
Sound-and-Complete Algorithms for Checking the
Dynamic Controllability of Conditional Simple
Temporal Networks with Uncertainty
Luke Hunsberger
Department of Computer Science, Vassar College, NY, USA
hunsberger@vassar.edu

Roberto Posenato
Department of Computer Science, University of Verona, Verona, Italy
roberto.posenato@univr.it

https://orcid.org/0000-0003-0944-0419

Abstract
A Conditional Simple Temporal Network with Uncertainty (CSTNU) is a data structure for rep-
resenting and reasoning about time. CSTNUs incorporate observation time-points from Condi-
tional Simple Temporal Networks (CSTNs) and contingent links from Simple Temporal Networks
with Uncertainty (STNUs). A CSTNU is dynamically controllable (DC) if there exists a strategy
for executing its time-points that guarantees the satisfaction of all relevant constraints no matter
how the uncertainty associated with its observation time-points and contingent links is resolved in
real time. This paper presents the first sound-and-complete DC-checking algorithms for CSTNUs
that are based on the propagation of labeled constraints and demonstrates their practicality.

2012 ACM Subject Classification Computing methodologies → Temporal reasoning, Theory of
computation → Network optimization, Theory of computation → Dynamic graph algorithms,
Mathematics of computing → Graph algorithms

Keywords and phrases Temporal Networks, Conditional Simple Temporal Problem with Uncer-
tainty, Dynamic Controllability, Checking Algorithm

Digital Object Identifier 10.4230/LIPIcs.TIME.2018.14

1 Introduction

A Conditional Simple Temporal Network with Uncertainty (CSTNU) is a data structure for
representing and reasoning about time in domains where some constraints may apply only
in certain scenarios and some events may have uncontrollable, but bounded durations [13].
They were defined to represent important features of, for example, (1) workflow systems used
to automate medical-treatment processes [16],[7]; and (2) planning systems when uncertain
durations are present [17]. A CSTNU may include observation time-points and contingent
links. An observation time-point represents a test action whose execution generates a truth
value for a corresponding propositional letter. A contingent link represents an action with an
uncertain, but bounded duration. Observation time-points and contingent links both involve
uncertainty and uncontrollability, since the outcomes of tests and contingent durations are
not known in advance and are not controlled by the scheduling agent; they are only observed
during execution.

CSTNUs generalize Conditional Simple Temporal Networks (CSTNs) [23] and Simple
Temporal Networks with Uncertainty (STNUs) [21]. The dynamic controllability (DC)
property for CSTNUs generalizes the corresponding properties for CSTNs and STNUs. In
brief, a CSTNU is DC if there exists a strategy for executing its time-points that guarantees

© Luke Hunsberger and Roberto Posenato;
licensed under Creative Commons License CC-BY

25th International Symposium on Temporal Representation and Reasoning (TIME 2018).
Editors: Natasha Alechina, Kjetil Nørvåg, and Wojciech Penczek; Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/161589394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hunsberger@vassar.edu
mailto:roberto.posenato@univr.it
https://orcid.org/0000-0003-0944-0419
https://doi.org/10.4230/LIPIcs.TIME.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Sound-and-Complete Algorithms for Checking the DC of CSTNU

the satisfaction of all relevant constraints no matter how the uncertainty associated with its
observation time-points and contingent links is resolved during execution. The DC-checking
problem for CSTNUs is that of determining whether arbitrary CSTNUs are DC.

Combi et al. [5, 6] presented a variety of sound constraint-propagation rules for CSTNUs,
but did not address completeness. Following their approach, but focusing on CSTNs,
Hunsberger et al. [14] presented the first practical sound-and-complete DC-checking algorithm
for CSTNs. Recently, they presented a faster version of their algorithm, called the π-DC-
checking algorithm [12], that will play a role in this paper. In other approaches, Hunsberger
and Posenato [11] presented an algorithm that views the DC-checking problem for CSTNs as
a two-player game, searching an abstract game tree to find a “winning” strategy, guided by
Monte-Carlo Tree Search and Limited Discrepancy Search; and Cimatti et al. [4] reduced the
DC-checking problem for CSTNUs (and a broader class of networks) to a controller-synthesis
problem for timed game automata, but have not shown whether that approach can be made
practical for CSTNUs.

Contribution. This paper presents the first practical sound-and-complete DC-checking
algorithms for CSTNUs. The first algorithm reduces the DC-checking problem for CSTNUs
to the DC-checking problem for CSTNs; the second propagates constraints directly in the
input CSTNU. The paper proves that both algorithms are correct and empirically evaluates
their performance.

2 Conditional STNs with Uncertainty (CSTNUs)

This section recalls the definition of a well-defined CSTNU, which allows contingent links (as
in an STNU) and observation time-points (as in a CSTN). The presentation combines and
extends definitions from earlier work [18, 13, 6, 12]. The notion of a streamlined temporal
network from recent work on CSTNs [2] is then applied to CSTNUs.

I Definition 1 (P-Labels). For a set P of propositional letters, a p-label is a (possibly empty)
conjunction of (positive or negative) literals from P. The empty p-label is notated �. For
any p-label `, and any p ∈ P , if ` |= p or ` |= ¬p, we say that p appears in `. For p-labels, `1
and `2, if `1 |= `2, we say that `1 entails `2. If `1 ∧ `2 is satisfiable, we say that `1 and `2 are
consistent. P∗ denotes the set of all satisfiable p-labels with literals from P.

I Definition 2 (CSTNU). A Conditional Simple Temporal Network with Uncertainty is a
tuple, 〈T ,P, L, C,OT ,O,L〉, where:
T is a finite set of real-valued variables, called time-points;
P is a finite set of propositional letters;
L : T → P∗ assigns p-labels to time-points;
C is a set of labeled constraints, each of the form, (Y −X ≤ δ, `), where X,Y ∈ T , δ ∈ R,
and ` ∈ P∗;
OT ⊆ T is a set of observation time-points;
O : P → OT is a bijection from propositional letters to observation time-points;
L is a set of contingent links each of the form (A, x, y, C), where: A ∈ T , C ∈ T \ OT ,
A 6≡ C are called the activation and contingent time-points, respectively; L(A) = L(C);
0 < x < y <∞; and distinct contingent links have distinct contingent time-points.

By convention, for each p ∈ P, O(p) (i.e., the observation time-point whose execution
determines the truth value for p) may be denoted by P?.

L. Hunsberger and R. Posenato 14:3

Hunsberger et al. [14] called a CSTN well-defined if the p-labels on its time-points and
constraints satisfied certain properties. CSTNs that are not well defined turn out to be
useless. Definition 3 extends well-definedness to CSTNUs.

I Definition 3 (Well-defined CSTNU). A CSTNU is well defined if:
1. for each (Y −X ≤ δ, `) ∈ C, ` |= L(X) ∧ L(Y);
2. for each T ∈ T , and each p appearing in L(T):

a. ` |= L(P?); and
b. (P?− T ≤ −ε, L(T)) ∈ C, for some ε > 0;

3. for each (Y −X ≤ δ, `) ∈ C, and each p appearing in `, ` |= L(P?).

Cairo et al. [2] showed that if S is a well-defined CSTN (i.e., satisfies properties 1–3 above),
then there is a CSTN S� such that:
1. S� does not have any labels on its time-points, and
2. S� is DC if and only if S is DC.
S� is called a streamlined CSTN. We say that S� is DC-equivalent to S.
This result extends easily to CSTNUs.

I Definition 4 (Streamlined CSTNU). Given a well-defined CSTNU S, its streamlined version
S� is the same as S except that its time-points have no p-labels.

It is straightforward to show that if S is a well-defined CSTNU, then S is DC if and only if its
streamlined version S� is DC. For this reason, this paper restricts attention to streamlined
CSTNUs, which simplifies definitions and proofs of the main results with no loss of generality.

Each CSTNU has a corresponding graph whose nodes represent time-points, and whose
edges represent various kinds of temporal constraints. To accommodate the propositional
labels (p-labels) from CSTN graphs and the alphabetic labels (a-labels) from STNU graphs,
each edge in a CSTNU graph may be annotated by both p-labels and a-labels. This paper
treats a-labels more rigorously than in prior work in anticipation of how they are conjoined
and modified during constraint propagation. In particular, an a-label is liberally defined to
allow conjunctions of upper-case letters that may arise during constraint propagation.

I Definition 5 (A-Letters, A-Labels). If C1, . . . , Ck are the contingent time-points for a
CSTNU S, then A = {c1, . . . , ck, C1, . . . , Ck} is the set of alphabetic letters (a-letters) for S;
c1, . . . , ck are the lower-case (LC) a-letters; and C1, . . . , Ck are the upper-case (UC) a-letters.
An a-label, ℵ, is a set of a-letters that: (1) is empty, notated as �; (2) contains exactly one
LC a-letter, notated as ci; or (3) contains one or more UC a-letters, notated as Ci1 . . . Cim .
The set of all a-labels with letters from A is denoted by A∗. The set of UC a-labels (that is,
a-labels that contain zero or more UC a-letters) is denoted by A∗u. For any ℵ,ℵ′ ∈ A∗u, their
conjunction is given by their union (i.e., ℵℵ′ = ℵ ∪ ℵ′).

Edges in a CSTNU graph are annotated by triples, called a labeled values, that generalize:
(1) the numerical weights that appear on edges in STN graphs; (2) the lower-case and
upper-case a-letters on edges in STNU graphs; and (3) the p-labels on edges in CSTN graphs.
Since any pair of time-points, X and Y , may participate in multiple constraints, an edge
from X to Y may have multiple labeled values, each of the form, 〈δi,ℵi, `i〉.

I Definition 6 (Labeled values). A labeled value is a triple, 〈δ,ℵ, `〉, where: δ ∈ R, ℵ ∈ A∗,
and ` ∈ P∗.

TIME 2018

14:4 Sound-and-Complete Algorithms for Checking the DC of CSTNU

ZA0

C0 X C2 A2

C1A1

P?

0

〈3
,
c
,
�
〉

〈−
10
,
C
,
�
〉

〈7, �, p〉 〈2, �,¬p〉

〈−
17
,
�,
p
〉

〈−7, C2,�〉

〈1, c2,�〉

〈8
,
�,
p
〉

〈1, c1,�〉

〈−10, C1,�〉

−4 −
8

−19

−11

−12

〈−13, C
1,
�〉

〈−
17
,
C

2
,�
〉

〈−
18
,
C

1
C

2
,�
〉

−7

Figure 1 A CSTNU graph with 3 contingent links and one observation time-point P?

In a CSTNU graph, an ordinary STN constraint, Y −X ≤ δ, is represented by an edge
X
〈δ, �,�〉

Y ; and a conditional constraint, (Y −X ≤ δ, `), is represented by an edge
X
〈δ, �, `〉

Y . Edges associated with contingent links require further introduction.
In an STNU graph, each contingent link (A, x, y, C) gives rise to two edges: a lower-case

edge from A c :x C that represents the possibility that the duration C −A might take on
its minimum value x; and an upper-case edge from C C :−y A that represents that C −A
might take on its maximum value y. In a CSTNU graph, the lower-case edge is A 〈x, c,�〉 C
and the upper-case edge is C 〈−y, C,�〉 A.

Figure 1 shows the graph for a sample CSTNU. Z is a (non-contingent, non-observation)
time-point whose value is fixed at 0. Each time-point X is implicitly constrained to occur at
or after Z. Labeled values such as 〈−11, �,�〉 are abbreviated as simply −11. The dashed
edges represent constraints obtained by Algorithm 2, described in section 6; it determines
that this CSTNU is not dynamically controllable.

3 Dynamic Controllability for CSTNUs

The truth values of propositions in a CSTNU are not known in advance; they are incrementally
revealed as observation time-points are executed. Similarly, the durations of contingent links
are only observed as the contingent time-points happen to execute. However, a dynamic
strategy for executing the time-points in a CSTNU can react to observations and contingent
executions in real time. A viable strategy is one that guarantees that all relevant constraints
will be satisfied no matter which truth values and durations are revealed over time. A
CSTNU with a dynamic and viable strategy is dynamically controllable (DC).

Like much recent work on STNUs and CSTNs [18, 14, 1], this paper defines the DC
property for CSTNUs to allow execution strategies to react instantaneously to observations,
instead of requiring arbitrarily small delays. It generalizes the DC semantics for STNUs [18]
and the π-DC semantics for CSTNs [1].

This paper focuses on CSTNUs whose sets of contingent and observation time-points are
distinct – with no loss of generality because any contingent observation time-point could be
represented by two time-points, a contingent time-point C and an observation time-point
P?, constrained to occur simultaneously. An instantaneously reactive strategy could wait for
C to execute and then execute P? at the same time.

L. Hunsberger and R. Posenato 14:5

Preliminaries. A scenario s specifies a truth value for each proposition, and a situation ω

specifies a duration for each contingent link. A drama is then a scenario-situation pair (s, ω).
The projection of a CSTNU onto a drama (s, ω) is the STN obtained by restricting attention
to the constraints whose labels are true under s and assigning each contingent duration to
the value specified by ω.

I Definition 7 (Scenario/Situation/Drama/Projection). A scenario is a function, s : P →
{>,⊥}, that assigns a truth value to each p ∈ P . A scenario also determines the truth value,
s(`), for any p-label ` ∈ P∗. The set of all scenarios over P is denoted by I. If (A1, x1, y1, C1),
. . . , (Ak, xk, yk, Ck) are the contingent links for a CSTNU S, then Ω = [x1, y1]× . . .× [xk, yk]
is called the space of situations for S, and any ω = (ω1, . . . , ωk) ∈ Ω is called a situation. A
drama is any pair (s, ω) ∈ I × Ω, where s ∈ I is a scenario, and ω ∈ Ω is a situation. Let
S = 〈T ,P, C,OT ,O,L〉 be any CSTNU, and (s, ω) any drama for S, where ω = (ω1, . . . , ωk).
The projection of S onto (s, ω) – denoted by Prj(S, s, ω) – is the STN, (T , Cs), where:1

Cs = {(Y −X ≤ δ) | for some `, (Y −X ≤ δ, `) ∈ C and s(`) = >}
∪ {(Ci −Ai = ωi) | (Ai, xi, yi, Ci) ∈ L}

3.1 Execution strategies
Cairo et al. [1] introduced the π-DC semantics for CSTNs that, unlike prior versions [14, 8],
does not permit a kind of circular dependency among simultaneous observations. A π-dynamic
strategy must specify, for each scenario, both a schedule for the time-points, and an order of
dependency among the observation time-points. This section extends the π-DC semantics to
cover CSTNUs.

I Definition 8 (Schedule). A schedule for a set T of time-points is a complete mapping,
ψ : T → R. For any X ∈ T , and any schedule ψ, the execution time for X in ψ is denoted
by [ψ]X . The set of schedules for T is denoted by Ψ.

I Definition 9 (Order of Dependency). Let OT = {P1?, . . . , Pk?} be a set of observation
time-points. Any permutation π over (1, 2, . . . , k) effectively specifies an order for those
observation time-points. For any P? ∈ OT , let π(P?) ∈ {1, 2, ..., k} denote the (integer)
position of P? in the order determined by π; and let Πk denote the set of all permutations
over (1, 2, . . . , k).

I Definition 10 (π-Execution Strategy). A π-execution strategy for a CSTNU S with k con-
tingent links is a mapping, σ : (I × Ω)→ (Ψ×Πk), where for each drama r = (s, ω) ∈ I × Ω,
σ(s, ω) is a pair (ψr, πr) such that ψr : T → R is a schedule, and πr ∈ Πk determines an order
of dependency among the observation time-points. For convenience, πr is extended such
that πr(C) = 0 for each contingent time-point C, and πr(X) =∞ for each non-contingent,
non-observation time-point X.

The strategy σ is viable if for each drama r = (s, ω), the schedule ψr is a solution to the
projection Prj(S, s, ω). And σ is coherent if for each drama r = (s, ω), and any P? and Q?
in OT , [ψr]P? < [ψr]Q? implies πr(P?) < πr(Q?) (i.e., if ψr schedules P? before Q?, then
πr orders P? before Q?).

I Definition 11 (π-History). Let S = 〈T ,P, C,OT ,O,L〉 be a CSTNU with k contingent
links; σ a π-execution strategy for S; r = (s, ω) a drama; (ψr, πr) = σ(s, ω); t ∈ R; and

1 Ci −Ai = ωi abbreviates the pair of constraints, Ci −Ai ≤ ωi and Ai − Ci ≤ −ωi.

TIME 2018

14:6 Sound-and-Complete Algorithms for Checking the DC of CSTNU

Table 1 Morris-Muscettola rules for DC-checking STNUs.

Rule Conditions Pre-existing and generated edges

No Case (NC): XYW
uv

u + v

Upper Case (UC): A Y X
uC : v

C : u + v

Lower Case (LC): (v < 0) ACX
c : uv

u + v

Cross Case (CC): (D 6≡ C and v < 0) ACX
c : uD : v

D : u + v

Label Removal (LR): (v ≥ −x) XAC
c : x C : v

v

d ∈ {1, 2, . . . , k;∞}. Then H(t, d, s, ω, σ) = (Hs,Hω) is the π-history of (t, d) for the drama
(s, ω) and strategy σ, where:

Hs = {(p, s(p)) | P? ∈ OT , [ψr]P? ≤ t, and πr(P?) < d} ;
Hω = {(A,C, [ψr]C − [ψr]A) | ∃x, y such that (A, x, y, C) ∈ L, and [ψr]C ≤ t} .

Hs specifies the truth values of all propositions p observed before time t in the schedule ψr,
as well as those observed at time t if P? is ordered before position d by the permutation πr.
And Hω specifies the durations of all contingent links that completed at or before time t in
the schedule ψr.

I Definition 12 (π-Dynamic Execution Strategy). A π-execution strategy, σ, for a CSTNU S,
is called π-dynamic if for every pair of dramas, (s1, ω1) and (s2, ω2), and every non-contingent
(but possibly observation) time-point X:

let: (ψ1, π1) = σ(s1, ω1) and (ψ2, π2) = σ(s2, ω2),
let: t = [ψ1]X , and d = π1(X) ∈ {1, 2, . . . , |OT |;∞}.
if: H(t, d, s1, ω1, σ) = H(t, d, s2, ω2, σ)
then: [ψ2]X = t and π2(X) = d.

Thus, if, in the drama (s1, ω1), σ executes X at time t and position d, and the relevant
histories are the same then, in the drama (s2, ω2), σ must also execute X at t and d.

I Definition 13 (π-DC). A CSTNU, S, is π-dynamically controllable (π-DC) if there exists
a π-execution strategy for S that is both viable and π-dynamic.

4 DC-Checking for STNUs and CSTNs

This section summarizes the DC-checking algorithms for STNUs and CSTNs, due to Morris
and Muscettola [20] and Hunsberger and Posenato [12], respectively, that play important
roles in our new CSTNU DC-checking algorithms.

4.1 DC checking for STNUs
Table 1 lists the five constraint-propagation rules for STNUs due to Morris and Mus-
cettola [20].2 The No Case rule captures standard constraint propagation for STNs. The
Upper Case rule generates a conditional constraint that guards against the possibility that the
contingent duration C −A might take on its maximum value. It can be glossed as: “While

2 Later STNU algorithms [18, 19] use techniques that do not readily transfer to CSTNUs.

L. Hunsberger and R. Posenato 14:7

C remains unexecuted, X must wait at least −u− v after the execution of A.”3 The Lower
Case rule generates a constraint that guards against C − A taking on its minimum value.
The Cross Case rule generates a conditional constraint that guards against one contingent
duration C −A taking on its minimum value, while another D −X takes on its maximum
value. The Label Removal rule specifies when a conditional constraint has the force of an
unconditional constraint.

The Morris-Muscettola DC-checking algorithm applies the rules from Table 1 in at most
O(N2) rounds, at a cost of O(N3) per round. Afterward, it computes the AllMax STN, which
is the STN projection in which each contingent link is set to its maximum duration. The
AllMax STN is computed from the fully propagated STNU by: (1) removing all lower-case
edges; and (2) removing the upper-case letters from all (original or generated) upper-case
edges. If the AllMax STN is consistent, then the STNU is declared to be DC.

4.2 π-DC checking for CSTNs
Hunsberger et al. [14] presented a 6-rule IR-DC-checking algorithm for CSTNs (“IR” for
“instantaneous reaction”) that is based on the propagation of labeled constraints. Hunsberger
and Posenato [12] subsequently introduced a faster, 3-rule version of their algorithm, called
the π-DC-checking algorithm, which is used in this paper. The π-DC-checking algorithm
generates constraints whose labels may include q-literals, such as ?p, that indicate that a
constraint need only hold as long as the value of p is unknown.

I Definition 14 (Q-literals, q-labels). If p ∈ P, then ?p is a q-literal, a q-label is a (possibly
empty) conjunction of literals and/or q-literals, and Q∗ denotes the set of all q-labels. For
example, p(?q)¬r and (?q)(?r)t¬u are both q-labels.

The ? operator extends ordinary conjunction to q-labels. Intuitively, if constraint C1 is
labeled by p, and constraint C2 is labeled by ¬p, then both C1 and C2 must hold as long as
p is unknown, which is represented by p ? ¬p = ?p.

I Definition 15 (?). The operator, ? : Q∗×Q∗ → Q?, is defined thusly. First, for any p ∈ P ,
p ? p = p and ¬p ? ¬p = ¬p; otherwise, for any p1, p2 ∈ {p,¬p, ?p}, p1 ? p2 =?p. Next, for any
`1, `2 ∈ Q∗, `1 ? `2 ∈ Q∗ denotes the conjunction obtained by applying ? in pairwise fashion
to matching literals from `1 and `2, and conjoining any unmatched literals. For example:
(p¬q(?r)t) ? (qr¬s) = p(?q)(?r)¬st.

Table 2 lists the sound-and-complete propagation rules for the π-DC-checking algorithm
for CSTNs. The LP rule implements ordinary STN constraint propagation except that the
labels, α and β, from the parent edges are conjoined in the generated edge. The qR0 rule
stipulates that a lower-bound constraint on P? cannot depend on the value of p determined
by executing P?. The qR∗3 rule specifies when an occurrence of p,¬p or ?p can be removed
from a propositional label. The qR∗3 rule can generate edges whose labels are q-labels.

The π-DC-checking algorithm applies the rules from Table 2 until either (Non-DC) a
negative self-loop with a consistent label is found; or (DC) no new edges can be generated.
The completeness proof for the π-DC-checking algorithm shows how, in positive instances,
to construct the earliest-first strategy, whose execution decisions are based on tracking the
current partial scenario and computing effective lower bounds for unexecuted time-points.
The spreading lemma ensures that lower-bound execution constraints are already present

3 Wait constraints are only relevant if the wait time, −u− v, is positive (i.e., if u+ v < 0).

TIME 2018

14:8 Sound-and-Complete Algorithms for Checking the DC of CSTNU

Table 2 Constraint-propagation rules for π-DC-checking CSTNs.

Rule Conditions Pre-existing and Generated Edges

LP: u+ v < 0, αβ ∈ P∗ XYZ
〈u, α〉〈v, β〉

〈u + v, αβ〉

qR0: w < 0, α ∈ Q∗ P?Z
〈w,αp̃〉
〈w,α〉

qR∗
3: w < 0, α, β ∈ Q∗ P?ZY

〈w,α〉〈v, βp̃〉
〈max{v, w}, α ? β〉

In each rule, X,Y ∈ T ; P? ∈ OT ; and Z = 0. In qR0 and qR∗3 , p̃ ∈ {p,¬p, ?p};
and p does not appear in α or β (in any form).

in the fully propagated network, courtesy of the qR0 and qR∗3 rules. The proof also shows
that upper-bound execution constraints cannot generate negative loops in the relevant STN
projection. Termination is guaranteed by inserting a global upper bound (or horizon), whose
value is h = nM , where n = |T | and M is the maximum absolute value of any negative edge
in the network. The horizon constraints do not affect the DC property, assuming that all
edge weights are rational [2].

An upper bound for the computational complexity of the algorithm can be obtained
assuming that each possible labeled value of each edge heading to Z must be updated M
times and propagated to all other edges: O(|T |(3|P||T |M)) = O(M |T |23|P|). Although
exponential in the worst case, it has been shown to be practical across a variety of networks.

5 Algorithm 1: Reducing CSTNU-DC to CSTN-DC

This section introduces a novel DC-checking algorithm for CSTNUs that first transforms
its input CSTNU S into a DC-equivalent CSTN S ′, and then applies the π-DC-checking
algorithm for CSTNs to S ′. The transformation for contingent links is illustrated below.
For each contingent link, (A, x, y, C), a new observation time-point Pc? is introduced that
is constrained to occur exactly x after A. Executing Pc? generates a value for pc that
determines whether the duration C −A shall be x or y.4 If pc = >, then C must co-occur
with Pc? (i.e., x after A); otherwise, C must execute exactly y − x after Pc? (i.e., y after A).
Because the CSTNU has been transformed into a CSTN, the horizon value h = nM can be
applied to that CSTN without affecting the DC property. The computational cost of this
CSTNU-to-CSTN transformation is O(|L|) (i.e., linear).

A Pc? C
〈x,�〉

〈−x,�〉

〈0, pc〉, 〈y − x,�〉

〈0,�〉, 〈x− y,¬pc〉

6 Algorithm 2: Propagating in the CSTNU

This section introduces a novel DC-checking algorithm for CSTNUs that propagates con-
straints in the CSTNU using the rules in Table 3. The names of the rules reflect the STNU and
CSTN rules from Tables 1 and 2 that they generalize, except that z! is a new kind of rule that
forward propagates upper-case a-labels. The z! rule is not needed for DC-checking STNUs,

4 Cairo and Rizzi [3] proved that restricting contingent durations to be either the minimum or maximum
value, but nothing in between, does not affect the DC property.

L. Hunsberger and R. Posenato 14:9

Table 3 Constraint-propagation rules for CSTNU Algorithm 2.

Rule Conditions Pre-existing and Generated Edges

(zLp/Nc/Uc) u+ v < 0, αβ ∈ P∗
XYZ

〈v,ℵ, β〉 〈u, �, α〉

〈u + v,ℵ, αβ〉

(zLc/Cc) x+ v < 0, C 6∈ ℵ, β ∈ P∗
ACZ

〈x, c,�〉〈v,ℵ, β〉

〈x + v,ℵ, β〉

(z!) −y + v < 0, β ∈ P∗ Z A C
〈−y, C,�〉〈v,ℵ, β〉

〈−y + v, Cℵ, β〉

(zLr) m = max{v, w − x}, C 6∈ ℵℵ1,
β, γ ∈ Q∗ AZY C

〈x, c,�〉〈w,ℵ1, γ〉〈v, Cℵ, β〉
〈m,ℵℵ1, β ? γ〉

(zqR0) w < 0; p̃ ∈ {p,¬p, ?p}; p̃β ∈ Q∗, P?Z
〈w,ℵ, βp̃〉
〈w,ℵ, β〉

(zqR∗
3)

w < 0; p̃ ∈ {p,¬p, ?p}; p̃β, γ ∈ Q∗,
P?ZY

〈w,ℵ1, γ〉〈v,ℵ, βp̃〉
〈max{v, w},ℵℵ1, β ? γ〉

Z = 0; A,C,X, Y ∈ T ; C is contingent; P? ∈ OT ; ℵ,ℵ1 ∈ A∗
u.

Algorithm 2: CSTNU-DC-CH(S).
Input: S = 〈T ,P, C,OT ,O,L〉: a CSTNU instance
Output: the dynamic controllability status of S.
G = graph for S
h = M |T |, where M is the maximum absolute value of any negative edge
foreach X ∈ T do

Add the edges, Z 〈h, �,�〉 X and X 〈0, �,�〉 Z, to G.
do

G = zqR0(G) // Label Modification
G = zqR∗

3(G)
G = zLp/Nc/Uc(G) // Edge Generation
G = z!(G)
G = zLc/Cc(G)
G = zLr(G)
if (any negative self-loop with a p-label has been found) then return not DC

while (rules continue to generate new edges)
return DC

but is needed to ensure completeness for CSTNU DC-checking. Note that z! and zqR∗3 can
generate conjunctions of upper-case a-labels, which can be handled by all of the other rules.

To ensure termination, the algorithm inserts the same horizon constraints seen earlier,
then it exhaustively applies the rules from Table 3. It outputs not DC if a negative self-loop
with a consistent p-label is found; otherwise, DC. The pseudo-code for the algorithm is given
in Algorithm 2.

We begin with relevant definitions, then prove soundness and completeness.

I Definition 16 (Precedes). Let σ be a π-dynamic strategy, (s, ω) any drama, and (ψ, π) =
σ(s, ω). For any X,Y ∈ T , if either [ψ]X < [ψ]Y or ([ψ]X = [ψ]Y and π(X) < π(Y)) then
we say that X precedes Y in (ψ, π), notated X ≺πψ Y .

If X ≺πψ P?, then the decision to execute X cannot depend on the observation of p. In

TIME 2018

14:10 Sound-and-Complete Algorithms for Checking the DC of CSTNU

addition, if X and Y are distinct time-points, and at least one of them is an observation
time-point, then X ≺πψ Y if and only if ¬(Y ≺πψ X).

I Definition 17 (Satisfy a Labeled Constraint). A π-execution strategy σ satisfies the labeled
constraint (Y − X ≤ δ, `), where ` ∈ P∗, if, for each drama (s, ω), either s(`) = ⊥ or
[ψ]Y − [ψ]X ≤ δ, where (ψ, π) = σ(s, ω).

I Definition 18 (Satisfy a Contingent Link). A π-execution strategy σ satisfies the contingent
link (Ai, xi, yi, Ci) if for each drama (s, ω), [ψ]Ci − [ψ]Ai = ωi. In such a case, we also say
that σ satisfies the lower-case and upper-case edges associated with that contingent link.

From Defns. 7 and 12, it follows that a viable π-execution strategy σ must satisfy all of the
(original) labeled constraints in S (before any constraint propagation) and all of the (original)
lower- and upper-case edges in S.

A constraint-propagation rule is sound if whenever a viable and dynamic σ satisfies
the pre-existing edge(s) in that rule, σ must also satisfy the edge generated by that rule.
Now, the rules in Table 3 only generate edges pointing at Z, which represent lower-bound
constraints; however, the generated edges may have a-labels with multiple UC letters and
q-labels (e.g., see rules z!, zLr and zqR∗3); and many of the rules can propagate such labeled
values. Therefore, the semantics of satisfying a lower-bound edge must accommodate such
a-labels and q-labels.

I Definition 19 (Satisfy a Lower-Bound Constraint). A π-execution strategy σ satisfies
the lower-bound constraint (Y ≥ δ, 〈ℵ, β〉) represented by the edge from Y to Z labeled by
〈−δ,ℵ, β〉, where β ∈ Q∗, and ℵ ∈ A∗u, if for each drama (s, ω), any of the following hold,
where (ψ, π) = σ(s, ω):
(1) [ψ]Y ≥ δ;
(2) for some Ci ∈ ℵ, where (Ai, xi, yi, Ci) ∈ L, ωi < yi

(i.e., the ith contingent link does not take on its maximum duration);
(3) for some p ∈ β, s(p) = ⊥;
(4) for some ¬p ∈ β, s(p) = >; or
(5) for some ?p ∈ β, P? ≺πψ Y .

If (Z − Y ≤ −δ, β) (i.e., (Y ≥ δ, β)) is a labeled constraint in a CSTNU (prior to any
propagation), then β ∈ P∗, and the corresponding edge in the graph has the labeled value
〈−δ, �, β〉. For this edge, clauses (2) and (5) in Defn. 19 are vacuous, whence satisfaction
reduces to: [ψ]Y ≥ δ or s(β) = ⊥. Thus, Defn. 19 reduces to Defn. 17 for original labeled
edges that happen be lower-bound edges.

More generally, it will be useful to note that for any lower-bound edge labeled by 〈−δ,ℵ, β〉,
where β ∈ P∗, satisfaction (i.e., Defn. 19) reduces to:
(i) [ψ]Y ≥ δ;
(ii) for some Ci ∈ ℵ, where (Ai, xi, yi, Ci) ∈ L, ωi < yi; or
(iii) s(β) = ⊥. (‡)

I Definition 20 (Soundness). A constraint-propagation rule is sound if whenever a viable
and π-dynamic execution strategy σ satisfies the rule’s pre-existing (parent) edges, it also
satisfies the rule’s generated (child) edge.

Note. In each of the soundness proofs below, σ is assumed to be a viable and π-dynamic
strategy that satisfies the parent edges in the rule under consideration. Note, too, that
soundness proofs for the (zqR0), (zqR∗3) and (zLp/Nc/Uc) rules are skipped to save space.

L. Hunsberger and R. Posenato 14:11

I Lemma 21. The (zLc/Cc) rule from Table 3 is sound.

Proof. Suppose σ does not satisfy the generated edge from A to Z in rule (zLc/Cc). Since
the p-label αβ on the generated edge is consistent, it follows from Defn. 19 that there is
some drama (s, ω) such that all of the following hold:
(¬ i) [ψ]A < −x− v;
(¬ ii) for each Ci ∈ ℵ, where (Ai, xi, yi, Ci) ∈ L, ωi = yi; and
(¬ iii) s(αβ) = >.

First, (¬ iii) implies that s(α) = > and s(β) = >. Therefore, since σ satisfies the edge from
C to Z, (¬ ii) implies that [ψ]C ≥ −v, by Defn. 19. Next, let ω′ be the same as ω except that
the contingent link AC takes on its minimum value x; and let (ψ′, π′) = σ(s, ω′). Since σ is
viable, [ψ′]C − [ψ′]A = x. However, since C 6∈ ℵ, (¬ ii) also holds for ω′; thus, [ψ′]C ≥ −v
must hold. And, since the only difference between (s, ω) and (s, ω′) is the duration of the
contingent link AC, the first difference between ψ and ψ′ must occur when C executes, which
happens after A executes. Thus, [ψ]A = [ψ′]A = [ψ′]C − x ≥ −v− x, contradicting (¬ i). J

I Lemma 22. The (z!) rule from Table 3 is sound.

Proof. Let (s, ω) be any drama for which all Ci ∈ Cℵ take on their maximum durations (i.e.,
ωi = yi), and such that s(αβ) = >; and let (ψ, π) = σ(s, ω). Then s(β) = > and all Ci ∈ ℵ
take on their maximum durations. Therefore, since σ satisfies the parent edge from A to
Z, it follows that [ψ]A ≥ −v. Next, since s(α) = >, and C takes on its maximum duration,
then [ψ]C = [ψ]A − y ≥ −v − y. Thus, σ satisfies the generated edge from C to Z. J

I Lemma 23. The (zLr) rule from Table 3 is sound.

Proof. Suppose that σ does not satisfy the generated edge in rule (zLr). Then, by Defn. 19,
there is a drama (s, ω) for which all of the following hold:
(1†) [ψ]Y < −m;
(2†) for each Ci ∈ ℵℵ1, where (Ai, xi, yi, Ci) ∈ L, [ψ]Ci

− [ψ]Ai
= yi;

(3†) for each p ∈ β ? γ, s(p) = >;
(4†) for each ¬p ∈ β ? γ, s(p) = ⊥; and
(5†) for each ?p ∈ β ? γ, ¬(P? ≺πψ Y).
where (ψ, π) = σ(s, ω). In addition, since σ is valid and satisfies the parent edge from Y

to Z, one of the following must hold, by (‡), above:
(1) [ψ]Y ≥ −v;
(2) for some C ′ ∈ Cℵ, where (A′, x′, y′, C ′) ∈ L, [ψ]C′ − [ψ]A′ < y′;
(3) for some p ∈ β, s(p) = ⊥;
(4) for some ¬p ∈ β, s(p) = >; or
(5) for some ?p ∈ β, P? ≺πψ Y .
Now, (1) contradicts (1†), since −v ≥ −m. (2) holding for some C ′ ∈ ℵ would contradict
(2†). And (5) contradicts (5†), since ?p ∈ β implies ?p ∈ β ? γ. Therefore, either (2) holds for
C ′ = C (i.e., [ψ]C − [ψ]A < y) or some instance(s) of (3) or (4) hold(s).

Suppose some instance(s) of (3) or (4) hold(s). For (3), if p ∈ β and s(p) = ⊥, then to
avoid contradicting (3†), we must have ?p ∈ β ? γ, which, by (5†), implies that ¬(P? ≺πψ Y).
We can assume Y and P ? are distinct because any occurrence of p in β could be removed by
(zqR0). Therefore, Y ≺πψ P? must hold. A similar argument applies to any occurrence of
¬p ∈ β that makes (4) hold. Thus, Y must precede any P? for which p or ¬p makes (3) or
(4) hold, respectively.

TIME 2018

14:12 Sound-and-Complete Algorithms for Checking the DC of CSTNU

Let s′ equal s, except that: if p ∈ β makes (3) hold, then s′(p) = >; and if ¬p ∈ β makes
(4) hold, then s′(p) = ⊥. Since σ satisfies the parent edge from Y to Z, one or more clauses
from Defn. 19 must hold for (ψ′, π′) = σ(s′, ω). By construction, (3) and (4) do not hold for
s′; thus, one of the following must hold:
(1′) [ψ′]Y ≥ −v;
(2′) for some C ′ ∈ Cℵ, [ψ′]C′ − [ψ′]A′ < y′; or
(5′) for some ?p ∈ β, P? ≺π′ψ′ Y .
Now (ψ, π) and (ψ′, π′) each determine a sequence of events that can be ordered, first by
execution time and, second, for simultaneous events, by order of dependence. Let t′ be the
earliest time at which the two sequences differ. By construction, it must be where some
[ψ]R? = [ψ′]R? = t′, but s(r) 6= s′(r). Furthermore, Y ≺πψ R? and, thus, by the definition
of t′, [ψ′]Y = [ψ]Y . But then (1†) implies that [ψ′]Y = [ψ]Y < −m ≤ −v, whence (1′) is
false. As for (5′), if ?q ∈ β (and hence ?q ∈ β ? γ) and Q? ≺π′ψ′ Y , then [ψ′]Q? ≤ t′, whence
[ψ′]Q? = [ψ]Q? and, thus, Q? ≺πψ Y , which contradicts (5†). Thus, (2′) must hold for some
C ′ ∈ Cℵ. Since σ is valid, and the contingent durations in ω did not change from (s, ω) to
(s′, ω), (2′) and (2) are equivalent. Thus, the only possibility is that (2) holds for C ′ = C

(i.e., [ψ]C − [ψ]A < y).
Next, suppose that [ψ]Y < [ψ]C . Let ω+ be the same as ω except that C −A = y. It is

not hard to check that in the drama (s′, ω+), conditions (1†)–(5†) all hold, but that none of
the conditions (1′)–(5′) can hold. (Changing to the situation ω+ removed the last possibility
(i.e., that C − A < y).) But that contradicts that σ satisfies the parent edge from Y to Z.
Thus, [ψ]Y ≥ [ψ]C .
Next, since σ satisfies the edge from A to Z, by Defn. 19, one of these must hold:
(1A) [ψ]A ≥ −w;
(2A) for some C ′ ∈ ℵ1, [ψ]C′ − [ψ]A′ < y′;
(3A) for some p ∈ γ, s(p) = ⊥;
(4A) for some ¬p ∈ γ, s(p) = >; or
(5A) for some ?p ∈ γ, P? ≺πψ A.
Now, (2†) contradicts (2A). And (5†) contradicts (5A). (We can assume that A and P?
are distinct since, otherwise, rule (zqR0) could have been used to remove any occurrence of
P? from γ.) And [ψ]A ≤ [ψ]C − x ≤ [ψ]Y − x < −m− x ≤ −w implies (1A) is false. (The
inequalities follow from σ being viable, from [ψ]C ≤ [ψ]Y , from (1†), and m = max{v, w−x}.)
Finally, any ?p making (5A) true yields [ψ]P? ≤ [ψ]A < [ψ]C ≤ [ψ]Y , whence P? ≺πψ Y ,
contradicting (5†). Thus, (3A) or (4A) must hold.

Now, suppose that some p makes both (3) and (3A) true. Then p ∈ β ? γ and s(p) = ⊥,
contradicting (3†). Thus, the letters that make (3) true, if any, must be distinct from the
letters that make (3A) true, if any. Similarly, the letters that make (4) true must be distinct
from those that make (4A) true. In addition, any p that makes (3) true requires s(p) = ⊥,
which implies that p cannot simultaneously make (4A) true; and any p that makes (4) true
cannot simultaneously make (3A) true. In short, the letters that make (3) or (4) true are
distinct from those that make (3A) or (4A) true. And, to avoid contradicting (3†) or (4†), for
any ±p that makes (3), (4), (3A) or (4A) true, ?p must be in β ? γ, whence (5†) yields that
Y must precede P? (i.e., Y ≺πψ P?).

So, let s′′ be the same as s′ except that if p makes either (3A) or (4A) true, then
s′′(p) 6= s′(p) = s(p). (Since s and s′ only differ on letters that make (3) or (4) true, and since
those letters are distinct from the letters making (3A) or (4A) true, s and s′ must agree on all
letters that make (3A) or (4A) true.) Let (ψ′′, π′′) = σ(s′′, ω). Let t′′ be the first time when the
events in (ψ′′, π′′) and (ψ, π) differ. Then for some U?, [ψ′′]U? = [ψ]U? = t′′ and s′′(u) 6= s(u);
and Y precedes U? in (ψ′′, π′′) and (ψ, π). Therefore, [ψ′′]Y = [ψ′]Y = [ψ]Y ≤ t′′ ≤ t′.

L. Hunsberger and R. Posenato 14:13

Since σ satisfies the edge from A to Z, one or more clauses from Defn. 19 must hold for
that edge. By construction, the only candidates are:
(1′′

A) [ψ′′]A ≥ −w;
(2′′

A) for some C ′ ∈ ℵ1, [ψ′′]C′ − [ψ′′]A′ < y′; or
(5′′

A) for some ?p ∈ γ, P? ≺π′′ψ′′ A.
Since all events occurring before time t′′ are executed identically by (ψ, π) and (ψ′′, π′′), (1A)
being false implies that (1′′A) must also be false, since [ψ]A < [ψ]Y ≤ t′′. Similarly, (2A) being
false implies that (2′′A) must also be false. Finally, if ?g ∈ γ makes (5′′A) true, that contradicts
(5†), since ?g ∈ β ? γ. Therefore, all cases lead to a contradiction. J

I Theorem 24. The rules from Table 3 are complete for π-DC checking for CSTNUs.

Proof. Let S be any CSTNU; let S∗ be the CSTNU obtained by fully propagating S using
the rules from Table 3; and suppose that no negative loop with a consistent p-label was found
and, thus, the DC-checking algorithm returned DC. Let S∗x be the AllMax CSTN obtained
by deleting all LC edges from S∗ and removing all UC a-labels from labeled values in S∗.
By construction, the AllMax CSTN must already be fully propagated. To see this, note that
ignoring the a-labels in the (zLp/Nc/Uc), zqR0 and zqR∗3 rules for CSTNUs from Table 3
reduces them to the LP, qR0 and qR∗3 rules for CSTNs from Table 2, respectively. Since no
negative loop with consistent p-label was found by the CSTNU DC-checking algorithm, none
exist in the AllMax CSTN; hence it too must be DC.

Construct the earliest-first strategy σ for S, as follows. Let α be the current partial scenario
(CPS), initially�; and let Tu be the unexecuted time-points, initially T \{Z}. For eachX ∈ Tu,
compute its effective lower bound: ELB(X) = max{δ | ∃(X ≥ δ, `) ∈ S∗x, appl(`, α)}.5 Let
(Λ, χ) be the first execution decision: “if nothing happens before time Λ, then execute the
time-points in χ”, where Λ = min{ELB(X) | X ∈ Tu}; and χ = {X ∈ Tu | ELB(X) = Λ} [9].
Case 1: No contingent time-point executes before time Λ. For each active contingent

link, (Ai, xi, yi, Ci), raise its lower bound to Λ − ai, where ai = [σ(s)]Ai
. This cannot

introduce any new constraints into S∗ or S∗x; thus, both are still DC. And, since no ELB
values have changed, (Λ, χ) is the earliest-first decision for the CSTN S∗x. Thus, inserting
the relevant execution constraints cannot introduce any negative loops into any relevant
STN projection [12]. Remove any executed time-points from Tu; update the CPS α to
include any new observations; and delete any labeled values that are inconsistent with
those observations.

Case 2: A contingent time-point C executes at some time t ≤ Λ. Update S∗, as fol-
lows. First, replace the labeled value 〈−y, C,�〉 on the original UC edge from C to
A with 〈−δ, �,�〉, where δ = t− [σ(s)]A is the observed duration for the link (A, x, y, C);
and replace the labeled value 〈x, c,�〉 on the original lower-case edge from A to C by
〈δ, �,�〉. The execution semantics ensures that δ ∈ [x, y]. Second, remove any labeled
value 〈w,ℵ, β〉 from S∗ for which C ∈ ℵ. Third, for each X ∈ Tu, insert a lower-bound
constraint, (X ≥ t, α). (Although ELB(X,α) ≥ Λ ≥ t, the ELB value could have been
due to a C-labeled edge which has since been removed.) Finally, fully propagate the
modified S∗ CSTNU.

Suppose a negative loop with consistent p-label is discovered in the modified S∗. Any
such loop must include the edge from A to C since, otherwise, nothing could prevent the

5 appl(`, α) holds if ` is applicable given the CPS α [14]. Formally, appl(`, α) holds if each p that appears
in both ` and α appears as p in both or as ¬p in both.

TIME 2018

14:14 Sound-and-Complete Algorithms for Checking the DC of CSTNU

Z

A C

X

a

δ

−
f

−t = −a− δ Z

A C

X

a

〈x, c〉

−
f

〈−t− ε, C〉
−a − x

Figure 2 A negative loop in the modified (left) and original (right) CSTNU S∗.

corresponding loop in the original S∗ from being generated, which would be even more
negative. First, consider the graphs shown in Fig. 2, where irrelevant details (e.g., p-labels)
have been omitted to improve clarity. The lower-bound X ≥ t = a + δ in the modified
S∗ generates a negative loop only if −f < 0. But that lower bound on X can only be
new/relevant if X’s original ELB value arose from a C-labeled edge as illustrated on the
righthand side, where −t − ε < −t. But then the (zLr) rule would have generated the
shaded labeled value in the figure, whence propagating backward from X to C to A to Z,
courtesy of the (zLp/Nc/Uc), (z!) and (zLc/Cc) rules, would have generated a loop of length
(−a− x) + (−f) + x+ a = −f < 0 in the original, a contradiction. The only other possibility
is if the path from C to Z in Fig. 2 included an occurrence of the (formerly UC) edge from
C to A. This case would require a negative path from C to C, which would have made the
original S∗ non-DC, a contradiction. Thus, the modified S∗ is necessarily DC. Compute
ELB values based on the updated and propagated S∗x graph and continue recursively.

The construction of the strategy will be complete (and the network still consistent) once
all time-points have been executed. J

6.1 Computational complexity
An upper bound for the computational complexity of Algorithm 2 can be derived by adapting
the original CSTN DC-checking algorithm complexity, while also considering the presence of
a-labels. The three CSTN rules may have to consider all possible combinations of a-labels
and q-labels. It is a matter of combinatoric operation to show that the complexity of such
rules dominates the final upper bound, O(M |T |23|P|2|L|), where M is the maximum absolute
value of any negative weight in the graph.

7 Empirical Evaluation

This section presents an empirical comparison of the performance of the two DC-checking
algorithms introduced in this paper. Alg1-DC-Ch is our implementation of Algorithm 1
(cf. Sect. 5), which converts CSTNUs to CSTNs; Alg2-DC-Ch is our implementation of
Algorithm 2 (cf. Sect. 6) which directly propagates CSTNU constraints. Both algorithms
were implemented in Java and executed on a JVM 8 on a Linux machine with an Intel(R)
Xeon(R) E5-2637 @ 3.5 GHz and 128GB of RAM. The source code is freely available [22].

For testing, we built benchmarks with a structure similar to those proposed in earlier
work [10] where each benchmark had DC CSTNs and non-DC CSTNs obtained from random
workflow schemata generated by the ATAPIS toolset [15], parametrized by the number of
activities, N , and the number of observations, |P|. Here, we created three benchmarks,
called B3, B4, and B5, each having 250 DC CSTNUs and 250 non-DC CSTNUs, obtained
from random workflow schemata with (1) N = 10; (2) |P| equal to 3, 4 and 5, for B3, B4,
and B5, respectively; and (3) representing activities as contingents links. Each benchmark
is a composite of five sub-benchmarks, each having 50 instances generated by fixing also
the number of parallel components in the generated workflow schemata. In particular, the

L. Hunsberger and R. Posenato 14:15

43 49 55 61 67

100

101

102

n

ex
ec
ut
io
n
ti
m
e

[s
]

Alg2-DC-Ch
Alg1-DC-Ch

(a) Benchmark B3 for DC instances.

43 49 55

101

102

103

B3

B4

B5

n

(b) Worst Case in B3, B4, and B5 for DC instances.

43 49 55 61 67

101

102

103

n

ex
ec
ut
io
n
ti
m
e

[s
]

Alg2-DC-Ch
Alg1-DC-Ch

(c) Benchmark B3 for non-DC instances.

43 49 55
102.3

103

103.3

B3
B4

B5

n

(d) Worst Case in B3, B4, and B5 for non-DC in-
stances.

Figure 3 Experimental evaluation, n = |T |.

maximum number of parallel components in a workflow was limited by the numbers of tasks
and observations. Since the maximum number of observations was 5, we decided to consider,
for each benchmark, 5 sub-benchmarks, each composed of CSTNU instances representing
workflows where the number of parallel components was fixed at 0, 1, 2, 3 or 4, respectively.

To conserve space, Figure 3a displays the average execution times of the two algorithms
over all five sub-benchmarks of B3 considering DC instances. Each data point has a vertical
error bar that represents a 95% confidence interval for the average execution time. With
more parallel components, a random workflow can have more observations in parallel and,
therefore, scenarios that are more independent of each other than scenarios that are nested.
The corresponding CSTNU instance may have more nodes, but it can be easier to solve, as
shown by the average execution times of the sub-benchmark in Figure 3a.

From the data in Figure 3a, and the results for benchmarks B4 and B5, it emerges that the
most difficult instances are related to workflow schemata having no parallel connectors (i.e.,
instances belonging to the first sub-benchmark of each main benchmark). Therefore, Figure 3b
reports only the average execution times obtained from instances of first sub-benchmark of
B3, B4, and B5, respectively.

Figure 3c and Figure 3d show the results obtained when instances are non-DC. The two
algorithms exhibit a worse performance checking non-DC instances than checking DC ones.
In details, each algorithm require an average execution time that, at most, can be 8 times
greater than the average execution time required for checking positive instances having the
same order. We verified that such worse behavior is due to the fact that some instances have
a similar configuration where a negative cycle emerge only after many iterations between
lower bound and the global upper bound. We are investigating if it is possible to detect such
configuration in advance in order to speed up the convergence.

However, Figure 3 demonstrates that Algorithm Alg1-DC-Ch tends to perform better,
but the difference is not statistically significant.

TIME 2018

14:16 Sound-and-Complete Algorithms for Checking the DC of CSTNU

8 Conclusions

This paper presented the first practical, sound-and-complete DC-checking algorithms for
CSTNUs. The first algorithm converts an input CSTNU into a DC-equivalent CSTN, then
runs an existing CSTN algorithm. The second directly propagates CSTNU constraints, using
new rules that ensure completeness. An empirical evaluation demonstrated their practicality
across a variety of benchmarks. Future work aims to determine whether adding new rules
can speed up the algorithms.

References

1 Massimo Cairo, Carlo Comin, and Romeo Rizzi. Instantaneous reaction-time in dynamic-
consistency checking of conditional simple temporal networks. In 23rd International Sym-
posium on Temporal Representation and Reasoning (TIME 2016), pages 80–89, 2016.
doi:10.1109/TIME.2016.16.

2 Massimo Cairo, Luke Hunsberger, Roberto Posenato, and Romeo Rizzi. A Streamlined
Model of Conditional Simple Temporal Networks - Semantics and Equivalence Results. In
24th International Symposium on Temporal Representation and Reasoning (TIME 2017),
volume 90 of LIPIcs, pages 10:1–10:19, 2017. doi:10.4230/LIPIcs.TIME.2017.10.

3 Massimo Cairo and Romeo Rizzi. Dynamic Controllability Made Simple. In 24th Interna-
tional Symposium on Temporal Representation and Reasoning (TIME 2017), volume 90 of
LIPIcs, pages 8:1–8:16, 2017. doi:10.4230/LIPIcs.TIME.2017.8.

4 Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato, and Marco
Roveri. Dynamic controllability via timed game automata. Acta Informatica, 53(6–8):681–
722, 2016. doi:10.1007/s00236-016-0257-2.

5 Carlo Combi, Luke Hunsberger, and Roberto Posenato. An algorithm for checking the
dynamic controllability of a conditional simple temporal network with uncertainty. In 5th
International Conference on Agents and Artificial Intelligence (ICAART-2013), volume 2,
pages 144–156, 2013. doi:10.5220/0004256101440156.

6 Carlo Combi, Luke Hunsberger, and Roberto Posenato. An algorithm for checking the dy-
namic controllability of a conditional simple temporal network with uncertainty - revisited.
In Agents and Artificial Intelligence, volume 449 of CCIS, pages 314–331. Springer, 2014.
doi:10.1007/978-3-662-44440-5_19.

7 Carlo Combi and Roberto Posenato. Towards temporal controllabilities for workflow
schemata. In 17th International Symposium on Temporal Representation and Reasoning
(TIME 2010), pages 129–136. IEEE Comp. Soc., 2010. doi:10.1109/TIME.2010.17.

8 Carlo Comin and Romeo Rizzi. Dynamic consistency of conditional simple temporal net-
works via mean payoff games: a singly-exponential time dc-checking. In 22st International
Symposium on Temporal Representation and Reasoning (TIME 2015), pages 19–28, 2015.
doi:10.1109/TIME.2015.18.

9 Luke Hunsberger. Efficient execution of dynamically controllable simple temporal
networks with uncertainty. Acta Informatica, 53(2):89–147, 2015. doi:10.1007/
s00236-015-0227-0.

10 Luke Hunsberger and Roberto Posenato. Checking the Dynamic Consistency of Conditional
Temporal Networks with Bounded Reaction Times. In 26th International Conference on
Automated Planning and Scheduling, ICAPS 2016, pages 175–183, 2016. URL: http://
www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108.

11 Luke Hunsberger and Roberto Posenato. A new approach to checking the dynamic
consistency of conditional simple temporal networks. In 22nd International Conference

http://dx.doi.org/10.1109/TIME.2016.16
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.10
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.8
http://dx.doi.org/10.1007/s00236-016-0257-2
http://dx.doi.org/10.5220/0004256101440156
http://dx.doi.org/10.1007/978-3-662-44440-5_19
http://dx.doi.org/10.1109/TIME.2010.17
http://dx.doi.org/10.1109/TIME.2015.18
http://dx.doi.org/10.1007/s00236-015-0227-0
http://dx.doi.org/10.1007/s00236-015-0227-0
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108

L. Hunsberger and R. Posenato 14:17

on Principles and Practice of Constraint Programming, CP 2016, pages 268–286, 2016.
doi:10.1007/978-3-319-44953-1_18.

12 Luke Hunsberger and Roberto Posenato. Simpler and faster algorithm for checking the
dynamic consistency of conditional simple temporal networks. In 26th International Joint
Conference on Artificial Intelligence, IJCAI-18, pages 1324–1330, 2018. doi:10.24963/
ijcai.2018/184.

13 Luke Hunsberger, Roberto Posenato, and Carlo Combi. The Dynamic Controllability of
Conditional STNs with Uncertainty. In PlanEx at ICAPS 2012, pages 1–8, 2012.

14 Luke Hunsberger, Roberto Posenato, and Carlo Combi. A sound-and-complete propagation-
based algorithm for checking the dynamic consistency of conditional simple temporal
networks. In 22nd International Symposium on Temporal Representation and Reasoning
(TIME 2015), pages 4–18, 2015. doi:10.1109/TIME.2015.26.

15 Andreas Lanz and Manfred Reichert. Enabling time-aware process support with the atapis
toolset. In BPM Demo Sessions 2014, volume 1295 of CEUR Workshop Proceedings, pages
41–45, 2014.

16 Richard Lenz and Manfred Reichert. It support for healthcare processes - premises, chal-
lenges, perspectives. Data Knowl. Eng., 61(1):39–58, 2007. doi:10.1016/j.datak.2006.
04.007.

17 Dian Liu, Hongwei Wang, Chao Qi, Peng Zhao, and Jian Wang. Hierarchical task network-
based emergency task planning with incomplete information, concurrency and uncertain
duration. Knowledge-Based Systems, 112:67–79, 2016. doi:10.1016/j.knosys.2016.08.
029.

18 Paul Morris. A structural characterization of temporal dynamic controllability. In CP 2006,
volume 4204, pages 375–389, 2006. doi:10.1007/11889205_28.

19 Paul Morris. Dynamic controllability and dispatchability relationships. In Integration of
AI and OR Techniques in Constraint Programming, volume 8451 of LNCS, pages 464–479.
Springer, 2014.

20 Paul H. Morris and Nicola Muscettola. Temporal dynamic controllability revisited. In
AAAI-05/IAAI-05, pages 1193–1198, 2005.

21 Paul H. Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with
temporal uncertainty. In IJCAI 2001, pages 494–502, 2001.

22 Roberto Posenato. The CSTNU toolset. version 1.23. http://profs.scienze.univr.it/
~posenato/software/cstnu, 2018.

23 Ioannis Tsamardinos, Thierry Vidal, and Martha E. Pollack. CTP: A new constraint-
based formalism for conditional, temporal planning. Constraints, 8:365–388, 2003. doi:
10.1023/A:1025894003623.

TIME 2018

http://dx.doi.org/10.1007/978-3-319-44953-1_18
http://dx.doi.org/10.24963/ijcai.2018/184
http://dx.doi.org/10.24963/ijcai.2018/184
http://dx.doi.org/10.1109/TIME.2015.26
http://dx.doi.org/10.1016/j.datak.2006.04.007
http://dx.doi.org/10.1016/j.datak.2006.04.007
http://dx.doi.org/10.1016/j.knosys.2016.08.029
http://dx.doi.org/10.1016/j.knosys.2016.08.029
http://dx.doi.org/10.1007/11889205_28
http://profs.scienze.univr.it/~posenato/software/cstnu
http://profs.scienze.univr.it/~posenato/software/cstnu
http://dx.doi.org/10.1023/A:1025894003623
http://dx.doi.org/10.1023/A:1025894003623

	Introduction
	Conditional STNs with Uncertainty (CSTNUs)
	Dynamic Controllability for CSTNUs
	Execution strategies

	DC-Checking for STNUs and CSTNs
	DC checking for STNUs
	pi-DC checking for CSTNs

	Algorithm 1: Reducing CSTNU-DC to CSTN-DC
	Algorithm 2: Propagating in the CSTNU
	Computational complexity

	Empirical Evaluation
	Conclusions

