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Abstract
Discovering association rules is a classical data mining task with a wide range of applications
that include the medical, the financial, and the planning domains, among others. Modern rule
extraction algorithms focus on static rules, typically expressed in the language of Horn propos-
itional logic, as opposed to temporal ones, which have received less attention in the literature.
Since in many application domains temporal information is stored in form of intervals, extracting
interval-based temporal rules seems the natural choice. In this paper we extend the well-known
algorithm APRIORI for rule extraction to discover interval temporal rules written in the Horn
fragment of Halpern and Shoham’s interval temporal logic.
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7:2 Extracting Interval Temporal Logic Rules: A First Approach

1 Introduction

Rule-based methods are a popular class of techniques in machine learning and data mining [16].
They share the goal of finding regularities in data that can be expressed in the form of
if-then rules. Depending on the type of rules, we can discriminate between descriptive rules
discovery, which aims at describing significant patterns in the given data set in terms of rules,
and predictive rules discovery, which is focused on learning a collection of the rules that
collectively cover the instance space and can make a prediction for every possible instance.
In this paper, we are interested in descriptive (or association) rules, for which there are
three popular approaches. The first one is based on inductive logic programming, which
uses logic programming as a uniform representation for examples, background knowledge
and hypotheses, and aims at deriving a hypothesised logic program (that is, a set of rules)
which entails all the positive and none of the negative examples (see, e.g., [29, 32]). A
second typical approach is based on rule induction via metaheuristics, typically driven by
evolutionary algorithms (see [24] for an example); in this case, not only static propositional
rules may be derived, but also, and even more often, fuzzy rules (see [21], and references
within). The third classical rule extraction approach is based on APRIORI [2] and its
subsequent developments. These approaches have been extensively compared in the literature
(see, e.g., [17] and references therein); apparently, although APRIORI is probably the first
technology for rule extraction that gained some acknowledgment in the community, its main
ideas are still widely used, since no negative examples are needed (in contrast to inductive
logic programming), and since it is considered reliable and fast (in contrast to metaheuristic
approaches, which are computationally expensive).

If-then rules are extracted from an abstract data base, in which every transaction (or
instance), is characterized by a set of items or features that represents the attributes of the
instance. If-then rules are usually represented as logical rules, even though they are not
interpreted as implications in strict logical terms. On the one hand, rules represent positive
information only: instances where the implication is trivially satisfied by the absence of the
antecedent are not relevant in this setting. On the other hand, rules express a likelihood
information, such as if these items are present, it is very likely that this other item will be
present, too, rather than a deterministic Boolean value. Classical static rules (such as rules
extracted from frequent item sets, as in APRIORI) are propositional Horn logic rules:

ρ : p1 ∧ p2 ∧ . . . ∧ pk ⇒ p

where p1, . . . , pk, p are propositional letters associated to the items of the instances in the
data set. Other approaches make use of more complex languages. In [14, 15] first-order
point-based temporal logics are used to describe temporal classification rules. In [3] a
methodology to mine temporal sequential patterns is proposed. In this work patterns are
based on instantaneous events and are purely existential; moreover, the algorithm can detect
only one temporal relation, that is, sometime in the future (F , in the point-based temporal
logic notation). Since in many application domains temporal information is stored in form of
intervals, extracting interval-based temporal rules seems the natural step forward. The most
representative interval temporal language is probably Halpern and Shoham’s Modal Logic of
Time Intervals [19], often referred to as HS, which is a modal propositional language that
features precisely one existential modal operator and one universal modal operator for each
basic relation between two intervals. Motivated by the search of computationally affordable
versions of HS, several fragments have been explored, that include fragments with restricted
sets of modal operators [28, 10, 1], fragments with softer (reflexive) semantics [27], fragments
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Figure 1 Allen’s interval relations and HS modalities.

in which the nesting of modal operators is limited [8], and sub-propositional (Horn-like)
fragments [9]. In particular, the Horn fragment of HS presents some advantages that are
relevant to this study:
(i) it naturally generalizes the classical propositional Horn logic, and
(ii) some of its interesting sub-fragments are decidable and tractable [9, 11].

In this paper, we start from a set of finite timelines (that is, a temporal data set)
T = {T1, . . . , Tn}, where each timeline is a model for HS and can be interpreted as a
temporal history. For example, in the medical domain, a temporal history Ti may be the set
of all relevant events for a certain patient i (e.g., patient i has undergone a certain therapy, or
has shown a certain combination of symptoms, in the interval [x, y]). As another example, in
text mining, a temporal history Ti may represent the sequence of contexts of the conversation
i. We propose a temporal extension of the algorithm APRIORI that extracts meaningful
association rules from a temporal data set, written in the language of Horn HS [9, 11]. We
use classical and well-recognized metrics for static rule evaluation (that is, support and
confidence) in association with suitable new metrics for temporal rule evaluation, and we
test our algorithm against a synthetic temporal data set.

This paper is organized as follows. In the next section we give the necessary preliminaries,
while in Section 3 we briefly discuss some possible examples of applications. In Section 4
we discuss the problem of evaluating a rule and describe our algorithm. Then, in Section 5
we consider a synthetic temporal data set and show how our algorithm extracts useful rules
from it, before concluding.

2 Preliminaries

Let (D,≤) be a linearly ordered set. A (strict) interval over D is an ordered pair [x, y],
where x, y ∈ D and x < y. We denote by I(D) the set of all (strict) intervals over D. If
we exclude the identity relation, there are 12 different relations between two intervals in a
linearly ordered set, often called Allen’s relations [4]: the six relations RA (adjacent to), RL
(later than), RB (begins), RE (ends), RD (during), and RO (overlaps), depicted in Fig. 1,
and their inverses, that is, RX = (RX)−1, for each X ∈ A = {A,L,B,E,D,O}.

Halpern and Shoham’s Modal Logic of Time Intervals [19] (HS) is a modal logic that
features a universal modality [X] and an existential modalitiy 〈X〉 for each Allen relation
RX . For each X ∈ A, the transposes of the modalities [X] and 〈X〉 are respectively the
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7:4 Extracting Interval Temporal Logic Rules: A First Approach

modalities [X] and 〈X〉, corresponding to the inverse relation RX of RX , and vice versa.
Motivated by the search of computationally well-behaved versions and fragments of HS,
several sub-propositional fragments of HS have been introduced and studied (see [9], and
references therein). In this paper we focus our attention on the Horn fragment of HS.
The basic blocks of the language are (positive temporal) literals λ, defined by the following
grammar:

λ ::= > | ⊥ | p | 〈X〉λ | [X]λ, (1)

where RX is one of the interval relations and p is a propositional letter from a finite, non-
empty set AP . Literals of the type 〈X〉p (resp., [X]p) are called existential (resp., universal)
literals. Formulas of the Horn fragment are in clausal form:

ϕ ::= λ | [G](λ1 ∧ . . . ∧ λk → λ) | ϕ1 ∧ ϕ2, (2)

where [G] is the global operator (which imposes that something is true everywhere in the
model, and can be defined within the language HS), and each λ is obtained from (1).
The conjuncts of the form λ are called the initial conditions of ϕ, and those of the form
[G](λ1 ∧ . . .∧ λk → λ) the clauses or global rules of ϕ. The formula λ1 ∧ . . .∧ λk → λ, under
the scope of a global operator, is referred to as body of the rule. In this paper we will use →
to denote the classical logical implication, and ⇒ to denote implicative rules, to emphasise
the fact that rules are not logical implications in the classical sense. The semantics of Horn
HS formulas is given in terms of interval models (or timelines) of the type T = 〈D,V 〉, where
(D,≤) is a linearly ordered set and V : AP → 2I(D) is a valuation function which assigns to
each atomic proposition p ∈ AP the set of intervals V (p) on which p holds. The truth of
a formula ϕ on a given interval [x, y] in a timeline T is defined by structural induction on
formulas as follows:

T, [x, y]  > and T, [x, y] 6 ⊥ for every [x, y] ∈ I(D);
T, [x, y]  p if [x, y] ∈ V (p);
T, [x, y]  〈X〉ψ if there exists [w, z] such that [x, y]RX [w, z] and T, [w, z]  ψ;
T, [x, y]  [X]ψ if, for all [w, z] such that [x, y]RX [w, z], we have that T, [w, z]  ψ;
T, [x, y]  [G](λ1 ∧ . . . ∧ λk → λ) if, for all [w, z] such that T, [w, z]  λ1 ∧ · · · ∧ λk we
have that T, [w, z]  λ;
T, [x, y]  ψ1 ∧ ψ2 if T, [x, y]  ψ1 and T, [x, y]  ψ2.

In this work, we are interested in finite domains only, so, from now on, D = {0, 1, . . . , N − 1}.
The set of propositional letters that are true on a given interval is also called label of the
interval.

The chosen semantics for HS formulas is strict, irreflexive, and non-homogeneous; that
is, point-intervals are excluded, the range of the Allen’s relations RX does not include
the current interval, and there is no relationship between the truth value of a proposition
over an interval and the truth value of the same proposition over its sub-intervals (in the
homogeneous semantics, a letter p is true over an interval if and only if it is true in each of
its sub-interval). Other choices are possible that may have an impact, sometimes dramatic,
in the computational properties of the resulting logic (see, e.g., [7, 25] for homogeneous HS,
and [9] for reflexive HS). However, in this paper we are concerned about rule extraction, not
rule satisfiability, which means that in our case the semantical choices have little effect.
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3 Applying Temporal Rules

There are several application domains in which temporal rules may have a relevant role.
Here, we limit ourselves to some illuminating examples.

Rules in the medical domain. In the medical context a timeline may represent the medical
history of a patient, that is, the collection of all relevant pieces of information about tests,
results, symptoms, and hospitalizations of the patient that occurred during the entire
observation period [13, 12]. As a concrete example, having a fever can be represented by the
propositional letter Low – meaning lower than 40 degrees – or High – meaning higher than
or equal to 40 degrees; similarly, the proposition letter Headache can be used to indicate
the presence of a headache. Consider, now, a certain Therapy that may be administered to
a group of patient under consideration, and consider the problem of establishing the possible
counter-effects that such medication or combination of medications may have, in particular,
with the insurgence of headaches. Assume, now, that a relevant number of patients under
observation show some relationship between the therapy and the insurgence of headache, and,
in particular, a headache seems to start during the administration, but only if the patient is
running high fever. Such a situation may be described by a Horn HS rule, as follows:

ρ : [G](Therapy ∧ 〈D〉Fever ⇒ 〈O〉Headache).

Rules in natural language processing. In the context of natural language processing a
timeline may represent a conversation between two individuals. As a matter of fact, it
is sometimes interesting to label each interval of time of a conversation with one or more
contexts, that is, a particular topic that is being discussed [31, 5, 6], in order to discover
the existence of unexpected or interesting temporal relationships among them. Suppose, for
example, that a certain company wants to analyze conversations between agents and clients.
The agents contact the clients with the aim of selling a certain product, and it is known that
certain contexts, such as the price of the product (Price), its known advantages (Advantages)
over other products, and its possible minor defects (Disadvantages) are interesting. By
analyzing a sufficiently high number of conversations, we may discover that if some known
disadvantage is mentioned while discussing the price, the client typically shows some kind of
negative reaction (Negative), which can be described by the rule:

ρ : [G](Price ∧ 〈D〉Disadvantages⇒ 〈L〉Negative).

4 Extracting Interval Temporal Rules

In this section we describe our algorithm for temporal rule extraction from a temporal
data set. We start by recalling some well-known concepts of static rule extraction, and by
formalizing the problem of evaluating a static rule; then, we generalize our approach to the
temporal case, and, finally, we describe a temporal version of the APRIORI algorithm for
rule extraction.

Evaluating static rules. Extracting static rules from a non-temporal data base is founded
on two simple concepts: support and confidence. Consider an abstract data base T =
{T1, . . . , Tn}, where each Ti is a transaction (that is, an instance) and it is characterized by
a set of items p1, . . . , pm (each item is completely described by a propositional letter). A
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7:6 Extracting Interval Temporal Logic Rules: A First Approach

transaction Ti can be seen as a propositional model, and, therefore, the notion of Ti satisfying
a set P = {p1, p2, . . .} of items (Ti  P ) can be defined naturally. Such a notion can be
immediately generalized to a set T ′ ⊆ T of transactions, so that we can say that T ′ satisfies
a set P of items (T ′  P ) if every transaction in it does. Now, given a rule:

ρ : p1 ∧ p2 ∧ . . . ∧ pk ⇒ p,

Agrawal, Imieliński and Swami [2] implicitly define a notion of ρ holding on T , which we
denote T † ρ; given two real numbers s (support) and c (confidence), where s, c ∈ (0, 1], we
say that:

T † ρ if ∃T ′ ⊆ T s.t. |T ′|
|T | ≥ s, T

′  {p1, . . . , pk, p}, and
∀T ′′ ⊇ T ′(T ′′  {p1, . . . , pk} → |T ′|

|T ′′| ≥ c),
(3)

that is, we say that ρ holds on T if the fraction of transactions that show all items is sufficiently
high (guaranteeing that the rule has enough support), and the fraction of transactions that
only show the antecedent but not the consequent is sufficiently low (ensuring that the rule
is – statistically – confident); we say, therefore, that a rule is meaningful if it has enough
support and confidence. In the context of the definition of †, the set {p1, p2, . . . , pk, p} of
propositions that occur in a rule that holds on T is said to be a frequent set of items (or a
frequent set of propositions), because its support is high.

Evaluating temporal rules. In our case, transactions are generalized to ordered sets of
transactions, that is, timelines, and a temporal data set T = {T1, . . . , Tn} is a collection of
timelines. In addition to being meaningful, we want our rules to be temporally meaningful.
To better understand this concept, consider, again, the medical domain, and assume that
NoSym denotes the absence of a particular symptom. Under the standard logical semantics,
the bodies of rules as the following ones:

ρ1 : [G](Therapy ⇒ [A]NoSym),
ρ2 : [G](Therapy ⇒ [L]NoSym),

expressing the fact that after the therapy the symptom disappears, are true on every interval
that ends at the last point of the model. Since there are no intervals that start at the last
point or later the literals [A]NoSym and [L]NoSym are true, and this makes the implication
trivially true. However, in this situation the rules are not temporally meaningful: we do not
have enough points to check whether the rule holds or not (in the same sense as the relation
† given above for static rules). Similarly, when establishing if a certain universal literal
holds on an interval, for example, [B]p on [x, y], we should consider the literal as holding on
[x, y] not only when [B]p is logically true on [x, y], but also also when p is falsified by a small
fraction of the intervals of the type [x, z] with z < y. Finally, if the body of a rule holds over
almost every interval of a timeline, it seems natural to conclude that the rule holds on that
timeline, even if there are some intervals that falsify the rules.

To avoid degenerate situations, in addition to support (s) and confidence (c) we introduce
several new parameters that help us to define a notion of literal (or temporal item) holding
at an interval on a timeline, as well as a notion of global rule holding on a timeline. For
each relation RX we introduce a real parameter called universal confidence, given by a pair
of real numbers (eX , uX), which we use to determine on which intervals it does not make
sense to ask whether a certain universal literal [X]λ holds (parameter eX), and on which
fraction of the set of intervals captured by [X] should a certain literal λ be true for [X]λ to
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. . .

. . .

. . .
p
p

0 N − 1

[A]p does not hold on intervals ending
at this point if it is too close to N − 1
even if all interval starting here satisfy p
(see (4))

p
¬p

p

. . .
. . .

0 N − 1

[A]p holds on intervals ending
at this point if the fraction of intervals
starting here with ¬p is low enough
(see (4))

0 N − 1

p,¬〈A〉qp, 〈A〉qp, 〈A〉q

[G](p→ 〈A〉p) holds on this timeline
if the fraction of intervals satisfying
p but not 〈A〉p is low enough
(see (5))

Figure 2 A pictorial (intuitive) representation of the concept of universal confidence (top and
middle), and of that of global confidence (bottom).

be considered as holding on a given interval (parameter uX). Recall that T = 〈D,V 〉 and
that D is finite, that is, D = {0, 1, . . . , N − 1}; for a given interval [x, y], we define the notion
of literal holding at an interval (T, [x, y] † λ) using the classical notion of T, [x, y]  λ if λ
is a propositional letter or an existential literal, and the following definition for universal
literals:

T, [x, y] † [A]λ if y+1
N ≤ eA and ∀D′ ⊆ D(∀z ∈ D′((z > y) ∧ T, [y, z] 6† λ)→ |D′|

|N−y−1| ≤ uA);
T, [x, y] † [B]λ if y−x

N ≥ eB and ∀D′ ⊆ D(∀z ∈ D′((x < z < y) ∧ T, [x, z] 6† λ)→ |D′|
|y−x| ≤ uB);

T, [x, y] † [E]λ if y−x
N ≥ eE and ∀D′ ⊆ D(∀z ∈ D′((x < z < y) ∧ T, [z, y] 6† λ)→ |D′|

|y−x| ≤ uE).
(4)

The remaining modalities can be dealt with in a similar way. Notice that by setting
eA = 1, eB = eE = 0 and uA = uB = uE = 0, one obtains the original, irreflexive semantics
of HS. Moreover, simple modifications to the above semantics allow one to define reflexive
and non-strict version of each operator.

Given a literal λ we say that λ holds on a timeline T = (D,V ), and we denote it by T † λ,
if there exists an interval [x, y] such that T, [x, y] † λ, and given a set Λ = {λ1, λ2, . . .},
we say that Λ holds on a timeline T at an interval [x, y], denoted by T, [x, y] † Λ, if
T, [x, y] † λj for each λj ∈ Λ. We also say that Λ holds on a timeline T , and write T † Λ,
to indicate that there exists an interval [x, y] such that T, [x, y] † Λ, and we write T, I † Λ,
where I ⊆ I(D) if for each interval [x, y] ∈ I, we have T, [x, y] † Λ. As in the static case, we
indicate by T ′ † Λ the fact that each timeline T in a set of timelines T ′ ⊆ T is such that
T † Λ. Now, we introduce the real parameter 0 < g ≤ 1 (global confidence) to modulate on
which fraction of all intervals of a timeline should the body of a rule hold to be considered a
global rule. More precisely, given:

ρ : [G](λ1 ∧ . . . ∧ λk ⇒ λ),

we define the notion of ρ holding on a timeline T (T † ρ) by imposing:

T † ρ if T † {λ1, . . . , λk, λ} and
∀I(I ⊆ I(D) ∧ T, I † {λ1, . . . , λk,¬λ} → |I|

|I(D)| ≤ g). (5)
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· · ·
Tn+1

Tn

· · ·
Tm+1

Tm

· · ·

T2

T1

T ′′

satisfy λ1, λ2

at some intervals

T ′

satisfy λ1, λ2 ⇒ λ

at almost all intervals

Figure 3 A pictorial (intuitive) representation of a rule λ1 ∧ λ2 ⇒ λ holding on a temporal data
set T .

Setting g = 0 is equivalent to interpret a rule as a logical implication w.r.t. a single model
(timeline). Fig. 2 gives an intuitive explanation of the use of universal and global confidence,
which, together, we call temporal confidence.

Finally, we can generalize static evaluation to temporal evaluation, by using support and
confidence, and define when ρ holds in the temporal data set T as follows:

T † ρ if ∃T ′ ⊆ T such that |T
′|
|T | ≥ s and ∀T ∈ T ′, T † ρ and

∀T ′′ ⊇ T ′(T ′′ † {λ1, . . . , λk} → |T ′|
|T ′′| ≥ c).

(6)

In the context of temporal rule extraction, therefore, we say that ρ holds on T if it has
enough support (the fraction of timelines in which the rule holds as defined in (5) is high) and
it is confident (the fraction of timelines in which at least one interval satisfies {λ1, . . . , λk}
but no interval satisfy {λ1, . . . , λk, λ} is low). A pictorial example of a simple rule holding
on a temporal data set is given in Fig. 3.

To conclude, observe that while in static rules items are predetermined by the abstract
data base of transactions, temporal items are not: for a given set AP of propositions, there
are infinitely many possible literals, because there is no natural bound to the modal depth of
the literals in the rules (i.e., the formulas) that are being mined. The most general solution
to this problem is to introduce a parameter m ∈ N, and limit ourselves to build rules in
which literals have modal depth less or equal to m (the set of all such literals will be denoted
by Lm(AP)). Setting m = 0 is equivalent to extracting static rules that hold on (almost)
every interval of the timelines in the support.

Temporal APRIORI. Our temporal extension of APRIORI is described in Algorithm 1.
The procedure takes as input a temporal data set T , the values for support, confidence,
temporal confidence, and modal depth, and returns all and only global rules (limited to the
specified modal depth) that hold on T . In the following we analyse each step individually
assuming, for the sake of simplicity, that T has n timelines of N points each, and that
each timeline in T is non-sparse [26], that is, we assume that the number of intervals with
non-empty propositional labels is at least linear in N (in this way, if timelines are represented
as in Fig. 4, the complexity of the representation is linear in N).
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Algorithm 1 Temporal APRIORI.
Require: T , s, c, g, (eX , uX),m
1: Γ,S = ∅;
2: compute the set AP of propositional letters occurring in T ;
3: compute the set Lm(AP);
4: label each Tj ∈ T and each interval [x, y] ∈ I(D) with the maximal Λ ⊆ Lm(AP) such

that Tj , [x, y] † Λ;
5: for Λ ⊆ Lm(AP) do
6: if ∃T ′ ⊆ T such that |T

′|
|T | ≥ s and T ′ † Λ then

7: S = S ∪ {Λ};
8: end if
9: end for
10: for Λ ∈ S do
11: for λ ∈ Λ do
12: put ρ = [G](λ1 ∧ . . . ∧ λk ⇒ λ), where {λ1, . . . , λk, λ} = Λ;
13: if T † ρ then
14: Γ = Γ ∪ {ρ}
15: end if
16: end for
17: end for
18: for ρ ∈ Γ do
19: if ρ is redundant then
20: Γ = Γ \ {ρ};
21: end if
22: end for
23: return Γ

Computing temporal items for each timeline (lines 1–4). In our representation, scanning
the data base to compute AP requires O(|AP| ·n) steps. Then, labeling each Ti ∈ T with
the maximal set Λ of literals that holds at some interval of Ti while building, at the same
time, the set Lm(AP) of all and only temporal items of depth up to m, requires executing
(a simplified version of) the finite model checking algorithm for HS described in [26].
Under the assumption of non-sparseness, the algorithm requires O(N2 · n · |Lm(AP)|)
steps, using a symbolic representation, and O(N3 ·n · |Lm(AP)|) steps using the standard
explicit representation.
Computing frequent sets of literals (lines 5–9). The problem of finding frequent sets
of temporal items can be reduced to the classical problem of finding frequent sets of
items by adapting classical efficient solutions, such as FP-GROWTH [20], to the interval
setting. FP-GROWTH builds a compact frequent patterns tree (also called fp-tree) that
contains all necessary information for frequent sets generation. In analogy with the
classical solution, our version of FP-GROWTH queries every timeline T in the temporal
data base T a constant number of times to build the fp-tree [23]. In contrast to the
classical solution, every query may need to examine every interval of the timeline to
compute the frequency of some set of temporal items and and decide its position on the
tree, and thus the complexity of a single query increases from O(1) to O(N2). In terms
of the overall complexity of the construction, this adds a factor O(N2) to the original
solution, yet leaving the complexity linear in terms of the dimension of the temporal
data base and polynomial in the number of frequent items. Since the number of frequent
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N

p : [0, 1], [0, 2], [0, 3], [1, 3], [2, 3], . . .
q : [0, 1], [0, 3], . . .
. . .

Figure 4 A succinct representation of a timeline: the first line specifies the size of the frame
(number of points in the model); the next lines encode the valuation function V .

items is bounded by the number of temporal items in Lm(AP), the worst-case complexity
of FP-GROWTH in our setting is O(n · |Lm(AP)| + |Lm(AP)| log |Lm(AP)|), where
n · |Lm(AP)| is the cost of building the fp-tree and |Lm(AP)| log |Lm(AP)| the cost of
sorting the set of frequent items by decreasing support (as required by the algortithm).
Enumerating the frequent sets can be performed by suitably querying the fp-tree built by
FP-GROWTH, which is, at this point, essentially indistinguishable from a non-temporal
fp-tree. We can assume that the structure containing every frequent set, that is, S, can be
designed in such a way that the cost of querying the frequency of any Λ ∈ S is constant.
Generating and testing rules (lines 10–17). For a single frequent set Λ, we generate |Λ|
different rules. Testing each one of the rules against (5) requires:

(i) two lookup operations (each with constant cost) on the data structure that contains
S, to compare the support of the antecedent with the support of the entire set, and
establish if the rule is confident, plus

(ii) O(n ·N2) operations to establish if the rule is also global.
Therefore this step costs O(|S| · |Lm(AP)| ·n ·N2). While the size of the frequent patterns
tree is polynomial in the dimension of the data set, the number of possible frequent
sets that can be extracted from it (that is, |S|) may be exponential, and its actual size
depends on the particular data set as well as the setting of each parameter.
Checking redundancy. From the set Γ of all meaningful rules that hold on T , we eliminate
all redundant ones. A rule [G](λ1 ∧ . . . ∧ λk ⇒ λ) is redundant if Γ includes also a rule
with λ as a consequence and with an antecedent that is a subset of {λ1, . . . , λk}. This
step can be easily completed within O(|Γ|2 · |Lm(AP)|2) operations (this limit can be
improved with a suitable symbolic representation of the rules).

By summing up all the above steps we obtain the following overall worst-case complexity
for Temporal APRIORI:

O(|S| · |Lm(AP)| · n ·N2 + |Lm(AP)| log |Lm(AP)|+ |Γ|2 · |Lm(AP)|2).

The set Lm(AP) contains all positive temporal literals that can be built over the set of
propositional letters AP with maximum modal depth m. Since the syntax of HS includes 24
different temporal modalities (one diamond and one box operator for each of the 12 Allen’s
relations), we have that |Lm(AP)| = O(24m · |AP|). Moreover, in the worst-case scenario the
set S includes all subsets of Lm(AP) while the set of meaningful rules includes all temporal
rules that can be built from Lm(AP). These observations lead to a worst-case upper bound
on the complexity of Temporal APRIORI that is exponential in m and |AP|, but polynomial
in n and N . As a general observation, for enumerative algorithms the exponential number of
solutions makes the usual analysis of running time, that considers only the input size and
ignore the output size, scarcely informative. In the literature, notions of efficiency have been
developed for enumerative algorithms [22, 18], but a precise assessment of the complexity
of Temporal APRIORI following such notions is outside the scope of this paper; here, we
limit ourselves to some empirical considerations. First of all, performance studies show
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that the size of a fp-tree is usually substantially smaller than the original data base [20]
and well beyond the worst-case upper bound of a complete tree. Similarly, providing a
tighter upper bound to the number of frequent sets (and therefore to the number of rules)
that can be extracted from a data set is not really possible as the number of frequent sets
depends on the application domain and on the actual data. As we have observed, efficient
implementation solutions for APRIORI can be adapted to our temporal generalization, and
further optimizations should be focused on the temporal steps only. Experimental studies
show that the elapsed time for efficient implementations of APRIORI grows linearly with
the dimension of the data base. For comparison, assume that N and m are constants, and
that the set AP (and therefore the set Lm(AP)) is fixed. Then, the complexity of Temporal
APRIORI is O(n) plus the complexity of checking redundancy in rules. Since this latter
aspect is not directly discussed in APRIORI, and the available experimental data do not
include the redundancy check, in our simplified circumstances, Temporal APRIORI has the
same complexity as APRIORI.

While considering a situation in which the set of interesting items grows is not really
interesting, there are certain scenarios in which the length of the timelines may grow. Indeed,
this may occur in both examples discussed in Section 3. In the medical scenario the length
of timelines may grow as the duration of recorded medical histories increases with time. In
the natural language knowledge extraction, timelines may grow as the average duration of a
conversation increases. If N is not constant, the complexity of Temporal APRIORI (besides
redundancy checking) is O(N2 · n), and the bottleneck is temporal items labeling and rule
globality checking.

5 Experimental Results

Testing the ability of Temporal APRIORI to extract meaningful rules from a temporal data
set presents two main difficulties. First, there are very few publicly available data sets with
a relevant temporal component. Such a data set, moreover, should be preprocessed in order
to highlight the interesting propositions, and to hide irrelevant aspects (this is a standard
procedure in knowledge extraction), which requires a profound knowledge of the applicative
domain. In this way, the experiment would be influenced by such a preparation, making it
more difficult for the performances of the algorithm to emerge. Second, the rules of a real-life
data set are unknown beforehand; although there are indirect techniques that allow one to
evaluate a set of rules, these evaluations are not always adequate to assess the capabilities of
a new learning algorithm.

We designed a simple technique to generate an artificial data set T in such a way that we
can control the rules to be extracted. Given a set Γ of input rules written in the language of
Horn HS over a set AP of propositional letters, a natural number N ≥ 2, fixed the parameter
(eX , uX) for every relation RX , and fixed the support sρ for every rule ρ ∈ Γ, our generator
produces a temporal data set T , where every timeline T has domain DT of length N . To
this end, for each rule ρ ∈ Γ, where ρ : (λ1 ∧ . . . ∧ λk ⇒ λ), we first choose randomly the
set Tρ of timelines that will satisfy the rule ρ. Then, for each timeline T ∈ Tρ, we choose,
randomly, an interval [x, y], and we fix the propositional labeling of the intervals in T so that
T, [x, y] † {λ1, . . . , λk, λ}, which entails setting the labeling of a certain subset ST,ρ of I(DT )
(e.g., forcing 〈A〉p to be true on [x, y] entails forcing p to be true on some interval [y, z]). The
propositional labeling of every interval in the set I(DT ) \ ST,ρ is chosen randomly. Then,
in order to ensure that ρ is global on T , every interval in I(D) is considered (again) and
its labeling fixed, if necessary. Notice that no contradictions may arise, since only positive
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Figure 5 Elapsed time for rule extraction.

propositional literals are added at each step in each labeling: obviously, we generate only
satisfiable examples of rules without ⊥. In this way, the confidence of each rule ρ is 1, as well
as its global confidence, and its support is equal to, or grater, than sρ. The aim of testing a
rule extraction algorithm on an artificial data set is not that of finding an optimal set of
parameters, which makes sense on real data sets only: in a controlled environment, every
meaningful rule can be eventually discovered. Therefore, besides the proof-of-concept, our
test is focused on performances only. We generated 96 temporal data sets, where timelines
have a domain of cardinality less or equal to 100 points. The size of temporal data sets
ranges from a minimum of 500 to a maximum of 10000 timelines. We fixed the following
three rules:

ρ1 : [G](p1 ∧ [A]p2 ∧ [B]p3 ⇒ [A]p4)
ρ2 : [G]([A]p1 ∧ [A]p2 ⇒ [A]p3)
ρ3 : [G]([A]p1 ∧ [E]p2 ⇒ [B]p3),

and we generated each data set in such a way that (at least) 60% of timelines satisfy ρ1, the
80% of which satisfy also ρ2, and the 60% of the latter satisfy also ρ3.

As we have observed in the previous section, under certain conditions the complexity of
Temporal APRIORI is linear in the number of timelines in T . In our experiment, run on
an Intel Core i7 with 4 cores at 2.80GHz, such conditions are met: N and m are constant
(respectively 100 points an modal depth 1), and the set AP = {p1, p2, p3, p4} is fixed. Fig. 5
shows the expected linear behaviour.

6 Conclusions

Rule-based methods are algorithms that extract regularities in data that can be expressed
in the form of if-then association rules, and are very popular in machine learning and data
mining. The first and most recognized algorithm for extracting static association rules is
known as APRIORI. The idea underlying APRIORI is that from a set of instances, referred
to as transactions, each one characterized by a set of items (propositional letters), one can
extract, first, frequent sets of items (that is, sets of propositions that occur often together),
and, from them, rules. The latter are evaluated by using their support, that is, the fraction
of transactions that satisfy all items in the rule, and their confidence, that is, the set of
transactions that satisfy only the set of items corresponding to the antecedent of the rule.
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This work is inspired by the fact that static rules, as those extracted by APRIORI, can be
seen as implications written in the Horn fragment of propositional logic, though they are not
interpreted as such. With the aim of extracting temporal rules from a temporal data set using
similar principles, we first considered a suitable language that extends Horn propositional
logic with temporal capabilities, that is, the Horn fragment of the temporal logic HS. Such
a language has been recently studied, along with its computational properties, and the
fact that it directly generalizes Horn propositional logic, and that some of its fragments
have interesting computational characteristics, make it the ideal candidate for our purposes.
Second, we generalized APRIORI in such a way that it is able to extract rules written in
Horn HS. To this end, we introduced the notion of temporal confidence, which, paired with
the classical notions of support and confidence, allowed us to define a relaxed version of the
truth relation, and, ultimately, to devise the algorithm Temporal APRIORI, which we tested
on an artificial data set.

While HS is a very general and expressively powerful language, the ability of Temporal
APRIORI to extract meaningful rules decreases as the modal depth of the rules to be
captured (that is, the cardinality of Lm(AP)) increases. For example, in the language of
HS, interpreted over finite linearly ordered sets, one can express the rule: if p holds on some
interval with length more than K, then q will hold on some of its subintervals. However, this
requires forcing an interval to have a minimal length, which in HS can be expressed as:

len>K = 〈B〉〈B〉 . . . 〈B〉︸ ︷︷ ︸
K

>,

In turn, extracting a rule with len>K among its antecedents entails setting m ≥ K, which,
ultimately, leads the algorithm to generate and test a very high number of rules, and, in
many cases, to return many rules that are not significant from the domain point of view. A
similar situation arises with coarser Allen’s relations in HS [30], which are relations that allow
one to express an incomplete temporal knowledge (e.g.: the symptom disappears after or
immediately after the therapy) and are expressible in the language of HS, but with formulas
that do not immediately translate to Horn HS:

[G](Therapy ⇒ ([A]NoSym ∨ [L]NoSym)).

As future work, we plan to improve Temporal APRIORI to extract rules with complex
temporal literals and with an enriched set of basic relations in a direct way (that is, enriching
the language in which the rules are written), effectively circumventing the above problems.
Moreover, we plan to test Temporal APRIORI on natural data sets coming from relevant
application domains like the medical domain and the natural language processing domain.
This will allow us to evaluate the impact of parameters setting, as well as the expected
improvement on the quality of extracted rules, with respect to real case studies.
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