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Abstract
In timeline-based planning, domains are described as sets of independent, but interacting, compo-
nents, whose behaviour over time (the set of timelines) is governed by a set of temporal constraints.
A distinguishing feature of timeline-based planning systems is the ability to integrate planning
with execution by synthesising control strategies for flexible plans. However, flexible plans can
only represent temporal uncertainty, while more complex forms of nondeterminism are needed to
deal with a wider range of realistic problems. In this paper, we propose a novel game-theoretic
approach to timeline-based planning problems, generalising the state of the art while uniformly
handling temporal uncertainty and nondeterminism. We define a general concept of timeline-
based game and we show that the notion of winning strategy for these games is strictly more
general than that of control strategy for dynamically controllable flexible plans. Moreover, we
show that the problem of establishing the existence of such winning strategies is decidable using
a doubly exponential amount of space.
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13:2 A Game-Theoretic Approach to Timeline-Based Planning with Uncertainty

1 Introduction

In the timeline-based approach to planning [21], the world is modelled as a set of independent,
but interacting, components, whose behaviour over time, the timelines, is governed by a
set of temporal constraints. This approach differs from the classical action-based planning,
relying on PDDL [13], for its more declarative nature and its focus on temporal reasoning
(see, e.g. [9, 11, 14, 15, 16, 21]). Timeline-based systems have been successfully deployed in a
number of complex scenarios, ranging from space operations [3, 7, 21] to manufacturing [5, 24].
An important feature of timeline-based planning systems is their ability to integrate planning
with execution by means of flexible plans, which represent envelopes of possible solutions that
differ in the execution times and/or the duration of tasks. Flexible plans allow the controller
to handle the temporal uncertainty involved in dealing with partially controllable elements
and the external environment. Cialdea Mayer et al. [9] rigorously defined the concept of
timeline-based planning specification as well as dynamically controllable flexible plans, which
can be executed guaranteeing to satisfy the problem constraints while reactively handling any
temporal uncertainty in the uncontrollable behaviour. A technique for synthesising dynamic
control strategies is shown in [8].

Other forms of uncertainty, such as nondeterminism (i.e., which tasks the environment
chooses to perform), are not supported: even for external variables, completely controlled
by the environment, their evolution is known up to temporal uncertainty only. This choice
to focus on temporal reasoning and temporal uncertainty is coherent with the history and
scope of timeline-based systems. However, it is not completely reflected into the grammar of
modelling languages used in timeline-based systems, which are expressive enough to model
complex scenarios that require the system to handle non-temporal nondeterminism. In such
cases, current systems often employ a re-planning stage as part of their execution cycle
(see, e.g. [24]): any mismatch between the expected and actual behaviours of the environment
results into a revision of the flexible plan, which then can resume execution. Unfortunately,
the cost of such a re-planning phase may be incompatible with the requirements of real-time
execution and, more importantly, if a wrong choice is made by the original flexible plan, the
re-planning might happen too late to be able to recover a controllable state of the system.
Hence, knowledge engineers have to explicitly account for this problem if they want to avoid
unnecessary failures and costly re-planning during execution, which make the system less
effective and more complex to use.

Nondeterministic planning issues have been extensively investigated within the action-
based planning framework following different approaches such as, for instance, reactive
planning systems [4], deductive planning [23], POMDP [18], and model checking [12].
More recently, fully observable nondeterministic (FOND) planning problems have been
addressed [19, 20] also considering temporally extended goals [6, 22]. However, action-based
planning does not support flexible plans and temporal uncertainty, and it does not take
into account controllability issues. Recently, SMT-based techniques have been exploited
to deal with uncontrollable durations in strong temporal planning [10]; however, dynamic
controllability issues are not addressed.

This paper defines the novel concept of timeline-based planning game, a game-theoretic
generalisation of the timeline-based planning problem with uncertainty, which uniformly
treats both temporal uncertainty and general nondeterminism. In these games, the controller
tries to satisfy the given temporal constraints no matter what the choices of the environment
are. We compare the proposed games with the current approaches based on flexible plans.
In particular, we show how current timeline-based modelling languages can express problems
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that, only seeming to involve temporal uncertainty at first, in fact model scenarios which
would require the controller to handle non-temporal nondeterminism. We show that these
problems do not admit dynamically controllable flexible plans (as defined in [9]), but do
admit winning strategies when seen as instances of timeline-based games. A study of the
decidability and complexity of the problem of establishing the existence of a winning strategy
for a given timeline-based planning game concludes the paper.

The paper is structured as follows. Section 2 briefly recaps the basic definitions, and
Section 3 discusses the limitations of the approach employed in state-of-the-art timeline-
based planning systems. Then, Section 4 defines timeline-based planning games, and shows
its greater generality with respect to the current approach. Finally, Section 5 addresses
decidability and complexity issues. Section 6 concludes discussing future developments.

2 Timeline-based planning

This section introduces timeline-based planning and describes the state of the art of the
field with regards to how uncertainty is handled by current timeline-based systems. As a
representative of the modelling languages used by existing systems, we chose the formal
language introduced in [9]. We first introduce the basic concepts of the framework, without
considering uncertainty, as studied in [15, 16]; then, we add uncertainty to the picture and
discuss how it is handled by current systems.

2.1 Basic definitions
State variables are the basic building blocks of the timeline-based planning framework.

I Definition 1 (State variables). A state variable is a tuple x = (Vx, Tx, Dx, γx), where:
Vx is the finite domain of the variable;
Tx : Vx → 2Vx is the value transition function, which maps each value v ∈ Vx to the set
of values that can follow it;
Dx : Vx → N+×(N+∪{+∞}) is a function that maps each v ∈ Vx to the pair (dx=v

min, d
x=v
max)

of the minimum and maximum duration of any interval over which x = v;
γx : Vx → {c, u} is a function called controllability tag (see Section 2.2).

Which value is taken by a state variable over a specified time interval is described by
means of tokens. The behaviour of a state variable over time is modelled by a finite sequence
of tokens, called a timeline.

I Definition 2 (Timelines). A token for x is a tuple τ = (x, v, d), where x is a state variable,
v ∈ Vx is the value held by the variable, and d ∈ N+ is the duration of the token. A timeline
for a state variable x = (Vx, Tx, Dx, γx) is a finite sequence T = 〈τ1, . . . , τk〉 of tokens for x.

For any token τi = (x, vi, di) in a timeline T = 〈τ1, . . . , τk〉 we can define the functions
start-time(T, i) =

∑i−1
j=1 dj and end-time(T, i) = start-time(T, i) + di, hence mapping each

token to the corresponding time interval [start-time, end-time) (right extremum excluded). As
an example, the time interval associated with the token τ1 = (x, 2, 5) is [0, 5). When there is no
ambiguity, we write start-time(τi) and end-time(τi) to denote, respectively, start-time(T, i) and
end-time(T, i). The horizon of a timeline T = 〈τ1, . . . , τk〉 is defined as H(T) = end-time(τk).
A timeline T can be empty, in which case we define its horizon as H(T) = 0.

TIME 2018
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The problem domain and the goal are modelled by a set of temporal constraints, called
synchronisation rules. For the sake of space, we do not provide a detailed account of their
syntax. Informally, each synchronisation rule has the following form:

rule := a0[x0 = v0] −→ E1 ∨ E2 ∨ . . . ∨ Ek, with

Ei := ∃a1[x1 = v1]a2[x2 = v2] . . . an[xn = vn] . C

where x0, . . . , xn are state variables and v0, . . . , vn are values, with vi ∈ Vxi
for all i. Each rule

thus consists of a trigger (a[x0 = v0]) and a disjunction of existential statements. It is satisfied
if for each token satisfying the trigger, at least one of the disjuncts is satisfied. The trigger
can be empty (T), in which case the rule is said to be triggerless and asks for the satisfaction
of the body without any precondition. Each existential statement requires the existence of
some tokens such that the clause C is satisfied. The clause is in turn a conjunction of atoms,
that is, atomic relations between endpoints of the quantified tokens, of the form a ≤e1,e2

[l,u] b,
where a and b are token names, e1, e2 ∈ {s, e}, l ∈ N, and u ∈ N ∪ {+∞}. Intuitively, each
atom relates the start (s) or end (e) of the two tokens, and l and u are respectively a lower and
upper bound to the distance between the two endpoints. Pointwise atoms relating a single
endpoint with a specific point in time are also possible, e.g., a ≤s

[l,u] t. An atom a ≤e1,e2
[l,u] b

is bounded if u 6= +∞, and unbounded otherwise. With these basic atomic relations, one
can express all the Allen’s relations over time intervals [1]. As an example, one can define
ameets b as a ≤e,s

[0,0] b, or a during b as a ≤s,s
[0,+∞] b∧ b ≤

e,e
[0,+∞] a. Moreover, one can constrain

the duration of tokens, e.g., writing duration(a) = k or duration(a) ≥ k as a shorthand for,
respectively, a ≤s,e

[k,k] a and a ≤s,e
[k,+∞] a. Moreover, disjunctions in synchronisation rules

allows one to express some forms of conditional (if/then/else) statements.
In the simplest setting, a timeline-based planning problem consists of a set of state

variables and a set of rules that represent the problem domain and the goal. A solution to
such a problem is simply a set of timelines that satisfy the rules.

I Definition 3 (Timeline-based planning problem). A timeline-based planning problem is a
pair P = (SV , S), where SV is a set of state variables and S is a set of synchronisation rules
over SV .

I Definition 4 (Solution plan). A scheduled solution plan for a problem P = (SV , S) is a set
Γ of scheduled timelines, one for each x ∈ SV , such that vi+1 ∈ Tx(vi) and dx=v

min ≤ di ≤ dx=v
max

for all tokens τi = (xi, vi, di) ∈ Tx, and all the rules in S are satisfied.

Note that the controllability tags γx of state variables are ignored in Definition 4, as it only
considers the problem of satisfying the synchronisation rules and the issues arising from the
execution of the plan are not considered. Even without considering any form of uncertainty,
timeline-based planning is already quite a hard problem. Indeed, we know from [16] that the
problem of deciding whether there exists a solution plan for a given timeline-based planning
problem is EXPSPACE-complete.

As an example, consider Figure 1, which shows a possible solution for a problem with two
state variables, xcam and xdir, that respectively represent the on/off state of a camera and its
direction. The transition function Txdir of the second variable is such that the camera can
only stay still or move counterclockwise, that is, Txdir (←) = {←, ↓}. The first rule states the
system requirement that the camera must remain switched off at least four time steps after
each use, to let the components cool down. The objective of the system is that of performing
some shoots of a given duration, provided the camera is pointed in the right direction: a
shoot downwards lasting two time steps, and a shoot toward left lasting three time steps, in
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a[xcam = on] −→ ∃b[xcam = off] . ameets b ∧ duration(b) ≥ 4
> −→ ∃a[xcam = on] b[xdir = ↓] . duration(a) = 2 ∧ a during b
> −→ ∃a[xcam = on] b[xdir =←] . duration(a) = 3 ∧ a during b
> −→ ∃a[xdir = ↑] . a =s 0

xcam

xdir

on on

↑ ← ↓ → ↑ ←

off off

Figure 1 An example of timeline-based planning problem. Two state variables are used to
represent the on/off state of a camera xcam and its pointing direction xdir. The transition function of
xdir forces the camera to only move counterclockwise.

an arbitrary order. This objective is encoded by the second and third synchronisation rules,
which are triggerless. The last rule expresses the fact that the camera is initially pointed
upwards.

2.2 Timeline-based planning with uncertainty
A distinguishing feature of existing timeline-based planning systems is their ability to
integrate planning and execution, accounting for the unavoidable uncertainty that comes
from the interaction with the environment where the plan is executed. We now recall how
timeline-based planning problems with uncertainty are defined in [9].

Two different sources of uncertainty can be represented by this model. The first comes
from external variables, which are completely under the control of the environment, in
contrast to controlled variables (also called planned variables), which are dealt with the
system. The planner is not allowed to decide anything regarding the behaviour of external
variables. The second is the duration of uncontrollable tokens. The controllability tag γx,
associated with each state variable x, states whether a token where x = v is controllable
(γx(v) = c) or uncontrollable (γx(v) = u). The execution of uncontrollable tokens is planned
and performed by the system, but their duration cannot be known in advance, e.g., one may
go shopping without knowing how much time he/she will have to wait at the counter. In
both cases, only temporal uncertainty is considered in the current approach.

To deal with the uncertainty inherent in the execution of the plan, timeline-based planning
systems make use of the concept of flexible timeline.

I Definition 5 (Flexible timeline). A flexible token is a tuple τ = (x, v, [e, e′], [d, d′]), where x
is a state variable, v ∈ Vx, [e, e′] ∈ N× N is the interval of possible token end times3, and
[d, d′] ∈ N+ × N+ is the interval of possible token durations.

A flexible timeline for a state variable x = (Vx, Tx, Dx, γx) is a finite sequence Tx =
〈τ1, . . . , τk〉 of flexible tokens for x where [e1, e

′
1] = [d1, d

′
1], and [ei, e

′
i] ⊆ [ei−1 + di, e

′
i−1 + d′i]

for all 1 < i ≤ k.

A flexible timeline represents a set of different timelines which differ in the precise timings
of the described events. Tokens, timelines, and plans will also be referred as scheduled tokens,
timelines and plans, to better differentiate them from flexible ones. A scheduled timeline

3 Flexible tokens report their end times rather than their start times because in this way a flexible timeline
can precisely constrain its horizon.

TIME 2018
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T = 〈τ1, . . . , τk〉 is an instance of a flexible timeline T′ = 〈τ ′1, . . . , τ ′k〉 if for each τi = (x, v, d)
and τ ′i = (x′, v′, [e, e′], [d, d′]), we have x = x′, v = v′, d ∈ [d, d′], and end-time(τi) ∈ [e, e′].

Flexibility can be naturally lifted from timelines to plans. The notion of flexible plan is
formally defined as follows.

I Definition 6 (Flexible plan). A flexible plan over a set of state variables SV is a pair
Π = (Γ,R), where Γ is a set of flexible timelines, exactly one for each x ∈ SV , and R is a set
of atoms over the tokens occurring in Γ.

Given a flexible plan Π = (Γ,R), a scheduled plan Γ′ is an instance of Π if the timelines
in Γ′ are instances of those in Γ, and they satisfy the atoms in R.

A flexible plan can be viewed as a tentative set of solutions to a planning problem where
the precise timing of execution and the duration of tokens are chosen during execution. The
set of atoms that comes together with the set of flexible timelines allow the plan to specify
additional constraints over the tokens that compose the timelines. Flexible plans can in
particular be used to describe the expected behaviour of external variables, of which one may
know the future evolution only up to some temporal uncertainty. It is worth pointing out
that a flexible plan is unconditional, i.e., a single plan is committed to a specific sequence of
state variable values, and the only freedom left concerns token durations.

A timeline-based planning problem with uncertainty is formally defined as follows.

I Definition 7 (Timeline-based planning problem with uncertainty). A timeline-based planning
problem with uncertainty is a tuple P = (SV C ,SV E , S,O), where:

SV C and SV E are the sets of, respectively, the controlled and the external variables;
S is a set of synchronisation rules over SV C ∪ SV E ;
the observation O = (ΓE ,RE) is a flexible plan over SV E specifying the behaviour of
external variables.

Definition 7 differs from Definition 3 in two main respects: it splits the set of variables
into controlled and external ones and it includes a flexible plan describing the temporally
uncertain behaviour of external variables.

To solve the problem, one has to find a set of flexible timelines for the controlled variables
such that the rules can be satisfied by a suitable set of instances.

I Definition 8 (Flexible solution plan). Let P = (SV C ,SV E , S,O), with O = (ΓE ,RE)
be a timeline-based planning problem with uncertainty. A flexible plan Π = (Γ,R) over
SV C ∪ SV E is a flexible solution plan for P if:
1. Π agrees with O, that is, ΓE ⊆ Γ and RE ⊆ R;
2. the plan does not restrict the duration of uncontrollable tokens, that is, for any T ∈ Γ

and any token τ = (x, v, [e, e′], [d, d′]) ∈ T, if γx(v) = u, then d = dx=v
min and d′ = dx=v

max;
3. any instance of Γ is a scheduled solution plan for the timeline-based planning problem

P ′ = (SV C ∪ SV E , S), and there exists at least one such instance.

Note that, despite the name, which is borrowed from [9], the observation O is rather
an a priori description of the environment behaviour, which is supposed to be completely
known up to the given temporal uncertainty. Usual definitions of planning problems involve
the specification of a maximum bound on the horizon of the solution plans. For the sake of
generality, we omit this parameter, as it can be expressed by suitable synchronisation rules.

According to Item 3 of Definition 8, any instance of a flexible plan satisfies the syn-
chronisation rules of the problem. However, there is no guarantee that one such instance
exists for each possible instance of the external timelines. In other words, Definition 8 does
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not guarantee that a flexible solution plan can be executed in any possible scenario. Thus,
a control strategy is needed to determine how to schedule controllable tasks. Because of
space concerns, we cannot present all the details of the definition of control strategy, which
is thoroughly illustrated in [9]. Informally, it can be thought of as a function σ which
chooses how to schedule the start time of tokens for controlled variables, and the end time
of controllable tokens, during execution. A flexible solution plan Π is said to be weakly
controllable if for each possible schedule of tokens for external variables and of uncontrollable
tokens, there is a control strategy σ such that following σ during execution results into an
instance of Π. It is said to be strongly controllable if, conversely, a single control strategy
σ exists which results into an instance of Π whatever the schedule of the endpoints under
its control by the environment is. Finally, it is said to be dynamically controllable if the
controlled endpoints can be scheduled by taking into account, at any given time, only the
past history of the execution in such a way that an instance of Π is obtained. Given its
generality and wider applicability, dynamic controllability is definitely the most interesting
form of controllability. Notice that these concepts, whose definition in the context of flexible
plans for timeline-based planning is given in [9], have analogous counterparts in the context
of temporal networks [25].

Timeline-based systems which aim at handling both planning and execution cannot simply
produce flexible plans, but have to ensure a chosen degree of controllability of the produced
plans. As an example, the PLATINUm system [24] employs a two-phase process where a
flexible plan is first produced and then checked for the existence of a dynamic control strategy.
Dynamic controllability of a flexible plan can be checked, for instance, via a reduction to
timed game automata [8]. Since uncontrollable flexible plans are not suitable to be executed,
the problem is considered to be solved only when a dynamically controllable flexible solution
plan is found, together with its dynamic control strategy.

3 Limitations of the current approach

The focus of timeline-based systems on temporal reasoning and temporal uncertainty clearly
emerges from the previous section. This focus has its roots in the history of the paradigm
and the typical application scenarios where timeline-based systems have been employed. The
exclusive focus on temporal uncertainty is especially evident in the treatment of external
variables: their behaviour is supposed to be completely known excepting only the precise
timing of specific events. Consider, for example, a satellite in orbit doing some measurements
and transmitting the results back to Earth. In such a domain, external variables might
be used to represent visibility windows where the different ground stations can be reached
by the satellite. The precise timing of those windows is uncertain, but everything else is
known (even months) in advance. Nevertheless, to handle the case of a mismatch between
the expected and the observed behaviour of the environment, systems such as PLATINUm
employ a feedback loop where a failure manager is in charge of triggering, if needed, a
re-planning (or plan repair) phase, which should produce a new flexible plan, with a suitable
control strategy, taking into account the newly acquired observations (the name of the O
component in Definition 7 comes from this scenario).

In contrast to domains as the above one, other applications might require to re-plan more
frequently. As an example, in robotics scenarios such as those discussed in [24], where the
planned system interacts with a human agent, one cannot hope to represent with temporal
uncertainty alone all the possible variability of the behaviour of the external environment.
In these scenarios, most often re-plans get triggered to handle the unpredicted outcomes

TIME 2018
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of generally nondeterministic choices that the external agents can make, rather than to fix
problems in the domain model. This observation motivates us in proposing an interpretation
of timeline-based problems that is able to handle both temporal uncertainty and general
nondeterminism, extending and generalising the current approach based on flexible plans.

As a matter of fact, it turns out that the domain description languages commonly in
use, here exemplified by the formal syntax defined in Section 2, can easily express scenarios
where the need to handle general nondeterminism arise in problems which apparently only
involved temporal uncertainty. To see how this may happen, consider a simple timeline-based
planning problem with uncertainty P = (SV C ,SV E , S,O), with a single state variable x,
with Vx = {v1, v2, v3}, SV E = ∅, and S consisting of the following synchronisation rules:

a[x = v1] −→ ∃b[x = v2] . a ≤e,s
[0,0] b ∧ a ≤

s,e
[0,5] a ∨ ∃c[x = v3] . a ≤e,s

[0,0] c ∧ a ≤
s,e
[6,10] a

> −→ ∃a[x = v1] . a =s 0

Suppose that Dx(v) = [1, 10] for all v ∈ Vx, and that γx(v1) = u and γx(v2) = γx(v3) = c,
that is, tokens where x = v1 are uncontrollable. The rules require the execution to start with
a token where x = v1, followed by a token where either x = v2 or x = v3 depending on the
duration of the first token. This scenario is, intuitively, trivial to control. The system must
execute x = v1 as a first token due to the second rule. Then, the environment controls its
duration, and the system simply has to wait for the token to end, and then execute either
x = v2 or x = v3 depending on how long the first token lasted. However, there are no flexible
plans that represent this simple strategy, since each given plan must fix the value of every
token in advance. To guarantee the satisfaction of the rules, the choice of which value to
assign to x on the second token must be made during the execution, but this is not possible
because of the exclusively sequential nature of flexible plans. In this case, therefore, the
problem would be considered as unsolvable, even if the goals stated by the rules seem simple
to achieve.

The issues discussed here come from the lack of a proper support for general nondetermin-
ism in the framework of flexible plans. However, the last example shows that this is not just a
missing feature of current systems, but rather a class of scenarios that can be easily modelled
by (the syntax of) timeline-based description languages but whose solutions are not captured
by the commonly considered semantics. The timeline-based planning games defined in the
next section provide a clean way to express the solution to this kind of scenario, providing a
semantics to timeline-based planning problems with uncertainty capable of modelling both
temporal uncertainty and general nondeterminism in a uniform way. Moreover, they handle
the external variables in the most general way, without assuming any a priori knowledge of
their future behaviour.

4 Timeline-based planning games

Let us now introduce timeline-based planning games. They generalise dynamic control
strategies for flexible plans while suitably handling the limitations discussed in Section 3.

I Definition 9 (Timeline-based planning game). A timeline-based planning game is a tuple
G = (SV C ,SV E ,S,D), where SV C and SV E are the sets of, respectively, the controlled
and the external variables, and S and D are two sets of synchronisation rules, respectively
called system and domain rules, involving variables from both SV C and SV E .

Intuitively, a timeline-based planning game G = (SV C ,SV E ,S,D) is a turn-based, two-
player game played by the controller, Charlie, and the environment, Eve. By playing the
game, the players progressively build the timelines of a scheduled plan (see Definition 4). At
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(a)

x

y

0

0

1

1

3

3

2

2

τ1

τ2

now

(b)

x

y

0

0

1

1

3

3

2

2

τ1

τ2 τ3

now

(c)

x

y

0

0

1

1

2

2

3

3

τ1

τ2 τ3

now

Figure 2 Examples of partial plans: (a) two tokens for variables x and y where end-time(τ1) =
end-time(τ2) = 2 and now = 2; (b) end-time(τ1) = 2, end-time(τ2) = 1, while τ3 continues; (c)
incorrect partial plan, because τ3 continues over the end of τ1 and a successor for τ1 is unspecified.

each round, each player makes a move deciding which tokens to start and/or to stop and
at which time. Both players are constrained by the set D of domain rules, which describe
the basic rules governing the world. Domain rules replace and generalise the observation
O of Definition 7, allowing one to freely model the interaction between the system and
the environment. They are not intended to be Eve’s (or Charlie’s) goals, but, rather, a
background knowledge about the world that can be assumed to hold at any time. Since
neither player can violate D, the strategy of each player may safely assume the validity
of such rules. In addition, Charlie is responsible for satisfying the set S of system rules,
which describe the rules governing the controlled system, including its goals. Charlie wins
if, assuming Eve behaves according to the domain rules, he manages to construct a plan
satisfying the system rules. In contrast, Eve wins if, while satisfying the domain rules, she
prevents Charlie from winning, either by forcing him to violate some system rule, or by
indefinitely postponing the fulfilment of his goals.

Let us now formally describe the way in which a play of a (timeline-based) planning game
evolves. First of all, we observe that at any given time during the play, the plan will be
partially built, waiting for some tokens to be completed. A partial plan is a plan where the
last token on each timeline may be unfinished (open token). A timeline whose last token is
open is called an open timeline.

I Definition 10 (Open timeline). Let G = (SVC , SVE ,S,D) be a planning game and let
SV = SVC ∪ SVE . An open token for G is a pair τ = (x, v), where x ∈ SV and v ∈ Vx.
An open timeline for x ∈ SV is a non-empty finite sequence of tokens T = 〈τ1, . . . , τk−1, τk〉,
where 〈τ1, . . . , τk−1〉 is a scheduled timeline for x and τk = (x, vk) is an open token.

We will refer to tokens and timelines as defined in Definition 2 as closed tokens and closed
timelines, respectively. In an open timeline T = 〈τ1, . . . , τk〉, only start-time(τk) is defined for
its last open token τk: start-time(τ0) = 0 and start-time(τi) = end-time(τi−1) for i > 1. Recall
that H(T) for a closed timeline is the end-time of its last token and that H(T) = 0 for empty
timelines. For an open timeline T = 〈τ1, . . . , τk−1, τk〉, we define its horizon as the end-time
of its last closed token, i.e., H(T) = end-time(τk−1) (which is equal to start-time(τk)).

I Definition 11 (Partial plan). Let G = (SVC , SVE ,S,D) be a planning game and let
SV = SVC ∪ SVE . A partial plan for G is a pair Π = (Γ, now), where Γ is a set of timelines,
either open or closed, one for each x ∈ SV , and now ∈ N is the current time, such that:
1. H(T) < now for any open timeline T ∈ Γ;
2. H(T) = now for any closed timeline T ∈ Γ;

For a partial plan Π = (Γ, now), we write T ∈ Π to mean T ∈ Γ, and we define
H(Π) = maxT∈ΠH(T) and now(Π) = now. The set of all possible partial plans for a given
game G is denoted as ΠG, or simply Π where G is understood.
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Definition 11 implies that time cannot advance after the end of a token without specifying
its successor, and ensures that the partial plan has been built only up to now. Figure 2
shows an example of invalid partial plan where a token continues after the end of another
and the successor of the latter is not specified, forming an invalid gap in the description of
the timelines. It also implies that if any empty, thus closed, timeline is present, then all
timelines are empty. Thus, a unique well-defined empty partial plan exists, which we will
denote by Π∅, with all empty timelines and now(Π∅) = 0.

Players incrementally build a partial plan by extending the initially empty partial plan
Π∅. This is done by means of actions that specify which tokens to start and/or end.

I Definition 12 (Action). Let G = (SV C ,SV E ,S,D) be a planning game and let SV =
SVC ∪ SVE . An action α for G is a term of the form start(x, v) or end(x, v), where x ∈ SV
and v ∈ Vx. The set of actions is partitioned into the set AC of Charlie’s actions and the
set AE of Eve’s actions. An action belongs to AC (resp., AE) if it is of the form start(x, v),
for some x ∈ SV C (resp., x ∈ SV E) and v ∈ Vx, or of the form end(x, v), for some x ∈ SV ,
v ∈ Vx, and γx(v) = c (resp., γx(v) = u).

Definition 12 can be read as follows. When an action start(x, v) or end(x, v) is executed
by a player, a token for the variable x, where x = v, respectively starts or ends. Ending
a task (a token) and starting the next one are two different actions, even if, as it will be
precisely stated later, the end of a token must be immediately followed by the start of the
next one. Depending on who owns the variable and the involved value, each action can be
executed only by a specific player. More precisely, players can start tokens for the variables
that they own, and end the tokens that hold values that they control.

It is worth noticing that, in contrast to the original definition of timeline-based planning
problems with uncertainty (Definition 7), Definition 12 admits cases where x ∈ SV E and
γx(v) = c for some v ∈ Vx, that is, cases where Charlie may control the duration of a variable
that belongs to Eve. This situation is symmetrical to the more common one where Eve
controls the duration of a variable that belongs to Charlie, and there is no need, in our
setting, to impose any asymmetry.

Actions are combined into moves that can start and/or end multiple tokens at once.

I Definition 13 (Move). Let G = (SV C ,SV E ,S,D) be a timeline-based planning game.
A move µ is a term of the form wait(t) or play(t, A), where t ∈ N is the timestamp of the
move, A ⊆ AC or A ⊆ AE , and for each x ∈ SV C ∪ SV E , at most one action in A involves
x. The set of moves is partitioned into the set MC of Charlie’s moves and the set ME of
Eve’s moves. A move µ belongs to MC if it is either of the form µ = wait(t) or of the form
µ = play(t, A) and A ⊆ AC , while it belongs to ME only if it is of the form µE = play(t, A)
and A ⊆ AE .

According to Definition 13, Charlie can either execute some set of actions A, by playing
a play(t, A) move, or wait until some given time t, by playing wait(t). In contrast, Eve has a
unique kind of move available, i.e., play(t, A), which executes the actions in A at time t.

We are now ready to introduce the fundamental notion of round.

I Definition 14 (Round). A round ρ is a pair of moves (µC , µE) ∈ MC ×ME . Let Π be a
partial plan. A round ρ = (µC , µE) is applicable to Π if the following conditions are met.
1. Integrity conditions:

a. any action of the form start(x, v) is executed by either µC or µE if and only if Tx ∈ Π
is a closed timeline;
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b. for any action of the form end(x, v), executed by µC or µE , either an action start(x, v)
is being executed by either moves, or Tx ∈ Π is an open timeline Tx = 〈τ1, . . . , τk〉 and
its open token is τk = (x, v).

2. Timing conditions:
a. if µC = play(tC , AC) and µE = play(tE , AE), then tC = tE = now(Π);
b. if µC = wait(tC) and µE = play(tE , AE), then tC > now(Π) and tE ≤ tC .

A single move from either player is applicable to Π if there exists at least one move from the
other player such that the round combining the two moves is applicable to Π.

The conditions that make a round applicable can be interpreted as follows. Item 1 ensures
that the actions played by each move of the round are consistent with the current state of the
timelines in the partial plan. In particular, a start action has to follow a end one, and start
actions cannot be played on timelines that are already open. Note that both start(x, v) and
end(x, v) for the same x and v can be played at the same round, possibly by two different
players, provided that the timeline was previously closed. In this case, the move builds a
token of unitary length (see Definition 15). Item 2 constrains the timings of the moves of
a round: if Charlie does not wait, then he has to play immediately, that is, tC = now(Π);
otherwise, he can wait until an arbitrary future time point tC . In both cases, Eve must
play at a timestamp tE ≤ tC . This restriction has the following meaning. The advancement
of time during the game is determined mostly by Charlie, who can make it advance one
step at the time, by playing at each round, or skip some time steps at once without playing
anything, by waiting. In both cases, Eve’s moves must specify what the environment is doing,
if anything, in the meantime, hence the requirement that tE ≤ tC . If tE < tC , then time
advances only up to tE , so that at the next round Charlie can timely reply to Eve’s move.

The next definition specifies the effects of players’ moves.

I Definition 15 (Outcome of a round). Let Π be a partial plan and ρ = (µC , µE) be an
applicable round. The outcome of the application of ρ to Π is a partial plan ρ(Π), which is
obtained from Π by applying the following ordered sequence of steps:
1. for each µ ∈ {µC , µE}, if µ = play(t, A), then, for any start(x, v) ∈ A, an open token

τ = (x, v) is appended to Tx;
2. for each µ ∈ {µC , µE}, if µ = play(t, A), then, for any end(x, v) ∈ A, the last open token

τ = (x, v) of Tx (possibly added at the previous step) is replaced by a closed token
τ ′ = (x, v, d), where d = t− start-time(τ) + 1;

3. now(ρ(Π)) = min(tC , tE) + 1, where either µC = play(tC , AC) or µC = wait(tC), and
µE = play(tE , AE).

The effects of start and end actions are defined in Items 1 and 2, respectively. The
steps are intended to be applied one after the other in order to handle the case where both
start(x, v) and end(x, v) are played in the same round. Time advances according to Item 3,
depending on the timestamps of the moves. Note that if no wait move is played, the new
current time corresponds to the horizon of the resulting partial plan.

A play of a planning game is just a sequence of rounds applied to the empty plan Π∅.

I Definition 16 (Play). Let G be a planning game and Π0 be a partial plan (we call it an
initial partial plan). A play for G from Π0 is a sequence ρ = 〈ρ0, . . . , ρk〉 of rounds such that
ρ0 is applicable to Π0 and ρi+1 is applicable to Πi+1 = ρi(Πi), for 1 ≤ i < k.

Let ρ = 〈ρ0, . . . , ρk〉 be a play and Π be a partial plan. We denote by ρ(Π) = ρk(. . . ρ0(Π))
the outcome of ρ applied to Π. Where the initial partial plan is not mentioned, it is understood
that the play is applied to Π∅. Each non-empty partial plan Π can be closed to form a
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scheduled plan Π′ (see Definition 4) by closing all the open tokens of open timelines at time
now(Π). In the following, when the context is clear, we will interchangeably speak of a partial
plan as a scheduled plan by implicitly referring to its closure. It can be easily checked that
rounds as specified in Definition 13 suffice to build any possible scheduled plan over the game
variables, i.e., for any partial plan Π, there exists a play ρ such that Π = ρ(Π∅).

I Definition 17 (Strategy for Charlie). A strategy for Charlie is a function σC : Π → MC

that maps any given partial plan Π to a move µC applicable to Π.

I Definition 18 (Strategy for Eve). A strategy for Eve is a function σE : Π ×MC → ME

that, given a partial plan Π and Charlie’s move µC applicable to Π, returns the next Eve’s
move µE such that ρ = (µC , µE) is applicable to Π.

A play ρ is said to be played according to a strategy σC for Charlie, starting from some
initial partial plan Π0, if ρi = (σC(Πi−1), µi

E), for some µi
E , for all 0 < i < |ρ|, and to be

played according to a strategy σE for Eve if ρi = (µi
C , σE(Πi−1, µ

i
C)), for all 0 < i < |ρ|. For

any pair of strategies (σC , σE) and any k ≥ 0, there is a unique run ρk(σC , σE) of length k
played according to σC and σE .

It is worth to note that, according to our definition of strategy, Charlie can base his
decisions only on the previous rounds of the game, not including Eve’s move at the current
round. Together with the fact that time strictly increases of at least one time unit at each
round, this implies that Charlie has to wait at least one time unit to react to a move by
Eve. This models the realistic assumption that the sense-reason-react loop of the controller
needs a finite amount of time to be executed, and is coherent with the semantics of dynamic
control strategies of flexible plans from [9].

Let G = (SV C ,SV E ,S,D) be a planning game. We define two timeline-based planning
problems, PD = (SV ,D) and PG = (SV ,D ∪ S), for G. A partial plan is admissible if it is
a solution plan for PD, and successful if it is a solution plan for PG. Similarly a play ρ is
admissible or successful if its outcome ρ(Π∅) is, respectively, admissible or successful.

I Definition 19 (Admissible strategy for Eve). A strategy σE for Eve is admissible if for each
strategy σC for Charlie, there is a k ≥ 0 such that the play ρk(σC , σE) is admissible.

I Definition 20 (Winning strategy for Charlie). Let σC be a strategy for Charlie. We say
that σC is a winning strategy for Charlie if for any admissible strategy σE for Eve, there
exists an n ≥ 0 such that the play ρn(σC , σE) is successful.

We say that Charlie wins the game G if he has a winning strategy, while Eve wins the
game if such a strategy does not exist. Let us consider again the problem described in
Section 3 to show a simple winning strategy. The problem can be viewed as a game with the
rules in Figure 1 belonging to S and D empty. After playing start(x, v1) at the beginning,
Charlie only has to wait for Eve to play end(x, v1), and then play start(x, v2) or start(x, v3)
according to the current timestamp.

A more involved example can be obtained by considering two variables x ∈ SV C and
y ∈ SV E , with Vx = Vy = {go, stop}, unit duration, and rules as follows.

S =
{
a[x = stop] −→ ∃b[y = stop] . b ≤e,s

[0,0] a
}

> −→ ∃a[x = stop] . >

D =
{

> −→ ∃a[y = stop] . >
}

Here, Charlie’s ultimate goal is to realise x = stop, but this can only happen after Eve
realised y = stop. This is guaranteed to happen, since we consider only admissible strategies.
Hence, the winning strategy for Charlie only chooses x = go until Eve chooses y = stop, and
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then wins by executing x = stop. If D was instead empty, a winning strategy would not exist
since a strategy that never chooses y = stop would be admissible. This would therefore be a
case where Charlie looses because Eve can indefinitely postpone his victory.

Let us compare now the concept of dynamic controllability of flexible plans, as defined
in [9], with the existence of winning strategies for timeline-based planning games, and show
the greater generality of the latter concept. Proofs are omitted because of space concerns,
but are available in an extended report [17].

The first step is to back the claim of this greater generality. Indeed, it can be shown that
for any timeline-based planning problem with uncertainty P = (SV C ,SV E , S,O) there is an
associated timeline-based planning game GP = (SV C ,SV E ,D,S), such that a dynamically
controllable flexible solution plan for P gives us a winning strategy for G. To this aim, we
need a way to represent as a game any given planning problem with uncertainty. Intuitively,
this can be done by encoding the observations O into suitable domain rules. The game
associated with a problem therefore mimics the exact setting described by the problem.
What follows shows that such a game does indeed exist, and that there is a close relationship
between its winning strategies and the dynamically controllable flexible plans for the problem.

I Theorem 21. Let P be a timeline-based planning problem with uncertainty. If P admits a
dynamically controllable flexible solution plan, then Charlie has a winning strategy for the
associated timeline-based planning game GP .

Theorem 21 shows that the proposed framework can represent any timeline-based planning
problem with uncertainty, and that the notion of winning strategy for a game subsumes that
of dynamically controllable flexible plan. Moreover, it can be seen that the game setting
is strictly more expressive, i.e., there are cases where no dynamically controllable flexible
plans exist, but a winning strategy can be found. This is the case with the example problem
discussed in Section 3, which has an easy winning strategy when seen as a game, while it has
no dynamically controllable flexible plan. Therefore, one can prove the following theorem.

I Theorem 22. There exists a timeline-based planning problem with uncertainty P =
(SV C ,SV E , S,O) such that there are no dynamically controllable flexible plans for P , but
Charlie has a winning strategy for the associated planning game GP .

5 Decidability and complexity

A natural question about timeline-based planning games is whether a winning strategy for
a given game can effectively be found. In this section, we positively answer the question,
showing that a winning strategy, if it exists, can be found with an algorithm that runs in
doubly exponential space. Proofs are omitted because of space concerns, but are available in
an extended report [17].

The proposed algorithm makes use of the concept of concurrent game structure (CGS) [2],
in particular, of the specific subclass of turn-based synchronous game structures (simply game
structures, from now on), that, in the case of two players only, can be defined as follows.

I Definition 23 (Turn-based synchronous game structure [2]). A turn-based synchronous game
structure is a tuple S = (Q1, Q2,M1,M2,P, π, δC , δE), where:
1. Q1 and Q2 are the finite sets of states belonging to Player 1 and Player 2, respectively;
2. M1 and M2 are the finite sets of moves available to Player 2 and Player 2, respectively;
3. P is a finite set of proposition letters;
4. π : Q1 ∪Q2 → 2P provides the set of proposition letters that hold at any given state;
5. δ1 : Q1 ×M1 ×Q2 and δ2 : Q2 ×M2 ×Q1 are the transition relations, that specify the

states reachable from a given one by applying a move by either player.
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a[x = va] −→ ∃b[x = vb]c[x = vc]d[x = vd]e[x = ve] . b ≤e,s
[0,3] a ∧ c ≤

e,s
[0,+∞] b ∧ d ≤

s,s
[0,5] c ∧ e ≤

s,e
[0,5] d

(a)

≤ w(G)

vavbvcvdve

≤ w(G)

(b)

≤ w(G)

vavb

d ≤s,s
[0,5] c ∧ e ≤

s,e
[0,5] d

now

Figure 3 How to represent the distant history of a play of a game G in a compact way: (a) the
complete description of the timeline; and (b) the compact description of the distant history.

We proceed in two steps. We first provide a suitable encoding of a timeline-based planning
game G into a corresponding game structure, and then we exploit existing machinery for
ATL* model checking [2] to find a winning strategy for G.

Let us focus on the first step. To encode a timeline-based planning game into a game
structure, one may think of interpreting partial plans as states, marking with some proposition
letter d those which satisfy the domain rules and with w those where the system rules are
satisfied. However, such an encoding can, in principle, lead to an infinite state space, as
the number of possible partial plans is infinite: the set of moves available to each player is
infinite, as they specify a timestamp; moreover, at any given time, a rule triggered by one of
the current tokens may require to look arbitrarily back in the past in order to check (the
possibility of) its satisfaction. We now show how to constrain the state space to be finite.

First of all, we observe that arbitrarily large timestamps can only be introduced by wait
moves played by Charlie, as the timestamp of any play move played by Charlie is forced to
be equal to now and the timestamp of any Eve’s move is bounded by the one of a Charlie’s
move. Now, even though wait moves are useful for Charlie to skip a given amount of time
without executing a sequence of empty play moves, they can always be replaced by such
a sequence, and thus it can be easily shown that if a winning strategy exists, another one
exists which does not use any wait move. Hence, w.l.o.g., we can safely restrict ourselves to a
finite set of moves of form play(t, A), with t = now.

Let us focus now on the partial plans to show that not every single detail of their distant
past has to be remembered. Consider a timeline-based planning game G = (SV C ,SV E ,S,D),
and let the window of G, w(G), be the product of all the non-zero lower and upper bounds
appearing in any bounded atom of any rule, and all the non-zero lower and upper bounds on
the length of tokens of any state variable. The window of the game gives a coarse upper bound
on how far from a given point a chain of bounded atoms can look, which is a fundamental
parameter of any timeline-based planning problem, e.g., it has been exploited in [16] to study
the complexity of the plan existence problem.

For the sake of clarification, consider the above half of Figure 3, which shows a timeline
satisfying a particular synchronisation rule. The satisfaction of bounded and unbounded
atoms of the rule by tokens are represented by solid and dashed arrows, respectively. The
depicted tokens can be partitioned in two blocks, which satisfy two different groups of
bounded atoms. Once the first group has been witnessed, only its existence need to be
remembered, not the precise position or length of its tokens, since any bounded atom involving
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the trigger cannot be affected by anything farther than the window w(G). Hence, while the
events happening at most w(G) time steps before now need to be remembered in detail, the
satisfaction of the other group of atoms can be remembered symbolically as shown in the
bottom half of Figure 3, i.e., by remembering the existence of the tokens satisfying each
required group of atoms, and their relative ordering. The same has to be done to remember
future requests triggered by tokens appeared in the past.

It can be easily checked that w(G) ∈ O(2|G|), and that the number of bits needed to
store the succinct representation of the history and of future requests is exponential as well.
Hence, we can build a data structure of size at most exponential in the size of G, that, during
the whole play, can be used to represent the current state and the past history of the game.

Let Π be a partial plan. We denote by [Π] its succinct representation, and by [ΠG] the
set of the succinct representations of all the possible partial plans on G. For any round ρ, we
can easily specify its application to the succinct representation of a partial plan in such a
way that ρ([Π]) = [ρ(Π)]. Similarly, given [Π], we can easily check whether Π is a solution
plan for a given timeline-based planning problem.

We are now ready to define the game structure G associated with a planning game G.

I Definition 24 (Game structure for a planning game). Let G = (SV C ,SV E ,S,D) be a
timeline-based planning game. The corresponding game structure G is a tuple (QC , QE ,MC ,

ME ,P, π, δC , δE), where:
1. QC = [ΠG] and QE ⊆ [ΠG]×MC ;
2. MC = MC and ME = ME ;
3. P = {d,w}, where d and w are proposition letters,
4. π(qE) = ∅, for any qE ∈ QE , and d ∈ π([Π]) (resp., w ∈ π([Π]) if and only if Π is a

solution plan for PD (resp., PG);
5. ([Π], µC , ([Π], µC)) ∈ δC if and only if µC = play(t, A) is applicable to Π and t = now;
6. (([Π], µC), µE , [Π′]) ∈ δE if and only if ρ = (µC , µE) is applicable to Π and ρ([Π]) = [Π′].

The winning condition for Charlie (see Definition 20) can be expressed by means of the
following ATL* formula, where Player 1 is interpreted as Charlie and Player 2 as Eve:4

ϕ ≡ 〈〈1〉〉J2K
(
J1K F d→ F(d ∧ w)

)
The formula asks for the existence of a strategy σC for Charlie (〈〈1〉〉) such that, for all
strategies σE for Eve (J2K), if σE is admissible (J1K F d), i.e., for all Charlie’s strategies, there
is a future point where d holds, then there is future point where d ∧ w holds (F(d ∧ w)), i.e.,
Charlie wins. By applying known ATL* model-checking algorithms on the game structure
encoding the planning game and the above formula, one may solve the problem.

It can be proved that any strategy satisfying the above ATL* formula corresponds to a
winning strategy for Charlie on the original timeline-based planning game. The proposed
compact representation of partial plans has exponential size, and thus the game structure
has a doubly exponential number of states. Since ATL* model-checking of fixed-size formulae
over game structures is PTIME-complete [2], the following theorem holds.

I Theorem 25. Let G be a timeline-based planning game. The problem of establishing
whether Charlie has a winning strategy on G belongs to 2EXPSPACE.

4 ATL* is a branching-time temporal logic similar to CTL*, that allows one to quantify over the strategies
of the different players of a game structure and to differentiate between paths played according to those
strategies.
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6 Conclusions and future work

This paper defines timeline-based planning games, a novel game-theoretic approach to
timeline-based planning with uncertainty. Unlike current formulations based on dynamic
controllability of flexible plans, the proposed one can uniformly deal with both temporal
uncertainty and general nondeterminism, and it is strictly more expressive. We showed
that a winning strategy can be found in doubly exponential space. Whether there exists a
matching complexity lower bound, how to synthesise a finite-state machine implementing
such a strategy, and how hard the synthesis problem is are still open issues.
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