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Abstract
We investigate the succinctness gap between two known equally-expressive and different linear-
past extensions of standard CTL∗ (resp., ATL∗). We establish by formal non-trivial arguments
that the “memoryful” linear-past extension (the history leading to the current state is taken into
account) can be exponentially more succinct than the standard “local” linear-past extension (the
history leading to the current state is forgotten). As a second contribution, we consider the
ATL-like fragment, denoted ATLlp, of the known “memoryful” linear-past extension of ATL∗. We
show that ATLlp is strictly more expressive than ATL, and interestingly, it can be exponentially
more succinct than the more expressive logic ATL∗. Moreover, we prove that both satisfiability
and model-checking for the logic ATLlp are Exptime-complete.
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1 Introduction

Temporal logics provide a fundamental framework for the description of the dynamic behavior
of reactive systems. Additionally, they support the successful model-checking approach [3] that
allow complex (finite-state) systems, usually modeled by propositional Kripke structures, to
be verified automatically. The model-checking methodology considers three types of temporal
logics which differ in the underlying nature of time: linear, branching, and alternating. In
linear-time temporal logics such as standard LTL [27], formulas are interpreted over linear
sequences (corresponding to single paths of the Kripke structure), and temporal operators are
provided for describing the ordering of events along a single computation path. Branching-
time temporal logics such as CTL [10] and CTL∗ [11], on the other hand, allow to reason about
several possible futures: formulas are interpreted over states of a Kripke structure, hence
referring to all the possible system computations. Such logics are in general more expressive
than linear-time temporal logics since they provide both temporal operators for describing
properties of a single path, and path quantifiers for describing the branching structure
in computation trees (resulting from unwinding a Kripke structure from the initial state).
Finally, alternating-time temporal logic such as ATL∗ and ATL [2], generalize the branching-
time paradigm (useful for the verification of closed systems) to a strategic-reasoning paradigm
suitable for the verification of open and multi-agent systems [20, 2, 1, 6, 9, 25, 26, 15, 5]. In
this setting, different processes or components (the agents) can interact in an adversarial or
cooperative manner in order to achieve given temporal goals. The interaction among agents
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6:2 Results on Alternating-Time Temporal Logics with Linear Past

is usually modeled by concurrent game structures [2] (CGS, for short), a generalization of
Kripke structures, where each transition results from a set of decisions, one for each agent. In
particular, the logic ATL∗, which is interpreted over CGS, is an extension of CTL∗ obtained
by replacing path quantifiers with more general quantifiers 〈〈A〉〉 parameterized by a set A of
agents which express selective quantification over those paths (from the current state) that
are obtained as outcomes of the infinite game between the coalition A and the complement.

Linear past in temporal logics. Standard temporal logics such as LTL, CTL∗, and ATL∗
do not have explicit mechanisms to refer to the past of the current time. On the other
hand, it is well-known that temporal logics which combine both past and future temporal
modalities make specifications easier to write and more natural. In particular, the past
extension LTLp of standard LTL does not increase the complexity of model-checking and
satisfiability-checking [32], and at the same time, turns out to be exponentially more succinct
than LTL [22]. For branching-time temporal logics, the adding of past-time constructs has
been investigated in many papers [30, 14, 17, 23, 33, 24, 4, 18]. Usually, the past is assumed
to be finite (since program computations have a definite starting time) and cumulative (i.e.,
the history of the current situation increases with time and is never forgotten). Moreover,
one can adopt either a branching-past approach (past and future are handled uniformly)
or a linear-past approach. Here, we focus on known linear-past extensions of CTL∗ and
its alternating-time counterpart ATL∗, which are syntactically obtained by adding the past
versions of the standard LTL temporal modalities. The simplest linear-past extension of CTL∗
is the logic PCTL∗ [14], where the semantics of path quantification is the same as for CTL∗:
path quantification ranges over paths that starts in the current node of the computation tree.
Hence, the history (computation) from the root-node (starting time) to the current node
is forgotten (local linear-past view). A similar local linear-past extension, denoted PATL∗,
can be considered for the logic ATL∗, where the linear-time temporal goals, arguments of
the strategy quantifiers, are evaluated along the outcomes of the selected strategy starting
from the current node. A more interesting and meaningful linear-past extension of CTL∗ is
the logic CTL∗lp [17, 18], where path quantification is ‘memoryful’, i.e., it ranges over paths
that start at the root and visit the current node (memoryful linear-past view). The ATL∗
counterpart of the logic CTL∗lp, here denoted by ATL∗lp, has been investigated in [26] (see
also [7]), where the temporal goals are evaluated at the current time of the paths obtained
by prefixing the outcomes of the selected strategy with the history leading to the current
node. The usefulness of memoryful linear-past has been illustrated in [18, 26]: for example,
one can require that a condition is satisfied only if a precondition holds along the whole
past computation. In strategic reasoning, as argued in [26], memoryful linear-past enables
relentful reasoning (agents can relent and change their goals depending on the history) which
can be applied to relevant scenarios such as strong cyclic planning and bounded verification.
Satisfiability and model-checking of the mentioned linear-past extensions of CTL∗ (resp.,
ATL∗) have the same complexity as CTL∗ (resp., ATL∗) with the exception of model-checking
against CTL∗lp which is Expspace-complete [18], hence, exponentially harder than CTL∗
model-checking (the latter being Pspace-complete [11]).

Our contribution. It is known that PCTL∗ and CTL∗lp have the same expressiveness as
CTL∗ [18] and there are translations from PCTL∗ and CTL∗lp into CTL∗ of non-elementary
complexity [18] based on the separation theorem for LTLp [12]. On the other hand, the ability
to refer to the past makes both PCTL∗ and CTL∗lp exponentially more succinct than CTL∗.
Analogous results hold for the logics PATL∗ and ATL∗lp when compared to ATL∗ [26]. On the
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other hand, no succinctness gap is known between the “memoryful” past view in CTL∗lp (resp.,
ATL∗lp) and the ‘local’ past view in PCTL∗ (resp., PATL∗). Our first contribution addresses
this issue: we establish by formal non-trivial arguments that CTL∗lp (resp., ATL∗lp) can be
exponentially more succinct than PCTL∗ (PATL∗).

The logics CTL [11] and ATL [2] are well-known syntactical fragments of CTL∗ and ATL∗
which have received a lot of attention due to the existence of polynomial-time algorithms
which solve the associated model-checking problem. As a second contribution, we investigate
the ATL-like fragment ATLlp of ATL∗lp which, to the best of our knowledge, has not been
considered so far in the literature. In fact, a past perfect recall extension of ATL with a
semantics equivalent to that of ATLlp has been studied in [13] under an imperfect information
setting, and in particular, for such a setting, a model-checking algorithm of non-elementary
complexity is provided [13]. We show that ATLlp is strictly more expressive than ATL, and
interestingly, and perhaps surprisingly, it can be exponentially more succinct than the more
expressive logic ATL∗. Moreover, we establish that both satisfiability and model-checking
for the logic ATLlp are Exptime-complete. Hence, while ATLlp satisfiability has the same
complexity as ATL satisfiability, model-checking against ATLlp is exponentially harder than
ATL model-checking. The upper bounds are obtained by an automata-theoretic framework
based on the use of a subclass of Büchi alternating automata for CGS (Büchi ACG) [29],
called ACG with satellites and introduced in [26].

2 Preliminaries

We fix the following notations. Let AP be a finite non-empty set of atomic propositions, Ag
be a finite non-empty set of agents, and Ac be a finite non-empty set of actions that can
be taken by agents. Given a set A ⊆ Ag of agents, an A-decision dA is an element in AcA

assigning to each agent ag ∈ A an action dA(ag). For A,A′ ⊆ Ag such that A ∩A′ = ∅, an
A-decision dA and A′-decision dA′ , dA ∪ dA′ denotes the (A ∪ A′)-decision defined in the
obvious way. Let Dc = AcAg be the set of full decisions of all the agents in Ag.

Let N be the set of natural numbers. For all i, j ∈ N, with i ≤ j, [i, j] denotes the set of
natural numbers h such that i ≤ h ≤ j. Let w be a finite or infinite word over some alphabet
Σ. By |w| we denote the length of w (we write |w| =∞ if w is infinite). For all i, j ∈ N, with
i ≤ j < |w|, w(i) denotes the ith letter of w, and w[i, j] the infix of w between positions i
and j, i.e., the finite word w(i)w(i+ 1) . . . w(j).

Given a set Υ of directions, an (infinite) Υ-tree T is a prefix closed subset of Υ∗ such that
for all x ∈ T , x · γ ∈ T for some γ ∈ Υ. Elements of T are called nodes and ε is the root of T .
For x ∈ T , the set of children of x in T is the set of nodes of the form x · γ for some γ ∈ Υ.
A path of T is a non-empty finite or infinite sequence π of nodes such that π(i) is a child in
T of π(i− 1) for all 0 < i < |π|. A path π of T is initial if it starts at the root, i.e. π(0) = ε.

For an alphabet Σ, a Σ-labeled Υ-tree is a pair 〈T,Lab〉 consisting of a Υ-tree and a
labelling Lab : T 7→ Σ assigning to each node in T a symbol in Σ. We extend the labeling
Lab to paths in the obvious way, i.e. Lab(π) denotes the word over Σ of length |π| given by
Lab(π(0))Lab(π(1)) . . .. W.l.o.g. we focus on labeled trees with a finite branching degree.

2.1 Concurrent Game Structures
Concurrent game structures (CGS, for short) [2] generalize Kripke structures to a setting
with multiple agents (or players). They can be viewed as multi-player arenas in which players
perform concurrent actions, chosen strategically as a function of the history of the game.
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6:4 Results on Alternating-Time Temporal Logics with Linear Past

I Definition 1 (CGS). A CGS (over AP, Ag, and Ac) is a tuple G = 〈S, s0,Lab, τ〉, where S
is a set of states, s0 ∈ S is the initial state, Lab : S 7→ 2AP maps each state to a set of atomic
propositions, and τ : S×Dc 7→ S is a transition function that maps a state and a full decision
to a target state. The CGS G is finite if S is finite. A state s is controlled by an agent ag if
for all {ag}-decisions d and counter-decisions d1, d2 ∈ AcAg\{ag}, τ(s, d ∪ d1) = τ(s, d ∪ d2).

We now recall the notion of strategy and counter strategy in a CGS G = 〈S, s0,Lab, τ〉. For
a state s, the set of successors of s is the set of states s′ such that s′ = τ(s, d) for some full
decision d. A play is an infinite sequence of states s1s2 . . . such that si+1 is a successor of si
for all i ≥ 1. An history (or track) ν is a non-empty prefix of some play. We denote by lst(ν)
the last state of ν. Let Trk be the set of tracks in G. Given a set A ⊆ Ag of agents, a strategy
for A is a mapping fA : Trk 7→ AcA assigning to each track ν an A-decision. For a track ν,
the set out(ν, fA) of plays consistent with fA and ν (also called outcomes of fA from ν) is
the non-empty set of plays of the form π = ν′ · s1s2 . . . such that ν′ · s1 = ν and for all i ≥ 1,
there is a decision d ∈ AcAg\A of agents in Ag \A such that si+1 = τ(si, fA(ν′ · s1 . . . si)∪ d).

Thus, the outcome function out(ν, fA) returns the set of all the plays having ν as prefix
that can occur when agents A execute strategy fA from the history ν on.

A counter strategy is a mapping f cA : Trk×AcA 7→ AcAg\A from tracks and decisions of
the agents in A to decisions of the agents in Ag \ A. For a track ν, the set out(ν, f cA) of
plays consistent with the counter strategy f cA and ν is the non-empty set of plays of the form
π = ν′ · s1s2 . . . such that ν′ · s1 = ν and for all i ≥ 1, there is a decision d ∈ AcA of agents
in A so that si+1 = τ(si, f cA(ν′ · s1 . . . si, d) ∪ d). For a state s, an s-play is a play starting
from state s. We are interested in the computation trees induced by CGS.

I Definition 2. For a set Υ of directions, a Concurrent Game Υ-Tree (Υ-CGT) is a CGS
〈T, ε,Lab, τ〉, where 〈T,Lab〉 is a 2AP-labeled Υ-tree, and for each node x ∈ T , the set of
successors of x corresponds to the set of children of x in T . Every CGS G = 〈S, s0,Lab, τ〉
induces a S-CGT, called computation tree of G and denoted by Unw(G), obtained by unwinding
G from the initial state in the usual way. Formally, Unw(G) = 〈T, ε,Lab′, τ ′〉, where T is
the set of elements ν in S∗ such that s0 · ν is a track of G, and for all ν ∈ T and d ∈ Dc,
Lab′(ν) = Lab(lst(ν)) and τ ′(ν, d) = ν · τ(lst(ν), d), where lst(ε) = s0. A Concurrent Game
Tree (CGT, for short) is a Υ-CGT for some set Υ of directions.

2.2 Alternating-time temporal logic with linear past
In this section, we recall the “memoryful” linear-past extension of alternating-time temporal
logic ATL∗, introduced in [26] and, here, denoted by ATL∗lp. For the given sets AP and Ag of
atomic propositions and agents, the set of ATL∗lp path formulas ϕ are defined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | X−ϕ | ϕUϕ | ϕU− ϕ | 〈〈A〉〉ϕ

where p ∈ AP, A ⊆ Ag, X and U are the standard “next” and “until” linear temporal
modalities, X− (“previous”) and U− (“since”) are their past counterparts, respectively, and
〈〈A〉〉 is the “existential strategic quantifier” parameterized by a set of agents. Formula
〈〈A〉〉ϕ expresses that the group of agents A has a collective strategy to enforce the temporal
property ϕ. We also use some shorthands:

the eventually modality Fϕ := >Uϕ and its past counterpart F−ϕ := >U− ϕ,
the always modality Gϕ := ¬F¬ϕ and its past counterpart G−ϕ := ¬F−¬ϕ,
the release modality ϕ1Rϕ2 := ¬(¬ϕ1U¬ϕ2).
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A state formula is a formula where each temporal modality is in the scope of a strategic
quantifier. A basic formula is a state formula of the form 〈〈A〉〉ϕ. The language ATL∗lp is the
set of state formulas. The size |ϕ| of a formula ϕ is the number of distinct subformulas of ϕ.

The logic ATL∗lp is interpreted over concurrent game trees (CGT) T = 〈T, ε,Lab, τ〉. For a
path formula ϕ, an initial infinite path π of T (i.e., an ε-play of T ) and a position i ≥ 0, the
satisfaction relation (T , π, i) |= ϕ, indicating that ϕ holds at position i along π, is inductively
defined as follows (we omit the clauses for the Boolean connectives which are standard):

(T , π, i) |= p ⇔ p ∈ Lab(π(i)),
(T , π, i) |= Xϕ ⇔ (T , π, i+ 1) |= ϕ

(T , , π, i) |= X−ϕ ⇔ i > 0 and (T , π, i− 1) |= ϕ

(T , π, i) |= ϕ1Uϕ2 ⇔ there is j ≥ i : (T , π, j) |= ϕ2 and (T , π, k) |= ϕ1 for all i ≤ k < j

(T , π, i) |= ϕ1U− ϕ2 ⇔ there is j ≤ i : (T , π, j) |= ϕ2 and (T , π, k) |= ϕ1 for all j < k ≤ i
(T , π, i) |= 〈〈A〉〉ϕ ⇔ for some A-strategy fA : (T , π′, i) |= ϕ for all π′ ∈ out(π[0, i], fA)

Note that for each node x ∈ T and ε-play π visiting x, π visits x exactly at position |x| (the
distance of node x from the root). For a node x of T , we write (T , x) |= ϕ to denote that
there is an ε-play π visiting x such that (T , π, |x|) |= ϕ. Note that if ϕ is a state formula, then
for all ε-plays π and π′ which visit node x, it holds that (T , π, |x|) |= ϕ iff (T , π′, |x|) |= ϕ. A
CGT T satisfies a formula ϕ (we also say that T is a model of ϕ) if (T , ε) |= ϕ. Two formulas
ϕ and ϕ′ are equivalent if they admit the same models.

It is worth noting that in the valuation of a strategy quantifier 〈〈A〉〉, while in standard
ATL∗, play quantification ranges over the plays consistent with the selected strategy which
start at the current node (local semantics), in ATL∗lp play quantification ranges over the
plays obtained by prefixing the outcomes of the selected strategy from the current node with
the history that starts at the root and leads to the current node (memoryful semantics).
Evidently, for formulas which do not contain past temporal modalities, the standard local
ATL∗-semantics is equivalent to the memoryful semantics.1 Moreover, the known memoryful
linear-past extension CTL∗lp [18] of CTL∗ corresponds to the fragment of ATL∗lp where only
the strategic modalities 〈〈Ag〉〉 (equivalent to the existential path quantifier E) and 〈〈∅〉〉
(equivalent to the universal path quantifier A) are exploited. Note that CTL∗lp is interpreted
over 2AP-labeled trees which correspond to one-agent CGT. We denote by PATL∗ (resp.,
PCTL∗) the logic having the same syntax as ATL∗lp (resp., CTL∗lp) but interpreted under the
local ATL∗-semantics (resp., the local CTL∗-semantics). Intuitively, in PATL∗ and PCTL∗ the
past cannot go beyond the present.

In the following, we also consider the past extension LTLp of standard (future) LTL [27]
which syntactically corresponds to the fragment of ATL∗lp where strategy quantifiers are
disallowed. LTLp formulas ψ over AP are interpreted over infinite words over 2AP. For such
words w and positions i, we write (w, i) |=LTL ψ to denote that ψ holds at position i along
w according to the standard LTL (LTLp) semantics. A pure past LTLp formula is an LTLp
formula which does not contain occurrences of future temporal modalities.

2.3 The logic ATLlp

The logics CTL [10] and ATL [2] are well-known syntactical fragments of CTL∗ and ATL∗ which
have received a lot of attention due to the existence of polynomial-time algorithms which solve
the associated (finite) model-checking problem. In particular, CTL (resp., ATL) is obtained

1 ATL∗ formulas ϕ are usually interpreted over CGS G. However, ATL∗ is insensitive to unwinding: G is a
model of ϕ iff the CGT Unw(G) is a model of ϕ.

TIME 2018
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from the more expressive logic CTL∗ (resp., ATL∗) by requiring that each temporal modality
is immediately preceded by a path quantifier (resp., strategy quantifier). In this section, we
introduce the ATL-like fragment of ATL∗lp which corresponds to the alternating-time version
of the linear-past extension CTLlp of CTL introduced in [18].

Since past is linear, play quantification of past-time modalities is redundant. Thus, in
ATLlp, we require the future temporal modalities X, U, and R to be preceded by a strategic
quantifier, but we impose no equivalent restriction on the past temporal modalities. Formally,
the set of ATLlp formulas ψ is the fragment of ATL∗lp defined by the following grammar:

ψ ::= > | p | ¬ψ | ψ ∨ ψ | X−ψ | ψU− ψ | 〈〈A〉〉Xψ | 〈〈A〉〉(ψUψ) | 〈〈A〉〉(ψRψ)

Note that for an ATLlp formula ψ and for all ε-plays π and π′ which visit a node x of a
CGT T , (T , π, |x|) |= ψ iff (T , π′, |x|) |= ψ. As an example, let us consider the formula
ψ := ¬〈〈A〉〉¬G〈〈B〉〉G[(grant → F−req) ∧ G−(grant → F−req)] which specifies that in each
node x reached by a strategy of agents in A, the agents in B can enforce that along a full
computation (starting from the root) and visiting x, every grant is preceded by some request.

While ATL∗lp is known to have the same expressiveness as ATL∗ [26], ATLlp turns out to
be strictly more expressive than ATL. In particular, the following holds.

I Proposition 1 (Expressiveness of ATLlp). ATLlp is strictly more expressive than ATL and
strictly less expressive than ATL∗.

Proof. We exploit known expressiveness results about the logic CTLlp. In particular, in [18],
it is shown that the CTLlp formula AXAF(p ∧ X−p) has no equivalent CTL formula, and
the CTL∗ formula EGFp has no equivalent CTLlp formula. Note that over 1-agent CGT
(corresponding to labeled trees), a CTLlp formula ψ is equivalent to the ATLlp formula
obtained from ψ by replacing the path quantifiers E and A with the strategy quantifiers
〈〈Ag〉〉 and 〈〈∅〉〉. It follows that the ATLlp formula 〈〈∅〉〉X〈〈∅〉〉F(p ∧ X−p) cannot expressed in
ATL, and the ATL∗ formula 〈〈Ag〉〉GFp cannot be expressed in ATLlp. Thus, since ATLlp is a
fragment of ATL∗lp, and ATL∗lp and ATL∗ have the same expressiveness, the result follows. J

We consider the following decision problems:
Satisfiability: has a given ATLlp state formula a model?
(Finite) Model Checking: given a finite CGS G and an ATLlp state formula ψ, is Unw(G)
a model of ψ?

3 Succinctness gap between memoryful past and local past

It is known that PCTL∗ and CTL∗lp have the same expressiveness as CTL∗ [18] and there are
translations from PCTL∗ and CTL∗lp into CTL∗ of non-elementary complexity [18] based on
the separation theorem for LTLp [12]. On the other hand, the ability to refer to the past
makes both PCTL∗ and CTL∗lp exponentially more succinct than CTL∗. Analogous results
hold for the logics PATL∗ and ATL∗lp when compared to ATL∗ [26]. Note that as observed
in [26], the succinctness gap between the past extensions of CTL∗ (resp., ATL∗) and CTL∗
(resp., ATL∗) are a consequence of the fact that LTLp is exponentially more succinct than
LTL [22]. Interestingly, and perhaps surprisingly, we can establish a similar result for the
logic CTLlp (resp., ATLlp) when compared to the more expressive logic CTL∗ (resp., ATL∗).

I Theorem 3. CTLlp (resp., ATLlp) can be exponentially more succinct than CTL∗ (resp.,
ATL∗).
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Proof. We focus on ATLlp and ATL∗ (a similar result holds for the logics CTLlp and CTL∗).
For each n ≥ 1, let p0, p1, . . . , pn be n+ 1 atomic propositions, and ψn be the LTLp formula
G
(∧i=n

i=1 (pi ↔ F−(¬X−> ∧ pi)) −→ (p0 ↔ F−(¬X−> ∧ p0)
)
. Note that |ψn| = O(n). On

the other hand, it is shown in [22] that every LTL formula which is equivalent to ψn has
size at least 2Ω(n). Now, we observe that 〈〈∅〉〉ψn is an ATLlp formula. Let ϕ be an ATL∗
formula equivalent to 〈〈∅〉〉ψn, and ϕLTL be the LTL formula obtained from ϕ by removing the
occurrences of strategy quantifiers 〈〈A〉〉. Let Π be the set of CGT over 2AP having exactly
one ε-play. Evidently, we have that for each T ∈ Π, T is a model of 〈〈∅〉〉ψn (resp., ϕ) iff
Lab(πT ) is a model of the LTLp formula ψn (resp., LTL formula ϕLTL), where πT is the unique
ε-play of T . Thus, since ϕ and 〈〈∅〉〉ψn are equivalent, and there is a bijection between Π
and the set of infinite words over 2AP, we obtain that ϕLTL is equivalent to ψn, hence, ϕLTL
has size at least 2Ω(n). This entails that |ϕ| is at least 2Ω(n), and we are done. J

To the best of our knowledge, no succinctness gap is known between the “memoryful”
past view in CTL∗lp (resp., ATL∗lp) and the ‘local’ past view in PCTL∗ (resp., PATL∗). In this
section, we address this issue by establishing the following.

I Theorem 4. CTL∗lp (resp., ATL∗lp) can be exponentially more succinct than PCTL∗ (resp.,
PATL∗).

For the part of Theorem 4 concerning CTL∗lp and PCTL∗, we prove the following.

I Theorem 5. For each n ≥ 1, there exists a CTL∗lp formula ϕn of size O(n) such that every
equivalent PCTL∗ formula has size at least 2Ω(n).

As a corollary of Theorem 5, we deduce the part of Theorem 4 for ATL∗lp and PATL∗.

I Corollary 6. Let Ag be a set of agents. For each n ≥ 1, there exists an ATL∗lp formula ϕ′n
over Ag of size O(n) such that every equivalent PATL∗ formula has size at least 2Ω(n).

Proof. Fix a set Ag of agents and an agent ag ∈ Ag. Let n ≥ 1 and ϕn be the CTL∗lp formula
of size O(n) satisfying the statement of Theorem 5, and APn the set of propositions occurring
in ϕn. We denote by ϕ′n the ATL∗lp version over Ag of ϕn, i.e., the formula obtained from ϕn,
by replacing the path quantifier E (resp., A) with the strategy quantifier 〈〈Ag〉〉 (resp., 〈〈∅〉〉).
Note that |ϕ′n| = |ϕn|. We can associate with each 2APn -labeled tree T = 〈T,Lab〉 a CGT of
the form f(T ) = 〈T, ε,Lab, τ〉 over Ag such that each node in f(T ) is controlled by agent ag.

Now, let ψ′n be a PATL∗ formula over Ag and APn equivalent to ϕ′n. We show that the
size of ψ′n is at least 2Ω(n), hence, the result follows. We denote by ψn the PCTL∗ formula
obtained from ψ′n by replacing each strategy quantifier 〈〈A〉〉 with E if ag ∈ A, and with A
otherwise. By construction, for each 2APn-labeled tree T = 〈T,Lab〉, T is a model of ψn
(resp., ϕn) iff f(T ) is a model of ψ′n (resp., ϕ′n). Thus, since ψ′n and ϕ′n are equivalent, we
obtain that the PCTL∗ formula ψn is equivalent to ϕn. By Theorem 5, the size of ψn is at
least 2Ω(n), hence, being |ψ′n| ≥ |ψn|, the result follows. J

In the rest of this section, we provide a proof of Theorem 5. Fix n ≥ 1. Let APn :=
{p0, p1, . . . , pn} be a set consisting of n+ 1 distinct atomic propositions, AP′n := APn \ {p0}
be the set obtained from APn by removing proposition p0, and # /∈ APn be a special atomic
proposition. Fix an ordering a1, . . . , a2n of the 2n distinct symbols of the alphabet 2AP′

n .
An n-word is a word of the form w = b1 . . . b2n · {#} over 2APn∪{#} of length 2n + 1 such
that there is a set K ⊆ [1, 2n] so that for all j ∈ [1, 2n], bj = aj if j /∈ K and bj = aj ∪ {p0}
otherwise. Intuitively an n-word is obtained from ν = a1, . . . , a2n · {#} by augmenting some
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6:8 Results on Alternating-Time Temporal Logics with Linear Past

non-last symbols in ν with proposition p0. Note that there are exactly 22n distinct n-words.
Next, we define the notions of n-block and n-configuration. Let check /∈ APn ∪ {#} be an
additional atomic proposition.

I Definition 7 (n-blocks). An n-block is a 2APn∪{check,#}-labeled tree 〈T,Lab〉 such that:
there is a finite path π from the root so that Lab(π) is an n-word and each node x of π
has exactly one child cx which is not visited by π. Moreover, there is exactly one infinite
path starting from cx, and this path has label {check}ω.

Intuitively, an n-block is a labeled tree consisting of an n-word augmented with check-branches
starting from the n-word nodes.

I Definition 8 (n-configurations). An n-configuration is a 2APn∪{check,#}-labeled tree T =
〈T,Lab〉 such that for some k ≥ 1, there exist k+ 1 n-blocks T0, . . . , Tk so that T is obtained
by connecting the k + 1 n-blocks T0, . . . , Tk as follows:

the {#}-node of T0 has as children the roots of T1 . . . Tk.
We say that T0 is the master n-block of T , and T1 . . . , Tk are the slave n-blocks of T . The
n-configuration T is well-formed if the n-word associated with the master coincides with the
n-word of some slave.

We now show that one can construct a CTL∗lp formula ϕn of size O(n) which distinguishes
the n-configurations which are well-formed from the non-well-formed ones.

I Lemma 9. For each n ≥ 1, there exists a CTL∗lp formula ϕn over 2APn∪{check,#} having
size O(n) such that for each n-configuration 〈T,Lab〉, 〈T,Lab〉 is a model of ϕn if and only
if 〈T,Lab〉 is well-formed.

Proof. Given n ≥ 1, we construct a CTL∗lp formula ϕn which is satisfied by an n-configuration
T iff there exists an infinite path π of T from the root such that:
(1) π visits the n-word of the master and the n-word of some slave, and
(2) the two n-words visited by π coincide.

The crucial property which allow us to define a CTL∗lp formula of size O(n) satisfying
Requirement (2) is that for each node x of π associated with the n-word of the slave, there
is a child y of x whose subtree reduces to a path labelled by the word ({check})ω. Thus,
the “memoryful” semantics of the path quantifier E allow us to “select” the prefix of π until
node x, by using the check-node y as marker, and to require that such a prefix satisfies the
following

(*) for each node z along the n-word of the master, if the labels of z and x agree on
propositions p1, . . . , pn, then they also agree on proposition p0.

Thus, the CTL∗lp formula ϕn is EF
[
#∧ (XF#)∧G

(
(¬#∧¬check)→ E(Xcheck∧ψn)

)]
where

ψn is an LTLp formula ensuring Requirement (*) for the selected 2APn-labeled node of

the selected slave: ψn := F−
[
# ∧ X−G−

(i=n∧
i=1

∧
qi∈{pi,¬pi}

(
qi → F(¬check ∧ Xcheck ∧ qi)

)
−→∧

q0∈{p0,¬p0}

(q0 → F(¬check ∧ Xcheck ∧ q0)
) ]
. J

Next, in order to complete the proof of Theorem 5, we show that for all n ≥ 1, every
PCTL∗ formula equivalent to the CTL∗lp formula ϕn of Lemma 9 has size at least 2Ω(n). For
this, we exploit the well-known result concerning the translation of CTL∗ (and PCTL∗ as
well) formulas into equivalent parity symmetric alternating tree-automata (parity SATA).
SATA [16] are a variation of classical (asymmetric) alternating automata in which it is not
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necessary to specify the direction (i.e., the choice of the children) of the tree on which a
copy is sent. In fact, through existential and universal moves, it is possible to send a copy of
the automaton, starting from a node of the input tree, to one or all its successors. We now
recall syntax and semantics of parity SATA. For a set X, B+(X) denotes the set of positive
Boolean formulas over X, i.e. Boolean formulas built from elements in X using ∨ and ∧ (we
also allow the formulas true and false).

A parity SATA over a finite alphabet Σ is a tuple A = 〈Σ, q0, Q, δ,Ω〉, where Q is a finite
set of states, q0 ∈ Q is the initial state, δ : Q × 2AP → B+(Q × {�,♦}) is the transition
function, and Ω : Q 7→ N is a parity acceptance condition over Q assigning to each state an
integer (color). Intuitively, a target of a move of A is encoded by an element in Q× {�,♦}.
An atom (q,♦) means that from the current node x of the Σ-labeled input tree, A moves to
some child of x and the state is updated to q. On the other hand, an atom (q,�) means
that from the current node x, the automaton splits in multiple copies and, for each child x′
of x in the input tree, one of such copies moves to node x′ and the state is updated to q.

Formally, for a Σ-labeled tree T = 〈T,Lab〉, a run of A over T is a (Q×T )-labeled N-tree
r = 〈Tr,Labr〉, where each node of Tr labelled by (q, x) describes a copy of the automaton
that is in state q and reads the node x of T . Moreover, we require that r(ε) = (q0, ε) (initially,
the automaton is in state q0 reading the root node), and for each y ∈ Tr with r(y) = (q, x),
there is a (possibly empty) minimal set H ⊆ Q×{�,♦} satisfying δ(q,Lab(x)) such that the
set L(y) of labels of children of y in T is the smallest set satisfying the following conditions:
for all atoms at ∈ H,

if at = (q′,♦), then for some child x′ of x in T , (q′, x′) ∈ L(y);
if at = (q′,�), then for each child x′ of x in T , (q′, x′) ∈ L(y).

The run r is accepting if for all infinite paths π starting from the root, the smallest
color of the states in Q that occur infinitely often along Labr(π) is even. A Σ-labeled tree
T = 〈T,Lab〉 is accepted by A if there is an accepting run over T . The following is a
well-known result [21].

I Proposition 2 ([21]). Given a PCTL∗ formula ψ, one can construct a parity SATA with
2O(|ψ|) states accepting the set of models of ψ.

Theorem 5 directly follows from Lemma 9, Proposition 2, and the following result.

I Lemma 10. Let n ≥ 1 and An be a parity SATA over 2APn∪{check,#} accepting the set of
models of the CTL∗lp formula ϕn in Lemma 9. Then, An has at least 22n states.

Proof. Let n ≥ 1 and An = 〈2APn∪{check,#}, q0, Q, δ,Ω〉 as in the statement of the lemma.
For each state q ∈ Q, we denote by Aqn the parity SATA 〈2APn∪{check,#}, q,Q, δ,Ω〉, i.e., Aqn
is obtained from An by considering q as initial state instead of q0. We show the following.

Claim. For each n-word w, there is a state qw of An such that:
there is an accepting run of Aqw

n over the n-block associated with w;
for each n-word w′ distinct from w, there is no accepting run of Aqw

n over the n-block
related to w′.

By the claim above, it follows that there is a bijection between the set of n-words and
a subset of the set Q of An-states. Thus, since the number of distinct n-words is 22n , the
result follows. It remains to prove the claim. An n-configuration T is complete if T has 22n

slaves and for each n-word w, there is a slave of T associated with w. Fix an n-word w and
let Tw be the complete n-configuration whose master matches the n-word w. Since Tw is
well-formed, by hypothesis and Lemma 9, there is an accepting run rw of An over Tw. Let
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x# be the {#}-labeled node of the Tw-master, and x1, . . . , x22n be the 22n children of x#
which correspond to the roots of the Tw-slaves. Without loss of generality, assume that x1 is
the root of the slave associated with the n-word w. Moreover, let T \ww be the n-configuration
obtained from Tw by removing the subtree rooted at node x1 (i.e., the slave associated with
w), and Q♦

w be the set of states associated with the copies of the run rw reading node x1 and
obtained by existential moves. Since T \ww is not well-formed, by hypothesis and Lemma 9,
there is no accepting run of An over T \ww .

Since the parity acceptance condition is prefix independent, by construction, for each
q ∈ Q♦

w, there exists an accepting run of Aqn over the n-block associated with w (in particular,
the subtree rooted at the node of the run rw associated with the copy of An reading node x1
in state q is such a run). Thus, since w is an arbitrary n-word, in order to prove the claim, it
suffices to show that there exists a state qw ∈ Q♦

w such that for each n-word w′ distinct from
w, there is no accepting run of Aqw

n over the n-block related to w′. We assume the contrary
and derive a contradiction. Let Q♦

w = {q1, . . . , qk}. By hypothesis, for all i ∈ [1, k], there
exists an n-word wi 6= w and an accepting run ri of Aqi

n over the n-block related to wi. Let
r′ be the labeled tree obtained from the accepting run rw by replacing for all i ∈ [1, n] and
node zi of rw associated with the copy of An reading node x1 in state qi, the subtree rooted
at node zi with a copy of the run ri. Since for each i ∈ [1, k], the n-configuration T \ww has a
slave associated with the n-word wi, by construction, we obtain that r′ is an accepting run
of An over T \ww , which is a contradiction, and the result follows. J

4 Decision procedures for ATLlp

In this section, we establish that both satisfiability and model-checking for the logic ATLlp
are Exptime-complete. The upper bounds are obtained by an automata-theoretic framework
based on the use of a subclass of Büchi alternating automata for CGS (Büchi ACG) [29], called
ACG with satellites and introduced in [26]. By translating ATLlp formulas into equivalent
Büchi ACG with satellites, we reduce model-checking (resp., satisfiability) of ATLlp to the
membership (resp., non-emptiness) problem of such a class of automata. Notice that the
symbolic algorithm, based on reachability analysis, used for solving ATL model-checking [2]
cannot applied to ATLlp. This is because, differently from ATL, the valuation of an ATLlp
formula ϕ at a node x of the unwinding Unw(G) of a finite CGS does not depend only on the
state of G associated with node x, but also depends on the history from the root to node x.

The rest of the section is organized as follows. In Subsection 4.1, we establish a preliminary
result concerning the dualization of basic ATLlp formulas which generalizes to linear past
a similar result holding for ATL∗. In Subsection 4.2, we recall the framework of ACG with
satellites, and in Subsection 4.3, we solve satisfiability and model-checking of ATLlp by
providing a translation of ATLlp formulas into equivalent Büchi ACG with satellites involving
a single exponential blowup.

4.1 Dualization of basic ATLlp formulas

In order to solve the considered decision problems for the logic ATLlp, we exploit the following
preliminary result (which is known to hold for ATL∗ [28]).

I Proposition 3. Given a basic ATLlp formula 〈〈A〉〉ψ, a CGT T , and a node x, the following
holds, where νx is the history from the root to node x: (T , x) |= ¬〈〈A〉〉ψ if and only if there
is a counter strategy f cA for A such that for all ε-plays π ∈ out(νx, f cA), (T , π, |x|) |= ¬ψ.
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We now provide a proof of Proposition 3. Given two path formulas ϕ and ϕ′ of ATL∗lp
(note that we consider the more expressive logic ATL∗lp), ϕ and ϕ′ are congruent if for every
CGT T , ε-play π of T and position i ≥ 0, (T , π, i) |= ϕ if and only if (T , π, i) |= ϕ′ (note
that congruence is a stronger requirement than equivalence). We first show that given an
ATL∗lp path formula, it is possible to suitably separate past and future temporal modalities.

I Lemma 11. Let ϕ be an ATL∗lp path formula. Then, ϕ is congruent to a Boolean combina-
tion of ATL∗ formulas and ATL∗lp formulas that correspond to pure past LTLp formulas over
the set of propositions AP ∪H, where H consists of basic ATL∗ formulas.

The proof of Lemma 11, which is provided in Appendix A, is based on the well-known
separation theorem for LTLp over infinite words [12], which states that any LTLp formula can
be effectively converted into an equivalent Boolean combination of LTL formulas and pure past
LTLp formulas. We now prove Proposition 3. Let 〈〈A〉〉ψ, T , x, and νx be as in Proposition 3.
First, assume that there is a counter strategy f cA for A such that for all ε-plays π ∈ out(νx, f cA),
(T , π, |x|) |= ¬ψ. Since for each strategy fA for A, out(νx, f cA) ∩ out(νx, fA) 6= ∅, we deduce
that (T , x) |= ¬〈〈A〉〉ψ.

For the converse direction, assume that (T , x) |= ¬〈〈A〉〉ψ. By Lemma 11, the ATLlp
formula ψ is congruent to an ATL∗lp path formula θ of the form

θ :=
∨
`∈I

(θp,` ∧ θf,`) (1)

such that I 6= ∅, for all ` ∈ I, θf,` is a path ATL∗ formula and θp,` corresponds to a pure past
LTLp formula over the set of propositions AP ∪H where H consists of basic ATL∗ formulas.
Let Jx be the set of elements ` ∈ I such that (T , x) |= θp,`. If Jx = ∅, then by Point 1, for
each ε-play π visiting node x, we have that (T , π, |x|) |= ¬θ. Thus, since θ is congruent to ψ,
the result follows. Now, assume that Jx 6= ∅. In the proof of Lemma 11 (see Appendix A), we
exploit the fact that 〈〈A〉〉

∨
`∈I

(θp,` ∧ θf,`) is congruent to
∨

J⊆I|J 6=∅

(
(
∧
`∈J

θp,`) ∧ 〈〈A〉〉(
∨
`∈J

θf,`)
)
.

By hypothesis, (T , x) |= ¬〈〈A〉〉ψ. Hence, by definition of Jx, it follows that
(T , x) |= ¬〈〈A〉〉(

∨
`∈Jx

θf,`)
Since 〈〈A〉〉(

∨
`∈Jx

θf,`) is a basic ATL∗ formula, by [28], there exists a counter strategy f cA
for agents in A such that for all ε-plays π ∈ out(νx, f cA) and ` ∈ Jx, (T , π, |x|) |= ¬θf,`.2
Moreover, since θp,` is a pure past LTLp formula over AP∪H, where H consists of basic ATL∗
formulas, by definition of Jx, for all ` ∈ I \ Jx and ε-plays π visiting x, (T , π, |x|) |= ¬θp,`.
Thus, by Point 1 and since θ is congruent to ψ, we obtain that for all ε-plays π ∈ out(νx, f cA),
(T , π, |x|) |= ¬ψ, which concludes the proof of Proposition 3.

4.2 Automata for ATLlp

In this section, we recall the class of ACG [29] and the subclass of ACG with satellites [26]. ACG
generalize the class of symmetric alternating automata (recalled in Section 3) by branching
universally or existentially over all successors that result from the agents’ decisions. Formally,
a Büchi ACG over 2AP and Ag is a tuple A = 〈2AP, q0, Q, δ, F 〉, where Q is a finite set of
states, q0 ∈ Q is the initial state, δ : Q × 2AP → B+(Q × {�,♦} × 2Ag) is the transition
function, and F ⊆ Q is a Büchi acceptance condition on Q. The transition function δ maps

2 The result in [28] is based on the well-known determinacy of two-players turn-based games with LTL
objectives.
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a state and an input letter to a positive Boolean combination of universal atoms (q,�, A)
which refer to all successors states for some A-decision, and existential atoms (q,♦, A) which
refer to some successor state for all A-decisions.

We interpret the Büchi ACG A over CGT T = 〈T, ε,Lab, τ〉 on AP and Ag. A run of A
over T is a (Q× T )-labeled N-tree r = 〈Tr,Labr〉, where each node of Tr labelled by (q, x)
describes a copy of the automaton that is in the state q and reads the node x of T . Moreover,
we require that Labr(ε) = (q0, ε) (initially, the automaton is in state q0 reading the root
node), and for each y ∈ Tr with Labr(y) = (q, x), there is a set H ⊆ Q× {�,♦} × 2Ag such
that H is model of δ(q,Lab(x)) and the set L of labels associated with the children of y in
Tr minimally satisfies the following conditions:

for all universal atoms (q′,�, A) ∈ H, there is some A-decision dA such that for all the
children x′ of x in T which are consistent with dA, (q′, x′) ∈ L;
for all existential atoms (q′,♦, A) ∈ H and for all A-decisions dA, there is some child x′
of x in T which is consistent with dA such that (q′, x′) ∈ L.

The run r is accepting if for all infinite paths π starting from the root, Labr(π) visits
infinitely often elements in F . The language L(A) accepted by A consists of the CGT T over
AP and Ag such that there is an accepting run of A over T .

In the following, we also consider standard nondeterministic and deterministic word
automata (NWA and DWA) with no acceptance condition (safety NWA and safety DWA)
running on words over a finite alphabet Σ. Recall that a safety NWA is a tuple A =
〈Σ, q0, Q, δ〉, where q0 and Q are as for ACG, and δ : Q× Σ 7→ 2Q is the transition function.
The automaton is deterministic if for each state q and input symbol σ, δ(q, σ) is a singleton.
A run π over an input w ∈ Σω is an infinite sequence of states π = q0, q1, . . . (starting from
the initial state) such that qi+1 ∈ δ(qi, w(i)) for all i ≥ 0.

In the translation of ATLlp formulas into equivalent ACG, the main technical obstacle is
the handling of (memoryful) linear past which enables a reference to histories since the root
of a CGT. This requires an automaton to remember the past. A simple solution would consist
of using a two-way extension of ACG, but for such a class of automata, the membership and
the non-emptiness problem would result harder than the ones for (one-way) ACG. Instead, we
adopt the approach for CTL∗lp [18] and ATL∗lp [26] based on the use of alternating automata
augmented with satellites. Specifically, ACG with satellites [26] represent a subclass of ACG
in which the state space can be partitioned into two components, one of which (the satellite)
is independent of the other, has no influence on the acceptance, and runs on all the branches
of the input CGT by maintaining information about the past.

Formally, a Büchi ACG equipped with a satellite is a pair (A,U), where U = 〈2AP, s0, S, δS〉,
the satellite, is a safety NWA, while A (the main automaton) is a Büchi ACG A =
〈2AP, q0, Q, δ, F 〉 whose transition function is of the form δ : Q × 2AP × S → B+(Q ×
{�,♦} × 2Ag). Intuitively, when a copy of A reads a node x of the input with label σ,
a possible move is performed in two phases. In the first phase, the associated copy of
U reads the letter σ and updates its state. In the second phase, A reads σ and the up-
dated state of U , and updates its state. Formally, (A,U) is equivalent to the ordinary
Büchi ACG A′ = 〈2AP, (q0, s0), Q× S, δ′, F × S〉, where for all (q, s) ∈ Q× S and σ ∈ 2AP,
δ′((q, s), σ) =

∨
s′∈δS(s,σ) f(q, σ, s′) with f(q, σ, s′) being obtained from δ(q, σ, s′) by replacing

each atom (q′,�, A) (resp., (q′,♦, A)) with ((q′, s′),�, A) (resp., ((q′, s′),♦, A)).
The separation of the satellite U from the main automaton A allows a tighter analysis

of the complexity of the nonemptiness problem. If U is deterministic, then the resulting
exponential blow-up in the alternation removal (used for checking non-emptiness) only
concerns the states of the main automaton. In particular, by [18, 26], the following holds.
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I Proposition 4 ([18, 26]). The non-emptiness problem of a Büchi ACG A with n states and
a deterministic satellite with nS states can be solved in time 2O(n lognS+n2 logn).

In Subsection 4.3, we provide a translation of ATLlp formulas ϕ into equivalent Büchi
ACG accepting the set of models of ϕ. In such a way, model-checking against ATLlp is reduced
to checking for a finite CGS G and a Büchi ACG A, whether Unw(G) is accepted by A. By
standard arguments (see e.g. [21]), checking whether Unw(G) is accepted by A can be reduced
in polynomial-time to check non-emptiness of a Büchi alternating word automaton over a
1-letter input alphabet having n ·m states, where n (resp., m) is the number of states in G
(resp., A). By [19], the latter problem can be solved in time O((n ·m)2).

I Proposition 5. Given a Büchi ACG A with m states and a finite CGS G with n states,
checking whether Unw(G) is accepted by A can be done in time O((n ·m)2).

4.3 From ATLlp to Büchi ACG with satellites
In this section, in order to solve ATLlp satisfiability, we show how to translate a given ATLlp
formula Φ into a Büchi ACG AΦ with O(|Φ|) main states equipped with a deterministic
satellite UΦ having 2O(|Φ|) states accepting extended versions of the models of Φ (extended
basic models). For the model-checking problem, we convert the pair (AΦ,UΦ) into a ACG A′Φ
with O(|Φ|) main states equipped with a nondeterministic satellite U ′Φ having 2O(|Φ|) states
accepting the set of models of Φ. We now proceed with the technical details.

Fix an ATLlp state formula Φ over AP, and let BΦ be the set of basic subformulas of
Φ, and BFL(Φ) be the set of first-level basic subformulas of Φ, i.e. the basic subformulas
of Φ for which there is an occurrence in Φ which is not in the scope of strategy quantifiers.
Note that an ATLlp formula ψ can be seen as a pure past LTLp formula, denoted [ψ]LTLp , over
the set AP augmented with the set BFL(ψ) ⊆ Bψ of first-level basic subformulas of ψ. In
particular, if ψ is a state formula, then [ψ]LTLp

is a propositional formula over AP ∪ BFL(ψ).
For a finite set B disjoint from AP and a CGT T = 〈T, ε,Lab, τ〉 over AP, a B-labeling

extension of T is a CGT over AP∪B of the form 〈T, ε,Lab′, τ〉, where Lab′(x)∩AP = Lab(x)
for all x ∈ T . A CGT TΦ over AP∪BΦ is called an extended basic model of Φ iff the following
holds, where Lab is the labeling of TΦ:

for each 〈〈A〉〉ψ ∈ BΦ and node x of TΦ, (TΦ, x) |= 〈〈A〉〉ψ if and only if 〈〈A〉〉ψ ∈ Lab(x);
Lab(ε) is a model of the propositional formula [Φ]LTLp

.

Evidently, by the semantics of ATLlp, the following holds.

I Remark. Let T be a CGT over AP and Φ be an ATLlp state formula over AP. Then:
T is a model of Φ iff there exists a BΦ-labeling extension of T which is an extended
basic model of Φ;
there is at most one BΦ-labeling extension of T which is an extended basic model of Φ.

Next, we provide a characterization of the set of extended basic models of the given state
formula Φ based on a set of conditions which can be easily checked by Büchi ACG equipped
with deterministic satellites. Let ψ be a pure past LTLp formula over the set of propositions
AP ∪ BΦ. The closure cl(ψ) of ψ is the set of pure past LTLp formulas consisting of the
subformulas of ψ and their negations (we identify ¬¬ψ with ψ). Note that ψ,¬ψ ∈ cl(ψ)
and |cl(ψ)| = O(|ψ|). It is worth noting that in the previous definition, elements in BΦ are
considered as atomic propositions. By an adaptation of the well-known translation of LTL
formulas into equivalent generalized Büchi NWA [31], we obtain the following result (for
details, see Appendix B).
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I Proposition 6. Let ψ be a pure past LTLp formula over AP∪BΦ. Then, one can construct
a safety DWA Dψ = 〈2AP∪BΦ , q0, Q ∪ {q0}, δ〉 such that Q ⊆ 2cl(ψ), there is no transition
leading to q0, and the following holds for each infinite word w over 2AP∪BΦ :

let q0 C0 C1 . . . be the unique run of Dψ over w. Then, for all i ≥ 0 and θ ∈ cl(ψ), θ ∈ Ci
if and only if (w, i) |= θ.

We are now ready to provide a characterization of the extended basic models of the ATLlp
state formula Φ. For each ATLlp subformula ψ of Φ, let Dψ be the safety DWA over 2AP∪BΦ

of Proposition 6 for the pure past LTLp formula [ψ]LTLp
. For each finite word w over 2AP∪BΦ ,

we denote by Dψ(w) the state reached by Dψ on reading w.

I Definition 12 (Well-formedness). Let T be a CGT over AP ∪ BΦ with labeling Lab and
〈〈A〉〉ψ ∈ BΦ be a basic subformula of Φ. For each node x of T , let νx be the track of T from
the root to node x.
T is positively well-formed with respect to 〈〈A〉〉ψ if for all nodes x such that 〈〈A〉〉ψ ∈
Lab(x), there is a strategy fA for A such that for all the outcomes π ∈ out(νx, fA):

Case ψ = Xψ1: ψ1 ∈ Dψ1(Lab(π[0, |x|+ 1])).
Case ψ = ψ1Uψ2: there is j ≥ |x| such that ψ2 ∈ Dψ2(Lab(π[0, j])) and ψ1 ∈
Dψ1(Lab(π[0, k])) for all k ∈ [|x|, j − 1].
Case ψ = ψ1Rψ2: for all j ≥ |x| either ψ2 ∈ Dψ2(Lab(π[0, j])) or ψ1 ∈ Dψ1(Lab(π[0, k]))
for some k ∈ [|x|, j − 1].

T is negatively well-formed with respect to 〈〈A〉〉ψ if for all nodes x such that 〈〈A〉〉ψ /∈
Lab(x), there is a counter strategy f cA for A such that for all the outcomes π ∈ out(νx, f cA):

Case ψ = Xψ1: ¬ψ1 ∈ Dψ1(Lab(π[0, |x|+ 1])).
Case ψ = ψ1Uψ2: for all j ≥ |x|, either ¬ψ2 ∈ Dψ2(Lab(π[0, j])), or ¬ψ1 ∈
Dψ1(Lab(π[0, k])) for some k ∈ [|x|, j − 1].
Case ψ = ψ1Rψ2: there is j ≥ |x| such that ¬ψ2 ∈ Dψ2(Lab(π[0, j])) and ¬ψ1 ∈
Dψ1(Lab(π[0, k])) for all k ∈ [|x|, j − 1].

I Lemma 13. [Characterization of extended basic models of Φ] Let T be a CGT with labeling
Lab over AP∪BΦ such that Lab(ε) is a model of the propositional formula [Φ]LTLp

. Then, T
is an extended basic model of Φ if and only if for each basic subformula 〈〈A〉〉ψ ∈ BΦ, T is
both positively and negatively well-formed with respect to 〈〈A〉〉ψ.

Lemma 13 easily follows from the dualization result (Proposition 3) and Proposition 6
(see Appendix C). Based on the characterization Lemma, we obtain the following result.

I Theorem 14. Given an ATLlp state formula Φ, one can build in single exponential time a
Büchi ACG AΦ, equipped with a deterministic satellite UΦ, that accepts the set of extended
basic models of Φ. Moreover, AΦ has O(|Φ|) states and UΦ has 2O(|Φ|) states.

Proof. Let F be the set of subformulas ψ of Φ such that there exists a basic subformula of
Φ having one of the following forms: 〈〈A〉〉Xψ or 〈〈A〉〉(θOψ) or 〈〈A〉〉(ψOθ) where O ∈ {U,R}.
Then, the deterministic satellite UΦ is the synchronous product of the safety DWA of
Proposition 6 associated with the formulas [ψ]LTLp where ψ ∈ F . For a state s of UΦ and
ψ ∈ F , let s[ψ] be the component of the state s associated with the automaton Dψ. If s is not
initial (hence, s[ψ] ⊆ cl([ψ]LTLp)), we write P+(s, ψ) to denote true if ψ ∈ s[ψ], and false
otherwise. Dually, we write P−(s, ψ) to denote true if ¬ψ ∈ s[ψ], and false otherwise.

Next, we define the Büchi ACG AΦ. We first build for each basic subformula b of Φ, two
Büchi ACG Ab and A¬b such that Ab (resp., A¬b), equipped with the satellite UΦ, accepts
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the set of CGT over AP ∪BΦ which are positively (resp., negatively) well-formed with respect
to b. Then AΦ is obtained by “composing” the automata Ab and A¬b for all b ∈ BΦ.

Fix b ∈ BΦ. Then, Ab = 〈2AP∪BΦ , qb, {qb, b}, δb, Fb〉 consists of two states b and qb. State
qb is always accepting, i.e. qb ∈ Fb, while state b is in Fb iff b is of the form 〈〈A〉〉(ψ1Rψ2).
The transition function δb is defined as follows, where s is a state of UΦ:

δb(qb, σ, s) =


(qb,�, ∅) if b /∈ σ
(qb,�, ∅) ∧ (b,�, A) if b ∈ σ and b is of the form 〈〈A〉〉Xψ1
(qb,�, ∅) ∧ δb(b, σ, s) otherwise

δb(b, σ, s) =


P+(s, ψ1) if b = 〈〈A〉〉Xψ1
P+(s, ψ2) ∨ (P+(s, ψ1) ∧ (b,�, A)) if b = 〈〈A〉〉(ψ1Uψ2)
P+(s, ψ2) ∧ (P+(s, ψ1) ∨ (b,�, A)) if b = 〈〈A〉〉(ψ1Rψ2)

Intuitively, the automaton Ab uses the part (qb,�, ∅) of the transition function to traverse
every node in an input CGT T . Additionally, whenever the basic subformula b = 〈〈A〉〉ψ is in
the label of the current input node x and Ab is in its initial state qb, Ab guesses a strategy
fA of T for the coalition A and check that for all the plays π ∈ out(νx, fA), Lab(π) satisfies
the conditions of Definition 12 (which depend on the form of ψ). This check is done by using
the part (b,�, A) of the transition function which allows to send copies of Ab, all of them
in state b, to all and only the children of the current node which are consistent with the
guessed strategy fA, and by consulting the current state s of the satellite (i.e., the state
reached by UΦ on reading the labeling of the track from the root to the current node). The
construction of the ACG A¬b = 〈2AP∪BΦ , q¬b, {q¬b,¬b}, δ¬b, F¬b〉 is similar but we now use
P−(s, ψi) instead of P+(s, ψi), and we use atoms of the form (q,♦, A) for selecting plays of
counter strategies for A in the input CGT. The ACG AΦ is then defined as follows, where
we assume that the various automata Ab and A¬b with b ∈ BΦ have no state in common:
Aφ = 〈2AP∪BΦ , q0, Q ∪ q0, δ, F 〉, where Q (resp., F ) consists of the states (resp., accepting
states) of Ab and A¬b for all b ∈ BΦ, q0 is a fresh initial state, and the transition function
for the states q 6= q0 is inherited from the respective ACG. For the initial state q0, δ(q0, σ, s),
where s is a satellite state, is defined as follows: δ(q0, σ, s) = false if σ is not a model of
the propositional formula [Φ]LTL, and δ(q0, σ, s) =

∧
b∈BΦ∩σ

δb(qb, σ, s) ∧
∧

b∈BΦ\σ

δ¬b(q¬b, σ, s)

otherwise. By construction and Lemma 13, for every CGT T over AP ∪BΦ, AΦ accepts T
iff T is a basic extended model of Φ. Moreover, by Proposition 6, AΦ has O(|Φ|) states and
UΦ has 2O(|Φ|) states, which concludes the proof of Theorem 14. J

For solving satisfiability for Φ, we can check the pair (AΦ,UΦ) of Theorem 14 for non-
emptiness. However, for solving the model-checking problem against ATLlp, we need automata
running on CGT over 2AP. By slightly adapting the construction of Theorem 14, we obtain
the following result (for a proof, see Appendix D).

I Theorem 15. Given an ATLlp state formula Φ, one can build in single exponential time a
Büchi ACG A′Φ over 2AP, equipped with a nondeterministic satellite U ′Φ, that accepts the set
of models of Φ. Moreover, A′Φ has O(|Φ|) states and U ′Φ has 2O(|Φ|) states.

We can show that model-checking against ATLlp is Exptime-hard by a polynomial-time
reduction from the acceptance problem for linearly-bounded alternating Turing Machines (see
Appendix E). Since ATLlp subsumes ATL and satisfiability of ATL is Exptime-complete [2],
by Propositions 4-5 and Theorems 14-15, we obtain the main result of this section.

I Corollary 16. Satisfiability and model-checking against ATLlp are both Exptime-complete.
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5 Conclusions

While it is well-known that linear past exponentially increases the succinctness of temporal
logic formulas, very few is known about the succinctness gap between different linear-
past semantics. In this paper, we have partially addressed this issue. Moreover, we have
investigated a memoryful linear-past extension of ATL, which expressively strictly lies between
ATL and ATL∗, and for which satisfiability and model-checking problems are exponentially
less expansive than the ones for ATL∗. As future work, we aim to investigate memoryful
linear-past extensions of meaningful and elementary fragments (such as One-Goal Strategy
Logic) of Strategy Logic [9, 25], a well-known powerful framework for reasoning explicitly
about strategic behaviors.
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A Proof of Lemma 11

For an ATL∗lp path formula ϕ, let BFL(ϕ) be the set of first-level basic subformulas of ϕ, i.e.
the basic subformulas of ϕ for which there is an occurrence in ϕ which is not in the scope
of strategy quantifiers. We first show that, under the assumption that the first-level basic
subformulas are in ATL∗, it is possible to separate past and future temporal modalities.

I Lemma 17. Let 〈〈A〉〉ϕ be a basic ATL∗lp formula s.t. BFL(ϕ) consists of ATL∗ formulas.
Then, 〈〈A〉〉ϕ and ϕ are congruent to Boolean combinations of ATL∗ formulas and ATL∗lp
formulas that correspond to pure past LTLp formulas over the set of propositions AP∪BFL(ϕ).

Proof. Let AP = AP ∪ BFL(ϕ). By hypothesis, BFL(ϕ) is a set of ATL∗ formulas.
Given a CGT T over AP with propositional labeling Lab and an ε-play π of T , we denote

by πAP the infinite word over 2AP defined as follows for every position i ≥ 0:
πAP(i) ∩AP = Lab(π(i));
πAP(i) ∩ BFL(ϕ) = {ψ ∈ BFL(ϕ) | (T , π, i) |= ψ}.
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Now, the path formula ϕ over AP can be seen as an LTLp formula over AP. By definitions of
the infinite words πAP and the LTLp and ATL∗lp semantics, one can easily show by structural
induction that for all CGT T over AP, ε-plays π of T , and positions i ≥ 0:

(T , π, i) |= ϕ if and only if (πAP, i) |=LTL ϕ (2)

By applying the separation theorem for LTLp [12], starting from the LTLp formula ϕ, one
can construct an LTLp formula θ over AP of the form

θ :=
∨
`∈I

(θp,` ∧ θf,`) (3)

such that I 6= ∅, for all ` ∈ I, θp,` is a pure past LTLp formula, θf,` is an LTL formula, and
for all infinite words w over 2AP and i ≥ 0, it holds that (w, i) |=LTL ϕ iff (w, i) |=LTL θ.

Since θ corresponds to an ATL∗lp formula over AP, by replacing formula ϕ with θ in
Point 2, we obtain that ϕ and θ are congruent and the given basic ATL∗lp formula 〈〈A〉〉ϕ
over AP is congruent to the basic ATL∗lp formula 〈〈A〉〉

∨
`∈I

(θp,` ∧ θf,`). Thus, the statement of

Lemma 11 directly follows from the following claim.

Claim. ψ := 〈〈A〉〉
∨
`∈I

(θp,` ∧ θf,`) is congruent to ψB :=
∨

J⊆I|J 6=∅

(
(
∧
`∈J

θp,`) ∧ 〈〈A〉〉(
∨
`∈J

θf,`)
)
.

Proof of the Claim. Fix a CGT T over AP, an ε-play π of T , and a position i ≥ 0.
First, assume that (T , π, i) |= ψ. Hence, there is a strategy fA for A such that the

following holds, where Π is the non-empty set of ε-plays π′ ∈ out(π[0, i], fA): for all π′ ∈ Π,
(T , π′, i) |=

∨
`∈I(θp,` ∧ θf,`). Let J be the non-empty subset of I consisting of the elements

` ∈ I such that (T , π′, i) |= θp,` ∧ θf,` for some π′ ∈ Π. Since θp,` corresponds to a pure
past LTLp formula over AP and π′[0, i] = π[0, i] for all π′ ∈ Π, it follows that for all ` ∈ J ,
(T , π, i) |= θp,`. Thus, we obtain that (T , π, i) |= (

∧
`∈J

θp,`) ∧ 〈〈A〉〉(
∨
`∈J

θf,`) which entails that

(T , π, i) |= ψB .
For the converse direction, assume that (T , π, i) |= ψB. Hence, there are a non-empty

subset J ⊆ I and a strategy fA for A such that the following holds, where Π is the non-empty
set of ε-plays π′ ∈ out(π[0, i], fA):

for all ` ∈ J , (T , π, i) |= θp,`;
for all π′ ∈ Π, there is ` ∈ J such that (T , π′, i) |= θf,`.

Again since θ`,p corresponds to a pure past LTLp formula over AP and π′[0, i] = π[0, i]
for all π′ ∈ Π, it follows that for all ` ∈ J and π′ ∈ Π, (T , π′, i) |= θp,`. It follows that
(T , π, i) |= 〈〈A〉〉

∨
`∈J

(θp,` ∧ θf,`) which entails that (T , π, i) |= ψ. J

We now prove Lemma 11.

I Lemma 11. Let ϕ be an ATL∗lp path formula. Then, ϕ is congruent to a Boolean combina-
tion of ATL∗ formulas and ATL∗lp formulas that correspond to pure past LTLp formulas over
the set of propositions AP ∪H, where H consists of basic ATL∗ formulas.

Proof. The proof is by induction on the nesting depth of the strategy quantifiers in ϕ.
Base case: in this case BFL(ϕ) = ∅, and the result directly follows from Lemma 17.
Inductive step: let 〈〈A′〉〉ψ ∈ BFL(ϕ). By the inductive hypothesis, the thesis holds for

formula ψ. Hence, ψ is a congruent to an ATL∗lp formula ψ′ such that BFL(ψ′) consists of
basic ATL∗ formulas. By applying Lemma 17, 〈〈A′〉〉ψ is congruent to an ATL∗lp formula, say



L. Bozzelli, A. Murano, and L. Sorrentino 6:19

ξ, such that BFL(ξ) consists of basic ATL∗ formulas. By replacing each occurrence of 〈〈A′〉〉ψ
in ϕ with ξ, and repeating the procedure for all the formulas in BFL(ϕ), we obtain an ATL∗lp
path formula θ which is congruent to ϕ (note that the congruence relation is closed under
substitution) and such that BFL(θ) consists of basic ATL∗ formulas. At this point we can
apply Lemma 17 to formula θ proving the assertion. J

B Proof of Proposition 6

I Proposition 6. Let ψ be a pure past LTLp formula over AP∪BΦ. Then, one can construct
a safety DWA Dψ = 〈2AP∪BΦ , q0, Q ∪ {q0}, δ〉 such that Q ⊆ 2cl(ψ), there is no transition
leading to q0, and the following holds for each infinite word w over 2AP∪BΦ :

let q0 C0 C1 . . . be the unique run of Dψ over w. Then, for all i ≥ 0 and θ ∈ cl(ψ), θ ∈ Ci
if and only if (w, i) |= θ.

Proof. The safety DWA Dψ = 〈2AP∪BΦ , q0, Q ∪ {q0}, δ〉 such that Q ⊆ 2cl(ψ) is defined as
follows. Q is the set of atoms of ψ consisting of the maximal propositionally consistent
subsets C of cl(ψ). Formally, an atom C of ψ is a subset of cl(ψ) satisfying the following:

for each θ ∈ cl(ψ), θ ∈ C iff ¬θ /∈ C;
for each θ1 ∨ θ2 ∈ cl(ψ), θ1 ∨ θ2 ∈ C iff {θ1, θ2} ∩ C 6= ∅.

An atom is initial if
for each X−θ ∈ cl(ψ), X−θ /∈ C;
for each θ1U−θ2 ∈ cl(ψ), θ1U−θ2 ∈ C iff θ2 ∈ C.

The transition relation δ captures the semantics of the previous modalities, and the local
fixpoint characterization of the since modalities. Formally, for each σ ∈ 2AP∪BΦ , δ(q0, σ)
consists of the uniquely determined initial atom C such that C is consistent with the input
symbol σ, i.e., C ∩ (AP ∪ BΦ) = σ ∩ (AP ∪ BΦ). Moreover, for each atom C of ψ and
σ ∈ 2AP∪BΦ , δ(C, σ) consists of the uniquely determined atom C ′ of ψ such that C ′ is
consistent with the input symbol σ, and:

for each X−θ ∈ cl(ψ), X−θ ∈ C ′ iff θ ∈ C;
for each θ1U−θ2 ∈ cl(ψ), θ1U−θ2 ∈ C ′ iff either θ2 ∈ C ′, or θ1 ∈ C ′ and θ1U−θ2 ∈ C.

By standard arguments (see [31]), given an infinite word w over 2AP∪BΦ , for the unique
run π = q0 C0 C1 . . . C` of Dψ over w, the following holds: for all i ≥ 0 and θ ∈ cl(ψ), θ ∈ Ci
if and only if (w, i) |= θ. Hence, the result follows. J

C Proof of Lemma 13

I Lemma 13 (Characterization of extended basic models of Φ). Let T be a CGT with labeling
Lab over AP∪BΦ such that Lab(ε) is a model of the propositional formula [Φ]LTLp

. Then, T
is an extended basic model of Φ if and only if for each basic subformula 〈〈A〉〉ψ ∈ BΦ, T is
both positively and negatively well-formed with respect to 〈〈A〉〉ψ.

Proof. Let T as in the statement of the lemma, and for a node x of T , let νx be the track
of T from the root to node x.

First assume that for each basic subformula 〈〈A〉〉ψ ∈ BΦ, T is both positively and
negatively well-formed with respect to 〈〈A〉〉ψ. Fix a node x of T and 〈〈A〉〉ψ ∈ BΦ. We need
to show that 〈〈A〉〉ψ ∈ Lab(x) iff (T , x) |= 〈〈A〉〉ψ. The proof is by structural induction on the
nesting depth of strategy quantifiers in ψ. We focus on the implication 〈〈A〉〉ψ /∈ Lab(x)⇒
(T , x) |= ¬〈〈A〉〉ψ (the converse implication 〈〈A〉〉ψ ∈ Lab(x) ⇒ (T , x) |= 〈〈A〉〉ψ is similar)
and assume that ψ = ψ1Uψ2 (the other cases being similar). Thus, let 〈〈A〉〉ψ /∈ Lab(x).
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Since T is negatively well-formed with respect to 〈〈A〉〉ψ, 〈〈A〉〉ψ /∈ Lab(x), and ψ = ψ1Uψ2,
by Definition 12 there exists a counter strategy f cA of T for A such that for all the outcomes
π ∈ out(νx, f cA), the following holds, where Dψ1 and Dψ2 are the safety DWA of Proposition 6
associated with the pure past LTLp formulas [ψ1]LTLp and [ψ2]LTLp :

(*) for all j ≥ |x| either ¬ψ2 ∈ Dψ2(Lab(π[0, j])) or ¬ψ1 ∈ Dψ1(Lab(π[0, k])) for some
k ∈ [|x|, j − 1].

By applying Proposition 6 to the unique run of the DWA Dψ1 (resp., Dψ2) over the infinite
word Lab(π), by Condition (*) we deduce that

(**) for all j ≥ |x| either (Lab(π), j) |=LTL [¬ψ2]LTLp
or (Lab(π), k) |=LTL [¬ψ1]LTLp

for
some k ∈ [|x|, j − 1].

It follows that (Lab(π), |x|) |=LTL [¬ψ]LTLp . By the induction hypothesis, for each 〈〈A′〉〉θ ∈
BFL(ψ) and position j ≥ 0, we have that 〈〈A′〉〉θ ∈ Lab(π(j)) iff (T , π(j)) |= 〈〈A′〉〉θ (note that
in the base step, BFL(ψ) = ∅, hence ψ in a pure past LTLp formula over AP). Thus, by the
semantics of ATLlp, it follows that (T , π, |x|) |= ¬ψ. Since π in an arbitrary outcome of the
counter strategy f cA from the history νx, by Proposition 3, we conclude that (T , x) |= ¬〈〈A〉〉ψ,
and the result follows.

For the converse implication, assume that for each node x of T and basic subformula
〈〈A〉〉ψ ∈ BΦ, 〈〈A〉〉ψ ∈ Lab(x) iff (T , x) |= 〈〈A〉〉ψ. Fix 〈〈A〉〉ψ ∈ BΦ. We show that T is both
positively and negatively well-formed with respect to 〈〈A〉〉ψ. We focus on the negatively
well-formedness condition and assume that ψ = ψ1Uψ2 (the other cases being similar). Thus,
let x be a node of T such that 〈〈A〉〉ψ /∈ Lab(x). By hypothesis, (T , x) |= ¬〈〈A〉〉ψ. By
Proposition 3, there exists a counter strategy f cA of T for A such that for all the outcomes
π ∈ out(νx, f cA), it holds that (T , π, |x|) |= ¬ψ, hence, (Lab(π), |x|) |=LTL [¬ψ]LTLp

. Fix
π ∈ out(νx, f cA). Let q1

0 C
1
0 C

1
1 . . . (resp., q2

0 C
2
0 C

2
1 . . .) be the unique run of the safety DWA

Dψ1 (resp., Dψ2). Since (Lab(π), |x|) |=LTL [¬ψ]LTLp
and ψ = ψ1Uψ2, by Proposition 6, it

follows that for all j ≥ |x| either ¬ψ2 ∈ C2
j or ¬ψ1 ∈ C1

k for some k ∈ [|x|, j − 1].
Since, π and x are arbitrary, by Definition 12, we conclude that T is negatively well-formed

with respect to 〈〈A〉〉ψ. J

D Proof of Theorem 15

I Theorem 15. Given an ATLlp state formula Φ, one can build in single exponential time a
Büchi ACG A′Φ over 2AP, equipped with a nondeterministic satellite U ′Φ, that accepts the set
of models of Φ. Moreover, A′Φ has O(|Φ|) states and U ′Φ has 2O(|Φ|) states.

Proof. Let AΦ and UΦ be the Büchi ACG and the deterministic satellite of Theorem 14
running on CGT with labeling over 2AP∪BΦ . Starting from AΦ and UΦ, we construct a new
Büchi ACG A′Φ equipped with a nondeterministic satellite U ′Φ over 2AP accepting the set of
models Φ. Intuitively, given an input CGT T , A′Φ and U ′Φ guess a BΦ-labeling extension of
the input T and check that such an extension is an extended basic model of Φ. In particular,
we let the satellite U ′Φ to guess the BΦ-labeling extension and let the ACG A′Φ check the
guess. Thus, U ′Φ is obtained from UΦ by adding on top of the deterministic transition relation
a guess of the subset of BΦ to be read in the current node of the input CGT. Note that since
an ACG is an alternating automaton, it is not to possible, in general, for an ACG to guess a
labelling of the input, since different copies of the automaton which read the same input node
may take different guesses. However, here, we exploit the crucial fact that for a CGT T over
2AP, there is at most one BΦ-labeling extension of T which is an extended basic model of Φ
(Remark 4.3). Formally, let AΦ = 〈2AP∪BΦ , q0, Q, δ, F 〉 and UΦ = 〈2AP∪BΦ , s0, S ∪ {s0}, δS〉.
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Then, A′Φ = 〈2AP, q0, Q, δ
′, F 〉 and U ′Φ = 〈2AP, s0, S × 2BΦ ∪ {s0}, δ′S〉, where δ′ and δ′S are

defined as follows:
δ′S(s0, σ) =

⋃
σ′∈2BΦ δS(s0, σ ∪ σ′)× {σ′}.

δ′S((s, σ′), σ) =
⋃
σ′′∈2BΦ δS(s0, σ ∪ σ′′)× {σ′′}.

δ′(q, σ, (s, σ′)) = δ(q, σ ∪ σ′, s).
We now prove that the construction is correct. Evidently, by construction and Theorem 14,
it suffices to show that for each input T , if T is accepted by A′Φ, then T is a model of Φ.
Let r be an accepting run of A′Φ over an input T . Note that for each subformula ψ of Φ,
since [ψ]LTLp

is an LTLp formula over AP ∪ BFL(ψ), the transition function δψ(q, σ) of the
safety DWA Dψ of Proposition 6 is independent of the BΦ \ BFL(ψ)-part of σ. Thus, by a
straightforward double induction on the nesting depth of strategy quantifiers in θ for a basic
formula 〈〈A〉〉θ ∈ Bφ and the distance |x| from the root of a node x of the input T , and by
construction and the proof of Theorem 14, the following holds:

for all nodes x and copies of the nondeterministic satellite U ′Φ in states (s′, σ′) and (s′′, σ′′)
in the run r resulting on reading the node x, it holds that: (s′, σ′) = (s′′, σ′′) and for all
〈〈A〉〉θ ∈ Bφ, 〈〈A〉〉θ ∈ σ′ iff (T , x) |= 〈〈A〉〉θ.

Hence, the result follows. J

E EXPTIME-hardness of ATLlp model-checking

In this section, we establish the following result, where a two-player turn-based CGS is a
CGS with two agents where each state is controlled by an agent.

I Theorem 18. Model checking against ATLlp is Exptime–hard even for finite two-player
turn-based CGS of fixed size.

Theorem 18 is proved by a polynomial-time reduction from the acceptance problem for
linearly-bounded alternating Turing Machines (TM) with a binary branching degree and
with a fixed size, which is Exptime-complete [8]. In the rest of this section, we fix such
a TM machineM = 〈Σ, Q,Q∀, Q∃, q0, δ, F 〉, where Σ is the input alphabet, Q is the finite
set of states which is partitioned into Q = Q∀ ∪Q∃, Q∃ (resp., Q∀) is the set of existential
(resp., universal) states, q0 is the initial state, F ⊆ Q is the set of accepting states, and the
transition function δ is a mapping δ : Q×Σ→ (Q×Σ×{L,R})2. Moreover, we fix an input
α ∈ Σ∗ such that |α| ≥ 1 and consider the parameter n = |α|.

Since M is linearly bounded, we can assume that M uses exactly n tape cells when
started on the input α. Hence, a TM configuration (ofM over α) is a word C = η ·(q, σ) ·η′ ∈
Σ∗ · (Q× Σ) · Σ∗ of length exactly n denoting that the tape content is η · σ · η′, the current
state is q, and the tape head is at position |η|+ 1. From configuration C, the machineM
nondeterministically chooses a triple (q′, σ′, dir) in δ(q, σ) = 〈(ql, σl, dirl), (qr, σr, dirr)〉, and
then moves to state q′, writes σ′ in the current tape cell, and its tape head moves one cell to the
left or to the right, according to dir. We denote by succl(C) and succr(C) the successors of
C obtained by choosing respectively the left and the right triple in 〈(ql, σl, dirl), (qr, σr, dirr)〉.
The configuration C is accepting (resp., universal, resp., existential ) if the associated state q
is in F (resp., in Q∀, resp., in Q∃). A (finite) computation tree ofM over α is a finite tree in
which each node is labeled by a configuration. The root of the tree corresponds to the initial
configuration Cα given by (q0, α(0))α(1) . . . α(n− 1). An internal node that is labeled by a
universal configuration C has two children, corresponding to succl(C) and succr(C), while
an internal node labeled by an existential configuration C has a single child, corresponding to
either succl(C) or succr(C). The tree is accepting iff each its leaf is labeled by an accepting
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configuration. The input α is accepted byM iff there is an accepting computation tree of
M over α. We prove the following result from which Theorem 18 directly follows.

I Theorem 19. One can construct, in time polynomial in n and the size of M, a finite
turn-based CGS G and an ATLlp state formula ϕ over the set of agents Ag = {ag∃, ag∀} such
thatM accepts α iff Unw(G) |= ϕ. Moreover, the size of G depends only on the size ofM.

In order to prove Theorem 19, we first define a suitable encoding of the TM computations
of M over α. Formally, we exploit the set AP of atomic propositions given by AP :=
Σ ∪Q× Σ× {∀,∃, l, r, acc}. A TM configuration C = u1u2 . . . un is encoded by words wC
over 2AP of the form wC = {tag1}{u1} . . . {uk}{tag2}, where tag1 ∈ {l, r}, tag2 = acc if C is
an accepting configuration, tag2 = ∃ if C is a non-accepting existential configuration, and
tag2 = ∀ otherwise. The symbols l and r are used to mark a left and a right TM successor,
respectively. We also use the symbol l to mark the initial configuration Cα. A sequence
wC1 · . . . · wCp

of TM configuration codes is good if the following holds:
C1 is the initial configuration and wC1 is marked by symbol l;
Cp is accepting;
for each 1 ≤ i < p, either wCi+1 is marked by symbol l and Ci+1 = succl(Ci), or wCi+1 is
marked by symbol r and Ci+1 = succr(Ci).

Now, we prove Theorem 19. The finite turn-based CGS G over the set of agents Ag =
{ag∃, ag∀} in Theorem 19 is defined as follows:

the set of states of G is AP and the initial state is l;
the label of each state p ∈ AP is {p};
state ∀ is controlled by agent ag∀, and each other state is controlled by agent ag∃;
state ∀ has as successors the states l and r, state acc has as successor itself, while each
other state has as successors the whole set of states.

Note that the CGS G is independent of n. By construction, the following hold.

Claim. M accepts α iff there exists a strategy f∃ of agent ag∃ in Unw(G) such that for all
ε-plays π consistent with f∃, the label of π is an infinite word over 2AP of the form w · {acc}ω
such that w is a good sequence of TM configuration codes.

Thus, the ATLlp formula ϕ satisfying the statement of Theorem 19 is given by ϕ :=
〈〈ag∃〉〉F(acc ∧ ψgood), where ψgood is a pure past LTLp formula of size O(n2) capturing the
good sequences of TM configuration codes. The construction of ψgood is standard and,
therefore, we omit further details.
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