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Abstract
Hybrid branching-time logics are a powerful extension of branching-time logics like CTL, CTL∗
or even the modal µ-calculus through the addition of binders, jumps and variable tests. Their
expressiveness is not restricted by bisimulation-invariance anymore. Hence, they do not retain
the tree model property, and the finite model property is equally lost. Their satisfiability prob-
lems are typically undecidable, their model checking problems (on finite models) are decidable
with complexities ranging from polynomial to non-elementary time. In this paper we study the
expressive power of such hybrid branching-time logics beyond some earlier results about their in-
variance under hybrid bisimulations. In particular, we aim to extend the hierarchy of non-hybrid
branching-time logics CTL, CTL+, CTL∗ and the modal µ-calculus to their hybrid extensions.
We show that most separation results can be transferred to the hybrid world, even though the
required techniques become a bit more involved. We also present some collapse results for re-
stricted classes of models that are especially worth investigating, namely linear, tree-shaped and
finite models.
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1 Introduction

Temporal logics like LTL [14], CTL [7] and CTL∗ [9] are important specification formalisms
for the behaviour of programs because they extend modal logic with the ability to reason
about properties of unbounded or infinite computations. Their satisfiability and model
checking problems are decidable, ranging from polynomial [7] to doubly exponential time [10].
This is somewhat remarkable given that typical temporal properties like “something happens
infinitely often along some path” are not definable in First-Order Logic (FO). The key to
decidability is bisimulation-invariance which is rooted in the modal nature of their logical
operators. This, however, also limits the expressive power accordingly, for instance by not
being able to distinguish a graph from its tree unfolding.

Hybrid logic [2] is the name known for a framework of extensions of modal logics with
limited features of FO, aiming at increasing the expressiveness of modal logics whilst hopefully
retaining most of its desirable computational properties [1]. Hybrid logics thus feature first-
order variables and limited ways of manipulating them in the context of a modal or temporal
logic whose evaluation in a Kripke structure can intuitively be understood as a search through

© Daniel Kernberger and Martin Lange;
licensed under Creative Commons License CC-BY

25th International Symposium on Temporal Representation and Reasoning (TIME 2018).
Editors: Natasha Alechina, Kjetil Nørvåg, and Wojciech Penczek; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/161589396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:daniel.kernberger@uni-kassel.de
mailto:martin.lange@uni-kassel.de
https://doi.org/10.4230/LIPIcs.TIME.2018.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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the graph. It then becomes possible to bind the current state of evaluation to a variable, to
test for re-occurrence of such a state and to continue the evaluation at one such previously
marked state. It is not hard to see that such features break bisimulation-invariance. Whilst
this can be seen as undesirable for pure program specification purposes, hybrid logics have
found some prominence in related fields like knowledge representation [3] etc.

The paper at hand presents some first results on a study of the expressive power of
hybrid logics that results from an extension of well-known branching-time temporal logics –
mostly CTL∗ and its fragments like CTL and CTL+– with the aforementioned first-order
features. It is part of a larger program to develop a model theory of hybrid branching-time
logics. Previous work has investigated their model checking problems [12] (shown to range
between polynomial space and non-elementary time/space) and introduced a small syntactical
hierarchy of hybridisations of CTL∗ and its fragments. Thus, there is not just one hybrid
CTL∗ but – depending on how one allows hybrid features to interact with state and path
formulas – three versions of hybrid CTL∗, distinguished also by computational complexity.

We briefly recall the construction of hybrid branching-time temporal logics in Sect. 2. In
Sect. 3 we develop Ehrenfeucht-Fraïssé games for hybrid CTL as a standard tool for bounding
the expressive power of a logic from above. These games can be seen as an extension of the
games defined in [11] for hybrid CTL interpreted solely on trees. Sect. 4 then shows that
some results known for branching-time logics can be lifted to their hybrid variants, at the
expense of more involved constructions, though. Sect. 5 then compares hybrid branching-time
logics to the extension of the modal µ-calculus with hybrid operators [13,15]. It gives yet
another argument for the distinction of the three versions of hybrid CTL∗ mentioned above:
it is known already that – unlike the case of the non-hybrid logics – two of them cannot be
translated into the hybrid µ-calculus. Here we show that the weakest of them can indeed.
The paper then concludes in Sect. 6 with an overview of what is known now about the
hierarchy of expressiveness amongst hybrid branching-time logics and a discussion on further
work in this area.

2 The Full Hybrid Branching-Time Logic

Syntax. Let Prop = {p, q, . . .} be a finite set of atomic propositions and Var = {x, y, . . .}
be a countable set of first-order variables. Formulas of the full hybrid branching time logic
HCTL∗pp are given by the grammar

ϕ := p | x | ¬ϕ | ϕ ∨ ϕ | Eψ | ↓x.ϕ | @x ϕ

ψ := ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ | ↓x.ψ | @x ψ,

where p ∈ Prop and x ∈ Var . The formulas derived by ϕ are called state formulas. Those
generated by ψ are called path formulas. They can only occur as genuine subformulas in
an HCTL∗pp formula. We additionaly require the syntactic sanity restriction that formulas
@x ψ, where ψ is a genuine path formula, can only occur if there is no path quantifier E or A
between @x ψ and the smallest ↓x.ψ′ in the syntax tree above @x ψ.

The hybrid operators ↓ x and @x are called binder and jump. The atomic formula x
is sometimes referred to as variable test. We are making use of the usual propositional
abbreviations for tt, ff, ∧, as well as the temporal ones Fψ := ttUψ, Gψ := ¬F¬ψ, Aψ :=
¬E¬ψ, ψ1Rψ2 := ¬(¬ψ1U¬ψ2) etc.

Semantics. Formulas of HCTL∗pp are interpreted with respect to Kripke structures. A
Kripke structure is a tuple K = 〈S,→, L〉 where S is a set of states, → ⊆ S×S is a transition
relation such that for every s ∈ S there is a t ∈ S with s→ t and L : S → 2AP is a labeling
function.
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A path π in K is an infinite sequence of pairs of states and the propositions that hold
at them: (s0, L(s0)), (s1, L(s1)), (s2, L(s2)), . . . ∈ (S × 2Prop)ω such that si → si+1 for every
i = 0, 1, . . .. For a path π we write πi to denote the i-th state of the path.

Hybrid branching-time formulas are interpreted over Kripke structures. State formulas
are interpreted with respect to a state s of a Kripke structure K = 〈S,→, L〉 and a variable
mapping ρ : Var → S in order to give meaning to free variables in the inductive definition of
the semantics as follows.

K, s, ρ |= p iff p ∈ L(s)
K, s, ρ |= ¬ϕ iff K, s, ρ 6|= ϕ

K, s, ρ |= ϕ1 ∨ ϕ2 iff K, s, ρ |= ϕ1 or K, s, ρ |= ϕ2

K, s, ρ |= Eψ iff there exists a path π with π0 = s and K,π, ρ |= ψ

K, s, ρ |= x iff ρ(x) = s

K, s, ρ |= ↓x.ϕ iff K, s, ρ[x 7→ s] |= ϕ

K, s, ρ |= @x ϕ iff K, ρ(x), ρ |= ϕ.

Path formulas are interpreted on a path. To give meaning to them properly we need a
function σ : Var → N that stores the position of a bound variable on the current path under
evaluation which helps to give meaning to the jump operator.1 Thus, path formulas here
are interpreted over a path π in K, a moment k on the path, a variable mapping ρ and a
function σ storing the position on the path to which a variable is bound:

K,π, k, ρ, σ |= ϕ iff K,πk, ρ |= ϕ

K, π, k, ρ, σ |= ψ1 ∨ ψ2 iff K,π, k, ρ, σ |= ψ1 or K,π, k, ρ, σ |= ψ2

K,π, k, ρ, σ |= Xψ iff K,π, k + 1, ρ, σ |= ψ

K, π, k, ρ, σ |= ψ1Uψ2 iff there exists j ∈ N with j ≥ k such that K,π, j, ρ, σ |= ψ2

and for all k ≤ i < j: K,π, i, ρ, σ |= ψ1

K,π, k, ρ, σ |= ↓x.ψ iff K,π, k, ρ[x→ πk], σ[x→ k] |= ψ

K, π, k, ρ, σ |= @x ψ iff K,π, σ(x), ρ, σ |= ψ.

Fragments. The index ·pp in the logic’s name stands for path−path and indicates that
binders as well as jumps can range over path formulas (and therefore also state formulas).
We obtain (syntactically) weaker fragments imposing stronger restrictions here.

First, if we restrict path formulas to

ψ := ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ | ↓x.ψ,

i.e. disallow jumps on path formulas or, equivalently, require them to operate on genuine
state formulas only, then we get the path−state fragment HCTL∗ps. If we also disallow ↓x.ψ
on path formulas we obtain the state−state fragment HCTL∗ss in which hybrid-operators can
only occur as state-formulas.

1 The syntactic restriction of HCTL∗
pp formulas about the non-occurrence of path quantifiers between

binders and corresponding jumps ensures that variables which are referenced while evaluating a path
formula are actually bound on the same path. This makes the semantics be well-defined.

TIME 2018
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We can also consider hybrid variants of weaker branching-time temporal logics as they
are known in the literature: if we restrict the temporal operators further to not allow nesting
of path formulas with the exception of fairness constraints, i.e. path formulas are generated
by the grammar

ψ := ϕ | ¬ψ | ψ ∨ ψ | Xϕ | ϕUϕ | GFϕ

we obtain the logic HFCTL+. Restricting the grammar even further to

ψ := ϕ | ¬ψ | ψ ∨ ψ | Xϕ | ϕUϕ

we get HCTL+. And finally, also disallowing boolean combinations of path formulas,

ψ := Xϕ | ϕUϕ

we get HCTL.
Lastly, we also need linear temporal logic for some technical details. We obtain hybrid

LTL by restricting the grammar of HCTL∗pp to

ϕ := Eψ
ψ := p | x | ¬ψ | ψ ∨ ψ | Xψ | ψUψ | ↓x.ψ | @x ψ.

Thus, hybrid LTL formulas basically consist only of a single path formula. Furthermore,
hybrid LTL formulas are only interpreted over linear Kripke structures, i.e. Kripke structures
K = 〈S,→, L〉 with S = N and s→ t if and only if t = s+ 1.

The usual non-hybrid temporal logics CTL, CTL+, FCTL+, CTL∗ and LTL are obtained
by completely restricting the use of hybrid operators in their respective hybrid-variants. Note
that the possibility to nest path formulas arbitrarily is vital for the distinction between the
three fragments of path−path etc. formulas. Hence, for hybrid variants of branching-time
logics “smaller” than CTL∗ we do not make these distinctions anymore.

3 Ehrenfeucht-Fraïssé Game for HCTL

We start by defining Ehrenfeucht-Fraïssé (EF) games in order to capture the expressive
power of HCTL. Such games often prove to be useful when comparing the expressive power
of two logics because they condense all possibilities of how to distinguish two structures via
a logical formula into a single framework of finding a winning strategy for one player. In
this paper we will only use such games for HCTL. However, the general framework of these
games can also be extended to similar games for the other hybrid logics above HCTL and
may prove to be useful for future research into this topic.

Hybrid logics extend branching-time logics with certain first-order aspects. Thus, it is
not surprising that these expressiveness games combine features from branching-time logics
with aspects of EF games which are known from FO [6].

I Definition 1. Let K0 = 〈S0,→0, L0〉 and K1 = 〈S1,→1, L1〉 be two Kripke structures.
The game GmHCTL(K0, s0,K1, s1) is played between two players – Spoiler and Duplicator on
K0 and K1.

The game is played for m rounds. At the beginning we only have one pebble in each
structure placed at s0 resp. s1. In each round a new pair of pebbles gets placed on K0 and
K1 according to the following rules. Spoiler first chooses one of the structures Ki, i ∈ {0, 1},
and a previously placed pebble pi in this structure and then chooses one of the following
moves:
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Choose a successor of pi and place a new pebble on this successor. Duplicator then
responds by choosing a pebble in K1−i and also places a new pebble on one of its
successors.
Spoiler chooses a path πi starting at pi and a position l on this path. Then Duplicator
chooses a path π1−i on K1−i starting at some previously placed pebble and some position
l′ on this path. Now Spoiler has two options. He can place a new pebble on πli, forcing
Duplicator to place a new pebble on πl′1−i. Or he can choose some k′ < l′ and place a
new pebble at πk′1−i on K1−i. Duplicator then has the possibility to choose some k < l

and place a new pebble at πki on Ki.
It is Duplicator’s task to maintain the following conditions after each round:

For all pairs of pebbles placed in some round it holds that the states marked by those
pebbles agree on all p ∈ Prop.
For all pairs of pebbles (pi, p′i) and (pj , p′j) it holds that pi = pj iff p′i = p′j

Spoiler wins if Duplicator cannot maintain these conditions after some round. Duplicator
wins if Spoiler has not won after m rounds.

The following theorem can be proven by a standard induction on the number of rounds
in this game; it is carried out in the appendix. Observe that the two types of moves cover
the until- and next-operators. Hybrid operators are covered by placing pebbles and starting
from some pebble in each round.

I Theorem 2. If Duplicator wins GmHCTL(K0, s0,K1, s1) then it holds for all formulas ϕ ∈
HCTL with temporal nesting depth at most m that K0, s0 |= ϕ if and only if K1, s1 |= ϕ.

These games are essentially a combination of Ehrenfeucht-Fraissé games for first-order logic
and expressiveness games for branching-time logics. The moves closely resemble the temporal
operators in branching-time logic. However, in each step we also remember the new state
similar to Ehrenfeucht-Fraissé games. As a consequence winning strategies also combine
elements of both types of games.

4 The Expressive Power of Hybrid Branching-Time Logics

We begin by studying the connection between HCTL and HCTL+ and will then continue to
work our way up to the logics above HCTL+.

4.1 HCTL+ and HCTL
We first show that HCTL+ ≡ HCTL. Thus, as in the non-hybrid case adding boolean
connectives to the path formulas does not increase the expressive power. The proof is very
similar to the translation in the non-hybrid case [8] and has already been extended to HCTL+

over tree-structures [11]. However, we will build upon the translation in Theorem 5. So we
briefly review the key elements for the translation in the hybrid case here.

I Theorem 3. For each HCTL+ formula ϕ there is an HCTL formula ϕ′ such that for all
Kripke structures K = 〈S,→, L〉, states s ∈ S and variable assignments σ : Var → S it holds
that K, s, σ |= ϕ if and only if K, s, σ |= ϕ′.

Proof sketch. Inspecting the grammar for HCTL+, we see that the hybrid operators only
occur as state formulas. Thus, path formulas are essentially non-hybrid in the sense that
they are evaluated with respect to a fixed variable interpretation. Fixed variables however
can simply be regarded as atomic propositions that happen to hold at exactly one state.

TIME 2018
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For this reason, we can simply utilise the techniques that are used in the non-hybrid case
and follow [8]: we first transform path formulas into a normal form such that every path
formula is a conjunction of Next-, Until- and Generally-operators and then guess the order in
which all Until-formulas will be satisfied making sure that the Next- and Generally-formulas
are also satisfied. J

A detailed proof of Theorem 3 can be found in the appendix.

4.2 HFCTL+ and HCTL+

In the non-hybrid case we know that CTL+ is less expressive than FCTL+. For example it
is shown in [9] that the formula EGFp, which states that there is a path along which p holds
infinitely often, cannot be expressed by CTL+.

A similar result was already shown for HCTL+ interpreted over computation trees in [11].
This of course also gives us a separation result over general Kripke structures.

I Theorem 4. There is no formula in HCTL+ that is equivalent to the HFCTL+ formula
EGFp.

However, if we only consider finite structures the picture is different. Next we will see
that Theorem 4 no longer holds on finite structures. This is because on finite structures we
can characterise an infinite occurrence of p on a finite structure by a state that satisfies p
and that lies on some (finite) loop in the structure. Thus, on finite structures we get that
the HFCTL+ formula EGFp is equivalent to the HCTL formula EF ↓x.EF(p ∧ EXEFx).

Extending the well-known translation from HCTL+ to HCTL a bit we get an even
stronger result:

I Theorem 5. On finite structures, every HFCTL+ formula is logically equivalent to an
HCTL formula.

Proof. We start with the same equivalences used in the proof for Theorem 3 and transform
each path formula into one of the form

E(XΛ1 ∧
∧
i∈I1

ϕiUψi ∧ GΛ2 ∧ (
∧
i∈I2

GFχi)). (1)

To transform this formula into an HCTL formula we first guess the order in which all
Until-formulas are satisfied – ignoring the fairness constraints for the initial part – and
then we guess a point from which there are cyclic paths along which all χi formulas will be
satisfied. Thus, we get the following translation:

Λ2 ∧
∨
J⊆I1

(
∧
j 6∈J

ψj) ∧ (
∧
j 6∈J

ϕj) ∧ EX
(

Λ1 ∧
∨

π∈Perm(J)

E((Λ2 ∧
∧
j∈J

ϕπ(j))U
(
ψπ(1)∧

...

E((Λ2 ∧ ϕπ(|J|))U(ψπ(|J|) ∧ ξ)
)
. . .
)

where Perm(J) denotes the set of all permutations over J and

ξ := E(Λ2U(Λ2 ∧ ↓x.
∧
i∈I2

E(Λ2U(Λ2 ∧ χi ∧ E(Λ2Ux))))).
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Suppose some state satisfies (1) in some finite structure. Then there is a path π satisfying
all conjuncts of (1). We only argue correctness of the translation for the infinite part of the
path after all Until-formulas were satisfied and also ignore that Λ2 is satisfied on every state
of the path. Correctness for the initial part follows along the same lines as the translation
from HCTL+ to HCTL in Theorem 3.

Since the structure is finite there has to be some point x occurring infinitely often along
π. Furthermore, since every χi is satisfied infinitely often there has to be a part of the path
such that χi is satisfied on some state between two occurrences of x. Thus, for every i there
is a cycle starting at x in the structure along which χi is satisfied. Hence, ξ is satisfied. The
converse direction follows by a piecewise reconstruction of the whole path with infinitely
many occurrences of each cycle satisfying some χi. J

4.3 HCTL∗
SS and HFCTL+

In the following we will prove that HCTL∗ss is still more expressive than HFCTL+. We will
first prove that there are two classes of finite structures distinguishable by HCTL∗ss such that
no HCTL formula can distinguish these classes. Together with Theorem 5 this will also prove
that HCTL∗ss is more expressive than HFCTL+.

To see this, we define the structure A as depicted in Figure 1a. Note that A, despite
being infinite as a whole, is essentially finite from each state because every path simply
traverses the structure downwards ending either in t1 or in t′1. In the following we refer to
the index of a state’s name as the level of the structure and the letter of its name as the
type of the state. Also note that each path that goes from level i to level i− 1 goes either
through si−1 or s′i−1.

I Theorem 6. Let n ∈ N and m = 2n+1 + n. Duplicator wins GnHCTL(A, sm,A, s′m).

Proof. We describe a winning strategy for Duplicator. Suppose that i rounds have been
played already. To win, Duplicator maintains the following invariant throughout the game:

The pebbles placed by Duplicator are always on the same level and of the same type as
Spoiler’s pebble in the same round.
There is some k ≥ 2n−i such that each pair of pebbles placed by Spoiler and Duplicator
in the same round on level k or smaller mark exactly the same state. Furthermore, pairs
of pebbles placed above level k are on opposing sides in the structure.
The first pair of pebbles placed above level k is at least on level k + 2n−i + (n− i).

It is obvious that if Duplicator can maintain this invariant for n rounds then she wins.
Furthermore, at the beginning of the game the invariant holds with k = 2n.

Suppose now that i rounds have been played in the game and Spoiler decides to move
from some pebble P . Duplicator will always answer with the pebble P ′ on the same level.
Spoiler has two types of moves available. First, he can simply choose a successor of P . If
P, P ′ mark the same state then Duplicator simply copies Spoiler’s pick, if not then P ′ is on
the opposing side of the structure compared to P and Duplicator chooses the same type of
successor on the other side of the structure. In both cases the invariant is maintained.

Suppose Spoiler chooses some path through the structure and some point on this path.
It is obvious that to maintain the first part of the invariant Duplicator has to choose his
endpoint of the path on the same level and at the same type of node as Spoiler. There are
two possibilities for Spoiler’s path:

First, P is at or below level k. In this case P, P ′ mark the same state. Thus, Duplicator
simply copies Spoiler’s path as well as his choice for the next pebble.

TIME 2018
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s3 pr3

s2 pr2

s1 p

r1 p

t1

s′3p r′3

s′2p r′2

s′1p

t′1

(a) Structure A.

P P ′

k′

k

k + 2n−i−1

(b) Sketch of Duplicator’s path choice. The black
path is Spoiler’s choice. Duplicator’s path is depicted
in red. The blue part means that both paths have
joined.

Figure 1 Structure A and a sketch of Duplicator’s path choice on A.

Second, P is above level k. So P and P ′ are on opposing sides of the structure. Let k′
be the level of the lowest pebbles above k. Then k′ ≥ k + 2n−i + (n− i). Suppose for the
moment that Spoiler has chosen his endpoint of the path anywhere else than at the state
rk+2n−i−1+1. Then Duplicator chooses his path as follows:

Up to level k + 2n−i−1 + 1 he mimics Spoiler’s path but on the opposing side of the
structure. For example if Spoiler’s path goes through sj then Duplicator’s will go through
s′j etc.
At sk+2n−i−1+1 or s′k+2n−i−1+1 Duplicator’s path changes sides to meet up with Spoiler’s
path at sk+2n−i−1 or s′k+2n−i−1 – even if Spoiler’s path goes through rk+2n−i−1+1 or
r′k+2n−i−1+1.
From sk+2n−i−1 or s′k+2n−i−1 he simply copies Spoiler’s path.

A rough illustration of Duplicator’s path is depicted in Figure 1b. Spoiler now has only two
options (the case that Spoiler chooses to play the endpoint of his path gets subsumed here
since Duplicator will always play the same node on the same level). Either he places a new
pebble above level k + 2n−i−1 on Duplicator’s path. Then Duplicator can answer with the
same type of node on the same level in Spoiler’s path on the opposing side of the structure.
Or Spoiler places a pebble at or below level k + 2n−i−1 on Duplicator’s path. In this case
Duplicator simply answers with the same state since both paths are the same there.

In both cases one can check that the invariant is maintained, possibly with a bigger k
if Spoiler’s choice is somewhere between level k and k + 2n−i−1. In any case, the gap to k′
is large enough to also maintain the third part of the invariant. This strategy only works
if Spoiler cannot explicitly choose to go to rk+2n−i−1+1 or r′k+2n−i−1+1, i.e. if he does not
choose either of those points as the endpoints of his path, since Duplicator’s path changes
the sides of the structure on this level and thus cannot go through the opposing r-node.

So, suppose Spoiler has chosen a path through rk+2n−i−1+1 or r′k+2n−i−1+1 and has chosen
this point as his endpoint of the path. In this case Duplicator chooses almost the same path
as before, however he switches sides to Spoiler’s path one level earlier such that if Spoiler
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decides to go to rk+2n−i−1+1 resp. r′k+2n−i−1+1 Duplicator can move to the same state. As
one can check the invariant here is also maintained with a new k between the previous k and
k + 2n−i−1 + 1 – at most one bigger than before.

Thus, by maintaining this invariant Duplicator wins GnHCTL(A, s2n+1+n,A, s′2n+1+n). J

I Theorem 7. There is no HFCTL+ formula that is logically equivalent to the CTL∗ formula
AF(p ∧ Xp).

Proof. Suppose there was such a formula. By Theorem 5 this formula would be equivalent
to an HCTL formula on finite structures. Let n be the operator depth of this HCTL formula.
Then by Theorem 2 and 6 this formula cannot distinguish between the states s2n+1+n and
s′2n+1+n in A. However, A, sj |= AF(p ∧ Xp) while A, s′j 6|= AF(p ∧ Xp) for all j. J

Thus, we get that CTL∗ and HFCTL+ are incomparable and since HCTL∗ss is an extension
of CTL∗ and HFCTL+:

I Corollary 8. Already on finite structures HCTL∗ss is more expressive than HFCTL+.

This result transfers to general Kripke structures. However, it is quite interesting to see
that this proof does not simply carry over to the class of computation trees.

There, we can exploit that the path to some state s is unique. Using this, we can for
example get that on tree structures the formula AF(p∧Xp) is equivalent to the HCTL formula
↓ s.AF(p ∧ ↓x.@s EF(EXx ∧ p)). The latter formula states that on all paths we can finally
find some state y satisfying p such that if we jump back to the root of the tree we can find a
state that has a successor y and also satisfies p. Since predecessors on trees are unique this
equivalence holds on all trees.

Since the latter formula is already in HCTL the proof showing that CTL∗ is not subsumed
by HCTL does not carry over.

5 Hybrid Temporal Logics and the Hybrid µ-Calculus

The hybrid µ-calculus Hµ is an extension of the modal µ-calculus Lµ with hybrid operators.
However, despite increasing the expressive power of the modal µ-calculus substantially it is
known that Hµ – contrary to the non-hybrid case – does not subsume all hybrid extensions
of CTL∗. In [13] it was shown that formulas of Hµ using at most k first-order variables are
invariant under hybrid k-bisimulations – a bisimulation notion that links (k + 1)-tuples of
states such that the i-th states of these tuples have matching atomic propositions, matching
(hybrid) accessibility relations which includes jumping to the other k states and rebinding
them and also match in regard to the other k states of the tuple. It is not too hard, though,
to see that HCTL∗ps contains formulas which are not invariant under hybrid k-bisimulations
for any k. An example is EG(↓x.XG¬x) stating that there is a loop-less infinite path. As an
immediate consequence one obtains that HCTL∗ps cannot be embedded into Hµ.

We continue the study of the connection between hybrid extensions of CTL∗ and Hµ in
this section. First, we briefly recall Hµ. Secondly, we show that at least HCTL∗ss is subsumed
by Hµ. As a byproduct of this translation we get that HCTL∗ps is strictly more expressive
than HCTL∗ss and that the latter is also invariant under hybrid k-bisimulations. And finally,
we lift the standard proof that the µ-calculus is more expressive than CTL∗ to the hybrid
world, showing that HCTL∗pp and Hµ are incomparable in terms of their expressive power.
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5.1 The Hybrid µ-Calculus
Let Var2 = {X,Y, . . .} be a countable set of second-order variables that is disjoint from Var
and Prop. Formulas of the fully hybrid µ-calculus Hµ are given by the grammar

ϕ := p | x | X | ¬ϕ | ϕ ∨ ϕ | �ϕ | @x ϕ | ↓x.ϕ | µX.ϕ(X)

where p ∈ Prop, x ∈ Var and X ∈ Var2. The modal µ-calculus Lµ is obtained by disallowing
the occurrence of first-order variables. We make use of tt, ff, ∧, ♦, νX.ϕ as abbreviations
in the usual way, and we assume the following standard sanity condition on formulas: every
X ∈ Var2 is bound at most once by a fixpoint quantifier µ or ν and can only occur under an
even number of negations within its binding formula.

Formulas of Hµ are interpreted over Kripke structures K = 〈S,→, L〉. Formally the
semantics for Hµ with respect to a Kripke structure K = 〈S,→, L〉 over Prop and an
assignment ρ : Var2 → 2S×(Var→S) is the following:

JpKKρ = {(s, σ) | p ∈ L(s)},
JXKKρ = ρ(X),
JxKKρ = {(s, σ) | s = σ(x)},

J¬ϕKKρ = {(s, σ) | (s, σ) 6∈ JϕKKρ },
Jϕ1 ∨ ϕ2KKρ = Jϕ1KKρ ∪ Jϕ2KKρ ,

J�ϕKKρ = {(s, σ) | ∀t ∈ S: if s→ t, then (t, σ) ∈ JϕKKρ },
J@x ϕKKρ = {(s, σ) | (σ(x), σ) ∈ JϕKKρ },
J↓x.ϕKKρ = {(s, σ) | (s, σ[x 7→ s]) ∈ JϕKKρ },

JµX.ϕ(X)KKρ =
⋂
{T ⊆ S × (Var → S) | JϕKKρ[X→T ] ⊆ T}

with p ∈ Prop, x ∈ Var and X ∈ Var2. We write K, s, σ, ρ |= ϕ if (s, σ) ∈ JϕKKρ . If there are
no free second-order variables we also may drop ρ.

5.2 HCTL∗
SS and Hµ

Our aim is to translate HCTL∗ss into Hµ. However, already for CTL∗ the translation into
the µ-calculus is nontrivial. A key part in the non-hybrid translation is that path formulas
can be regarded as simple LTL formulas with embedded CTL∗ state-formulas. Ignoring the
state formulas for a moment, we can translate LTL-formulas into suitable Büchi automata
on ω-words which accept a path if and only if it satisfies this formula. These automata can
then be translated into a µ-calculus formula that basically simulates the automaton along
some path. The embedded state formulas can be handled by a decomposition method as
usual in CTL∗.

Something similar can be done in the hybrid case. Inspecting the grammar of HCTL∗ss
again, we see that path formulas are basically also only simple LTL formulas with embedded
state formulas. In particular path formulas are evaluated with respect to a fixed variable
interpretation. The only difference is that these path formulas are not simply over the atomic
propositions as vocabulary but they also encompass some variables that can be used. For
example the path formula Fx in ↓x.EFx features the variable x and thus a Büchi automaton
that checks that somewhere along the path x holds, also needs to take care of these variables.

The idea now is the same as in the non-hybrid case: for path formulas we will construct
a Büchi-automaton over an extended vocabulary that treats variables simply like atomic
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propositions. This automaton, of-course, accepts more paths than in hybrid-logic intended.
For example the restriction that a variable only holds at exactly one state will not be checked
by this automaton.

However, since these automata are only an intermediate state in the translation this will
not be a problem because we will then translate these automata into suitable Hµ formulas
which will – by the semantics of Hµ– check that variables only occur at a single state.

To get started we need some definitions and notation:

I Definition 9. A path formula ψ is called pure if there are no occurrences of path quantifiers
E,A or hybrid operators ↓,@ in ψ.

I Definition 10. Let K = 〈S,→, L〉 be a Kripke structure over Prop and σ : Var → S a
variable assignment. We define Kσ = 〈S,→, L′〉 with L′(s) := L(s) ∪ {x ∈ Var | σ(x) = s}.

Thus, Kσ extends K with new propositions for each variable. There is a 1-1 connection
between paths from K and paths from Kσ. Thus, let pr : Paths(K) → Paths(Kσ) be
the unique function that maps a path from K to its copy in Kσ. Thus, for every path
π ∈ (S × 2Prop)ω we get pr(π) ∈ (S × 2Prop∪Var)ω.

I Definition 11. Let K = 〈S,→, L〉 be a Kripke structure and σ : Var → S a variable
assignment. A path π ∈ (S × 2Prop∪Var)ω is called consistent with σ if for all positions
πi = (s,M) on π it holds that s = σ(x) if and only if x ∈M for all x ∈ Var .

The following lemma about consistent paths is easy to see:

I Lemma 12. Let K = 〈S,→, L〉 be a Kripke structure over Prop, σ : Var → S a variable
assignment and π be a path in K. Then pr(π) is consistent with σ.

The next lemma yields a connection between HCTL∗ss path formulas and LTL formulas.
We use LTL as an index for the satisfaction relation to indicate that the (pure) path formula
is interpreted as an LTL formula, i.e. π |=LTL ψ means that the path π satisfies ψ interpreted
as an LTL formula.

I Lemma 13. Let K = 〈S,→, L〉 be a Kripke structure, π a path in K and σ : Var → S a
variable assignment. For every pure HCTL∗ss path formula ψ over atomic propositions Prop
and variables {x1, . . . , xk} it holds that K,π, σ |= ψ if and only if Kσ, pr(π) |=LTL ψ.

Proof. We will prove this by induction on ψ. Suppose first that ψ = ϕ for some state-formula
ϕ and suppose K,π, σ |= ψ. Since ψ is pure, there are no path quantifiers E,A, ↓x.ϕ′ nor
@x ϕ

′ in ψ. Thus, ϕ is a boolean combination of propositions and variables and because
pr(π) is consistent with σ and all states in Kσ agree with their respective states in K on
atomic propositions we also get that Kσ, pr(π) |=LTL ψ.

So, suppose ψ = Xψ′. Then K,π, 1, σ |= ψ. With the induction hypothesis we get that
pr(π), 1 |=LTL ψ

′ and also that pr(π) |=LTL ψ.
For the last case, suppose that ψ = ψ1Uψ2 and K,π, σ |= ψ. Then there is some j

such that K,π, j, σ |= ψ2 and for all i ≤ j it holds that K,π, i, σ |= ψ1. By the induction
hypothesis we get that pr(π), j |=LTL ψ2 and pr(π), i |=LTL ψ1 for all i ≤ j. Thus, we also
get pr(π) |=LTL ψ. This finishes the proof. J

The following theorems extend well-known results for LTL, Büchi automata and the
µ-calculus to deal with the hybrid world.
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I Theorem 14. For each pure HCTL∗ss path formula ψ of size n over atomic propositions
Prop and variables {x1, . . . , xk} there is a Büchi automaton Aψ of size O(n · 2n) such that
1. a path π ∈ (S × 2Prop∪Var)ω is accepted by Aψ if and only if π |=LTL ψ and
2. for all paths π′ ∈ (S × 2Prop)ω, pr(π′) is accepted by Aψ, if and only if π′, σ |= ψ.

Proof. To construct Aψ we first observe that ψ is a pure LTL formula with possibly added
tests for variables. We treat variable test for the moment like usual atomic propositions.
Furthermore, we know that for each LTL formula ψ there is a Büchi automaton Aψ that
accepts a path π iff this path satisfies ψ [16]. This immediately yields the first part of the
theorem as well as the size estimation on the automaton. The second part follows from the
first one in combination with Lemma 13. J

Observe that the constructed Büchi automaton only checks the sequence of propositions
and thus, Aψ accepts more paths than intended, for example paths in which the “proposition”
x can occur on more than one state and thus cannot truly be an encoding of a hybrid variable.

To utilise these Büchi automata in the hybrid µ-calculus we also need to bridge the gap
between Lµ and Hµ in some sense. Similar to the LTL case we write K, s |=Lµ ϕ to indicate
that ϕ is interpreted as a purely modal µ-calculus formula.

I Lemma 15. For each Hµ-formula ϕ without any occurrence of ↓x.ψ or @x ψ in it, it holds
that K, s, σ |= ϕ if and only if Kσ, s |=Lµ ϕ.

Proof sketch. To prove this by induction on ϕ we need to strengthen the hypothesis in order
to deal with free second-order variables. Let ϕ(X1, . . . , Xm) be a formula with free second-
order variables X1, . . . , Xm and ρ : {X1, . . . , Xm} → 2S×(Var→S) be an interpretation for
them. We define ρ′ : {X1, . . . , Xm} → 2S to be ρ′(X) := {s | (s, σ) ∈ ρ(x)}. We now show by
induction on ϕ that K, s, σ, ρ |= ϕ(X1, . . . , Xm) if and only if Kσ, s, ρ

′ |=Lµ ϕ(X1, . . . , Xm).
Suppose ϕ = p. Then the statement holds because K and Kσ agree everywhere on atomic

propositions. The case ϕ = x is by construction of Kσ because x as an atomic proposition in
Kσ holds exactly at σ(x). The case ϕ = X follows by the construction of ρ′. The boolean
cases as well as box and diamond operators follow by simple semantic arguments.

For the last case, suppose that ϕ = µX.ψ(X). To show this case we can use the
characterisation of a least fixpoint as the union of its approximations. We can then show
that the statement holds for each approximation by a separate induction (and thus for the
union of all of them). J

I Theorem 16. For each Büchi automaton A over Prop ∪ {x1, . . . , xk} of size m there is
an Hµ formula ϕA of size at most O(m · 2m) such that K, s, σ |= ϕA if and only if there is a
path π in K starting at s such that A accepts pr(π).

Proof. It is known that for each Büchi automaton A there is an Lµ formula ϕA such that
Kσ, s |=Lµ ϕA if and only if there exists a path π′ starting at s such that A accepts π′,
c.f. [4, Chp. 10]. Since π′ is a path in Kσ, there is a path π in K such that pr(π) = π′. By
Lemma 15 and the fact that ϕA does not have any occurrences of ↓ x or @x (in fact, ϕA is a
pure modal µ-calculus formula extended by variable tests) we get that Kσ, s |=Lµ ϕA if and
only if K, s, σ |= ϕA. J

We will use these theorems to show the following:

I Theorem 17. For each formula ϕ ∈ HCTL∗ss there is a formula ϕ′ ∈ Hµ such that
K, s, σ |= ϕ if and only if K, s, σ |= ϕ′ for all Kripke structures K, states s in K and variable
assignments σ.
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Proof. We will first give a translation for HCTL∗ss formulas and then argue correctness of
the translation. The cases up to path formulas are straightforward:

τ(p) := p τ(ϕ ∨ χ) := τ(ϕ) ∨ τ(χ)
τ(x) := x τ(↓x.ϕ) := ↓x.τ(ϕ)

τ(¬ϕ) := ¬τ(ϕ) τ(@x ϕ) := @x τ(ϕ)

For the case of ϕ = Eψ, let {ϕ1, . . . , ϕm} be the maximal state-subformulas in ψ, i.e.
subformulas that start with E,A, ↓x.,@x. We first replace those by fresh atomic propositions
pϕi . The resulting formula is a pure HCTL∗ss path formula over the propositions Prop ∪
{pϕ1 , . . . , pϕm} and variables {x1, . . . , xk}. According to Theorem 14 we construct a Büchi-
automaton Aψ. Furthermore, according to Theorem 16 there is a Hµ formula ϕAψ that
simulates this Büchi-automaton and thus the formula ψ.

Finally, we translate the remaining maximal state subformulas {ϕ1, . . . , ϕm} recursively.
Let τ(ϕ1), . . . , τ(ϕm) be their respective translations. We obtain the final translated formula
by replacing the atomic propositions pϕi in ϕAψ by their respective translations. Thus:

τ(Eψ) := ϕAψ [τ(ϕ1)/pϕ1 , . . . , τ(ϕm)/pϕm ] .

It remains to be shown that this translation is correct. For this, let K = 〈S,→, L〉 be a
Kripke structure, s ∈ S and σ : Var → S a variable assignment. We prove that K, s, σ |= ϕ

if and only if K, s, σ |= τ(ϕ) by induction on ϕ.
The only interesting case is ϕ = Eψ. Suppose first, that ψ is pure and K, s, σ |= Eψ. Then

there is a path on K starting at s such that K,π, σ |= ψ. By the second part of Theorem 14
we get that K,π, σ |= ψ if and only if pr(π) is accepted by Aψ and by Theorem 16 we then
get that pr(π) is accepted by Aψ if and only if K, s, σ |= ϕAψ .

For the case that ψ is not pure, we additionally need the fact that K, s, σ |= ϕ [χ/p]⇔
K ′, s, σ |= ϕ where K ′ extends K with an atomic proposition p such that p ∈ L(s) ⇔
K, s, σ |= χ. This can be shown by a straightforward induction on ϕ, both for HCTL∗ss and
Hµ. J

To illustrate the translation we will give a short example:

I Example 18. Consider the formula χ := ↓ y.EG (Fy ∧ ↓x.EXFx). The formula states that
there is a path whose starting point is seen infinitely often along the path and at every point
of the path there is another path that loops back to the current point.

We first begin by extracting the maximal state-subformula ↓x.EXFx leaving us with
the formula ↓ y.EG (Fy ∧ p). We first construct a Büchi automaton A for the LTL-formula
G (Fy ∧ p) (ignoring that y is a variable test):

q0 q1

p, y p

p, y

p

This Büchi-automaton can be translated into the following µ-calculus formula which is
satisfied by a state s iff there is a path emerging from s that is accepted by A.

ϕ := [νY.(p ∧ y ∧ ♦Y ) ∨ (p ∧ y ∧ ♦µZ.(p ∧ ♦Z) ∨ (p ∧ ♦Y ))]∨
µZ.(p ∧ ♦Z) ∨ (p ∧ ♦νY.(p ∧ y ∧ ♦Y ) ∨ (p ∧ y ∧ ♦µZ.(p ∧ ♦Z) ∨ (p ∧ ♦Y ))
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Here the first line describes an accepting run starting at q0 and the second line a run starting
at q1. The automaton accepts a path π if p holds everywhere and y is seen infinitely often
along π. For the sake of presentation we will use that

ϕ ≡ νY.µZ.p ∧ ((y ∧ ♦Y ) ∨ ♦Z)

and continue to use this shorter formula. Doing the same recursively we get that τ(EXFx) =
♦µX.x ∨ ♦X. Putting them together we get τ(χ) := ↓ y.νY.µZ.(↓x.♦µX.x ∨ ♦X) ∧ ((y ∧
♦Y ) ∨ ♦Z).

Knowing that HCTL∗ss is a fragment of Hµ also helps us to understand the connection
between HCTL∗ss and HCTL∗ps given that the latter cannot be embedded into Hµ [13].

I Corollary 19. HCTL∗ps is strictly more expressive than HCTL∗ss.

In particular, no HCTL∗ss formula is equivalent to the HCTL∗ps formula EG ↓x.XG¬x.
Let HkCTL∗ss and Hkµ be the fragments of HCTL∗ss and Hµ that use at most k first-order

variables. We know from [13] that Hkµ is hybrid k-bisimulation-invariant. Thus, since the
translation from HCTL∗ss to Hµ basically leaves variables untouched we also get:

I Corollary 20. HkCTL∗ss is hybrid k-bisimulation-invariant.

5.3 HCTL∗
ps/HCTL∗

pp and Hµ are incomparable

Finally, we are also interested in the connection between HCTL∗ps resp. HCTL∗pp and Hµ. We
already know that one cannot be embedded into the other; in the remainder of this section
we will show that this is also true of the other way: there are formulas in Hµ which cannot be
expressed in HCTL∗pp and, hence, not on HCTL∗ps either. Hence, we will show that HCTL∗pp
(resp. HCTL∗ps) and Hµ are incomparable.

I Theorem 21. Let K be a linear structure and ϕ ∈ HCTL∗pp. Let ϕ′ be the formula that is
constructed by simply removing all path quantifiers in ϕ. Then K, s, σ |= ϕ if and only if
K, s, σ |= Eϕ′.

Proof. To prove this, we see that on linear structures there is no difference between E
and A path quantifiers since from every point in the structure there is exactly one path.
Consequently we can just drop the path quantifiers altogether. J

Thus, Theorem 21 essentially states that on linear structures HCTL∗pp (and HCTL∗ps) is as
expressive as hybrid LTL.

I Theorem 22. There is no HCTL∗pp formula that can express the Hµ property µX. p∨♦♦X.

Proof. Suppose for the sake of contradiction that such a formula ϕ exists. Then by Theorem
21 we get that there is a hybrid LTL formula that characterises reachability in an even
number of steps on word structures. However, hybrid LTL can be translated into first-order
logic on word structures which, in turn, cannot express this property, c.f. [5]. Thus, such a
formula cannot exist. J

I Corollary 23. HCTL∗ps/HCTL∗pp and Hµ are incomparable.
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HCTL≡HCTL+

HFCTL+

HCTL∗ss

Hµ HCTL∗ps

HCTL∗pp

<

<

< <

?

(a) general structures.

HCTL≡HCTL+

HFCTL+

HCTL∗ss

Hµ HCTL∗ps

HCTL∗pp

≡

<

< ?

?

(b) finite structures.

HCTL≡HCTL+

HFCTL+

HCTL∗ss

Hµ HCTL∗ps

HCTL∗pp

<

?

< ?

?

(c) tree structures.

Figure 2 The branching-time hierarchy on different classes of Kripke structures. Results colored
in red are newly obtained in this paper while results colored in green have been previously shown.
Still open questions are marked with a “?”.

6 Conclusion & Further Work

To conclude, we have studied the expressive power of hybrid branching-time logics. The
results are summarised in Figure 2.

For general structures the results, depicted in Figure 2a, are similar to their non-hybrid
counterparts – at least for the part below HCTL∗ss. We have proven that HCTL+ and HCTL
have the same expressive power. HFCTL+ then can express more properties than HCTL+

and HCTL∗ss can express even more. However, above HCTL∗ss the picture is a bit different:
only HCTL∗ss can be translated into Hµ. Allowing dynamic naming of states as part of a path
formula in CTL∗ then drastically increases the expressive power in a way that is not even
captured by Hµ. We do not yet know if allowing jumps as part of path formulas increases
the expressive power of the resulting logic even further.

It is also interesting to see that these expressiveness results change depending on the
classes of structures in reference. For general Kripke structures we have obtained an (almost)
complete picture. However, if we restrict the attention to finite structures or tree structures
we only have an incomplete and possibly quite different picture. For example, on finite
structures we have shown that HFCTL+ is equi-expressive to HCTL which helped us prove
the expressiveness gap between HFCTL+ and HCTL∗ss. However, it is still unclear if this
expressiveness gap also holds for trees. We have also summarised what we know about finite
structures and trees in Figures 2b and 2c.

Future work will focus on studying the expressiveness over interesting classes of structures
such as finite structures or trees and will aim to close the gaps in their respective hierarchies.
We will also continue to study the expressiveness games defined in Section 3. Here, we have
only proven one direction: if Duplicator wins, then there is no formula that can distinguish
the structures in question. A proof for the reverse direction would in itself strengthen this
framework but has turned out to be rather challenging.
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A Appendix

We need a technical definition for the proof of Theorem 2.

I Definition 24. For any ϕ ∈ HCTL we define the temporal nesting depth of ϕ (nd(ϕ)) as
follows:

nd(p) := 0, nd(x) := 0,
nd(¬ϕ) := nd(ϕ), nd(ϕ1 ∨ ϕ2) := max{nd(ϕ1), nd(ϕ2)},

nd(↓x.ϕ) := nd(ϕ), nd(@x ϕ) := nd(ϕ),
nd(EXϕ) := nd(ϕ) + 1, nd(Eϕ1Uϕ2) := max{nd(ϕ1), nd(ϕ2)}+ 1.

I Theorem 2 (restated). If Duplicator wins GmHCTL(K0, s0,K1, t0) then it holds for all
formulas ϕ ∈ HCTL with nd(ϕ) ≤ m that K0, s0 |= ϕ if and only if K1, t0 |= ϕ.

Proof. We prove an extended statement for formulas with unbounded occurrences of variables.
For this, let GmHCTL(K0, s0, . . . , sn−1,K1, t0, . . . , tn−1) be the game with n pebbles already
placed. We will show the following statement:

We show that if Duplicator wins GmHCTL(K0, s0, . . . , sn−1,K1, t0, . . . , tn−1) then it holds
for all formulas ϕ ∈ HCTL with nd(ϕ) ≤ m and all variable assignments σ : Var → S0,
σ′ : Var → S1 such that σ(x) = si if and only if σ′(x) = ti that K0, si, σ |= ϕ if and only if
K1, ti, σ

′ |= ϕ.
We show this by an induction on the number of rounds m and only show the cases where

Duplicator moves on K0. The other cases are completely analoguous.
Let m = 0 and suppose that Duplicator wins GmHCTL(K0, s0, . . . , sn−1,K1, t0, . . . , tn−1).

Then it holds for all atomic formulas ϕ = p or ϕ = xj for some p ∈ Prop and 0 ≤ j ≤ n− 1
that K0, si, σ |= ϕ if and only if K1, ti, σ

′ |= ϕ. This follows directly from the winning
conditions of Duplicator. The cases for boolean connectives and hybrid operators can be
shown by a straightforward induction.

So, let m ≥ 1 and suppose that the statement already holds for m− 1. Suppose again,
that Duplicator wins GmHCTL(K0, s0, . . . , sn−1,K1, t0, . . . , tn−1). We show that K0, si, σ |= ϕ

if and only if K1, ti, σ
′ |= ϕ with ϕ, σ, σ′, i as above by an induction over the structure of ϕ.

Atomic formulas and boolean connectives can be shown in the same way as for m = 0.
ϕ = EXψ. SupposeK0, si, σ |= ϕ, then there is some successor s′i of si such thatK0, s

′
i, σ |=

ψ. Suppose Spoiler chooses s′i and moves there. Since Duplicator wins, she can choose
a successor t′i of ti such that she wins Gm−1

HCTL(K0, s0, . . . , sn−1, s
′
i,K1, t0, . . . , tn−1, t

′
i).

Since nd(ψ) < m we can use that the statement already holds for m − 1 and get that
K1, t

′
i, σ
′ |= ψ. This means also that K1, ti, σ

′ |= ϕ.
ϕ = Eψ1Uψ2. Suppose K0, si, σ |= ϕ. Then there is a path π starting at si and some l
such that K0, π

l, σ0 |= ψ2 and for all j < l, K0, π
j , σ |= ψ1. Suppose Spoiler chooses to

play π on K0 with l. Since Duplicator wins the game, she can answer with some path τ
on K1 starting at ti and some l′. Spoiler now has two possibilities:
First, he can choose to go to πl. Duplicator then has to play τ l′ and since she plays a
winning strategy wins the game Gm−1

HCTL(K0, s0, . . . , sn−1, π
l,K1, t0, . . . , tn−1, τ

l′). Since
K0, π

l, σ0 |= ψ2 and nd(ψ2) < m we can deduce with the hypothesis for m − 1, that
K1, τ

l′ , σ′ |= ψ2.
Secondly, Spoiler can choose any k′ < l′ and move to τk′ . Since Duplicator is winning, she
can answer with some k < l, move to πk and win from there. We know thatK0, π

k, σ |= ψ1
and nd(ψ1) < m so by the induction hypothesis we also get that K1, τ

k′ , σ′ |= ψ1. This
holds for any k′ < l′ since it was Spoiler’s choice.
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Thus, we have that there is some l′ on τ such that K1, τ
l′ , σ′ |= ψ2 and for all k′ < l′ it

holds that K1, τ
k′ , σ′ |= ψ1. Thus, since τ starts at ti we get that K1, ti, σ

′ |= ϕ.
ϕ = ↓x.ψ for some x 6∈ {x0, . . . , xn−1} (otherwise x0, . . . , xn−1 would not be free).
Suppose K0, si, σ |= ϕ. Then K0, si, σ[x 7→ si] |= ψ. Since ψ is smaller then ϕ and
σ[x 7→ si], resp. σ′[x 7→ ti] also satisfy the assumption for variable interpretations we
can use the induction hypothesis for ψ and get that K1, ti, σ

′[x 7→ ti] |= ψ and thus also
K1, ti, σ

′ |= ϕ.
ϕ = @xj ψ for some 0 ≤ j ≤ n− 1. Suppose K0, si, σ |= ϕ. Then with the definition of σ
we get that K0, sj , σ |= ψ. With the induction hypothesis for ψ we get that K0, tj , σ

′ |= ψ

and thus also K0, si, σ |= ϕ.
This finishes the proof. J

I Theorem 25. For each HCTL+ formula ϕ there is an HCTL formula ϕ′ such that for all
Kripke structures K = 〈S,→, L〉, states s ∈ S and variable assignments σ : Var → S it holds
that K, s, σ |= ϕ if and only if K, s, σ |= ϕ′.

Proof. We describe how to transform an HCTL+ formula into an HCTL formula. This can
be done by rewriting each path formula into an equivalent HCTL formula.

Using the equivalences Aψ ≡ ¬E¬ψ, ¬Xψ ≡ X¬ψ, ¬(ψ1Uψ2) ≡ G¬ψ2 ∨ (¬ψ2U(¬ψ1 ∧
¬ψ2)), Eψ1∨ψ2 ≡ Eψ1∨Eψ2 we can push negations inward and assume conjunctions as the top-
level operator in path formulas. We then use Xϕ1∧Xϕ2 ≡ Xϕ1∧ϕ2 and Gϕ1∧Gϕ2 ≡ Gϕ1∧ϕ2
to move Next- and Generally operators upwards and E(ϕ ∧ ψ) ≡ ϕ ∧ Eψ for some state
formula ϕ to remove state-formulas directly under a path quantifier. Thus, we can assume
that each path formula has the form

E(XΛ1 ∧
∧
i∈I

ϕiUχi ∧ GΛ2)

with suitable state formulas Λi, ϕi, χi.
We then obtain an HCTL formula by guessing the order in which the Until-formulas are

satisfied along such a path. This is done by the following formula:

Λ2 ∧
∨
J⊆I

(
∧
j 6∈J

χj) ∧ (
∧
j 6∈J

ϕj) ∧ EX
(

Λ1∧

∨
π∈Perm(J)

E((Λ2 ∧
∧
j∈J

ϕπ(j))U
(
χπ(1)∧

E((Λ2 ∧
∧

j∈J,j 6=1
ϕπ(j))U

(
χπ(2)∧

...

E((Λ2 ∧ ϕπ(|J|))U(χπ(|J|) ∧ EGΛ2))
)
. . .
)

where Perm(J) denotes the set of all permutations over J . J
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