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—— Abstract

Behaviour support technology is aimed at assisting people in organizing their Activities of Daily
Living (ADLs). Numerous frameworks have been developed for activity recognition and for
generating specific types of support actions, such as reminders. The main goal of our research
is to develop a generic formal framework for representing and reasoning about ADLs and their
temporal relations. This framework should facilitate modelling and reasoning about 1) durative
activities, 2) relations between higher-level activities and subactivities, 3) activity instances,
and 4) activity duration. In this paper we present a temporal logic as an extension of the
logic TPTL for specification of real-time systems. Our logic TPTLy, is defined over Behaviour
Identification Hierarchies (BIHs) for representing ADL structure and typical activity duration.
To model execution of ADLs, states of the temporal traces in TPTLyy comprise information
about the start, stop and current execution of activities. We provide a number of constraints on
these traces that we stipulate are desired for the accurate representation of ADL execution, and
investigate corresponding validities in the logic. To evaluate the expressivity of the logic, we give
a formal definition for the notion of Coherence for (complex) activities, by which we mean that
an activity is done without interruption and in a timely fashion. We show that the definition is
satisfiable in our framework. In this way the logic forms the basis for a generic monitoring and
reasoning framework for ADLs.
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A Temporal Logic for Modelling Activities of Daily Living

1 Introduction

Behaviour support technology [15, 9, 12, 18] is aimed at helping people organize their
Activities of Daily Living (ADLs) and change their habits. For example, smart home and
wearable technology is being developed to recognize people’s activities and determine whether
it constitutes abnormal behavior [17, 11]. This technology is developed with the aim of
allowing elderly and people with special needs to continue living independently by providing
support in cases of deviations from expected behavior.

While numerous such frameworks have been developed, they typically focus on specific
types of behavior — such as forgetting to perform certain actions, and corresponding support
actions — such as smart reminders [9, 12, 18, 13]. Perhaps as a consequence, the specification
of what is the desired user behaviour is typically left implicit in these frameworks, intertwined
with activity recognition and supportive actions.

In our work we aim to develop a generic formal framework for representing and reasoning
about ADLs, in which the representation of desired behavior is explicit and decoupled from
recognition of actual user behavior and corresponding support actions. These expressions of
desired behaviour can originate from users themselves or from others in their social context,
such as caregivers. Our approach [8, 23, 16, 22] is inspired by research on normative multiagent
systems [2] in which computational models are developed for explicitly representing and
reasoning about norms that govern societies of artificial autonomous agents at run-time.
An important advantage of our approach is that it can form the foundation for developing
more comprehensive supportive technology that can support a wide variety of desired types
of behavior. Moreover, such explicit representation of desired behavior allows reasoning
about possible conflicting desires as well as underlying motivations and values (see also [16]).
Finally, it allows development of generic supportive strategies based on the representations of
desired behavior and values.

Considering the inherent temporal nature of ADLs, we take temporal logic as a basis for
representing desired behavior [10]. Specifically, the framework should facilitate modelling
and reasoning about 1) durative activities, 2) relations between higher-level activities and
subactivities, 3) activity instances, and 4) normal activity duration.

The motivation for this is that we would not consider actions as being done instantaneosly;
thus our logic should not be limited to when an activity is done, but also include for how long
it is being done. A hierarchy of activities will allow for a more fine-grained support: it might
be the case that while a user requests support for a particular, complex activity, support is
only really needed for a particular part of the activity, e.g. a user requiring support for the
activity of cooking dinner may only need support when preparing the ingredients, but not
for the actual cooking activity. The logic should be able to handle instances of activities,
i.e. it should be able to distinguish between the more abstract description given by a user
or caregiver, and the activity instance actually carried out. This allows us to check for any
deviation from the recorded description of an activity, whether there is a deviation in the
manner in which the activity is carried out or whether it takes an unusually long or short
time. There are several temporal logic frameworks that allow expressing durative properties,
e.g. [14]. All of our requirements considered, we believe that choosing TPTL as the basis for
our logic is the most suitable starting point. In particular, we need a way to encode the exact
duration that an instance of an activity takes to be carried out, as well as at which time
activities are started and completed, respectively. That is, we desire a logic which enables us
to express various types of temporal goals. Reasoning about how to handle the interaction
between these goals, handling conflicts etc. is not the focus of this paper. Concerning these
questions see e.g. [20, 19].
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Once we have an understanding of which notions of temporality we want and need to
capture for this type of technology, we can analyze which of many existing frameworks for
representing and reasoning about norms and time we can build on, e.g. [6, 5, 3, 4, 7, 22].

A key notion for supporting people in their daily lives is that of normal behaviour [17, 11]:
a support system should be able to detect when a user’s activities deviate from a norm, and
render support to the user in such situations. However, this notion is sometimes considered
in very strict bounds: changing the order of subactivities in a specific activity is already
considered abnormal. While this certainly applies, e.g. when a user is going to bed before
taking off their clothes, or starting to eat before taking certain medication, there are situations
in which this ordering may be too strict. When preparing a meal, for instance, we may have
a record of the usual order in which the ingredients are prepared. For example, the user
usually cuts the tomatoes, then washes the salad leaves, and finally peels and cooks potatoes,
deviations from this particular order would not necessarily be seen as abnormal. Especially
in the cooking domain, where a lot of activities can be carried out by multiple people in
parallel to prepare a meal, we would want to allow more flexibility. In order to achieve this,
we define the notion of Coherence, by which we mean that an activity is carried out without
interruption and in a timely fashion, but which does not account for the particular order
in which subactivities are carried out. While this means that there are sometimes extra
conditions needed to make sure that e.g., the potatoes are peeled before they are cooked, our
notion allows this increased flexibility compared to the much stricter notions of normal /
abnormal behaviour.

The paper is organized as follows: in section 2 we introduce the Behaviour Identification
Hierarchy 2, which will form the basis for our logic. We also introduce the example of
making a pizza for dinner, which we will use throughout the paper as a motivational example
as well as demonstrating how the features of our logic work. In section 3, the temporal logic
TPTLgy(2A) is defined and we discuss syntax and semantics as well as conditions on the
semantic structures that correspond to properties we wish to hold in the logic. We will then
introduce the notion of Coherence in section 4, and demonstrate that this is a notion that is
satisfiable in our logic TPT Ly (21).

2 A Basic Behaviour Identification Hierarchy

In this section we will introduce the Behaviour Identification Hierarchy (BIH) that forms the
basis of our temporal logic. The BIH is intended to represent the user’s recorded behaviour,
desired or actual, that the agent will use for rendering support to the user. Before defining
the BIH in detail, we will motivate our ideas by an example behaviour description. For
this, we will follow the fictitious life of Pedro, who uses a supportive agent for assistance for
certain daily tasks.

» Example 1. Pedro wants to have pizza for dinner and needs assistance for that. He
describes his usual way of making a pizza as follows:

He first prepares the dough and all ingredients he wants on the pizza. These include
tomato sauce, cheese, and sometimes mushrooms and olives.

For the preparation, he rolls out the dough, grates the cheese, washes and cuts the
mushrooms, and drains and cuts the olives.

He then spreads the tomato sauce on the rolled out dough, then decorates with mushrooms
and olives, and finally puts the grated cheese on top.

Finally, he puts the pizza in the oven for about 20 minutes.

TIME 2018
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Using this description, we obtain a basic abstraction structure for the activity of “making

pizza”:
make_pizza
prepare_ingredients decorate_pizza bake_pizza
Figure 1

That is, we can refine the single activity of “making pizza” by separating it into three
distinct subactivities, namely “preparing ingredients”, “decorating the pizza” and “baking the
pizza”. Each of those can further be refined in turn (with the exception of baking, perhaps),
with e.g. washing and cutting mushrooms part of preparing ingredients.

There is an implicit temporal structure given in the example: Pedro prepares the
ingredients before he decorates the pizza with them, and he does so before baking the pizza.
In the picture above one could read this as an ordering on the branches from left to right.

prepare_ingredients

e

prepare_mushrooms grate_cheese prepare_olives

RN RN

wash_mushrooms cut_mushrooms drain_olives cut_olives

Figure 2

This implicit left-to-right temporal order does not always apply; in Figure 2 one could
easily permute the ordering of the three children of prepare_ingredients on a temporal
axis without changing the description of the activity: if all three child activities are done,
the ingredients have been prepared. We even have some more flexibility: Pedro can do the
activities described in the leaves of the tree in any order provided he washes the mushrooms
before cutting them and drains the olives before cutting them. The ability to express temporal
ordering will thus be a requirement for our logic. As we will opt for a logic based on TPTL,
the Until operator will allow us to define the appropriate notion.

We will also need some attribute to record the length of activities; we already know that
baking takes Pedro about 20 minutes, but it is unlikely that washing and cutting mushrooms
is done instantaneously by Pedro. Even if Pedro does not care how long this is going to take
him, an estimate should be given.

With this in mind we will define the Behaviour Identification Hierarchy as follows:

» Definition 2 (Behaviour Identification Hierarchy). An activity name is a string a. Let A be a
(finite) collection of activity names and let T be a temporal domain. We define the Behaviour
Identification Hierarchy 2 as the quadruple (A, fr, gr, passive), where fr,gr : A — T
are functions mapping each activity name to its (average) duration and (average) extra
time, respectively. Let passive : A — {0,1} be an indicator function for passive activities,
i.e. passive(a) = 1 if the activity a is passive in the sense that it does not require active

involvement by the user.!

1 This can be a waiting “activity”, e.g. baking a pizza does not require the user to attend to the oven
during the whole time the activity takes place.
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Furthermore we define a binary relation PartOf on A, where a PartOf b iff activity a is a
part of activity b. PartOf is antisymmetric, irreflexive and such that for any activities a, b,
¢, if b PartOf a and b PartOf ¢, then a = c.

The intuition behind this definition is as follows: The PartOf relation provides the tree
structure: each activity has a unique parent activity in the tree, and cannot be a part of
itself. The condition on unique parents has the effect that PartOf is not transitive. The
main purpose is to ensure that we do not accidentally link two distinct subtrees:

Suppose we have an activity prepare_mushrooms in the tree as a sub-activity both for
make_pizza and make_pasta. While the activity of preparing mushrooms would certainly
look identical for an observer, we cannot use the same mushrooms for both pizza and pasta
at the same time. Thus, any instance of preparing mushrooms will either be a sub-activity
of an instance of making pizza, or a sub-activity of an instance of making pasta. We want
the tree to reflect this.

Taking the transitive closure of PartOf will then enable us to state that cut_mushrooms
as a sub-activity of prepare_mushrooms is also a sub-activity of make_pizza or make_pasta,
respectively.

The functions fr and gr define the duration an activity usually takes the user. Here,
fr provides the average time, while gy describes the time of a “grace period” a monitoring
system should take into account before noticing that an activity takes too long. The reason
for implementing this with a function, rather than a constant parameter, is that a user may
have different “grace periods” for activities: for instance, mushroom cutting might be an
easy activity that the user can do without hesitation, but switching the oven on and setting
it to the correct temperature might be quite difficult for the user.

The definition above provides a basic BIH in the sense that we are not (yet) encoding any
explicit temporal ordering. The links given by PartOf also do not distinguish between optional
or mandatory parts. Furthermore, while the examples of such a BIH are all represented in
the form of a tree structure, we did not in fact require a BIH to be a tree: the actions with
the highest abstraction level, i.e. those that are not a part of another action, are not required
to have a common root. Thus, a BIH can be seen as a forest of trees, each of which has as
root a unique activity on this highest abstraction level.

3 A Temporal Logic

We will define a temporal logic for our notion of Behaviour Identification Hierarchy. Within
this logic we can then express norms and norm compliance for the behaviours given in the
BIH (]22]).

» Definition 3. We define the Temporal Logic TPTLyy () derived from TPTL (see e.g. [1])
as follows: Let 2 = (A, fr, g7, passive) be a BIH. Let the temporal domain for TPTLyy (2A)
be T'=N.

TPTLy, (2A) has two sorts of variables: temporal variables, denoted with lower-case z, y,
z, x;, and action variables, denoted with upper-case X, Y, Z, X;.

Let Vi denote the set of temporal variables and V4 denote the set of action variables.
For each a € A there is a family of action constants v&,~v5,+5,... in TPTLyy(2A). There
is a 1-1 function F, mapping each such family {72 |n € N} of constant symbols to its
corresponding action a € A. F induces a partial order PartOf = on the constant symbols
by defining

2 PartOf 748, < n=m A bPartOf a AyS € F7H(b) Ay®, € F1(a).

17:5
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We will omit the subscript F in PartOf z whenever the function F is understood from
the context.

For each t € T, there is a temporal constant ¢; in TPTLg, (21).

TPTLy,(2A) contains predicate symbols Start, Stop, Doing, Wait, Started, Stopped
and function symbols Duration, Extratime for actions, and symbols + (addition), <
and =, (equality modulo d) for each d € T,d > 0 for temporal variables and constants.
We will use = as short-hand for =;.2

The temporal terms, denoted 7, 7;, are defined via

Tro=x47|e |z e

Action terms are given by YT = X|2.
We define the atomic formulae p of TPTLg;(2() by

p =:=Start(Y)|Stop(Y)|Doing(Y)|Wait(Y)|Duration(Y) = |
Extratime(Y) = 7| Started(Y, n) | Stopped(Y,7) | T PartOf £ To | m < 7o |

T =4 T2.
Formulae ¢ of TPTLyy(2A) are then defined by

¢u=ploVY|-o| OoloUp|z.0|VX ¢,

where p is an atomic formula.

We obtain the usual logical operators, i.e. ¢¢, ¢ and ¢ before ), as abbreviations for
TUP, =O—¢ and —(—pUY) (see e.g. [21]).

Finally, ¢ is an TPTLg, ()-sentence if any temporal variable z occurring in ¢ is bound
by an occurrence of the fix quantifier x.1, and any action variable X is bound by an
occurrence of the universal quantifier V.X .

The intuition behind TPTLgy () is the following: the activities of A should be viewed
as the basis for propositions of the form Start(v2), Stop(y%), Doing(y5), etc. In particular,
this allows us to treat the actions as durative: in the usual interpretation of LTL, actions
would be treated as being done instantaneously between states, i.e. if a is done in state
o, then it is completed in state o;41. The attached times 7; and 7,41 would be able to
record some notion of duration, but if other actions with shorter durations would be done
simultaneously with a, we would need to have a number of consecutive states registering that
a is being done. The fact that a then occurs in multiple states might be taken as multiple
instances of a being done, rather than just one action taking some longer time. Using Doing()
here does not only allow for this interpretation to be avoided, it also allows the notion of
“taking a break”, i.e. the language is able to express that an action is interrupted for some
time, and then continued.

The concrete language varies with different BIH 2. Furthermore, our choice of taking
countably many distinct instances for each activity is motivated by the idea that each instance
of an activity can only be done once: if we baked pizza on Monday, 5th February 2018, then

2 Note that both Started and Stopped are intended to work as predicates on pairs of the form (T, 7);
while it certainly is permissible to have distinct action instances ~,, associated with the same time c;,
conditions (C8) and (C9) in Definition 5 will ensure that each such instance will only be paired with
precisely one such time. Thus both of these predicates could also be seen as functions. We opt to view
them as predicates here to emphasize the rather static nature of record keeping for which they are
intended.
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we have an instance for the activity in any trace starting with or before this day, but we
would certainly never bake the exact same pizza again in the future. Even if we chose to use
the same recipe in the future to bake another pizza, we would still argue that it is not the
exact same pizza that was baked in February 2018. To allow us to make this distinction one
can see the index n of an activity constant ~; as some form of ID associated with a specific
instance of an action, e.g. “the first time we bake this pizza”, “the second time”, etc.

While this means that the number of distinct instances of activities is infinite3, the
number of distinct activities is still finite as A is finite. We will now define trace semantics
for TPTLgu(2A). The general idea is as follows: a model of a collection of TPTLyy(2A) -
sentences is a sequence of timed states. Each state consists of a number of actions holding,
namely those actions that are (actively) being carried out at the given time. The “timed”
nature of these states is accomplished by pairing each state o; with a time 7.

» Definition 4 (Trace semantics). A TPTLygy ()-structure 91 is a pair M = (p, E), where
7 is a (countably infinite) sequence of pairs p; = (o, 74), where

o; € P (JA x NJU Start(A x N) U Stop(A x N)
U Started(A x N x T') U Stopped(A x N x T'))

and 7; € T', such that

Start(A x N) = {(Start(a),?)|a € A,i € N},

Stop(A x N) = {(Stop(a),i)|a € A,i € N},

Started(A x N x T') = {(Started(a),,t) |a € A, € Nt € T},

Stopped(A x N x T') = {(Stopped(a),i,t) |a € A,i € N;t € T},

the sequence 7 = (7;) is monotone, i.e. 7 < j implies that 7; < 7;, and progressive, i.e.

for each ¢ € T' there is some j € N such that 7; > ¢,
Er : Vp — T is an interpretation function for the temporal variables of TPTLy;(2); we
extend Er to temporal constants by letting Er(cr) = ¢ € T for each temporal constant
¢t of TPT Ly (2A).
E4 : V4 — A s an interpretation function for the action variables of TPTLyy(2); we
extent £4 to action constants by letting £4(7%) = a for each action constant 2.
For readability, and since both the domains and ranges of &r and £4 are distinct, we can
define a common interpretation function £ = Er U 4.

Let 9 be a TPTLgy (A)-structure and ¢ € N. Then (I, i) = ¢ is defined as follows:
93"( i) = Doing(y2) iff {(a,n) € oy,
M, i) = Start(yd) iff (Start(a),n) € oy,
/i) I Stop(13) iff (Stop(a), n) € o1,
i) = Started(y2, m) iff (Started(a),n,t) € o; and E(w) = ¢,
i) |= Stopped(vS,m) iff (Stopped(a),n,t) € o; and E(7) =1,
i) = Duration(y?) = 7 iff fr(a) =t and E(7) =
i) = Extratime(y?) = 7 iff gr(a) =t and E(7) =
)
)
)
)

i) = Wait(y2) iff passive(a) = 1,

i) = % PartOf 7 42, iff a PartOf b and n = m
] ':7T1§7T2 1ff€(7r1)§5(7rg)

i) |Em =4 me iff E(m1) =4 E(ma).

EEEEEEEEEEE

3 In all practicality, this number will be finite as well, as human life is finite. Limiting the number of
instance for any activity right from the start, however, seems to be too strict a requirement here.

17:7
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M, i) = oUY iff there is k > i such that (M, k) =4 and for all i <1 < k, (M, 1) = ¢,
M, i) = x.¢ iff (M, 4) = ¢ for that M’ = (P, &) such that EL(y) = Er(y) for all y # =

(M, i) = VX iff (I, 4) = ¢(X) for any M = (p,E’) such that €4 agrees with &4 on all
variables except for X.
If the truth value of (I, i) = ¢ is independent of ¢, then we shall drop ¢ and simply write

m E 6.

We will now define a few criteria that one might want to hold on the traces. For this, we
let M be an TPTLg, (A)-structure.

» Definition 5. We will define the following criteria for TPTLyy(2() structures.
(C0), (Finiteness of states) For each ¢ € N, o; is finite.

(C1), (No Stop without Start) If (Stop(a),n) € o, then there exists k < i such that
(Start(a),n) € og.

(C2), (No Doing before Start) (Start(a),n) € o; implies Vk < i{a,n) ¢ o%.

(C3), (No Doing after Stop) (Stop(a),n) € o; implies Vk > i (a,n) ¢ oy.

(C4), (Logging Start) If (Start(a),n) € o;, then for all k > ¢, (Started(a),n, 7;) € 0.
(C5), (Logging Stop) If (Stop(a), n), then for all & > 4, (Stopped(a),n, ;) € o.

(C6), (Doing at Start) If (Start(a),n) € o;, then (a,n) € o;.

(C7), (Not Doing at Stop) If (Stop(a),n) € o;, then (a,n) ¢ o;.

(C8), (Unique Start) If (Start(a),n) € o; and (Start(a),n) € oy, then i = k.

(C9), (Unique Stop) If (Stop(a),n) € o; and (Stop(a),n) € oy, then i = k.

The conditions above are intended to correspond to properties we wish to hold in our
logic: for instance, as discussed above, the states of our logic will only be finite, hence we
have (CO) in the list of desired criteria.

The criteria (C1)-(C5) state some simple properties for Start() and Stop(): we actually
want that Start() cannot be preceded by an instance of doing an activity, since this would
contradict the intuition that one can only start an activity that is not already being executed.
Similarly, we do not want any instance of doing an activity to occur after a Stop() is placed
in the trace. We also want to ensure that any stop signal for an activity is preceded by
a start signal. Furthermore, (C4) and (C5) ensure that we are logging all occurrences of
Start() and Stop().

One could argue here that Start() could also be defined via properties of the language like
U, e.g. Start(y2) could be defined via ~Doing(~2)UDoing(y2). However, we want to allow
that an activity can be paused, e.g. Doing(v2) is not required to always hold on the interval
determined by Start(y2) and Stop(y5). Without Start(y%) as a primitive, we would need
past time operators to determine whether a Doing(v%) is actually the first one occurring, or
whether the action has just been paused for a long time, and thus —Doing(y2) UDoing(y5)
holds at a point 4 just because the most recent instance of Doing(y%) has occurred at a point
k<.

With the criteria (C6) and (C7) we want to ensure that any Start() signal is indeed
accompanied by actually doing an activity, while the Stop() does indeed mean that we are
no longer seeing the activity being done.
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The criteria (C8) and (C9) provide our interpretation of Start() and Stop(). We see
the start of an activity as the initial point when it is begun, and the stop as the point of
completion. Thus these signals are unique — we do not intend to use them in order to measure
any breaks in the execution of an activity.

While it is an immediate consequence that (C8) follows from the conditions (C2) and
(C6), this is not true for (C9); this condition does not follow from (C3) and (C7). The
crucial point here is that the list of conditions does not guarantee that Stop() has to occur
immediately after the last instance of doing an activity — therefore, having multiple Stop()
signals occurring in the trace does not contradict any of the criteria (C0) - (C8).

The following proposition states that our list of conditions is indeed satisfyable.

» Proposition 6. Given a BIH 2, there exists a TPTLyy(A)-structure M satisfying the
conditions (C0) - (C9).

Sketch. Let 2 = (A, fr, gr, passive) a BIH. We construct a structure as follows: Let 7 be
an arbitrary, monotone and progressive sequence of T

In a first step, add both (a,0) and (Start(a),0) to o¢ for any a € A. Let o be the set
containing the corresponding (Stop(a),0). Let all other o; be empty.

Now add, for any a € A, (Started(a),0,79) to all o; with ¢ > 0, and similarly add
(Stopped(a),0,71) to all o; with ¢ > 1.

Note that since A is finite, each of the o; are finite.

Tt is easy to verify that the criteria (C1)-(C9) are satisfied as well. E.g., the fact that
(Start(a), 0) is not preceded by any occurrence of (a,0) is trivially satisfied. And since (a, 0)
is an element of o but not of o1, we have (C2), (C3) and (C6) holding,. <

4 Coherence

In this section, we will define Coherence for an instance of an activity a. Informally, an

activity is coherently done if it is done without distraction and without unexpected delays.

In terms of Example 1, Pedro does not do any tasks not related to pizza making, and does
not take too long breaks in between different subactivities, as well as during them. The only
exception we may allow is the time when the pizza is baking in the oven: one could argue
that since this is a passive activity, Pedro could use that time to attend to other activities,
e.g. taking out the rubbish.

» Definition 7 (Coherence). We say that in a structure 9, Coherence holds for an action
instance v, at point 4, iff

(M, i) E VX PartOf £ 5 [Start(v,) before Start(X) A Stop(X) before Stop(14)]
AVX [-X PartOf v, — (—Start(X)V

VY PartOf 5, [Doing(Y) — (Wait(Y") A Stop(X) before Stop(Y))])]

A $ [Started(v,, T ) A Stopped(y,,,m2) A m2 < w1 + Duration(y, ) + Extratime(y, )]

The intuition behind this definition is as follows: we consider an activity as being done
coherently when any of its subactivities are performed only within the limits set by the
activity itself; furthermore, unrelated activities are only performed if there is some time in
which the user has to wait anyways; and finally, doing the activity does not take up more
time than it should.
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make_pizza

e

prepare_ingredients assemble_pizza bake_pizza

/ \

prepare_mushrooms prepare_peppers

PN N

wash_mushrooms cut_mushrooms wash_peppers cut_peppers

Figure 3

Notice that this definition means, Coherence holds only for activities that are eventually
completed: we cannot refer to Stopped(yZ, ) before we actually see a Stop(72) in the trace.
The eventuality in the final conjunct thus implies that Coherence can only hold if the activity
is eventually stopped. We would argue that this is indeed intended — the alternatives are
that an activity is either abandoned or is carried on forever. Furthermore, this last conjunct
implies that the collective duration of all subactivities of a executed in this instance does
not exceed the duration of a in this instance. Since we want Coherence to have a chance of
regularly being satisfied, we need the BIH 2l to fulfill the further condition that for all a € A,
> b partora JT(0) +97(b) < fr(a) + gr(a). This is a rational assumption, as one would not
expect that an activity can be regularly done in a shorter timespan than it takes to do all of
its parts if these are done consecutively.

As an example for Coherence, consider the tree shown in Figure 3.

With respect to the remark above regarding the condition on the durations for subactivities,
we also add the following average durations (in minutes):

action average duration
make_pizza 45

bake_pizza 20
assemble_pizza 5
prepare_mushrooms

prepare_peppers 8

Summing the times for the different parts of make_pizza, we see that doing everything
effectively, there is a buffer of 4 minutes for making pizza.

Consider the following untimed initial trace . For readability, we will omit the notation
v and just use a, with » = 0 in this case. E.g., make_pizza in the table below should be

read as e e-Pi#ER,
oo  Start(make_pizza) Start(wash_mushrooms)
o1 Stop(wash_mushrooms)
P Start(wash_peppers)
o3 Stop(wash_peppers)
o4 Start(cut_mushrooms)
o5 Stop(cut_mushrooms)
o6 Start(cut_peppers)
o7 Stop(cut_peppers)
o8 Start(assemble_pizza)
o9 Stop(assemble_pizza)
010 Start(bake_pizza)

011 Stop(make_pizza) Stop(bake_pizza)
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Furthermore, add the logging statement Started(make_pizza, 7o) to each o; with i > 0
and similarly add Stopped(make_pizza,Ti1) to each o; with ¢ > 12. Proceed similarly for
the logging events for each of the subactivities of make_pizza. We treat the 7; here as
placeholders for now, and replace them by the appropriate values once we have defined the
concrete values below.

This initial segment can be extended to a trace & arbitrarily to obtain a trace of states
that satisfies a coherent run of making a pizza. To obtain an TPTLy, ()-structure, we
furthermore need some sequence of time points 7. The following initial sequence will then
show that Coh(make_pizza) is satisfiable:

To :0,7'1 23,7'2 :3,7'3 :6,7'426,7'5 = 1177'6 = 11,7’7: 16,

T8 — 167’7'9 - 2].,’7'1() = 2177'11 =41

Interpreting each time point 7; as the minutes, then any extension of this initial sequence

of 7; to a time trace 7 will lead to an TPTLgy(2A)-structure witnessing the satisfiability.

Note that we can make this an acceptable TPTLgy (2()-structure by just adding to the o; the
corresponding logging entries. Furthermore, it is easy to see now, that this does not make
Coherence a theorem of acceptable TPTLg, (2)-structures: the validity of Coh(make_pizza)
depends in this example on the values we pick for 7;. Just picking different, larger values for
the 7, we can obtain an TPTLgy (2()-structure in which Coh(make_pizza) is false, simply
because the condition for starting time and stopping time of make_pizza does not hold.
Intuitively, it seems that there are only two ways in which Coherence for a complex

activity can fail: one would not expect to see the Stop(make_pizza) statement before e.g.

Start(bake_pizza) happens. Thus if the time sequence matches the condition of Coherence
for some activity a, one would expect that the only other way to make it still fail is if one
introduces an unrelated activity, e.g. if in the pizza making example we have Start(watch_TV)
in aggo-

The strategy used above can be used to demonstrate that for any BIH 2 satisfying the
extra condition on the time functions, there exist TPTLg;(2) - structures I satisfying
Coherence for each a € 2:

» Proposition 8. Let 2 be a BIH satisfying the condition that for all a € A,
> b partora JT(8) + g7 (b) < fr(a) + gr(a). Then there exists a TPTLyy(2A) - structure M
such that for any a € A and any instance ;) there is an index iq, such that

(o, Z.Cl,n> = COh(’YS) .

Sketch. Assume an enumeration aj, as, ..., a,, of the top-level actions of A, i.e. for each
of those a;, there is not b such that a; PartOf b. Starting with a;, we construct a trace
satisfying Coh(b) for any b € A as follows.

Start off with any o; the empty set. Let 79 = 0. Add to o the elements (Start(a;),0) and
(a1,0). Identify each bj PartOf a;, and enumerate them as well, add (Start(b,),0), (b;,0) to
oo as well. Continue until reaching a level in the tree for which there is no child, i.e. reach
¢1 PartOf - - - PartOf by PartOf a; such that there is no 0 with 9 PartOf ¢;. This exists, since
A is finite, and PartOf is well-founded.

Now add to o7 the element (Stop(cy),0), for any of the higher level activities ? that were

started add the elements (9,0), and all the appropriate logging elements (Started(d), 0, 0).

Let 71 = fr(cq1). At this point Coh(v5!) holds, as it does not have any subactivities and the
difference 7 — 79 has the correct value.
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Traversing the BIH tree, continue like this until all the subactivities are recorded as being
started and stopped in a finite initial segment of &, with the 7; having the appropriate values.
Having reached oy, in this way, add (Stopped(a;),0) to this o) and observe that Coh(~g*)
holds at this point.

Proceed like this for all the other a;. Having reached a finite point ! such that at oy, all
the activity instances with index 0 have Coherence satisfied, we can just copy this initial
segment, increase the indices of the instances by one and add 7; to each of the 7;, obtaining
(¢, 7) up to index 2[ satisfying coherence for the first two instances for each activity in 2.
Continuing in this way, we obtain an infinite trace p = (&, T) satisfying Coh(~%) for each
a € A and each n € N. <

While it is certainly conceivable that Coherence could be used in a recursive manner,
this is not given by the definition. For instance, considering Coh(make_pizza) in the
example above, it is only required that prepare_mushrooms and prepare_peppers are
executed within the activity of make_pizza, but not that coherence holds for both sub-
activities. Depending on the user’s need for support, one may add the requirement that
Coh(make_pizza) A Coh(prepare_mushrooms) A Coh(prepare_peppers) holds, as the user
feels incapable of mixing the latter two tasks. Thus Coherence need not propagate recursively
to sub-activities in the BIH.

However, the situation is different when considering two distinct, unrelated activities.
Suppose that the user needs to take out the trash before 6 pm as well as prepare the pizza
for dinner at 6 pm. Taking the trash out at some time during the pizza preparation would
violate Coherence for making pizza. However, we would argue that the role of our logic
is precisely to recognize such conflicts; an agent utilizing the logic would thus be able to
recognize such a conflict, and can act upon that, e.g. by suggesting to take the trash out
later, when the pizza is in the oven, or by merely reminding the user that some ingredients
are not prepared when the user has finished the activity of taking the trash out. How a
conflict like this is handled should be decided on a different level, e.g. through providing
priority levels for activities in the BIH or other means. That is, we do not intend our logic
TPTLgw,(2() to handle conflicts like these.

5 Conclusion/Discussion

In this paper, we have presented TPTLy;;(2) as a logic capable of formulating statements
about Activities of Daily Living. The language can act as a framework for reasoning about
and monitoring user-reported behaviour.

We see this paper as an important step towards building supportive systems that take a
focus on the needs and well-being of the people intended to use them. Our approach does not
only allow modelling different levels of activities, and by that allow for a more fine-grained
support, but also provides the ability to let the cared-for person have an impact on the way
they are supported: our logic allows that desired norms and behaviours are either formulated
as general statements applying to all activities alike, or being encoded into the logic by means
of the Behaviour Identification Hierarchy.

In particular our notion of Coherence together with the BIH allows a supportive agent to
be flexibly attending to the user’s needs: while an agent following our logic is able to register
when actions are done in a timely manner, it does allow for individual difficulties, e.g. Pedro
might struggle a lot more with remembering to take the pizza out of the oven before it is
burnt than cutting the mushrooms, and thus the “grace periods” given by the function g in
Pedro’s BIH can vary accordingly.
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The notion of Coherence, as defined in this paper, is closely related to the notion of
normal/abnormal behaviour as mentioned in e.g. [17]. However, the notion of “normal
behaviour”, and thus its counterpart ‘abnormal behaviour’ is rather strictly formulated in
the literature. While those descriptions of normal behaviour would imply the notion of
Coherence, our approach is much more flexible: subactivities can be carried out in any order,
so as long as the end result is succesfully achieved in due time, the monitored user can act in
any way they want without the need of the supportive agent to intervene.

While the basic logic TPTL is known to be decidable, it is currently unkown whether our
modifications of the base language change this fact. In particular since several generaliza-
tions of TPTL, allowing for dense or real time, are undecidable, the question whether our
modifications have similar effects on the decidability becomes important.

Furthermore, the definition of a BIH as used in this paper is far from being practical in
real-life situations: we currently do not allow any partiality: if putting mushrooms on the
pizza is at least sometimes desired by the user, our BIH model makes that a certainty. It
is clear that adding a notion of “sometimes” or “often” needs to be added to the current
framework in order to more closely model actual human behaviour. As part of future work
in this direction experiments are planned within the CoreSAEP research project. These will
involve the question whether a more complex version of our BIH trees will indeed be useful
to describe human habits.
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