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Abstract
This paper studies a variant of the leader election problem under the stone age model (Emek and
Wattenhofer, PODC 2013) that considers a network of n randomized finite automata with very
weak communication capabilities (a multi-frequency asynchronous generalization of the beeping
model’s communication scheme). Since solving the classic leader election problem is impossible
even in more powerful models, we consider a relaxed variant, referred to as k-leader selection, in
which a leader should be selected out of at most k initial candidates. Our main contribution is
an algorithm that solves k-leader selection for bounded k in the aforementioned stone age model.
On (general topology) graphs of diameter D, this algorithm runs in Õ(D) time and succeeds
with high probability. The assumption that k is bounded turns out to be unavoidable: we prove
that if k = ω(1), then no algorithm in this model can solve k-leader selection with a (positive)
constant probability.
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1 Introduction

Many distributed systems rely on the existence of one distinguishable node, often referred
to as a leader. Indeed, the leader election problem is among the most extensively studied
problems in distributed computing [23, 9, 29, 3]. Leader election is not confined to digital
computer systems though as the dependency on a unique distinguishable node is omnipresent
in biological systems as well [27, 34, 28]. A similar type of dependency exists also in networks
of man-made micro- and even nano-scale sub-microprocessor devices [16].

The current paper investigates the task of electing a leader in networks operating under
the stone age (SA) model [20] that provides an abstraction for distributed computing by nodes
that are significantly inferior to modern computers in their computation and communication
capabilities. In this model, the nodes are controlled by randomized finite automata and
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4:2 Selecting a Leader in a Network of Finite State Machines

can communicate with their network neighbors using a fixed message alphabet based on a
weak communication scheme that can be viewed as an asynchronous extension of the set
broadcast (SB) communication model of [25] (a formal definition of our model is provided in
Section 1.1).

Since the state space of a node in the SA model is fixed and does not grow with the size
of the network, SA algorithms are inherently uniform, namely, the nodes are anonymous and
lack any knowledge of the network size. Unfortunately, classic impossibility results state
that leader election is hopeless in these circumstances (even under stronger computational
models): Angluin [4] proved that uniform algorithms cannot solve leader election in a network
with success probability 1; Itai and Rodeh [26] extended this result to algorithms that are
allowed to fail with a bounded probability.

Thus, in the distributed systems that interest us, leader election cannot be solved by the
nodes themselves and some “external help” is necessary. This can be thought of as an external
symmetry breaking signal that only one node is supposed to receive. Symmetry breaking
signals are actually quite common in reality and can come in different shape and form. A
prominent example for such external signaling occurs during the development process of
multicellular organisms, when ligand molecules flow through a cellular network in a certain
direction, hitting one cell before the others and triggering its differentiation [35].

But what if the symmetry breaking signal is noisy and might be received by a handful
of nodes? Is it possible to detect that several nodes received this signal? Can the system
recover from such an event or is it doomed to operate with multiple leaders instead of one?

In this paper, we study the k-leader selection problem, where at most k (and at least 1)
nodes are initially marked as candidates, out of which exactly one should be selected. On
top of the relevance of this problem to the aforementioned questions, it is also motivated
by the following application. Consider scenarios where certain nodes, including the leader,
may get lost during the network deployment process, e.g., a sensor network whose nodes
are dropped from an airplane. In such scenarios, one may wish to produce k > 1 candidate
leaders with the purpose of increasing the probability that at least one of them survives; a
k-leader selection algorithm should then be invoked to ensure that the network has exactly
one leader when it becomes operational.

The rest of the paper is organized as follows. In Section 1.1, we provide a formal definition
of the distributed computing model used in the paper. Our results are summarized in
Section 1.2 and some additional related literature is discussed in Section 1.3. A k-leader
selection algorithm that constitutes our main technical contribution, is presented in Section 2,
whereas Section 3 provides some negative results.

1.1 Model
The distributed computing model considered in this paper follows the stone age (SA) model
of Emek and Wattenhofer [20]. Under this model, the communication network is represented
by a finite connected undirected graph G = (V,E) whose nodes are controlled by randomized
finite automata with state space Q, message alphabet Σ, and transition function τ whose
role is explained soon.

Each node v ∈ V of degree dv is associated with dv input ports (or simply ports), one
port ψv(u) for each neighbor u of v in G, holding the last message σ ∈ Σ received from u at v.
The communication model is defined so that when node u sends a message, the same message
is delivered to all its neighbors v; when (a copy of) this message reaches v, it is written into
port ψv(u), overwriting the previous message in this port. Node v’s (read-only) access to its
own ports ψv(·) is very limited: for each message type σ ∈ Σ, it can only distinguish between
the case where σ is not written in any port ψv(·) and the case where it is written in at least
one port.
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The execution is event driven with an asynchronous scheduler that schedules the afore-
mentioned message delivery events as well as node activation events.3 When node v ∈ V
is activated, the transition function τ : Q× {0, 1}Σ → 2Q×Σ determines (in a probabilistic
fashion) its next state q′ ∈ Q and the next message σ′ ∈ Σ to be sent based on its current
state q ∈ Q and the current content of its ports. Formally, the pair (q′, σ′) is chosen uniformly
at random from τ(q, χv), where χv ∈ {0, 1}Σ is defined so that χv(σ) = 1 if and only if σ is
written in at least one port ψv(·).

To complete the definition of the randomized finite automata, one has to specify the set
Qin ⊆ Q of initial states that encode the node’s input, the set Qout ⊆ Q of output states
that encode the node’s output, and the initial message σ0 ∈ Σ written in the ports when the
execution begins. SA algorithms are required to have termination detection, namely, every
node must eventually decide on its output and this decision is irrevocable.

Following the convention in message passing distributed computing (cf. [32]), the run-time
of an asynchronous SA algorithm is measured in terms of time units scaled to the maximum of
the time it takes to deliver any message and the time between any two consecutive activations
of a node. Refer to [20] for a more detailed description of the SA model.

The crux of the SA model is that the number of states in Q and the size of the message
alphabet Σ are constants independent of the size (and any parameter) of the graph G.
Moreover, node v cannot distinguish between its ports and in general, its degree may be
larger than |Q| (and |Σ|).

Weakening the Communication Assumptions. The model defined in the current paper is
a restriction of the model of [20], where the algorithm designer could choose an additional
constant bounding parameter b ∈ Z>0, providing the nodes with the capability to count the
number of ports holding message σ ∈ Σ up to b. In the current paper, the bounding parameter
is set to b = 1. This model choice can be viewed as an asynchronous multi-frequency variant
of the beeping communication model [11, 2].

Moreover, in contrast to the existing SA literature, the communication graph G = (V,E)
assumed in the current paper may include self-loops of the form (v, v) ∈ E which means, in
accordance with the definition of the SA model, that node v admits port ψv(v) that holds
the last message received from itself. Using the terminology of the beeping model literature
(see, e.g., [2]), the assumption that the communication graph is free of self-loops corresponds
to a sender collision detection, whereas lifting this assumption means that node v may not
necessarily distinguish its own transmitted message from those of its neighbors.

It turns out that self-loops have a significant effect on the power of SA algorithms.
Indeed, while a SA algorithm that solves the maximal independent set (MIS) problem with
probability 1 is presented in [20] under the assumption that the graph is free of self-loops, we
prove in Section 3 that if the graph is augmented with self-loops, then no SA algorithm can
solve this problem with a bounded failure probability. To distinguish between the original
model of [20] and the one considered in the current paper, we hereafter denote the latter
by SA	.

3 The only assumption we make on the event scheduling is FIFO message delivery: a message sent by
node u at time t is written into port ψv(u) of its neighbor v before the message sent by u at time t′ > t.
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1.2 Results
Throughout, the number of nodes and the diameter of the graph G are denoted by n and D,
respectively. We say that an event occurs with high probability (whp) if its probability is at
least 1− n−c for an arbitrarily large constant c. Our main technical contribution is cast in
the following two theorems.

I Theorem 1. For any constant k, there exists a SA	 algorithm that solves the k-leader
selection problem in Õ(D) time whp.4

I Theorem 2. If the upper bound k on the number of candidates may grow as a function
of n, then there does not exist a SA algorithm (operating on graphs with no self-loops) that
solves the k-leader selection problem with a failure probability bounded away from 1.

We emphasize that the failure probability of the SA	 algorithm promised in Theorem 1
(i.e., the probability that the algorithm selects multiple leaders or that it runs for more
than Õ(D) time) is inverse polynomial in n even though each individual node does not (and
cannot) possess any notion of n – to a large extent, this, together with the termination
detection requirement, capture the main challenge in designing the promised algorithm.5
The theorem assumes that k = O(1) and hides the dependency of the algorithm’s parameters
on k. A closer look at its proof reveals that our SA	 algorithm uses local memory and
messages of size O(log k) bits. Theorem 2 asserts that the dependence of these parameters
on k is unavoidable. Whether this dependence can be improved beyond O(log k) remains an
open question.

1.3 Additional Related Literature
As mentioned earlier, the SA model was introduced by Emek and Wattenhofer in [20] as an
abstraction for distributed computing in networks of devices whose computation and commu-
nication capabilities are far weaker than those of a modern digital computer. Their main
focus was on distributed problems that can be solved in sub-diameter (specifically, logO(1) n)
time including MIS, tree coloring, coloring bounded degree graphs, and maximal matching.
This remained the case also in [19], where Emek and Uitto studied SA algorithms for the
MIS problem in dynamic graphs. In contrast, the current paper considers the k-leader
selection problem – an inherently global problem that requires Ω(D) time.

Computational models based on networks of finite automata have been studied for many
years. The best known such model is the extensively studied cellular automata that were
introduced by Ulam and von Neumann [31] and became popular with Martin Gardner’s
Scientific American column on Conway’s game of life [24] (see also [37]).

Another popular model that considers a network of finite automata is the population
protocols model, introduced by Angluin et al. [5] (see also [6, 30]), where the network
entities communicate through a sequence of atomic pairwise interactions controlled by a
fair (adversarial or randomized) scheduler. This model provides an elegant abstraction for
networks of mobile devices with proximity derived interactions and it also fits certain types of
chemical reaction networks [18]. Some work on population protocols augments the model with

4 The asymptotic notation Õ(·) may hide logO(1) n factors.
5 If we aim for a failure probability inverse polynomial in k (rather than n) and we do not insist on
termination detection, then the problem is trivially solved by the algorithm that simply assigns a
random ID from a set of size kO(1) to each candidate and then eliminates a candidate if it encounters
an ID larger than its own.
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a graph defined over the population’s entities so that the pairwise interactions are restricted
to graph neighbors, thus enabling some network topology to come into play. However, for
the kinds of networks we are interested in, the fundamental assumption of sequential atomic
pairwise interactions may provide the population protocol with unrealistic advantage over
weaker message passing variants (including the SA model) whose communication schemes
do not enable a node to interact with its individual neighbors independently. Furthermore,
population protocols are typically required to eventually converge to a correct output and are
allowed to return arbitrary (wrong) outputs beforehand, a significantly weaker requirement
than the termination detection requirement considered in this paper.

The neat amoebot model introduced by Dolev et al. [17] also considers a network of
finite automata in a (hexagonal) grid topology, but in contrast to the models discussed so
far, the particles in this network are augmented with certain mobility capabilities, inspired
by the amoeba contraction-expansion movement mechanism. Since its introduction, this
model was successfully employed for the theoretical investigation of self-organizing particle
systems [36, 15, 13, 16, 14, 10, 12], especially in the context of programmable matter.

Leader election is arguably the most fundamental problem in distributed systems coordin-
ation and has been extensively studied from the early days of distributed computing [23, 22].
It is synonymous in most models to the construction of a spanning tree – another fundamental
problem in distributed computing – where the root is typically the leader. Leader election
has many applications including deadlock detection, choosing a key/password distribution
center, and implementing a distributed file system manager. It also plays a key role in tasks
requiring a reliable centralized coordinating node, e.g., Paxos and Raft, where leader election
is used for consensus – yet another fundamental distributed computing problem, strongly
related to leader election. Notice that in our model, leader selection does not (and cannot)
imply a spanning tree, but it does imply consensus.

Angluin [4] proved that uniform algorithms cannot break symmetry in a ring topology with
success probability 1. Following this classic impossibility result, many symmetry breaking
algorithms (with and without termination detection) that relax some of the assumptions
in [4] were introduced [1, 7, 26, 33, 3]. Itai and Rodeh [26] were the first to design randomized
leader election algorithms with bounded failure probability in a ring topology, assuming that
the nodes know n. Schieber and Snir [33] and Afek and Matias [3] extended their work to
arbitrary topology graphs.

2 SA	 Algorithm for k-Leader Selection

In this section, we present our SA	 algorithm and establish Theorem 1. We start with some
preliminary definitions and assumptions presented in Section 2.1. Sections 2.2 and 2.3 are
dedicated to the basic subroutines on which our algorithm relies. The algorithm itself is
presented in Section 2.4, where we also establish its correctness. Finally, in Section 2.5, we
analyze the algorithm’s run-time.

2.1 Preliminaries
As explained in Section 1.1, the execution in the SA (and SA	) model is controlled by an
asynchronous scheduler. One of the contributions of [20] is a SA synchronizer implementation
(cf. the α-synchronizer of Awerbuch [8]). Given a synchronous SA algorithm A whose
execution progresses in fully synchronized rounds t ∈ Z>0 (with simultaneous wake-up), the
synchronizer generates a valid (asynchronous) SA algorithm A′ whose execution progresses
in pulses such that the actions taken by A′ in pulse t are identical to those taken by A

DISC 2018



4:6 Selecting a Leader in a Network of Finite State Machines

in round t.6 The synchronizer is designed so that the asynchronous algorithm A′ has the
same bounding parameter b (= 1 in the current paper) and asymptotic run-time as the
synchronous algorithm A.

Although the model considered by Emek and Wattenhofer [20] assumes that the graph
has no self-loops, it is straightforward to apply their synchronizer to graphs that do include
self-loops, hence it can work also in our SA	 model. Consequently, in what follows, we
restrict our attention to synchronous SA	 algorithms. Specifically, we assume that the
execution progresses in synchronous rounds t ∈ Z>0, where in round t, each node v
(1) receives the messages sent by its neighbors in round t− 1;
(2) updates its state; and
(3) sends a message to its neighbors (same message to all neighbors).

Since we make no effort to optimize the size of the messages used by our algorithm, we
assume hereafter that the message alphabet Σ is identical to the state space Q and that node v
simply sends its current state to its neighbors at the end of every round. Nevertheless, for
clarity of the exposition, we sometimes describe the algorithm in terms of sending designated
messages, recalling that this simply means that the states of the nodes encode these messages.

To avoid cumbersome presentation, our algorithm’s description does not get down to the
resolution of the state space Q and transition function τ . It is straightforward though to
implement our algorithm as a randomized finite automaton, adhering to the model presented
in Section 1.1. In this regard, at the risk of stating the obvious, we remind the reader that if
k is a constant, then a finite automaton supports arithmetic operations modulo O(k).

In the context of the k-leader selection problem, we use the verb withdraw when referring
to a node that ceases to be a candidate.

2.2 The Ball Growing Subroutine
We present a generic ball growing subroutine in graph G = (V,E) with at most k candidates.
The subroutine is initiated at (all) the candidates, not necessarily simultaneously, through
designated signals discussed later on. During its execution, some candidates may withdraw;
in the context of this subroutine, we refer to the surviving candidates as roots.

The ball growing subroutine assigns a level variable λ(v) ∈ {0, 1, . . . ,M − 1} to each
node v, where M = 2k + 2. Path P = (v1, . . . , vq) in G is called incrementing if λ(vj+1) =
λ(vj) + 1 mod M for every 1 ≤ j ≤ q − 1. The set of nodes reachable from a root r via an
incrementing path is referred to as the ball of r, denoted by B(r). We design this subroutine
so that the following lemma holds.

I Lemma 3. Upon termination of the ball growing subroutine,
(1) every incrementing path is a shortest path (between its endpoints) in G;
(2) every root belongs to exactly one ball (its own); and
(3) every non-root node belongs to at least one ball.

Intuition spotlight: A natural attempt to design the ball growing subroutine is to
grow a breadth first search tree around candidate r, layer by layer, so that node v at
distance d from r is assigned with level variable λ(v) = d mod M . This is not necessarily

6 We emphasize the role of the assumption that when the execution begins, the ports hold the designated
initial message σ0. Based on this assumption, a node can “sense” that some of its neighbors have not
been activated yet, hence synchronization can be maintained right from the beginning.
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Figure 1 The result of a ball growing process invoked at candidate A in round 1, candidate B in
round 2, and candidate C in round 3. The level variables λ(·) are depicted by the numbers written
inside the nodes and the balls are depicted by the dashed curves. The boundary nodes appear with
a gray background. The DAG ~G is depicted by the oriented edges.

possible though when multiple candidates exist: What happens if the ball growing
processes of different candidates reach v in the same round? What happens if these ball
growing processes reach several adjacent nodes in the same round? If we are not careful,
these scenarios may lead to incrementing paths that are not shortest paths and even to
cyclic incrementing paths. Things become even more challenging considering the weak
communication capabilities of the nodes that may prevent them from distinguishing
between the ball growing processes of different candidates.

The ball growing subroutine is implemented under the SA	 model by disseminating
GrowBall(`) messages, ` ∈ {0, 1, . . . ,M − 1}, throughout the graph. Consider a candidate r
and let s(r) be the round in which it is signaled to invoke the ball growing subroutine. If r
receives a GrowBall(·) message in some round t ≤ s(r), then r withdraws and subsequently
follows the protocol like any other non-root node; otherwise, r becomes a root in round s(r). If
s(r) is even (resp., odd), then r assigns λ(r)← 0 (resp., λ(r)← 1) and sends a GrowBall(λ(r))
message.

Consider a non-root node v and let g(v) be the first round in which it receives a GrowBall(·)
message. Notice that v may receive several GrowBall(`) messages with different arguments `
in round g(v) – let L be the set of all such arguments `. Node v assigns λ(v)← `′ and sends
a GrowBall(`′) message at the end of round g(v), where `′ is chosen to be any integer in
{0, 1, . . . ,M − 1} that satisfies:
(i) `′ − 1 mod M ∈ L; and
(ii) `′ + 1 mod M /∈ L.

This completes the description of the ball growing subroutine. Refer to Figure 1 for an
illustration.

Intuition spotlight: Condition (i) ensures that v joins the ball B(r) of some root r. By
condition (ii), nodes do not join B(r) “indirectly” (this could have led to incrementing
paths that are not shortest paths).

Proof of Lemma 3. Consider a (root or non-root) node v ∈ V and let p(v) be the round
in which v starts its active participation in the ball growing process. More formally, if v is
a root (i.e., it is a candidate signaled to invoke the ball growing subroutine strictly before
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receiving any GrowBall(·) message), then p(v) = s(v); otherwise, p(v) = g(v). The following
properties are established by (simultaneous) induction on the rounds:

In any round t ≥ p(v), variable λ(v) is even if and only if p(v) is even.
In any round t ≥ p(v), node v has a neighbor u with λ(u) = λ(v)− 1 mod M if and only
if v is not a root.
In any round t ≥ p(v), node v belongs to ball B(r) for some root r.
In any round t ≥ p(v), if v ∈ B(r) for some root r, then the incrementing path(s) that
realize this relation are shortest paths in the graph.
If u, v ∈ B(r) for some root r and p(u) = p(v), then λ(u) = λ(v).
The total number of different arguments ` in the GrowBall(`) messages sent during a
single round is at most k.
Non-root node v finds a valid value to assign to λ(v) in round g(v) = p(v).

The assertion follows. J

I Observation 4. If t is the earliest round in which the ball growing process is initiated at
some candidate, then the process terminates by round t+O(D).

Boundary Nodes. We will see in Section 2.4 that our algorithm detects candidate multipli-
city by identifying the existence of multiple balls in the graph. The key notion in this regard
is the following one (see Figure 1): Node v is said to be a boundary node if
(1) v ∈ B(r) ∩B(r′) for roots r 6= r′; or
(2) v ∈ B(r) for some root r and there exists a neighbor v′ of v such that v′ /∈ B(r).

I Observation 5. If the graph has multiple roots, then every ball includes at least one
boundary node.

Node v is said to be a locally observable boundary node if it has a neighbor v′ such that
λ(v′) /∈ {λ(v) + ` mod M | ` = −1, 0,+1}. Notice that by Lemma 3, there cannot be a ball
that includes both v and v′ since then, at least one of the incrementing paths that realize
these inclusions is not a shortest path. Therefore, a locally observable boundary node is in
particular a boundary node.

The Directed Acyclic Graph ~G. Given two adjacent nodes u and v, we say that v is a
child of u and that u is a parent of v if λ(v) = λ(u) + 1 mod M ; a childless node is referred
to as a leaf. This induces an orientation on a subset F of the edges, say, from parents to
their children (up the incrementing paths), thus introducing a directed graph ~G whose edge
set is an oriented version of F (see Figure 1). Lemma 3 guarantees that ~G is acyclic (so, it
is a directed acyclic graph, abbreviated DAG) and that it spans all nodes in V . Moreover,
the sources and sinks of ~G are exactly the roots and leafs of the ball growing subroutine,
respectively, and the source-to-sink distances in ~G are upper-bounded by the diameter D
of G.

We emphasize that the in-degrees and out-degrees in ~G are unbounded. Nevertheless,
the simplifying assumption that the messages sent by the nodes encode their local states,
including the level variables λ(·) (see Section 2.1), ensures that node v can distinguish between
messages received from its children, messages received from its parents, and messages received
from nodes that are neither children nor parents of v.
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2.3 Broadcast and Echo over ~G

The assignment of level variables λ(·) by the ball growing subroutine and the child-parent
relations these variables induce provide a natural infrastructure for broadcast and echo (B&E)
over the aforementioned DAG ~G so that the broadcast (resp., echo) process progresses up
(resp., down) the incrementing paths. These are implemented based on Broadcast and Echo
messages as follows.

The broadcast subroutine is initiated at (all) the roots, not necessarily simultaneously,
through designated signals discussed later on and root r becomes broadcast ready upon
receiving such a signal. A non-root node v becomes broadcast ready in the first round in
which it receives Broadcast messages from all its parents. A (root or non-root) node v that
becomes broadcast ready in round tb0 = tb0(v) keeps sending Broadcast messages throughout
the round interval [tb0, tb1), where tb1 = tb1(v) is defined to be the first round (strictly) after tb0
in which
(i) v receives Broadcast messages from all its children; and
(ii) v does not receive a Broadcast message from any of its parents.

(Notice that conditions (i) and (ii) are satisfied vacuously for the leaves and roots, respectively.)
The echo subroutine is implemented in a reversed manner: It is initiated at (all) the

leaves, not necessarily simultaneously, after their role in the broadcast subroutine ends so
that leaf v becomes echo ready in round tb1(v). A non-leaf node v becomes echo ready in
the first round in which it receives Echo messages from all its children. A (leaf or non-leaf)
node v that becomes echo ready in round te0 = te0(v) keeps sending Echo messages throughout
the round interval [te0, te1), where te1 = te1(v) is defined to be the first round (strictly) after te0
in which
(i) v receives Echo messages from all its parents; and
(ii) v does not receive an Echo message from any of its children.

(Notice that conditions (i) and (ii) are satisfied vacuously for the roots and leaves, respectively.)

I Lemma 6. The following properties hold for every B&E process:
Rounds tb0(v), tb1(v), te0(v), and te1(v) exist and tb0(v) < tb1(v) ≤ te0(v) < te1(v) for every
node v.
If node v is reachable from node u 6= v in DAG ~G, then tbi(u) < tbi(v) and tei (u) > tei (v)
for i ∈ {0, 1}.
If t is the latest round in which the process is initiated at some root, then the process
terminates by round t+O(D).

Proof. Follows since ~G is a DAG and all paths in ~G are shortest paths. J

Auxiliary Conditions. In the aforementioned implementation of the broadcast (resp., echo)
subroutine, being broadcast (resp., echo) ready is both a necessary and sufficient condition
for a node to start sending Broadcast (resp., Echo) messages. In Section 2.4, we describe
variants of this subroutine in which being broadcast (resp., echo) ready is a necessary, but
not necessarily sufficient, condition and the node starts sending Broadcast (resp., Echo)
messages only after additional conditions, referred to later on as auxiliary conditions, are
satisfied.

Acknowledged Ball Growing. As presented in Section 2.2, the ball growing subroutine
propagates from the roots to the leaves. To ensure that root r is signaled when the construction
of its ball B(r) has finished (cf. termination detection), r initiates a B&E process one round
after it invokes the ball growing subroutine. The valid operation of this process is guaranteed
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since the ball growing process propagates at least as fast as the B&E process. We call the
combined subroutine acknowledged ball growing.

2.4 The Main Algorithm
Our k-leader selection algorithm consists of two phases executed repeatedly in alternation:

phase 0, a.k.a. the detection phase, that detects the existence of multiple candidates whp;
and
phase 1, a.k.a. the elimination phase, in which all candidates but one withdraw with
probability at least 1/4.

Starting with a detection phase, the algorithm executes the phases in alternation until the
first detection phase that does not detect candidate multiplicity. Each node v maintains a
phase variable φ(v) ∈ {0, 1} that indicates v’s current phase.

The two phases follow a similar structure: The (surviving) candidates start by initi-
ating an acknowledged ball growing process. Among its other “duties”, this ball growing
process is responsible for updating the phase variables φ(·) of the nodes: node v with
φ(v) = p that receives a GrowBall(·) message from node u with φ(u) = p+ 1 mod 2 assigns
φ(v)← p+ 1 mod 2. When updating the phase variable φ(v) to φ(v) = p+ 1 mod 2, node v
ceases to participate in phase p, resetting all phase p variables. Recalling the definition of
the ball growing subroutine (see Section 2.2), this means in particular that if a candidate r
with φ(r) = p receives a GrowBall(·) message from node u with φ(u) = p+ 1 mod 2, then
r withdraws and subsequently follows the protocol like any other non-root node.

Intuition spotlight: The ball growing process of phase p+ 1 mod 2 essentially “takes
control” over the graph and “forcibly” terminates phase p (at nodes where it did not
terminate already). We design the algorithm to ensure that at any point in time, there
is at most one p value for which there is an ongoing ball growing process in the graph
(otherwise, we may get to undesired situations such as all candidates withdrawing).

Upon termination of the acknowledged ball growing process, the roots run 2k back-to-back
B&E iterations, initiating the broadcast process of the next B&E iteration one round after
the echo process of the previous B&E iteration terminates (the choice of the parameter 2k
will become clear soon). Each node v maintains a variable ι(v) ∈ {0, 1, . . . , 2k} that stores
v’s current B&E iteration. This variable is initialized to ι(v)← 0 during the acknowledged
ball growing process (considered hereafter as B&E iteration 0) and incremented subsequently
from i − 1 to i when v becomes broadcast ready in B&E iteration i (see Section 2.3). A
phase ends when the echo process of B&E iteration 2k terminates.

The ι(·) variables may differ across the graph and to keep the B&E iterations in synchrony,
we augment the B&E subroutines with the following auxiliary conditions (see Section 2.3):
Node v with ι(v) = i (i.e., in B&E iteration i) does not start to send Broadcast (resp., Echo)
messages as long as it has a non-child (resp., non-parent) neighbor u with ι(u) = i− 1.7 We
emphasize that this includes neighbors u that are neither children nor parents of v.

For the sake of the next observation, we globally map the B&E iterations to sequence
numbers so that B&E iterations 0, 1, . . . , 2k of the first phase (which is a detection phase)
are mapped to sequence numbers 1, 2, . . . , 2k + 1, respectively, B&E iterations 0, 1, . . . , 2k
of the second phase (which is an elimination phase) are mapped to sequence numbers
2k + 2, 2k + 3, . . . , 4k + 2, respectively, and so on. Let σ(v) be a variable (defined only for
the sake of the analysis) indicating the sequence number of node v’s current B&E iteration.

7 This can be viewed as imposing the α-synchronizer of [8] on the B&E iterations of the balls.
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I Observation 7. For every two roots r and r′, we have |σ(r)− σ(r′)| ≤ k − 1.

We say that round t is 0-dirty (resp., 1-dirty) if some node v with φ(v) = 0 (resp.,
φ(v) = 1) sends a GrowBall(·) message in round t; the round is said to be clean if it is neither
0-dirty nor 1-dirty. Observation 7 implies that if φ(r) = p and ι(r) = k for some root r in
round t, then φ(r′) = p and 1 ≤ ι(r′) ≤ 2k − 1 for any other root r′ in round t, hence the
ball growing process of this phase has already ended and the ball growing process of the next
phase has not yet started.

I Corollary 8. Let t0 and t1 be some 0-dirty and 1-dirty rounds, respectively. If t0 ≤ t1
(resp., t1 ≤ t0), then there exists some t0 < t′ < t1 (resp., t1 < t′ < t0) such that round t′ is
clean.

2.4.1 The Detection Phase
In the detection phase, the nodes test for candidate multiplicity in the graph. If the graph
contains a single candidate r, then the algorithm terminates upon completion of this phase
and r is declared to be the leader. Otherwise, certain boundary nodes (see Section 2.2) realize
whp that multiple balls exist in their neighborhoods and signal the roots that they should
proceed to the elimination phase (rather than terminate the algorithm) upon completion of
the current detection phase. This signal is carried by Proceed messages delivered from the
boundary nodes to the roots of their balls down the incrementing paths in conjunction with
the Echo messages of the (subsequent) B&E iterations.

For the actual candidate multiplicity test, once all nodes in the (inclusive) neighborhood
of node v participate in the detection phase, node v checks if it is a locally observable
boundary node and triggers a Proceed message delivery if it is. As the name implies, this
check can be performed (locally) under the SA	 model assuming that the messages sent by
the nodes encode their local states, including the level variables.

Intuition spotlight: Although every locally observable boundary node is a boundary
node, not all boundary nodes are locally observable: a node may belong to several
different balls or two adjacent nodes with the same level variable may belong to different
balls. For this kind of scenarios, randomness is utilized to break symmetry between the
candidates and identify (some of) the boundary nodes.

Consider some root r with φ(r) = 0 upon termination of the acknowledged ball growing
subroutine and recall that at this stage, r runs 2k back-to-back B&E iterations. In each round
of these 2k B&E iterations, r picks some symbol s uniformly at random (and independently
of all other random choices) from a sufficiently large (yet constant size) symbol space S and
sends a RandSymbol(s) message. This can be viewed as a random symbol stream Sr ∈ S∗
that r generates, round by round, and sends to its children.

The random symbol streams Sr are disseminated throughout B(r) and utilized by the
nodes (the boundary nodes in particular) to test for candidate multiplicity. For clarity of
the exposition, it is convenient to think of a node v that does not send a RandSymbol(s)
message, s ∈ S, as if it sends a RandSymbol(⊥) message for the default symbol ⊥ /∈ S. The
mechanism in charge of disseminating Sr up the incrementing paths works as follows: If
non-root node v with φ(v) = 0 receives RandSymbol(s) messages with the same argument s
from all its parents at the beginning of round t, then v sends a RandSymbol(s) message at
the end of round t; in all other cases, v sends a RandSymbol(⊥) message.
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Throughout this process, each node v verifies that
(1) all RandSymbol(s) messages sent by v’s parents in round t carry the same argument s;

and
(2) any RandSymbol(s) message sent by a neighbor u of v with λ(u) = λ(v) in round t carries

the same argument s as in the RandSymbol(s) message that v sends in round t (this is
checked by v in round t+ 1).

If any of these two conditions does not hold, then v triggers a Proceed message delivery.
A root that completes all 2k B&E iterations in the detection phase without receiving any
Proceed message terminates the algorithm and declares itself as the leader.

Intuition spotlight: Since the aforementioned random tests should detect candidate
multiplicity whp (i.e., with error probability inverse polynomial in n) and since the size of
the symbol space S from which the random symbol streams Sr are generated is bounded,
it follows that the length of the random symbol streams must be |Sr| ≥ Ω(logn). How
can we ensure that |Sr| ≥ Ω(logn) if the nodes cannot count beyond some constant?

To ensure that the random symbol stream Sr is sufficiently long, we augment the echo
subroutine invoked during B&E iteration k of the detection phase (out of the 2k B&E iterations
in this phase) with one additional auxiliary condition referred to as the geometric auxiliary
condition: Consider some node v with φ(v) = 0 and ι(v) = k (i.e., in the k-th B&E iteration
of the detection phase) and suppose that it becomes echo ready (for B&E iteration k) in
round t0. Then, v tosses a fair coin c(t) ∈r {0, 1} in each round t ≥ t0 until the first round t′
for which c(t′) = 1; node v does not send Echo messages until round t′. This completes the
description of the detection phase.

I Lemma 9. If multiple roots start a detection phase, then all of them receive a Proceed
message before completing their (respective) 2k B&E iterations whp.

Intuition spotlight: The proof’s outline is as follows. We use the geometric auxiliary
conditions to argue that there exists some root that spends Ω(logn) rounds in B&E it-
eration k whp. Employing Observation 7, we conclude that the random symbol stream
generated by every root r is Ω(logn)-long whp. Conditioned on that, we prove that
there exists some boundary node v ∈ B(r) that triggers a Proceed message delivery whp
and that the corresponding Proceed message is delivered to r before the phase ends.

Proof of Lemma 9. Fix some detection phase. For a root r, let cr be the number of
rounds r spends in B&E iterations 1, 2, . . . , 2k − 1, that is, the number of rounds in which
1 ≤ ι(r) ≤ 2k − 1 (during this detection phase). We first argue that cr ≥ Ω(logn) for all
roots r whp. To that end, let Xv be the number of rounds in which node v is prevented from
sending its Echo messages in B&E iteration k due to the geometric auxiliary condition (t′− t0
in the aforementioned notation of the geometric auxiliary condition) and notice that this
auxiliary condition is designed so that Xv is a geometric random variable with parameter 1/2.
Therefore,

Pr
(∧

v∈V

Xv < log(n)/2
)

=
(

1− 2− log(n)/2
)n

=
(
1− 1/

√
n
)n ≤ e−

√
n .

Condition hereafter on the event that Xv∗ ≥ log(n)/2 for some node v∗, namely, v∗ is
prevented from sending its Echo messages (in B&E iteration k) for at least log(n)/2 =
Ω(logn) rounds. Let r∗ be a root such that v∗ ∈ B(r∗). By the definition of auxiliary
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conditions, B&E iteration k of r∗ takes at least Ω(logn) rounds. Observation 7 guarantees
that by the time r∗ starts B&E iteration k, every other root must have already started
B&E iteration 1 (of this detection phase). Moreover, no root can start B&E iteration 2k
before r∗ finishes B&E iteration k. We conclude that every root r spends at least Ω(logn)
rounds in B&E iterations 1, 2, . . . , 2k − 1, thus establishing the argument.

Let Zr be the prefix of the random symbol stream Sr generated by root r during the
first cr − 1 rounds it spends in B&E iterations 1, 2, . . . , 2k − 1, i.e., during all but the last
round of these B&E iterations (the reason for this missing round is explained soon), and let
zr = |Zr|. We have just showed that zr = cr − 1 ≥ Ω(logn) for all roots r whp.

The assertion is established by proving that if multiple roots r exist in the graph and
zr ≥ Ω(logn) for all of them, then for every root r, there exists some node v ∈ B(r) that
triggers a Proceed message delivery while ι(v) ≤ 2k−1 whp. Indeed, if the Proceed message
delivery is triggered by v while ι(v) ≤ 2k − 1, then a Proceed message is delivered to r with
the Echo messages of B&E iteration 2k at the latest, thus r does not terminate the algorithm
at the end of this detection phase and by the union bound, this holds simultaneously for all
roots r whp.

To that end, recall that node v sends a RandSymbol(s) message with some symbol
s ∈ S ∪ {⊥} in every round of the detection phase. In the scope of this proof, we say
that v posts the symbol stream (s1, . . . , sz) in rounds t1, . . . , tz if sj is the argument of the
RandSymbol(·) message sent by v in round tj for every 1 ≤ j ≤ z.

Consider some root r and let v be a boundary node in B(r) that minimizes the distance
to r. If v is locally observable, then it triggers a Proceed message delivery (deterministically)
already when ι(v) = 0, so assume hereafter that v is not locally observable. Let Q be an
incrementing (r, v)-path and denote the length of Q by q. Taking t̂ to be the round in which
B&E iteration 1 of r begins, recall that r posts Zr in rounds t̂, t̂ + 1, . . . , t̂ + zr − 1. The
choice of v ensures that all nodes of Q other than v are not boundary nodes, therefore if
q ≥ 1 (i.e., if v 6= r), then the node that precede v along Q – denote it by u – posts Zr in
rounds t̂ + q − 1, t̂ + q, . . . , t̂ + q + zr − 2. Moreover, by the definition of Zr, specifically,
by the choice of zr = cr − 1, we know that 0 ≤ ι(v) ≤ 2k − 1 (and φ(v) = 0) in all rounds
t̂ ≤ t ≤ t̂+ q + zr.

If v belongs to multiple balls, which necessarily means that v 6= r and q ≥ 1 (see Lemma 3),
then v has another parent u′ 6= u such that u′ ∈ B(r′) for some root r′ 6= r. The probability
that u′ posts Zr in rounds t̂+ q − 1, t̂+ q, . . . , t̂+ q + zr − 2 is at most |S|−zr . Otherwise, if
v belongs only to ball B(r), then all its parents post Zr in rounds t̂+q−1, t̂+q, . . . , t̂+q+zr−2
(this holds vacuously if q = 0 and v = r has no parents), thus v posts Zr in rounds
t̂+ q, t̂+ q + 1, . . . , t̂+ q + zr − 1. Since v is a non-locally observable boundary node (that
belongs exclusively to ball B(r)), it must have a neighbor v′ with λ(v′) = λ(v) such that
v′ /∈ B(r). The probability that v′ posts Zr in rounds t̂+ q, t̂+ q + 1, . . . , t̂+ q + zr − 1 is at
most |S|−zr as well. Therefore, the probability that v does not trigger a Proceed message
delivery while ι(v) ≤ 2k − 1 is upper-bounded by |S|−zr which completes the proof since
zr ≥ Ω(logn) and since |S| is an arbitrarily large constant. J

2.4.2 The Elimination Phase
In the elimination phase, each candidate r picks a priority π(r) uniformly at random (and
independently) from a totally ordered priority space P ; a candidate whose priority is (strictly)
smaller than πmax = maxr π(r) is withdrawn. Taking the priority space to be P = {1, . . . , k},
it follows by standard balls-in-bins arguments that the probability that exactly one candidate
picks priority k, which implies that exactly one candidate survives, is at least 1/4 (in fact, it
tends to 1/4 as k →∞).
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Intuition spotlight: The priorities of the candidates are disseminated in the graph so
that candidate r withdraws if it encounters a priority π > π(r). This is implemented
on top of the ball growing subroutine invoked at the beginning of the elimination phase
so that the ball growing process of root r “consumes” the ball of root r′ if π(r) > π(r′),
eventually reaching r′ and instructing it to withdraw. The structure of the phase
(specifically, the 2k B&E iterations that follow the ball growing process) guarantees that
only roots r with π(r) = πmax reach the end of the phase (without being withdrawn).

We augment the ball growing subroutine invoked at the beginning of the elimination
phase with the following mechanism: When candidate r is signaled to invoke the ball growing
subroutine (so that it becomes a root), it appends its priority π(r) to the GrowBall(·)
message it sends. A non-root node v that joins the ball of r records r’s priority in variable
π(v)← π(r). A (root or non-root) node v that receives a GrowBall(·) message with priority
(strictly) larger than π(v), behaves as if this is the first GrowBall(·) message it receives in
this phase. In particular, v resets all the variables of this phase and (re-)joins a ball from
scratch. If v is a root, then it also withdraws.

Notice that Observation 7 still holds for the aforementioned augmented implementation
of the ball growing subroutine. Therefore, when root r reaches B&E iteration k, i.e., ι(r) = k,
all other roots r′ are in some B&E iteration 1 ≤ ι(r′) ≤ 2k − 1 which means that there
is no “active” ball growing processes in the graph, that is, the current round is clean (of
GrowBall(·) messages). Since a candidate r with π(r) < πmax is certain to be withdrawn
by some GrowBall(·) message appended with priority π > π(r), we obtain the following
observation.

I Observation 10. If root r completes its 2k B&E iterations in an elimination phase, then
with probability at least 1/4, no other candidates exist in the graph.

2.5 Run-Time
The correctness of our algorithm follows from Lemma 9 and Observation 10. To establish
Theorem 1, it remains to analyze the algorithm’s run-time.

The first thing to notice in this regard is that the geometric auxiliary condition does
not slow down the k-th iteration of the detection phase by more than an O(logn) factor
whp. Combining Observation 4 with Lemma 6, we can prove by induction on the phases
that the j-th phase (for j ≤ nO(1)) ends by round O(D(k + logn)) whp, which is O(D logn)
assuming that k is fixed. The analysis is completed due to Observation 10 ensuring that the
algorithm terminates after O(logn) elimination phases whp.

3 Negative Results

We now turn to establish some negative results that demonstrate the necessity of the assump-
tion that k = O(1). Our attention in this section is restricted to SA and SA	 algorithms
operating under a fully synchronous scheduler on graph families {Ln}n≥1 and {L	

n }n≥1,
where Ln is a simple path of n nodes and L	

n is Ln augmented with self-loops.
The main lemma established in this section considers the k-candidate binary consensus

problem, a version of the classic binary consensus problem [21]. In this problem, each node v
gets a binary input in(v) ∈ {0, 1} and returns a binary output out(v) ∈ {0, 1} under the
following two constraints: (1) all nodes return the same output; and (2) if the nodes return
output b ∈ {0, 1}, then there exists some node v such that in(v) = b. In addition, at most k
(and at least 1) nodes are initially marked as candidates (thus distinguished from the rest of
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the nodes). We emphasize that the marked candidates do not affect the validity of the output.
Since a k-leader selection algorithm clearly implies a k-candidate binary consensus algorithm,
Theorem 2 is established by proving Lemma 11. Note that the proof of this lemma is based
on a probabilistic indistinguishability argument, similar to those used in many distributed
computing negative results, starting with the classic result of Itai and Rodeh [26].

I Lemma 11. If the upper bound k on the number of candidates may grow as a function
of n, then there does not exist a SA algorithm that solves the k-candidate binary consensus
problem on the graphs in {Ln}n≥1 with a failure probability bounded away from 1.

Proof. Assume by contradiction that there exists such an algorithm A and let Σ denote its
message alphabet. For b = 0, 1, consider the execution of A on an instance that consists of
path L2, where node v1 is a candidate, node v2 is not a candidate, and in(v1) = in(v2) = b.
By definition, there exist constants pb > 0 and `b and message sequences Sb,1, Sb,2 ∈ Σ`b

such that when A runs on this instance, with probability at least pb, node vj , j ∈ {1, 2},
reads message Sb,j(t) in its (single) port in round t = 1, . . . , `b and outputs out(vj) = b at
the end of round `b.

Now, consider graph Ln for some sufficiently large n (whose value will be determined
later on) and consider a subgraph of Ln, referred to as a Qb-gadget, that consists of 2`b + 2
contiguous nodes v1, . . . , v2`b+2 of the underlying path Ln, all of which receive input in(vi) = b.
Moreover, the nodes v1, . . . , v2`b+2 are marked as candidates in an alternating fashion so
that if vi is a candidate, then vi+1 is not a candidate, constrained by the requirement that
v`b+1 is a candidate (and v`b+2 is not). The key observation is that when A runs on Ln,
with probability at least qb = p2`b+2

b , the nodes v`b+1 and v`b+2 of the Qb-gadget read
messages Sb,1(t) and Sb,2(t), respectively, in (all) their ports in round t = 1, . . . , `b and
output b at the end of round `b, independently of the random bits of the nodes outside the
Qb-gadget.

Fix ` = `0 + `1 + 2 and define a Q-gadget to be a subgraph of Ln that consists of a
Q0-gadget appended to a Q1-gadget, so, in total, the Q-gadget is a (sub)path that contains
2`0 +2`1 +4 = 2` nodes, ` of which are candidates. Following the aforementioned observation,
when A runs on Ln, with probability at least q = q0 · q1, some nodes in the Q-gadget
output 0 and others output 1; we refer to this (clearly invalid) output as a failure event of
the Q-gadget.

Since p0, p1, `0, and `1 are constants that depend only on A, ` = `0 + `1 + 2, q0 = p2`0+2
0

and q1 = p2`1+2
1 are also constants that depend only on A, and thus q = q0 · q1 is also

a constant that depends only on A. Take z to be an arbitrarily large constant. If n is
sufficiently large, then we can embed y = dz/qe pairwise disjoint Q-gadgets in Ln. Indeed,
these Q-gadgets account to a total of ` · y candidates and recalling that z, q, and ` are
constants, this number is smaller than k = k(n) for sufficiently large n. When A runs on Ln,
each of these y Q-gadgets fails with probability at least q (independently). Therefore, the
probability that all nodes return the same binary output is at most (1− q)y. The assertion
follows since this expression tends to 0 as y →∞ which is obtained as z →∞. J

The proof of Lemma 11 essentially shows that no SA algorithm can distinguish between L2
and Ln with a bounded failure probability. When the path is augmented with self-loops,
we can use a very similar line of arguments to show that no SA	 algorithm can distinguish
between L	

1 and L	
n with a bounded failure probability. This allows us to establish the

following lemma that should be contrasted with the SA MIS algorithm of [20] that works on
general topology graphs (with no self-loops) and succeeds with probability 1.

I Lemma 12. There does not exist a SA	 algorithm that solves the MIS problem on the
graphs in {L	

n }n≥1 with a failure probability bounded away from 1.
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