to deviate and set its output to p (as otherwise its utility is guaranteed to be 0).

2. L knows uan at some round tL, and R does not know uan before round tL. Consider
round tL − 1 and group L′: In round tL, L knows the utility of an, thus the collective
information of agents in L at round tL already exists in L′ at round tL − 1. If L′ knows
that uan = 1, then its utility is already 1; otherwise, L′ knows that uan = 0. Consider the
group R′ ⊂ R, that does not know uan at round tL − 1. If L′ is emulated by a cheating
agent a, it can send messages that increase its probability to output p from 0 to some
positive probability, increasing its expected utility and thus it has an incentive to deviate.

3. R knows uan before round tL: symmetric to Case 2.

By the contradictory example for a ring, there is no equilibrium for Coloring 2-connected
graphs when agents have no a-priori knowledge of n. J

DISC 2018

5:10 The Role of A-priori Information in Networks of Rational Agents

4 Algorithms

Here we present algorithms for Knowledge Sharing (Section 4.1) and Coloring (Section 4.2).
In the previous section we saw that in Knowledge Sharing, if a duplicating agent can pretend
to be more than n agents equilibrium is impossible (Corollary 6). The Knowledge Sharing
algorithm presented here is an equilibrium in a ring when no cheating agent pretends to be
more than n agents, proving a tight bound and improving the Knowledge Sharing algorithm
in [7]. The Coloring algorithm is an equilibrium in any 2-connected graph when agents
a-priori know n.

Notice that using an algorithm as a subroutine is not trivial in this setting, even if the
algorithm is an equilibrium, as the new context as a subroutine may allow agents to deviate
towards a different objective than was originally proven. Thus, whenever a subroutine is
used, its equilibrium should be proved.

4.1 Knowledge Sharing in a Ring
First we describe the Secret-Transmit(ia,r,b) building block in which an agent a transmits
its input ia to an agent b of its choosing, such that b learns ia at round r and no other
agent in the ring learns any information about this input. Several Secret-Transmits can
be executed concurrently. To achieve this, agent a selects a random number Ra, and let
Xa = Ra ⊕ ia. It sends Ra clockwise and Xa counter-clockwise until each reaches the agent
before b. At round r − 1, these neighbors of b simultaneously send b the values Xa and Ra,
thus b receives the information at round r.

We assume a global orientation around the ring. This assumption can be easily relaxed
via Leader Election [7], which is an equilibrium in this application since the orientation has
no effect on the output. The algorithm works as follows:

Algorithm 1 Knowledge Sharing in a Ring.
1: All agents execute Wake-Up [7] to learn the ids of all agents and n′, the size of the ring

(which may include duplications)
2: For each agent a, denote b1a the clockwise neighbor of a, and b2a the agent at distance
bn

′

2 c counter-clockwise from a

3: Each agent a simultaneously performs:
SecretTransmit(ia, n′, b1a)
SecretTransmit(ia, n′, b2a)

4: At round n′ + 1, each agent sends its input around the ring
5: At round 2n′ output q(I)

I Theorem 10. In a ring, Algorithm 1 is an equilibrium when no cheating agent pretends to
be more than n agents.

Proof. Assume by contradiction that a cheating agent pretending to be d ≤ n agents has an
incentive to deviate. W.l.o.g., the duplicated agents are a1, . . . , ad (recall the indices 1, . . . , n′
are not known to the agents).

Let n′ be the size of the ring including the duplicated agents, i.e., n′ = n+ d− 1. The
clockwise neighbor of an′ is a1, denoted b1an′ . Denote ac = b2an′ the agent at distance bn

′

2 c
counter-clockwise from an′ , and note that c ≥ d.

When an′ calls Secret-Transmit to a1, an′ holds Rn′ of that transmission until round
n′ − 1. When an′ calls Secret-Transmit to ac, ac+1 holds Xn′ of that transmission until

Y. Afek, S. Rafaeli, and M. Sulamy 5:11

round n′ − 1. By our assumption, the cheating agent duplicated into a1, . . . , ad. Since
d < c+ 1, the cheater receives at most one piece (Xn′ or Rn′) of each of an′ ’s transmissions
before round n′. So, there is at least one input that the cheater does not learn before round
n′. According to the Full Knowledge property (Definition 4), for the cheater at round n′ − 1
any output is equally possible, so its expected utility for any value it sends is the same, thus
it has no incentive to cheat regarding the values it sends in round n′ − 1.

Let aj ∈ {a1, . . . , ad} be an arbitrary duplicated agent. In round n′, iaj is known by
its clockwise neighbor b1aj and by b2aj , the agent at distance bn

′

2 c counter-clockwise from aj .
Since the number of counter-clockwise consecutive agents in {b1aj , aj , . . . , b

2
aj} is greater than

dn
′

2 e ≥ n, at least one of b1aj , b
2
aj is not a duplicated agent. Thus, at round n′, the input of

each agent in {a1, . . . , ad} is already known by at least one agent /∈ {a1, . . . , ad}.
At round n′ − 1 the cheater does not know the input value of at least one other agent,

so by the Full Knowledge property it has no incentive to deviate. At round n′ for each
duplicated agent, its input is already known by a non-duplicated agent, which disables the
cheater from lying about its input from round n′ and on.

Thus, the cheating agent has no incentive to deviate, contradicting our assumption. J

In other words, in Algorithm 1 an agent has no incentive to deviate unless it duplicates
more than n agents.

4.2 Coloring in General Graphs
Here, agents are given exact a-priori knowledge of n. Since agent ids are private and agents
may cheat about their id, ids cannot be used to decide which of two neighbors that desire the
same color actually gets it. However, an orientation over an edge is shared by both agents,
and an acyclic orientation over the graph can be used to break ties.

Note that since the agents are rational, unless agent a knows that one or more of its
neighbors output a’s preferred color pa, it will output pa itself, regardless of the algorithm
step, which is a deviation. Thus, any coloring algorithm must ensure that whenever an agent
can output its preferred color, it does, otherwise the agent has a trivial incentive to deviate.

We present Algorithm 2 that uses two subroutines to obtain a coloring. Draw (Algorithm 3)
is an equilibrium in which agent a randomizes a number different from those of its neighbors
and commits to it. Prompt (Algorithm 4) is a query that ensures a receives the correct
drawn number from a neighbor. A full explanation is provided in the full paper [6].

I Theorem 11. Algorithm 2 is an equilibrium for Coloring when agents a-priori know n.

Proof. Let a be an arbitrary agent. Assume in contradiction that at some round r there is a
possible cheating step s such that s 6= sr and Es,r[ua] > Esr,r[ua].

Consider the possible deviations for a in every phase of Algorithm 2:
Wake-Up: The order by which agents initiate Algorithm 3 has no effect on the order by
which they will later set their colors. Hence, a has no incentive to publish a false id in
the Wake-Up building block.
Draw is an equilibrium: An agent and a witness send a random number simultaneously.
Publishing a false S value will be caught by the verification in step 10 of Algorithm 2.
Sending a color message not in order will be immediately recognized by the neighbors,
since S values were verified.
Agent a might output a different color than the color dictated by Algorithm 2. But if the
preferred color is available, then outputting it is the only rational behavior. Otherwise,
the utility for the agent is already 0 in any case. J

DISC 2018

5:12 The Role of A-priori Information in Networks of Rational Agents

Algorithm 2 Coloring via Acyclic Orientation (for agent a).
1: Run Wake-Up . After which all agents know graph topology
2: set T := ∅ . T is the set of values already taken by a’s neighbors (N(a))
3: for i = 1, ..., n do
4: if ida = i’th largest id in V then . Draw random numbers in order of id
5: Draw(T)
6: else
7: wait |Draw| rounds . Wait for Draw, takes a constant number of rounds
8: if received S(v) from v ∈ N(a) then . S(v) is the value of v from Draw

9: T = T ∪ {S(v)} . Add S(v) to set of taken values
10: for u ∈ N(a) simultaneously do
11: Prompt(u) . Since we must validate the value received in line 8
12: wait until all prompts are completed in the entire graph . At most n rounds
13: for round t = 1, ..., n do:
14: if S(a) = t then . Wait for your turn, decreed by your S value
15: if ∀v ∈ N(a) : ov 6= pa then oa := pa
16: else oa := minimum color unused by any v ∈ N(a)
17: send oa to N(a)

Algorithm 3 Draw(T) Subroutine (for agent a and the witness w(a)).
Denote X = {1, ..., n} \ T . X is the set of numbers not drawn by neighbors

1: w(a) := node b s.t. idb is minimal in N(a) . N(a) is the set of neighbors of a
send witness to w(a) . choose neighbor with minimal id as witness

2: r(a) := random{1, ..., |X|} drawn by a
r(w(a)) := random{1, ..., |X|} drawn by w(a)
send r(a) to w(a)
receive r(w(a)) from w(a) . a and witness jointly draw a random number

3: Let q := r(a) + r(w(a)) mod |X|.
Set S(a) := q’th largest number in X
send S(a) to all u ∈ N(a) . Calculate S(a) and publish to neighbors

Algorithm 4 Prompt(b) Subroutine (for agent a).
upon receiving a prompt(b) message from b ∈ N(a):

1: p := shortest simple path a→ w(a)→ b . w(a) is set by a preceding call to Draw
send S(a), b via p . If v 6= w(a) is asked to relay S(a), v fails the algorithm
send S(a) to b via e = (a, u) . b validates that both messages received are consistent

Y. Afek, S. Rafaeli, and M. Sulamy 5:13

Table 2 Knowledge Bounds; summary of results.
∗ – Bound is tight only in rings.

Bound Problem
α+ 1 Leader Election
2α− 2 Knowledge Sharing∗
∞ Coloring∗, 2-Knowledge Sharing

unbounded Partition, Orientation

5 How Much Knowledge Is Necessary?

In Section 3 we have shown that with rational agents, knowledge of n is crucial; however,
in some cases, bounds on the value of n may be enough for equilibrium. In this section we
examine the effects of a-priori knowledge that bound the possible value of n. We show that
the possibility of equilibria depends on the range [α, β] in which n might be, and show these
ranges for different problems. Table 2 summarizes our results.

Partition and Orientation have equilibria without any knowledge of n; however, the
former is constrained to even-sized rings, and the latter is a trivial problem in distributed
computing (radius 1 in the LOCAL model [29]).

I Definition 12 ((α, β)-Knowledge). We say agents have (α, β)-Knowledge about the actual
number of agents n, α ≤ β, if all agents a-priori know that the value of n is in [α, β]. Agents
have no information about the distribution over [α, β], i.e., they assume it is uniform.

I Definition 13 (f -Bound). Let f : N→ N. A problem P is f -bound if:
There exists an algorithm for P that is an equilibrium given (α, β)-Knowledge for any
α, β such that β ≤ f(α).
For any algorithm for P, there exist α, β where β > f(α) such that given (α, β)-Knowledge
the algorithm is not an equilibrium.

In other words, a problem is f -bound if given (α, β)-Knowledge, there is an equilibrium
when β ≤ f(α), and there is no equilibrium if β > f(α).

A problem is ∞-bound if there is an equilibrium given any bound f , but there is no
equilibrium with (1,∞)-Knowledge. A problem is unbounded if there is an equilibrium with
(1,∞)-Knowledge.

Consider an agent a at the start of a protocol given (α, β)-Knowledge. If a pretends to
be a group of d agents, it can be caught when d+ n− 1 > β, since agents might count the
number of agents and catch the cheater. Moreover, any duplication now involves some risk
since the actual value of n is not known to the cheater (similar to [11]).

An arbitrary cheating agent a simulates executions of the algorithm for every possible
duplication, and evaluates its expected utility. Denote D a duplication scheme in which an
agent pretends to be d agents. Let PD = P [d+ n− 1 ≤ β] be the probability, from agent a’s
perspective, that the overall size does not exceed β. If for agent a there exists a duplication
scheme D at round 0 such that ED,0[ua] · PD > Es(0),0[ua], then agent a has an incentive to
deviate and duplicate itself. For each problem we look for the maximal range of α, β where
no d exists that satisfies the inequality above.

5.1 Knowledge Sharing
I Theorem 14. Knowledge Sharing in a ring is (2α− 2)-bound.

DISC 2018

5:14 The Role of A-priori Information in Networks of Rational Agents

Proof. Assume agents have (α, β)-knowledge for some α, β. A cheating agent a chooses d,
the number of agents it pretends to be, that maximizes its expected utility.

Let k be the size of the range of the output function q (Definition 4). By Definition 4,
any output is equally possible. Therefore, without deviation the expected utility of a at
round 0 is: Es(0),0[ua] = 1

k .
Corollary 6 shows that when a cheating agent pretends to be more than n agents, it

gains an advantage (thus there is no equilibrium). According to Theorem 10, Algorithm 1
is an equilibrium for Knowledge Sharing in a ring when a cheating agent pretends to be n
agents or less. If n is in the range [α, β], a duplicates to d agents to maximize the probability
that d > n and thus the duplication increases its expected utility, while also minimizing the
probability that d+ n− 1 > β and a is caught.

To successfully gain an advantage a must duplicate to at least d ≥ α, or otherwise d is
surely < n and by Theorem 10, there is an equilibrium. Further notice that d ≤ dβ2 e+ 1 (the
+1 is a itself) since a higher value of d increases the probability of a to be caught without
increasing the probability of gaining any advantage.

From a’s perspective at the beginning of the algorithm, the value of n is uniformly
distributed over [α, β]. Let X > 1

k be the utility a gains by pretending to be d > n agents if
it is not caught, i.e., if d+ n− 1 ≤ β. The probability to duplicate to d > n agents and not
be caught is d−α

β−α+1 . On the other hand, when pretending to be d ≤ n agents without being

caught the utility of a does not change and is 1
k , and this has a probability of d

β
2 e+1−d
β−α+1 . In

all other cases d+ n− 1 > β and a is caught, resulting in a utility of 0. Thus, the expected
utility of agent a at round 0 is:

ED,0[ua] = X · d− α
β − α+ 1 + 1

k
·
dβ2 e+ 1− d
β − α+ 1 (2)

The expected utility in (2) reaches a maximum at d = bβ2 c+ 1, so set d to that number as
the best cheating strategy. Recall that a deviates from the algorithm whenever ED,0[ua] > 1

k :

ED,0[ua] = X ·
bβ2 c+ 1− α
β − α+ 1 + 1

k
·
dβ2 e − b

β
2 c

β − α+ 1 >
1
k

(3)

As k grows, 1
k approaches 0. By setting 1

k = 0 Equation 3 shows that agent a has
an incentive to deviate when bβ2 c + 1 − α > 0. When β is even: β > 2α − 2, otherwise:
β > 2α− 1. Thus, Algorithm 1 is an equilibrium for Knowledge Sharing when agents have
(α, β)-knowledge such that β ≤ 2α− 2, and there exist α, β > 2α− 2 such that there is no
equilibrium for Knowledge Sharing when agents have (α, β)-knowledge. By Definition 13,
Knowledge Sharing is (2α− 2)-bound in rings. J

To find the f -bound for any specific value of k and in any graph, we derive β as a function
of α:{

β is even β(kX − 2) > 2αkX − 2kX − 2α+ 2
β is odd β(kX − 2) > 2αkX − kX − 2α

(4)

I Corollary 15. 2-Knowledge Sharing in a ring is ∞-bound.

Proof. The inequalities in 4 are satisfiable only if X > 2 · 1
k . Since X ≤ 1, the inequalities

cannot be satisfied in 2-Knowledge Sharing (k = 2) and a has no incentive to deviate, given
any bound on n. J

Y. Afek, S. Rafaeli, and M. Sulamy 5:15

Algorithm 5 Coloring in a Ring.
1: Wake-Up to learn the size of the ring.
2: Assume arbitrary global direction over the ring (can be relaxed via Leader Election [7]).
3: Run 2-Knowledge Sharing to randomize a single global bit b ∈ {0, 1}.
4: Publish the preferred color of each agent simultaneously over the entire ring.
5: In each group of consecutive agents that prefer the same color, if b = 0 the even agents

(according to the orientation) output their preferred color, else the odd agents do.
6: If an agent has no neighbors who prefer the same color, it outputs its preferred color.
7: Any other agent outputs the minimal available color.

5.2 Coloring
I Theorem 16. Coloring in a ring is ∞-bound.

Proof. Consider Algorithm 5 which solves coloring in a ring using 2-Knowledge Sharing.
It is easy to see that Algorithm 5 is an equilibrium and results in a legal coloring of the

ring. It uses 2-Knowledge Sharing and thus, following Corollary 15, it proves Theorem 16. J

5.3 Leader Election
In the Leader Election problem, each agent a outputs oa ∈ {0, 1}, where oa = 1 means that
a was elected leader and oa = 0 means otherwise. ΘL = {O|∃a : oa = 1,∀b 6= a : ob = 0}. An
agent prefers either 0 or 1.

I Theorem 17. Leader Election is (α+ 1)-bound.

Proof. Recall that any Leader Election algorithm must be fair [4], i.e., every agent must
have equal probability of being elected leader for the algorithm to be an equilibrium.

Given f(α) = α+ 1, the actual number of agents n is either α or α+ 1. If an agent follows
the protocol, the probability of being elected is 1

n . If it duplicates itself once, the probability
that one of its instances is elected is 2

n+1 , but if n = α+ 1 then n′ > β, it is easily detected
and its utility is 0. Thus ED,0[ua] = 1

2
2

n+1 <
1
n , i.e., no agent has an incentive to deviate.

Given f(α) = α+ 2, then n is in [α, α+ 2]. If an agent follows the protocol, its expected
utility is still 1

n . If it duplicates itself once, the probability that a duplicate is elected
is still 2

n+1 , however only if n = α + 2 then n′ > β and the cheater is caught. Thus,
ED,0[ua] = 2

3
2

n+1 >
1
n for any n > 3. So the agent has an incentive to deviate. J

5.4 Ring Partition
In the Ring Partition problem, the agents of an even-sized ring are partitioned into two,
equally-sized groups: group 0 and group 1. An agent prefers to belong to either group 0 or 1.
In the full paper [6] we prove:

I Theorem 18. Ring Partition is unbounded.

5.5 Orientation
In the Orientation problem, the two ends of each edge must agree on a direction for the edge.
An agent prefers certain directions for its edges. In the full paper [6] we prove:

I Theorem 19. The Orientation problem is unbounded.

DISC 2018

5:16 The Role of A-priori Information in Networks of Rational Agents

6 Discussion

In this paper we have shown that the assumption that n is a-priori known, commonly made in
previous works, has a critical role in the possibility of equilibrium. In realistic scenarios, the
exact size of the network may not be known to all members, or only estimates on the exact
size are known in advance. In such networks, the use of duplication gives an agent power to
affect the outcome of most algorithms, and in some cases makes equilibrium impossible. In
this work we did not identify any problem that requires exact knowledge of n for equilibrium.
Even in Leader Election, equilibrium is possible as long as n is known to be in a margin of 2.

When bounds on n are known, the f -bounds we have proven in Section 5 show that the
initial knowledge required for equilibrium depends on the balance between two factors: The
amount of duplications necessary to increase an agent’s expected utility, and the probability
that the cheater is caught duplicating. In order for an agent to have an incentive to duplicate
itself, an undetected duplication needs to be more profitable than following the algorithm
while also involving low risk of being caught.

Our results suggest several open directions that may be of interest:
1. Finding an equilibrium for Knowledge Sharing in a general graph with at most n du-

plications. This would be the missing piece that, along with our impossibility proof in
Theorem 5, would prove the f -bound of 2α− 2 is tight for general graphs.

2. Algorithms and impossibility results for other problems, as well as tight f -bounds.
3. Finding a problem that is α-bound, i.e., has an equilibrium only when n is known exactly.
4. Finding more problems that have equilibrium without any knowledge of n in any graph

(unlike Partition) and a non-constant radius in the LOCAL model (unlike Orientation).
5. Exploring the effects of initial knowledge of n in an asynchronous setting.

References
1 Ittai Abraham, Lorenzo Alvisi, and Joseph Y. Halpern. Distributed computing meets

game theory: Combining insights from two fields. SIGACT News, 42(2):69–76, 2011. doi:
10.1145/1998037.1998055.

2 Ittai Abraham, Danny Dolev, Rica Gonen, and Joseph Y. Halpern. Distributed computing
meets game theory: robust mechanisms for rational secret sharing and multiparty compu-
tation. In PODC, pages 53–62, 2006. doi:10.1145/1146381.1146393.

3 Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. Lower bounds on implement-
ing robust and resilient mediators. In TCC, pages 302–319, 2008. doi:10.1007/
978-3-540-78524-8_17.

4 Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. Distributed protocols for leader
election: A game-theoretic perspective. In DISC, pages 61–75, 2013. doi:10.1007/
978-3-642-41527-2_5.

5 Norman Abramson. The aloha system: Another alternative for computer communications.
In Proceedings of the November 17-19, 1970, Fall Joint Computer Conference, AFIPS ’70
(Fall), pages 281–285, New York, NY, USA, 1970. ACM.

6 Y. Afek, S. Rafaeli, and M. Sulamy. Cheating by Duplication: Equilibrium Requires Global
Knowledge. ArXiv e-prints, 2017. arXiv:1711.04728.

7 Yehuda Afek, Yehonatan Ginzberg, Shir Landau Feibish, and Moshe Sulamy. Distributed
computing building blocks for rational agents. In Proceedings of the 2014 ACM Symposium
on Principles of Distributed Computing, PODC ’14, 2014.

8 Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Michael Dahlin, Jean-Philippe Martin,
and Carl Porth. Bar fault tolerance for cooperative services. In SOSP, pages 45–58, 2005.
doi:10.1145/1095810.1095816.

http://dx.doi.org/10.1145/1998037.1998055
http://dx.doi.org/10.1145/1998037.1998055
http://dx.doi.org/10.1145/1146381.1146393
http://dx.doi.org/10.1007/978-3-540-78524-8_17
http://dx.doi.org/10.1007/978-3-540-78524-8_17
http://dx.doi.org/10.1007/978-3-642-41527-2_5
http://dx.doi.org/10.1007/978-3-642-41527-2_5
http://arxiv.org/abs/1711.04728
http://dx.doi.org/10.1145/1095810.1095816

Y. Afek, S. Rafaeli, and M. Sulamy 5:17

9 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics. John Wiley & Sons, 2004.

10 B. Awerbuch, M. Luby, A. V. Goldberg, and S. A. Plotkin. Network decomposition and
locality in distributed computation. In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, SFCS ’89, pages 364–369, Washington, DC, USA, 1989.
IEEE Computer Society. doi:10.1109/SFCS.1989.63504.

11 D. Bank, M. Sulamy, and E. Waserman. Reaching Distributed Equilibrium with Limited
ID Space. ArXiv e-prints, 2018. arXiv:1804.06197.

12 Imre Bárány. Fair distribution protocols or how the players replace fortune. Math. Oper.
Res., 17(2):327–340, 1992. doi:10.1287/moor.17.2.327.

13 Elchanan Ben-Porath. Cheap talk in games with incomplete information. J. Economic
Theory, 108(1):45–71, 2003. doi:10.1016/S0022-0531(02)00011-X.

14 Rajat Bhattacharjee and Ashish Goel. Avoiding ballot stuffing in ebay-like reputation
systems. In Proceedings of the 2005 ACM SIGCOMM Workshop on Economics of Peer-to-
peer Systems, P2PECON ’05, pages 133–137, New York, NY, USA, 2005. ACM.

15 Monica Bianchini, Marco Gori, and Franco Scarselli. Inside pagerank. ACM Trans. Internet
Technol., 5(1):92–128, 2005.

16 Alice Cheng and Eric Friedman. Sybilproof reputation mechanisms. In Proceedings of the
2005 ACM SIGCOMM Workshop on Economics of Peer-to-peer Systems, P2PECON ’05,
pages 128–132, New York, NY, USA, 2005. ACM.

17 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal
parallel list ranking. Inf. Control, 70(1):32–53, 1986.

18 Varsha Dani, Mahnush Movahedi, Yamel Rodriguez, and Jared Saia. Scalable rational
secret sharing. In PODC, pages 187–196, 2011. doi:10.1145/1993806.1993833.

19 Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to a game theoretic
problem. In CRYPTO, pages 112–130, 2000. doi:10.1007/3-540-44598-6_7.

20 John R. Douceur. The sybil attack. In Revised Papers from the First International Work-
shop on Peer-to-Peer Systems, IPTPS ’01, pages 251–260, London, UK, UK, 2002. Springer-
Verlag.

21 Georg Fuchsbauer, Jonathan Katz, and David Naccache. Efficient rational secret shar-
ing in standard communication networks. In TCC, pages 419–436, 2010. doi:10.1007/
978-3-642-11799-2_25.

22 S. Dov Gordon and Jonathan Katz. Rational secret sharing, revisited. In SCN, pages
229–241, 2006. doi:10.1007/11832072_16.

23 Adam Groce, Jonathan Katz, Aishwarya Thiruvengadam, and Vassilis Zikas. Byzantine
agreement with a rational adversary. In ICALP (2), pages 561–572, 2012. doi:10.1007/
978-3-642-31585-5_50.

24 Joseph Y. Halpern and Xavier Vilaça. Rational consensus: Extended abstract. In Pro-
ceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC ’16,
pages 137–146, New York, NY, USA, 2016. ACM.

25 L. Kleinrock and F. Tobagi. Packet switching in radio channels: Part i - carrier sense
multiple-access modes and their throughput-delay characteristics. IEEE Transactions on
Communications, 23(12):1400–1416, December 1975.

26 Fabian Kuhn and Rogert Wattenhofer. On the complexity of distributed graph coloring.
In Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’06, pages 7–15, New York, NY, USA, 2006. ACM. doi:10.1145/
1146381.1146387.

27 Matt Lepinski, Silvio Micali, Chris Peikert, and Abhi Shelat. Completely fair sfe and
coalition-safe cheap talk. In PODC, pages 1–10, 2004. doi:10.1145/1011767.1011769.

DISC 2018

http://dx.doi.org/10.1109/SFCS.1989.63504
http://arxiv.org/abs/1804.06197
http://dx.doi.org/10.1287/moor.17.2.327
http://dx.doi.org/10.1016/S0022-0531(02)00011-X
http://dx.doi.org/10.1145/1993806.1993833
http://dx.doi.org/10.1007/3-540-44598-6_7
http://dx.doi.org/10.1007/978-3-642-11799-2_25
http://dx.doi.org/10.1007/978-3-642-11799-2_25
http://dx.doi.org/10.1007/11832072_16
http://dx.doi.org/10.1007/978-3-642-31585-5_50
http://dx.doi.org/10.1007/978-3-642-31585-5_50
http://dx.doi.org/10.1145/1146381.1146387
http://dx.doi.org/10.1145/1146381.1146387
http://dx.doi.org/10.1145/1011767.1011769

5:18 The Role of A-priori Information in Networks of Rational Agents

28 N. Linial. Legal coloring of graphs. Combinatorica, 6(1):49–54, 1986. doi:10.1007/
BF02579408.

29 Nathan Linial. Distributive graph algorithms global solutions from local data. In Proceed-
ings of the 28th Annual Symposium on Foundations of Computer Science, SFCS ’87, pages
331–335, Washington, DC, USA, 1987. IEEE Computer Society. doi:10.1109/SFCS.1987.
20.

30 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

31 Anna Lysyanskaya and Nikos Triandopoulos. Rationality and adversarial behavior in multi-
party computation. In CRYPTO, pages 180–197, 2006. doi:10.1007/11818175_11.

32 Robert McGrew, Ryan Porter, and Yoav Shoham. Towards a general theory of non-
cooperative computation. In TARK, pages 59–71, 2003. doi:10.1145/846241.846249.

33 Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. When selfish meets evil:
byzantine players in a virus inoculation game. In PODC, pages 35–44, 2006. doi:10.1145/
1146381.1146391.

34 Rafael Pass and Elaine Shi. Hybrid Consensus: Efficient Consensus in the Permissionless
Model. In 31st International Symposium on Distributed Computing (DISC 2017), 2017.

35 Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, pages 380–409, Cham, 2017.
Springer International Publishing.

36 Rafael Pass and Elaine Shi. Rethinking large-scale consensus. Cryptology ePrint Archive,
Report 2018/302, 2018. URL: https://eprint.iacr.org/2018/302.

37 Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. doi:10.1145/
359168.359176.

38 Yoav Shoham and Moshe Tennenholtz. Non-cooperative computation: Boolean functions
with correctness and exclusivity. Theoretical Computer Science, 343(1–2):97–113, 2005.

39 Márió Szegedy and Sundar Vishwanathan. Locality based graph coloring. In Proceedings
of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93, pages
201–207, New York, NY, USA, 1993. ACM. doi:10.1145/167088.167156.

40 Amparo Urbano and Jose E. Vila. Computational complexity and communication: Co-
ordination in two-player games. Econometrica, 70(5):1893–1927, September 2002. URL:
http://ideas.repec.org/a/ecm/emetrp/v70y2002i5p1893-1927.html.

41 Amparo Urbano and José E. Vila. Computationally restricted unmediated talk under
incomplete information. Economic theory, 2004.

42 Edmund L. Wong, Isaac Levy, Lorenzo Alvisi, Allen Clement, and Michael Dahlin. Regret
freedom isn’t free. In OPODIS, pages 80–95, 2011. doi:10.1007/978-3-642-25873-2_7.

43 Assaf Yifrach and Yishay Mansour. Fair leader election for rational agents in asynchronous
rings and networks. In PODC ’18, 2018. doi:10.1145/3212734.3212767.

http://dx.doi.org/10.1007/BF02579408
http://dx.doi.org/10.1007/BF02579408
http://dx.doi.org/10.1109/SFCS.1987.20
http://dx.doi.org/10.1109/SFCS.1987.20
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1007/11818175_11
http://dx.doi.org/10.1145/846241.846249
http://dx.doi.org/10.1145/1146381.1146391
http://dx.doi.org/10.1145/1146381.1146391
https://eprint.iacr.org/2018/302
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/167088.167156
http://ideas.repec.org/a/ecm/emetrp/v70y2002i5p1893-1927.html
http://dx.doi.org/10.1007/978-3-642-25873-2_7
http://dx.doi.org/10.1145/3212734.3212767

	Introduction
	Related Work

	Model
	Equilibrium in Distributed Algorithms
	Knowledge Sharing
	2-Knowledge Sharing

	Coloring

	Impossibility With No Knowledge
	Impossibility of Knowledge Sharing
	Impossibility of Coloring

	Algorithms
	Knowledge Sharing in a Ring
	Coloring in General Graphs

	How Much Knowledge Is Necessary?
	Knowledge Sharing
	Coloring
	Leader Election
	Ring Partition
	Orientation

	Discussion

