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Abstract
We introduce an extension to the declarative and artifact-centric Guard Stage Milestone (GSM)
process modeling language to represent temporal aspects (duration, deadlines, lower- and upper-
bound constraints), define the correctness of executions of GSM processes with respect to tem-
poral constraints, check controllability of processes, compute execution plans respecting temporal
constraints, and provide a translation method allowing to execute controllable GSM+T processes
on standard GSM Engines.
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1 Introduction

Expressing temporal constraints and checking whether a process specification can be executed
without violating any constraint (controllability) has been studied for activity-centric processes
models for quite some time with works such as [11, 7, 16]. Surprisingly, temporal constraints
have not yet been addressed for artifact-centric processes models [15, 9, 1, 13].

We propose to enhance the well-known declarative and artifact-centric process model
Guard Stage Milestone (GSM) [15, 9] with temporal constraints and develop techniques
for checking their controllability and compute schedules for their correct execution. Since
GSM has heavily influenced the new case handling standard CMMN1 our results also build a
foundation for future studies analyzing temporal constraints in CMMN models.

Different notions of correctness of time-constrained processes have been developed, in
particular consistency and controllability [7, 8]. Consistency requires that for each possible
run there is an execution plan that obeys all temporal constraints. This is generally considered

1 http://www.omg.org/spec/CMMN/
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too weak. Controllability requires an execution plan that obeys all temporal constraints for
every potential duration of activities and for all possible constellations.

In this paper, we provide the following contributions:
(1) We extend the GSM model with time and temporal constraints (GSM+T).
(2) We formally define the semantics of theses extensions.
(3) We define controllability of GSM+T and provide complete and sound algorithms to

check controllability and to compute schedules.
(4) We discuss approaches for the correct execution of GSM+T processes on available GSM

engines.

To the best of our knowledge, this is the first approach to consider temporal constraints in
artifact-centric process models. In activity centric systems controllability is either checked by
constructing schedules along the control structures of process graphs (e.g. [11]) or by mapping
timed process models to advanced temporal constraint networks (TCN) (e.g. [7, 17]). Both
approaches are not easily applicable for GSM, as it neither has the process graph structure
required for the first approach nor do current TCNs support the constructs of GSM.

Controllability is a strong condition for correct executability. The work presented here is
also a stepping stone for studying more relaxed conditions like dynamic and history dependent
controllability [8] for GSM+T.

2 GSM and GSM+T

2.1 Guard Stage Milestone (GSM)
We introduce the relevant aspects of Guard Stage Milestone (GSM) here and refer the reader
to [9, 15] for all details. In GSM, a business process is modeled in form of potentially multiple
interacting artifacts (or business objects). A process model defines artifact types with a data
schema and a life-cycle schema. A life-cycle model consists of guards, stages, and milestones.
Guards define conditions under which a stage can be opened. Milestones specify when a
specific business goal is reached and the corresponding stage is then closed. Stages can be
atomic or composite. An atomic stage contains a service (e.g. a task). Composite stages
contain other composite or atomic stages and are used to group tasks semantically. Guards
and milestones are attached to a specific stage and are defined in form of sentries. A sentry
is an expression of the form “On event if condition” or “On event” or “if condition”. An
event can be an internal or external event. Internal events are opening or closing events
of stages (denoted by +stageName or −stageName) or achievement or invalidation events
of milestones (+milestoneName or −milestoneName). External events are arbitrary events
received from the environment or completion events of services (called from atomic stages).
The condition clause of a sentry is a boolean expression over the data-schema. The data
schema contains boolean status attributes for stages and milestones and data relevant for
the business object.

Execution Semantics. GSM models basically provide a skeleton for restricting rule-based
systems. When an external event (e.g. arbitrary or a service completion event) arrives,
the payload of the event is incorporated into the data schema of the artifact instance, and
potential rules (translated from sentries plus GSM invariants) are triggered leading to the
production of internal events and the invocation of external services. Internal events may
trigger other rules (micro-steps) until no further internal events are generated. Then, the
next external event is picked from an event queue. One such step of consuming an external
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A.M3: on +B.M3 

Figure 1 Example GSM Process and some temporal constraints (dotted lines).

event is called a B-Step. The state of the artifact before and after one B-Step is called a
Snapshot. A run of a GSM system is a specific sequence of snapshots. All potential runs of a
GSM system form a (in general infinite) stage transitions system. GSM prohibits internal
events from forming an endless loop (toggle-once principle). During execution, guards and
milestones are disjoint. Therefore, only one guard can trigger a single activation of a stage
and only one milestone of a stage can be reached for a single invocation.

I Example 1. In Figure 1 an example GSM process is shown using the usual graphical
notion, except from the newly introduced temporal constraints (dotted lines) and service
duration intervals (square brackets). It consists of a composite stage A and three atomic
stages B,C,D. Stages are depicted in rounded boxes, guards as diamonds, milestones as
circles. According to the given sentry definitions (shown below the graphical notation), stage
A is opened when the external event e1 arrives and the boolean condition c1 over the data
schema holds. Stage B is opened when A is opened (on +A). B is an atomic stage holding
the service B.i. When B.i completes, one of the milestones B.M1 to B.M3 is activated. The
actual milestone depends on the data conditions c2 to c4. Stage C is opened when either
B.M1 or B.M2 are reached. C completes when its enclosed service completes. D is opened
when C.M1 is reached and B.M1 was reached. Finally, the milestones of A are reached if
either D.M1 gets active or C.M1 gets active and B.M2 is active or if B.M3 gets active.
Therefore, the process permits the following traces of service executions: <B>, <B,C>,
and <B,C,D>. The total number of GSM runs is much higher (potentially infinite) since
they also cover all potential data values of the data schema.

Adding Temporal Constraints. In GSM, actual work is performed in atomic stages using
external services. Therefore, we specify duration intervals indicating the minimum and
maximum execution times of atomic stages. In the graphical representation in Figure 1, we
denote the min and max execution time of services within atomic stages in square brackets
after the stage name: B takes between 4 and 6 time units (TUs), C between 2 to 3, and D
between 1 and 2 TUs. In contrast to activity-centric processes where temporal constraints
are defined between activities (tasks), we have selected a more flexible approach for GSM+T:
Temporal constraints may be defined between events (external events, opening of stages,
service invocations or completions, reaching of milestones). Constraints between external
events are typically interpreted as descriptive and constraints involving other events as
prescriptive.

TIME 2018
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The process in Figure 1 includes two upper- and two lower-bound constraints. The time
between opening A and reaching milestone A.M1 is restricted to max. 15 TUs. E.g.: After a
test result has been received the treatment of a patient has to be finished in at most 15 TUs.
The time to achieve A.M3 after opening B is limited to max. 7 TUs. The time between the
completion of the service in stage B and starting the service of stage C must be at least 2
TUs. As an example: Within two days after receiving some medication B a patient must
not ingest some medication C. The time between opening B and reaching A.M1 must be at
least 13 TU. Finally, the example process has an overall deadline of 16 TUs.

2.2 Introducing GSM+T
We have already informally introduced temporal constraints in GSM+T models. In this
section, we formalize the GSM+T model.

I Definition 2 (GSM+T Process Model). (A,X, S,M,G, Y, I, C,Bu, Bl,Ω) is a GSM+T
process model, if A is a set of artifact types, X is a set of events, S is a set of stages, M is a
set of milestones, G is a set of guards, Y is a set of sentries, I is a set of external service
invocations, and C is a set of service completions. Bu is a set of upper-bound constraints of
the form (s, d, δ), Bl is a set of lower-bound constraints (s, d, δ), where s, d ∈ X and δ ∈ N,
and the deadline Ω ∈ N.
Events. The set of events X includes a distinct event for each milestone, each stage opening,

service invocation and completion of each external service and some external events XE .
S ∪M ∪ I ∪C ∪XE = X. Each external event x in XE has the attribute x.dfrom, x.dto

indicating the time interval in which the event may occur after starting the process.
Artifact Types. An artifact type is a tuple (Att, S′), where Att = Attstatus ∪Attdata, S′ ⊆

S. Attstatus is a set of boolean status attributes for all stages in S′ and all milestones
of stages in S′ indicating currently opened stages and reached milestones of artifact
instances. Attdata is a set of arbitrary data attributes.

Stages. A stage s is a tuple s = (G,M, sub, sup, I, C, dmin, dmax), where s.G is a non-empty
set of guards (s.G ⊆ G and s.G 6= ∅), s.M is a non-empty set of milestones (s.M ⊆ M

and s.M 6= ∅). The attribute s.sub holds the sub-stages of s (s.sub ⊆ S). The attribute
s.sup refers to the super stage of s or to s for root stages. Either s.sub or s.I are empty,
but never both. s.I refers to an external service in I, s.C refers to the completion event
of the external service. Invocation and completion events have an attribute .S referring
to their atomic stage. s.I.dmin, s.I.dmax ∈ N are the minimum and maximum duration
of the external service, with 0 ≤ s.I.dmin ≤ s.I.dmax.

Sentries of Guards and Milestones. Each milestone m ∈M has one sentry m.se ∈ Y . Each
guard g ∈ G has one sentry g.se ∈ Y . Each sentry belongs to exactly one artifact type
(Att, S′). A sentry is an expression of the form “on event if condition” where “condition”
is optional. A sentry se has two components: se.trig is the triggering event ∈ X and
se.cond is a condition. se.cond has the form ps ∧ pd, where ps is a conjunction over
positive atoms ∈ Attstatus that defines the necessary conditions for the sentry to evaluate
to true, and pd is an arbitrary query (over elements in Attdata) and negative atoms of
ps. se.ref is the set of all (internal) events ∈ X that are referenced from ps via their
status attributes. As a short-hand, we use m.trig for m.se.trig and m.ref for m.se.ref
for milestones m ∈M and g.trig for g.se.trig and g.ref for g.se.ref for guards.

Constraints on GSM+T Models. Milestone belong to exactly one stage: ∀m ∈ M ∃1s ∈
S : m ∈ s.M ;
Guards belong to exactly one stage: ∀g ∈ G ∃1s ∈ S : g ∈ s.G;
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Invocations and completions belong to exactly one stage: ∀i ∈ I ∃1s ∈ S : i = s.I;
∀c ∈ C ∃1s ∈ S : c = s.C; Completions belong to the same stage as their invocation:
∀c ∈ C ∀i ∈ I ∃1s ∈ S : i = s.I ∧ c = s.c; Stages belong to exactly one artifact type:
∀s ∈ S ∃1a ∈ A : s ∈ a.S; There is exactly one root stage per artifact type: ∀a ∈ A
∃1r ∈ a.S′ : r.sup = r;
All (recursive) sub-stages of an artifact type are closed under the stages of the artifact
type: ∀a ∈ A ∀s ∈ a.S′ : s.sup ∈ a.S′ ∧ s.sub ⊆ a.S′.

The remainder of this paper focuses on defining the semantics of the GSM+T and on
checking the controllability of GSM+T processes with the following restrictions. In contrast
to standard GSM, we restrict sentries to expressions containing triggering events and we
require that the status condition ps is a conjunction of positive atoms while pd can be any
arbitrary predicate, the evaluation of which we can only observe. Requiring conjunctions
does not limit the generality of our approach since non-conjunctive terms can always be
represented by duplicating the corresponding sentries (guards and milestones) to achieve
DNF. Sentries with no triggering events can be replaced by sets of sentries for all possible
events. Additionally, we require a somewhat more strict toggle-once principle requiring that
no guard can trigger the re-activation of a stage after it is executed or a milestone is reached.
Active milestones remain active. Therefore, we do not support loops of stages. There is
currently no approach for temporal constraints of process models with full support of loops
in the literature [5]. Loops are either not supported at all or treated as abstract blocks.

2.3 Semantics of GSM+T
We define the semantics of GSM+T as an extension of the semantics of GSM by (1)
timestamping all events of a run and (2) define which conditions these timestamps have to
adhere to consider a run as temporally correct. We use a finite abstraction of GSM+T to
define time constraints, check controllability and calculating schedules. It is inspired by the
polarized dependency graph [15] which is used for defining well-formedness of GSM and it is
an extension of timed workflow graphs [11] which are used for defining temporal constrains
in activity-centric processes. Basically, the nodes of the graph are the events and guards of
the process and edges are defined by dependencies between nodes.

I Definition 3 (Temporal Dependency Graph (TDG)). Let p = (A,X, S,M,G, Y, I, C,Bu, Bl,Ω)
be a GSM+T process. (N,E,Bu, Bl,Ω) is a temporal dependency graph of p, iff: N = X∪G,

E = {(n, g)|n ∈ g.ref ∪ g.trig, g ∈ G ∪M} // Referenced events to guards and milestones
∪ {(s, i)|s ∈ S, i = s.I} // Stages to service invocations
∪ {(i, c)|∃s ∈ S : i = s.I ∧ c = s.C} // Service invocation to service completion
∪ {(s,m)|s ∈ S,m ∈ s.M} // Stages to their milestones
∪ {(g, s)|g ∈ s.G, s ∈ S} // Guards to their stages
∪ {(s, g)|s ∈ S, g ∈ s.sub.G} // Stages to guards of sub-stages

I Example 4. Figure 2 shows the TDG of the process in Figure 1. The upper- and lower-
bound constraints in Bu and Bl are shown as dotted lines (they are not edges of the TDG).
Duration intervals of services are denoted in square brackets.

A scenario is a complete run of a process with timestamps for all elements. We now specify
the semantics of the temporal constraints by defining which possible execution scenarios are
correct. Then we define schedules as a definition of admissible temporal intervals for the
nodes in the TDG.

TIME 2018
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Figure 2 Temporal Dependency Graph of example process in Figure 1.

I Definition 5 (Scenario). A scenario S̄ of a GSM+T process assigns timestamps to all
elements of a process that occurred during one complete GSM+T run. The TDG ST of
a scenario only contains the nodes that occurred during that run. Each node n ∈ ST is
associated with a timestamp n.t, the time point of this event in a process instance.

I Definition 6 (Valid Scenario). A scenario S̄ of a GSM+T Process (A, X, S, M, G, Y, I,

C, Bu, Bl, Ω) with the TDG (N,E,Bu, Bl,Ω), is valid, iff the following constraints hold:
∀n ∈ N, ∀m ∈ N
1. n ∈ XE ⇒ n.dmin ≤ n.t ≤ n.dmax

2. n ∈ N ∧ (n,m) ∈ E ⇒ n.t ≤ m.t
3. n ∈ S ⇒ ∃g ∈ n.G : g.t = n.t

4. n = m.trig ⇒ m.t = n.t

5. n ∈ S ∧ n.sub = ∅ ⇒ n.I.t+ n.I.dmin ≤ n.C.t ≤ n.I.t+ n.I.dmax

6. (s, d, δ) ∈ Bu ⇒ d.t ≤ s.t+ δ.
7. (s, d, δ) ∈ Bl ⇒ s.t+ δ ≤ d.t.

(1) External events occur in their defined intervals. (2) All nodes have equivalent or smaller
timestamps than their successors. (3) The guard of a stage has the same time stamp as the
stage (In a scenario, there is exactly one guard for each stage.). (4) Nodes with triggering
events have the same time point as their triggering event. (5) Service completions of atomic
stages occur in their defined intervals. (6-7) upper- and lower-bound constraints are satisfied.

I Example 7. A fragment (ignoring nodes with equivalent time-stamps) of a valid scenario
for the process in Figure 1 is the following: B.I.t = 0, B.I.C.t = 6, C.I.t = 8, C.I.C.t = 11,
D.I.t = 12, D.I.C.t = 13. Therefore, B.I directly starts and B.I.C arrives at time 6. C.I
is delayed by 2 to obey lbc(B.I.C,D.I, 2) resulting in C.I.t = 8. Then C.I.C arrives at
time-point 11. D.I is started at time 12 to obey lbc(B,A.M1, 13) and returns at time 13.
The scenario complies with all constraints.

2.4 Controllability
Based on these definitions we define the property controllability as a notion of the correctness
of a process definition with temporal constraints. Controllability reflects the ability of a
GSM+T engine to control the execution of GSM+T processes in a way to eventually satisfy
all temporal constraints. To define controllability, we have to distinguish four types of events:
(1) invocation of a service (task), (2) completion of a service (task), (3) opening/closing of
a stage, and (4) achieving a milestone. Only (1) is controlled by the engine, as the engine
could delay the invocation of services. (2) depends on external services and (3) and (4) are
controlled by conditions and thus automatic. For example, Barcelona [15] is an eager GSM
engine, where services are invoked as soon as their enclosing atomic stages are opened. So
the only control option for GSM+T execution to satisfy all temporal constraints is the delay
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of service invocations. Why can such delays be necessary? For an example, if two concurrent
stages have to reach their milestones at the same time, then this can only be ensured, if the
invocation of the service with shorter duration is delayed.

For simplicity, we assume that each process instance starts at time 0 and all timestamps
are relative to the instance start time. The time point of a stage is the time point of opening
a stage, thus the time-point of its (activated) guard. The time-point of a guard or milestone
is the time-point of the triggering event of its sentry. This is in-line with the GSM semantics
[9], where B-Steps/Snapshots have timestamps and micro-steps (triggered by internal events)
are assumed to happen at the time of processing the external event triggering the B-Step.

I Definition 8 (Controllability). A GSM+T Process is controllable, iff there exists a mapping
T (schedule) which assigns each service invocation i ∈ I with an execution time ti ∈ N such
that for all possible timestamps for external events and for all possible service durations and
for all possible guard validations the resulting scenario is valid.

Controllability [21] is a strong condition. More relaxed notions of correctness (e.g.
dynamic controllability [8, 16, 21]) would, when adopted to GSM+T, allow the service
invocation decisions to depend on already completed snapshots.

3 Checking Controllability and Calculating Schedules

3.1 Schedule Frames and Controllability
In the following we present a procedure for checking the controllability of GSM+T processes
by constructing a schedule. Controllability requires that any correct schedule exists. We
construct schedules which take all the worst cases of durations into account. Faster execution
of the process might be possible, as we discuss in Section 4. For computing schedules, we
first define a schedule frame of a process as an extension of a TDG:

I Definition 9 (Schedule Frame). A schedule frame associates each n ∈ N of a TDG (N,
E, Bu, Bl, Ω) of a GSM+T process (A, X, S, M, G, Y, I, C, Bu, Bl, Ω) with intervals for
the occurrence of nodes: Eb, Ew, L. n.Eb expresses the earliest best time in which n can
happen, n.Ew expresses the earliest worst time in which n can happen, n.L is the latest time
where n may occur. A schedule frame is correct, iff ∀n ∈ N, ∀m ∈ N :
1. n ∈ XE ⇒ n.Eb = n.dmin, n.Ew = n.dmax

2. n.Eb ≤ n.Ew ≤ n.L,
3. (n,m) ∈ E ⇒ n.Eb ≤ m.Eb, n.Ew ≤ m.Ew, n.L ≤ m.L
4. n ∈ S ∧ n.sub = ∅ ⇒ n.I.Ew + n.I.dmax ≤ n.C.Ew

5. n ∈ S ∧ n.sub = ∅ ⇒ n.I.Eb + n.I.dmin ≤ n.C.Eb

6. n ∈ S ∧ n.sub = ∅ ⇒ n.I.L+ n.I.dmax ≤ n.C.L
7. n ∈ S ∧ n.sub = ∅ ⇒ n.Ew ≤ n.I.Eb

8. n ∈ G ∪M ⇒ n.Eb = n.trig.Eb, n.Ew = n.trig.Ew, n.L = n.trig.L

9. ∀(m,m′, δ) ∈ P.Bu : m′.Ew ≤ m.Eb + δ,
10. ∀(m,m′, δ) ∈ P.Bu : m′.L ≤ m.L+ δ

11. ∀(m,m′, δ) ∈ P.Bl : m.Eb + δ ≤ m′.Ew,
12. ∀(m,m′, δ) ∈ P.Bl : m.L+ δ ≤ m′.L

13. n ∈ S ⇒ n.Eb = min({g.Eb|g ∈ n.G}),
n ∈ S ⇒ n.Ew = max({g.Ew|g ∈ n.G})

TIME 2018
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(1) The time interval of external events is their defined time interval. (2) Invariant: Earliest
best smaller or equal earliest worst smaller or equal latest. (3) Nodes have equivalent or
smaller Eb, Ew and L values than their successors. (4-6) The time difference between
invocation and completion is defined by the duration interval of the service. (7) The time
of an atomic stage is smaller or equal to the time of its service invocation. (8) Guards and
milestones have the Eb, Ew, and L values of their triggering events. (9-12) Upper- and
lower-bound constraints are satisfied. (13) The earliest best opening time of a stage is the
earliest time of all their guards. The earliest worst opening time is the earliest worst time of
all their guards.

Example of a schedule frame: The essential parts of a schedule frame - the ones controllable
by the engine - for the GSM+T process in Figure 1 in the format (Eb, Ew, L) are the following:
B.I: (0,0,3), C.I: (8,8,11), D.I: (12,12,14). The complete schedule frame is shown in the
Backward 2 column of Table 1.

I Theorem 10. A GSM+T process P is controllable, iff it has a correct schedule frame.

Proof Sketch. (1) soundness: Let SF be a correct schedule frame for P , let T (i) = i.Eb

be a schedule. Following from Def. 9 and Definitions 6, 8 we can show that T fulfills the
requirements of controllability.
(2) completeness: Let T be a schedule such that P is controllable. We construct a schedule
frame as follows:
1. ∀i ∈ I : i.Eb = i.Ew = T (i).
2. ∀s ∈ S : s.C.Eb = s.I.Eb + dmin, s.C.Ew = s.I.Ew + dmax

3. ∀x ∈ XE : x.Eb = x.dmin, x.Ew = x.dmax

4. ∀n ∈ N − I − C −XE :
n.Eb = max{m.Eb|(n,m) ∈ E},
n.Ew = max{m.Ew|(n,m) ∈ E}

5. ∀n ∈ N : n.L = n.Ew

With some calculations, it is easy to see that this schedule frame is correct. J

I Lemma 11 (Cyclic Dependencies). If the schedule frame graph contains a cycle the process
is not controllable.

Proof. We distinguish 2 cases: (a) there is an (s, i) edge involved in the cycle. Let S1 and
S2 be stages contained in a cycle in the dependency graph. This means that both sequences
< S1, S2 > and < S2, S1 > are possible. Hence it is not possible to assign start times to the
stages such that both sequences are admissible unless the stages have duration 0.
(b) If there is no (s, i) edge in the cycle, then the process violates the toggle once principle of
well-formed GSM. J

3.2 Computing Correct Schedule Frames:
We compute a correct schedule frame for an acyclic schedule frame graph of a process P
as follows: We initialize the schedule frame as follows: For external event nodes we set
the Eb and Ew values to the time intervals of the corresponding events: (x ∈ XE) →
x.Eb = x.dmin, x.Ew = x.dmax. The E-values of all other nodes are set to 0. The L-values
are set to the deadline of the whole process (P.Ω). (Computing a schedule is also possible if
no overall deadline is given, but the algorithm is considerably longer and out of scope of this
paper.)

The events may take place during the interval defined by (Eb, L) of its node. In the
course of Algorithm 1 these intervals are now reduced iteratively through incorporating the
implicit (an event can only take place after its predecessors) and explicit temporal constraints.
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Algorithm 1 CSF(sf,P) Compute correct schedule frame sf for process P .
1: {inout: (N,E,Bu, Bl, d) schedule frame, in: (A,X, S,M,G, Y, I, C,Bu, Bl,Ω) Process}
2: {(N,E) is acyclic}
3: {Output: correct schedule frame or ok is false}
4: ok := false

5: while ¬ok do
6: ok := true

7: if !Forward((N , E, Bu, Bl, d), (A, X, S, M, G, Y, I, C, Bu, Bl, Ω), ok) then
8: return false
9: else if !Backward((N, E, Bu, Bl, d), (A, X, S, M, G, Y, I, C, Bu, Bl, Ω), ok)) then

10: return false
11: else
12: for all (s, d, δ) ∈ Bu do
13: {incorporation of upper-bound constraints}
14: if δ < (d.Ew − s.Eb) then
15: ok := false

16: s.Eb := max(s.Eb, d.Ew − δ)
17: s.Ew := max(s.Ew, s.Eb)
18: end if
19: if δ < (d.L− s.L) then
20: ok := false

21: d.L := min(d.L, s.L+ δ)
22: end if
23: end for
24: for all (s, d, δ) ∈ Bu do
25: {incorporation of lower-bound constraints}
26: if δ > (d.Eb − s.Ew) then
27: ok := false

28: d.Eb := max(d.Eb, s.Ew + δ)
29: d.Ew := max(d.Ew, d.Eb)
30: end if
31: if δ > (d.L− s.L) then
32: ok := false

33: d.L := min(d.L, s.L+ δ)
34: end if
35: end for
36: end if
37: end while
38: return true

If a constraint is violated, the Eb and Ew values of nodes are increased and the L values
are decreased to the lowest resp. highest value satisfying the constraint. The procedure is
repeated until either all constraints are satisfied or the invariant Ew ≤ L is violated for any
node.

Forward Calculation. Algorithm 2 visits all nodes n in a topological sort order and computes
the values n.Eb and n.Ew form the corresponding values of its predecessors according to the
definition of correct schedule frames. The calculation depends on the type of the current
node:

For completion event nodes, there exists exactly one predecessor, the corresponding
service invocation node. The Eb and Ew values are defined by the maximum of the current
Eb and Ew values and the Eb and Ew of the service invocation node plus the min/max
duration times of the service.

TIME 2018
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Algorithm 2 Forward(sf,P,ok) Forward calculation.
1: {inout: (N,E,Bu, Bl,Ω) schedule frame, in: (A,X, S,M,G, Y, I, C,Bu, Bl,Ω) Process, inout:

ok Boolean}
2: {(N,E) is acyclic}
3: for all n ∈ N −XE in a topological order do
4: {forward calculation}
5: if n ∈ C then
6: n.Eb := max({n.Eb, n.I.Eb + n.I.dmin})
7: n.Ew := max({n.Ew, n.I.Ew + n.I.dmax})
8: else if n ∈ S then
9: n.Eb := max(n.Eb, {m.Eb|(m,n) ∈ E,m /∈ G},min{m.Eb|(m,n) ∈ E,m ∈ G})

10: n.Ew := max(n.Ew, {m.Ew|(m,n) ∈ E})
11: else if n ∈ I then
12: n.Eb := max(n.Eb, {m.Ew|(m,n) ∈ E}
13: n.Ew := max(n.Ew, {m.Ew|(m,n) ∈ E}
14: else
15: n.Eb := max(n.Eb, {m.Eb|(m,n) ∈ E})
16: n.Ew := max(n.Ew, {m.Ew|(m,n) ∈ E})
17: end if
18: if n ∈ I then
19: n.Eb := n.Ew

20: end if
21: if n ∈ G ∪M ∧ (n.L 6= n.trig.L ∨ n.L 6= n.trig.L) then
22: ok := false

23: n.L := n.trig.L

24: if n.L < n.Ew ∨ n ∈ XE ∧ (n.Eb 6= n.dmin ∨ n.Ew 6= dmax then
25: return false
26: end if
27: end if
28: end for
29: return true

Stage nodes may have multiple predecessors in form of multiple guards and optionally
a parent stage. The Eb values of a stage is set to the max of its current Eb value and the
Eb value of its parent stage and the minimum Eb value of all guards. I.e. a stage is opened
when at least one guard triggers and the parent stage is open. The Ew value is set to the
max of the current Ew value and the max Ew of all predecessor nodes. Invocation nodes
have exactly one predecessor (a stage). Since we only need to find a controllability schedule,
the Eb and Ew value of invocation nodes are set to the maximum of the current value and
the Ew value of the stage. The Eb and Ew values of all other node types are defined by the
maximum of the current values and the max corresponding values of predecessor nodes.

Algorithm 2 also calculates the value n.L for triggered events, as they must be the same
as that of the preceding triggering event. If an update of an L value is required the boolean
variable ok is set to false which triggers another iteration of forward and backward calculations
in Algorithm 1. Algorithm 2 also checks for violations of the n.Ew ≤ n.L invariant and re-
turns false if it is violated. A return value of false means that no correct schedule frame exists.

Backward Calculation. Algorithm 3 visits all nodes n in a reverse topological sort order
and computes the values n.L from the corresponding values of its successor nodes according
to the definition of correct schedule frames. It also calculates the value n.Eb, n.Ew for
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Algorithm 3 Backward(sf,P,ok) Backward calculation.
1: {inout: (N,E,Bu, Bl,Ω) schedule frame, in: (A,X, S,M,G, Y, I, C,Bu, Bl,Ω) Process, inout:

ok Boolean}
2: for all n ∈ N in a reverse topological order do
3: {backward calculation}
4: if n ∈ N − I then
5: n.L := min({n.L} ∪ {s.L|(n, s) ∈ E} ∪ {m.L− δ|(n,m, δ) ∈ Bl}
6: else
7: {invocation node}
8: n.L := min({n.L} ∪ {s.L− s.I.dmax|(n, s) ∈ E} ∪ {m.L− δ|(n,m, δ) ∈ Bl})
9: end if

10: if n ∈ G ∪M ∧ (n.Eb > n.trig.Eb ∨ n.Ew > n.trig.Ew) then
11: {Move wait times along triggering edges}
12: ok := false

13: n.trig.Eb := n.Eb

14: n.trig.Ew := n.Ew

15: else if n ∈ I ∧ (n.Eb < n.S.C.Eb − n.dmin ∨ n.Ew < n.S.C.Ew − n.dmax) then
16: {Move wait times from completion to invocation}
17: ok := false

18: n.Eb := n.S.C.Eb − n.dmin

19: n.Ew := max(n.Eb, n.Ew)
20: else if n ∈ S then
21: {Move wait times from stage to guards}
22: for all e ∈ {(g, n) ∈ E|g ∈ G ∧ g.Eb < n.Eb)} do
23: ok := false

24: d = e.g.Ew − e.g.Eb

25: e.g.Eb := n.Eb

26: e.g.Ew := n.Eb + d

27: end for
28: end if
29: if n.L < n.Ew ∨ n ∈ XE ∧ (n.Eb 6= n.dmin ∨ n.Ew 6= dmax) then
30: return false
31: end if
32: end for
33: return true

triggering events as they have to be the same as that of the triggered events. Following
the same principle, it increases the n.Eb, n.Ew values for invocation nodes and of guards,
when required. This basically shifts delays to the corresponding invocations as they are
the only times that can be controlled. If any shifting was required the status variable ok is
set to false. This will later trigger another round of forward and backward calculations in
Algorithm 1. During backward calculation, Algorithm 3 also checks for violations of the
Ew ≤ L invariant and whether the admissible interval for external events had been reduced.
It returns false, if any of these invariants is violated. In this case, no correct schedule frame
exists and Algorithm 1 also terminates.

I Example 12. The complete calculation of the schedule frame for the example process
in Figure 1 based on the TDG in Figure 2 is shown in Table 1. The result is obtained
after two rounds of forward and backward calculations. All data is given in the format
(Eb, Ew, L). After the first forward and backward cycle (columns Forward 1, Backward 1),
the ubc and lbc constraints are enforced. The ubc (B,A.M3, 7) is violated by B = (0, 0, 3)
and A.M3 = (4, 6, 16). In particular, A.M3.L > B.L + 7. Therefore, A.L is set to 10.
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Table 1 Computing schedule frame for Figure 2.

Forward 1 Backward 1
Node Eb Ew L Eb Ew L

e1 0 0 16 0 0 3
A.G1 0 0 16 0 0 3
A 0 0 16 0 0 3
B.G1 0 0 16 0 0 3
B 0 0 16 0 0 3
B.I 0 0 16 0 0 3
B.C 4 6 16 4 6 9
B.M1 4 6 16 4 6 11
B.M2 4 6 16 4 6 11
B.M3 4 6 16 4 6 11
A.M3 4 6 16 4 6 16
C.G1 4 6 16 4 6 11
C.G2 4 6 16 4 6 11
C 4 6 16 4 6 11
C.I 6 6 16 6 6 11
C.C 8 9 16 8 9 14
C.M1 8 9 16 8 9 14
A.M2 8 9 16 8 9 16
D.G1 8 9 16 8 9 14
D 8 9 16 8 9 14
D.I 9 9 16 9 9 14
D.C 10 11 16 10 11 16
D.M1 10 11 16 10 11 16
A.M1 10 11 16 10 11 16

Forward 2 Backward 2
Node Eb Ew L Eb Ew L

e1 0 0 3 0 0 3
A.G1 0 0 3 0 0 3
A 0 0 3 0 0 3
B.G1 0 0 3 0 0 3
B 0 0 3 0 0 3
B.I 0 0 3 0 0 3
B.C 4 6 9 4 6 9
B.M1 4 6 9 4 6 9
B.M2 4 6 9 4 6 9
B.M3 4 6 9 4 6 9
A.M3 4 6 9 4 6 9
C.G1 4 6 9 4 6 9
C.G2 4 6 9 4 6 9
C 4 6 11 4 6 11
C.I 8 8 11 8 8 11
C.C 10 11 14 10 11 14
C.M1 10 11 14 10 11 14
A.M2 10 11 14 10 11 14
D.G1 10 11 14 10 11 14
D 10 11 14 10 11 14
D.I 11 11 14 12 12 14
D.C 12 13 16 13 13 16
D.M1 12 13 16 13 13 16
A.M1 13 13 16 13 13 16

The ubc (A,M1, 15) is not violated. The lbc constraints (B,A.M1, 13) and (B.C,C.I) are
violated. Therefore, the values for C.I and A.M1 are updated to (8, 8, 11) and (13, 13, 16),
respectively. The change of A.M1 is populated to D.I in the following backward calculation
phase. One additional iteration of forward and backward calculations is executed without
changing values. No additional violations exists and the algorithm terminates. The final
results are shown in the column Backward 2. A schedule is obtained by only using the Eb

values of invocation nodes: B.I.t: 0, C.I.t = 8, D.I.t = 12.

3.3 Correctness, Completeness, Complexity, and Feasibility
I Theorem 13. A GSM+T process P is controllable iff P is acyclic and Algorithm 1
computes a correct schedule frame.

Proof. The algorithm terminates always due to the monotonicity of increasing Eb and Ew

and decreasing L. Following Theorem 10 we have to show that it computes a correct schedule
frame, if there exists a correct schedule frame.
Soundness: All conditions for a correct schedule frame are either explicitly checked, or are
immediate result of the calculations and assignments.
Completeness: For all n ∈ N the values for Eb, Ew, L have to be in the interval [0,Ω], the
variables are initialized accordingly. In the course of the algorithm Eb and Ew can only
be increased, L can only be decreased. A change of the value of one of these variables is
only done, when a constraint, a condition of a correct schedule frame is violated. Then
the variables are set to the lowest resp. highest value which satisfies this constraint. With
this monotonicity, we ensure that either a correct set of values is computed or the Ew ≤ L
invariant is violated or the interval of external events is decreased. J
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C[2,3] D[1,2]B[4,6]

C‘ D‘B‘ C‘‘ D‘‘B‘‘

A

C.G1

D.G1

B.G1

C.G2

C.M1
D.M1

B.M1

B.M2

B.M3

A.M1

A.M2

A.M3

A.G1

B‘.G = on +B
B‘.M = on B‘.i.completed
B‘‘.G = on +B‘.M
B‘‘.M = on B‘‘.i.completed

C‘.G = on +C
C‘.M = on C‘.i.completed
C‘‘.G = on +C‘.M
C‘‘.M = on C‘‘.i.completed

Sentry and Service Definitions:

D‘.G = on +D
D‘.M = on D‘.i.completed
D‘‘.G = on +D‘.M
D‘‘.M = on D‘‘.i.completed

B‘.i = {complete now} 
C‘.i = {complete at time 8}
D‘.i = {complete at time 12}

Figure 3 Standard GSM translation of GSM+T example in Figure 1.

The worst case complexity of the algorithm is O(n2) where n is the number of nodes in
the temporal dependency graph plus the number of explicit constraints. One iteration has n
steps and the number of iterations is at least limited by n times the deadline. Preliminary
data of explorative experiments with implementations of the basic algorithms, have shown
that for reasonably sized models the run-time of the algorithm is within seconds - feasible
for design time checks.

4 Execution of GSM+T Processes

In this paper we focus on checking controllability and not on computing optimal schedules
nor on the run-time of GSM+T processes. Nevertheless, we discuss in this section how
controllable GSM+T processes can be correctly executed to show the feasibility of the
GSM+T approach. There are basically two options which rewrite GSM+T processes to be
able to run the process on any GSM execution engine.

(1) Fixed execution. Fixed execution has the advantage that there is no need for calculations
of time values during the run-time of the process and all invocation times of services are
fixed at the process start time. We replace every atomic stage ds by a composite stage ds
containing a sequence of two sub-stages ds′, which implements a parameterized wait and
ds which invokes the requested service. The guards and milestones of ds remain the same
but we nest an atomic stage ds′ into ds such that ds′ has a single guard with the sentry on
+ds. Therefore, it is triggered when ds is opened. The nested stage ds′ contains a service
call to a special waiting service. The service completion event of waitDS is delayed until
the specified time (relative to process start) has passed. Stage ds′ has one single milestone
ds′.M with the sentry on ds’.i.completed. We nest an additional stage ds′′ into ds with the
guard on +ds′.M . The service call of ds′′ is the service call of the original stage (ds.impl).
ds′′ has a single milestone with the sentry: on ds”.impl.completed. The Milestones of ds are
not touched. Therefore, they are still connected to the service completion of ds′′.

The mapping of the GSM+T model in Figure 1 to a standard GSM Model is shown
in Figure 3. According to the schedule (Example 12), the stages B, C, D are replaced by
composite stages with wait parameters 0,8, and 12.

(2) Flexible execution. Flexible execution may use the same rewritten process as fixed
execution. However, the (possible) delay is computed at run-time by recomputing the
schedule frame using the actual values of already executed B-steps and the information on
which goals evaluated to true and which milestones were reached. Flexible execution allows
for faster execution of the process, but requires significantly more effort at run-time.
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5 Related Work

To the best of our knowledge, this is the first approach to consider temporal constraints in
artifact-centric process models. For activity-centric process models there is already quite some
body of research results in the area of temporal aspects of workflows and business processes.
We refer to [12, 4] for overviews. Early approaches for checking process definitions with
temporal constraints of activity-centric processes were proposed in works such as [19, 2, 11].
The approaches are based on different techniques such as network analysis, scheduling, or
temporal constraint networks [10]. The stream of research based on temporal constraint
networks now reached the necessary expressiveness for analyzing business process models:
checking the controllability and dynamic controllability of temporal networks, as discussed
in [8]. In particular, [16, 6] present sound-and-complete algorithms for checking the dynamic
consistency resp. controllability of conditional simple temporal networks with uncertainty.

Works addressing time constrains for interorganizational processes and for service com-
position were presented in [3, 14]. A quite different approach was proposed in [20], where
process mining is used to asses temporal qualities of process models from process logs, but
cannot check temporal qualities of process models at build time. Recently the work of Lanz
et al. [18] contributed to the consolidation of expressing temporal constraints and defining
the semantics of temporal constraints. However, all these works address activity-centric
process models and provide no solution for time aware GSM process models.

Our approach is inspired from the algorithms for computing schedules for time constrained
workflows presented in [11], but is based on different much more complex type of graph
defined to represent the temporal dependencies of GSM+T events and considerably extended
to capture the uncertainty of the duration of contingent service calls.

6 Conclusions

Current artifact-centric modeling approaches lack support for temporal constraints. We have
extended GSM with deadlines, upper- and lower-bound constraints and intervals defining the
potential durations of services. In contrast to activity-centric models, time constraints cannot
only be defined between start- and end-times of services but also between (composite) stages,
guards and milestones. We have defined controllability of GSM+T models and have provided
sound and complete algorithms for checking controllability and calculating schedules. We
have provided a method to rewrite controllable GSM+T models to standard GSM models
that obey all time constraints when executed on a standard GSM engine (e.g. Barcelona).
We see this work as an important foundation for future works including investigating dynamic
controllability, where the engine can make different scheduling decisions based on past
snapshots and for investigating processes with time dependent sentries.
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