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Abstract

We are dealing with damage of brittle materials caused by growth of micro-
cracks. In our model the cracks are penny-shaped. They can only enlarge but
not heal. For a single crack a Rice—Griffith growth law is assumed: There is
crack growth only if tension is applied normally to the crack surface, exceed-
ing a critical value. Our aim is to investigate the effect of crack growth on
macroscopic constitutive quantities. A possible approach taking into account
such an internal structure within continuum mechanics is the mesoscopic
theory. A distribution of crack lengths and crack orientations within the con-
tinuum element is introduced. Macroscopic quantities are calculated as aver-
ages with the distribution function. A macroscopic measure of the progress-
ing damage, i.e., a damage parameter, is the average crack length. For this
scalar damage parameter we derive an evolution equation. Due to the unilat-
eral growth law for the single crack, it turns out that the form of this differen-
tial equation depends explicitly on the initial crack length distribution. In
order to treat biaxial loading, it is necessary to introduce a tensorial damage
parameter. We define a second-order tensor damage parameter in terms of
the crack length and orientation distribution function.
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130 C. Papenfuss et al.

1. Introduction

Macroscopic failure of brittle materials is initiated by the propagation of mi-
crocracks. In a simple model, the microcrack is described as a flat, rotation-
ally symmetric surface, a so-called penny-shaped crack. In addition, we make
here the following simplifying assumptions:

1. The diameter of the cracks is much smaller than the linear dimension of
the continuum element. Under this assumption, the cracks can be treated
as an internal structure of the continuum element. The cracks are assumed
small enough that there is a whole distribution of crack sizes and orienta-
tions in the volume element.

2. The cracks are fixed to the material. Therefore, their motion is coupled to
the motion of representative volume elements.

3. The cracks cannot rotate independently of the material, i.e., their rotation
velocity is determined by the antisymmetric part of the velocity gradient of
the surrounding material and it does not depend on crack length and ori-
entation. All cracks within a volume element move and rotate with the
same velocity.

4. The number of cracks is fixed, there is no production of cracks, but very
short cracks are preexisting in the virgin material.

5. The cracks cannot decrease area, but can only enlarge, meaning that cracks
cannot heal.

To summarize our model, the microcrack is characterized by a unit vector n
representing the orientation of the surface normal and by the radius / of the
spherical crack surface. These parameters will be taken as the additional vari-
ables in the mesoscopic theory.

2. Mesoscopic theory

The mesoscopic theory has been developed in order to deal with complex ma-
terials within continuum mechanics [1]. The idea is to enlarge the domain of
the field quantities by an additional variable, characterizing the internal de-
gree of freedom connected to the internal structure of the material. In our
case, the internal degrees of freedom are the different sizes / and orientations
n of microcracks (see also [2—4]).

Beyond the use of additional variables the mesoscopic concept introduces
a statistical element, the so-called mesoscopic distribution function. In our
case, this is a distribution of crack lengths and orientations in the continuum
element at position x and time ¢, called here crack distribution function
(CDF). The distribution function is the probability density of finding a crack

J. Non-Equilib. Thermodyn. - 2007 - Vol. 32 - No. 2

Bereitgestellt von | Technische Universitat Berlin
Angemeldet
Heruntergeladen am | 10.10.18 09:54



Dynamics of the Size and Orientation Distribution of Microcracks 131

of length / and orientation n in the continuum element. The elements are ma-
terial elements, including the same material and the same cracks for all times.
Macroscopic quantities are calculated from mesoscopic ones as averages over
crack sizes and crack orientations.

2.1. Mesoscopic balance equations

Field quantities such as mass density, momentum density, angular momen-
tum density, and energy density are defined on the mesoscopic space. For
distinguishing these fields from the macroscopic ones, we add the word
“mesoscopic”’. In addition, we introduce the crack number density N as an
extensive quantity. The mesoscopic crack number density N(/,n, x,?) is the
number density, counting only cracks of length / and orientation #. The only
balance equation considered in the following is the balance of crack number.

Balance of crack number

In our model, the cracks move together with the material element. Therefore,
their flux is the convective flux, having a part in position space, a part in
orientation space, and a part in the length interval. There is no production
and no supply of crack number. Therefore, we have for the crack number
density N:

0 1 0,,;
SN+ Ve ANOplw 0} + Vo AN} + 75 5 (PING) = 0. (1)

We have used spherical coordinates for the mesoscopic variables crack length
[ €0, 0] and crack orientation n € S* and represent the divergence with re-
spect to the mesoscopic variables in spherical coordinates. V, denotes the co-
variant derivative on the unit sphere. v is the material velocity. In our model,
all cracks within the continuum element move with this velocity. u(-) = n is
the orientation change velocity, which is not the same for all cracks in the
continuum element. It is related to the angular velocity o(x, f) by the relation

u(-) =o xn. (2)

This angular velocity is the same for all cracks in the element. It is deter-
mined by the rotation of the surrounding material.

2.2. Definition of the distribution function and equation of motion

Because of its definition as probability density, the distribution function is the
number fraction
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132 C. Papenfuss et al.

N(l,n,x,t)

f(linx,t) = N (3)
in volume elements, where the number density N(x,?) is non-zero. Here
N(x, 1) is the macroscopic number density of cracks of any length and orien-
tation. As the distribution function in Eq. (3) is not well defined if N(x,7) =
0, we define in addition that in this case f(/,n,x,7) = 0. As there is no cre-
ation of cracks in our model, the distribution function will be zero for all
times in these volume elements. In all other volume elements with a non-
zero crack number it is normalized

JOC sz(l,n, x, ) d’ndl = 1. (4)

0

With respect to crack length, it is supposed that the distribution function has
a compact support, meaning that in a sample there cannot exist cracks larger
than the sample size.

We obtain from the mesoscopic balance of the crack number density (1) a
balance of the CDF f(/,n, x,t), by inserting its definition:

%f(l,n, x, 1)+ Vi (v(x,0)f(l,n x,1))

Vo f (L 0) + gy (P, 0)

l
_J{nx,1) (ON(x,1)
~ N(x,1) ( ot

=—f(l,n,x,t)Vy-v(x,1), (5)

+v(x, 1) - ViN(x, l))

according to the balance of the total crack number N(x,7). I is the length
change velocity. In our model, all cracks in a volume element move with the
translational velocity of the volume element v(x, ) and rotate with a velocity
independent of crack size and orientation:

o(x, 1) =V xo(x,1), (6)

given by the rotation of the axes of the material element. The orientation
change velocity u is given by

u=nxo(x,1t. (7)
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Dynamics of the Size and Orientation Distribution of Microcracks 133

Therefore, we have (with the totally antisymmetric third-order tensor &):

Vo (uf(ln,x,1)) =V, (nx o(x,t)f(I,nx,1))
=V, (e:no(x,t)f(l,nx,1))

=(@0—mnn): ¢ -ox1)f(lnxt) + (¢:no(x,t) V. f(l,nx,1)
=0

:u'an(lanaxal)7 (8)

where it has been used that the covariant derivative of the unit vector n is the
projector on the tangential plane to the unit sphere:

V.n=P =90 —nn. 9)

The first three terms on the left-hand side of Eq. (5) can be summarized with

the abbreviation %:

gf(lanwxa t) + v(x, t) : fo(lan7x’ t)

ot
Fuln,x, 1) Vof(I,mx,1) = W. (10)
We end up with the equation of motion for the CDF:
d’f(lmx,t) 1 0 5.
T—i_l—za(l U(I7n7xa t)) + (Vx ’ v)f(l,n,x, [)
= (Vy-v)f(l,nx,1)
or
df(lmxt) 10 i _
5 tpznx) =0 (11)

This is not yet a closed differential equation for the CDF as long as no ex-
pression for the length change velocity of the crack / is given.

2.3. Single crack growth law

For the growth velocity of a single crack under a prescribed external load, we
make the following assumptions:
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134 C. Papenfuss et al.

1. There exists a critical crack length, depending on the load, such that only
cracks exceeding this length start growing. This critical length /. is given
by the Griffith criterion for the onset of growth [5]:

==, (12)

where K is a material constant, and g, is the stress applied perpendicularly
to the crack surface. It is assumed that a stress component within the crack
plane does not cause crack growth. In case of an orientation distribution
of cracks, the normal stress component g, is proportional to the external
load and depends on crack orientation.

2. The growth velocity is given by the Rice—Griffith dynamics, which is moti-
vated from macroscopic thermodynamic considerations:

[ =—o+pal forl>I, (13)
[=0 forl<l, (14)

with material coefficients o and f. The onset of growth starts when the
right-hand side of Eq. (13) becomes positive, which determines the critical
length /.. Therefore, the material parameter K in Eq. (12) is not indepen-
dent of o« and f£:

K= (15)
In the case of a constant time rate of the applied stress, g, = v,t, it results:
[ = —o+pol® forl>1, (16)
[=0 forl<l. (17)

v, 1s the time derivative of the applied stress normal to the crack surface.

With this model for the length change velocity, we end up with the following
differential equation for the distribution function:

df(l,n,x,1) 10

_ L0 27,2 ‘
7 = 75 al(l (—a+ povslt?)) forl >, (18)
W:o for I < I, (19)
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Dynamics of the Size and Orientation Distribution of Microcracks 135

Figure 1 Evolution of the crack length distribution in time for stepwise initial length distribu-
tion with cracks present up to length 1. Model parameters have been set equal to 1. Both
panels represent different views of the same graphic. The dotted line and its projection onto
the / — ¢ plane is the Griffith condition, which is more apparent on the backward view.

In addition, we define the length distribution function as the integral of the
CDF over all orientations:

f(lx,t)= J f(l,n,x,0)dn. (20)

SZ

It gives the probability density of finding a crack of length /, of any orienta-
tion in the volume element at position x and time ¢. The differential equation
for this length distribution is obtained by integrating Eq. (19) over all orien-
tations. Solutions of the resulting differential equation are discussed in [3],
and one example of a solution is shown in Figure 1.

3. Orientational order parameters and dynamics
of the orientational order

The orientation distribution of cracks is relevant, too, because only the com-
ponent of the stress vector parallel to the orientation n causes crack growth,
i.e., in a sample where most crack surface normals are parallel to the direc-
tion of the applied stress, crack growth is more pronounced than in a sample
where most crack normals are perpendicular to the stress direction. Macro-
scopic quantities that account for orientational order are the Fabric align-
ment tensors, which are defined as [4]:

a(k):J J F(mx, ) wo A dPnidl. (21)
0 Js? k times
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136 C. Papenfuss et al.

They are tensorial moments of the orientation distribution, i.e., tensors of
successive order. In what follows 7.7 denotes the symmetric irreducible part
of a tensor, i.e. the contraction over any pair of indices of it vanishes. The
odd order tensors a'¥) vanish due to the symmetry f(/,n,x,1) = f(I, —n, x, 1),
which expresses the fact that surface normals » and —n cannot be distin-
guished. Therefore, the first nonvanishing anisotropic moment is the second-
order Fabric alignment tensor, which is the most important one. These Fabric
alignment tensors are the macroscopic variables representing the orientational
order present at the mesoscopic level. They, especially the second-order tensor,
can be taken as variables in macroscopic constitutive theory. The differential
equation for them can be derived from the differential equation for the CDF,
Eq. (5). This is shown here in the case of the second-order tensor a® = a:

da d

da _a ” — 12 12
0l dtL sz(l,mx, t)'nn’' d°nl” dl

= J J (% + v(x, [) : Vx)f(la n,x, Z) Wdznlz dl
S2

0

-] (—u<n,x, 0V (omx, )~ 5 & (P (L r)))mznlzdl
0 Js?

= —I u(n, x,t) - V,(f(n,x,1)) nn d*n

S2

| @xn) V(s x0T
S2
:J (w-&:P+oxnn—nnxo)f(nxt)dn
SZ

:J 0+ xnn—mnx o)f(n,x,1)dn
S2

=wxa—ax o, (22)

i.e., the co-rotational time derivative of the second-order alignment tensor
vanishes. This is due to the fact that for an observer moving and rotating with
the material element, the orientational order of the cracks does not change,
because the cracks are moving and rotating with the same velocity. There-
fore, for the co-moving observer the Fabric alignment tensors are constant.

4. Average crack length as a scalar damage parameter

The damage parameter is introduced as a macroscopic quantity growing
with progressive damage in such a way that it should be possible to relate
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Dynamics of the Size and Orientation Distribution of Microcracks 137

the change of material properties to the growth of the damage parameter.
One possibility is to define a scalar damage parameter as the average crack
length [3]:

0

D(x.0) = 1> = |

J If(Ln,x,t)d*nl* dl
0 Js2

:JmJ~ﬂhmxod%ﬂw- (23)
S2

0

This can be expressed in terms of the length distribution function:

D(x,1) = J: f(lx,0)Pdl. (24)

In order to account for the anisotropic nature of damage, a second-order
damage parameter will be appropriate. A definition of such a tensorial dam-
age parameter, which is closely related to the inelastic strain in a damaged
sample (as we will show in a forthcoming paper), is:

D:J [ f(l,n,x,0)Innd’nl* dl. (25)
0 Js2

4.1. Dynamics of the scalar damage parameter

With the Rice—Griffith dynamics in the special case of unilateral stress with a
constant stress rate, we derive for the damage parameter the following differ-
ential equation:

, L) g \
D)= | G U
0
=0 because /<!,
dl.(t) *d 3 dl.(t)
+‘hkﬂM+meU@&mlﬂ A0 s
[ d N D ;
-] GUusora=| —L et
(1) ()
= lzlljp(lwxu t) dl - (llzlf(lax7 Z))|Zo(t)
1.1
- Plf(Lx,0)dl + 2 I(1) f(I, x, 1), (26)
Ji.(1) ~~~

=0
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138 C. Papenfuss et al.

with

O(/

m and I: —OC/ +ﬂ/l)§l[2, (27)

lc‘(t) =

D(1) = r (=o' + B2 f (1, x, 1) dl

o/ Bo2e?
0
_ J P(=d + B21R) f (1, x, ) dl
0
o [ plv2e
_ J (o + Bo22) £ (1, x,1) dI
0
= —o + B2’ D(1)
a//ﬁ/vztz
+ J P — B2 f (1 x,t = 0)dl. (28)
0

The differential equation for the damage parameter, derived here from the
mesoscopic theory, depends explicitly on the initial distribution function, i.e.,
the equations of motion are different for different kinds of initial crack length
distribution functions. Macroscopically, this initial length distribution depen-
dence can be interpreted as a constitutive quantity. The differential equation
can be written explicitly, knowing the initial distribution, but without solving
the dynamics for the distribution function. The equation of motion can be
written in such a form that the distribution at the actual time ¢ does not oc-
cur. This means that for the average crack length as the damage parameter
we can solve the differential equation (28) on the macroscopic level without
any need to solve a differential equation on the higher dimensional meso-
scopic space. This property is very convenient from a numerical point of
view, when damage evolution should be considered together with balance of
momentum and balance of energy for macroscopic structures. This likely
property is lost for modifications of the single crack dynamics.

4.2. Dynamics for special initial conditions

4.2.1. Stepwise initial condition We consider an initial crack distribution,
which gives a constant probability density for crack sizes smaller than a max-
imal size /r and zero probability for larger sizes:

1—2 . i
f(l,O):{zT if 1<l

0 otherwise.
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Dynamics of the Size and Orientation Distribution of Microcracks 139

For the dynamics of the damage parameter we have to distinguish two differ-
ent cases:

1. Case [y < [, (beginning of damage):

D) = J Rif(1, x, 1) dl = 0. (29)

2. Case Iy > [, (later stage, i.e., larger stress):

. o'/ Blvie -2
D(t) = —o' + p'02*D(1) +J (o —ﬂ/vgltz)ll—dl
0 f
2.2 o o B 201 o
= —0 +ﬁ U t D( ) Z ﬁ’UZ[Z — ;UUZL E ﬁ’UZ[Z
/ 122 o
= — t“D(t) + ———. 30

The solution of this differential equation can be given analytically in terms of
the error-function T'.

4.2.2. Exponential initial condition An initial crack length distribution func-
tion decreasing exponentially with crack length is considered

£(1,0) = 12%1/5. (31)

In this case, the differential equation for the damage parameter reads:

. /B 1 e/
D(t) = —o' + B2CD(1) + J P! — ) 3y S
0
I pl22 e ﬂ 0t o ~1)s /B
=—a +pvt"D(t) + |—d'e —Z— (0" +dl)e
0
= B2A(D(t) + 6(e /P10 1)), (32)

Solutions of the differential equations for the damage parameter in the cases
of stepwise and exponential initial conditions are shown in Figure 2. The pro-
nounced increase of damage starts at somewhat earlier times for the exponen-
tial initial condition. This is reasonable, because in this case there are cracks
from the beginning that exceed the critical length and start growing. By con-
trast, in the case of the stepwise initial condition for a small applied load
there are no cracks fulfilling the Griffith criterion for the onset of growth.
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Figure 2 Time evolution of damage for stepwise (gray dots) and exponential (black dots) ini-
tial conditions. The model parameters o', B’, v,, ., and § have been set equal to 1.

The solution of the differential equation for D is shown together with the
result for the damage parameter calculated directly from the distribution
function by numerical integration (the dots in the figure), i.e., calculating
D = [ fI*dl. The figure shows that the macroscopic evolution equation for
the damage parameter gives exactly the same result on the time-depending
damage parameter as the mesoscopic equation for the distribution function,
i.e. there is no need to solve the differential equation for the distribution func-
tion on the higher dimensional space R? x R, x [0, 0] x S2.

5. Conclusions

In the mesoscopic description we have introduced mesoscopic fields, defined
on an enlarged space including crack size and orientation. Averages over
crack sizes and orientations, i.e., macroscopic quantities, are calculated with
a distribution function f. The differential equation for this distribution func-
tion was derived from the mesoscopic balance equations and crack growth
law for the single crack.

A scalar damage parameter, the average crack length, has been defined, and
the equation of motion for the damage parameter in the case of uniaxial load-
ing with stress growing linearly with time, has been derived. It turns out that
the differential equation depends explicitly on the initial crack length distribu-
tion. Solutions of the differential equation have been shown for stepwise and
exponential initial crack length distribution.
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Dynamics of the Size and Orientation Distribution of Microcracks 141

Other definitions of scalar damage parameters and the corresponding evolu-
tion laws will be discussed in a future paper.

The Rice—Griffith dynamics, applied here to describe the growth of a single
micro-crack, has the advantage that it leads to a simple closed form of dif-
ferential equation for the scalar damage parameter. However, this growth
law leads to infinite growth velocities of a single crack with time increasing
(lim;—., | = o0). In a future work, a modified growth law avoiding such un-
physical infinite growth velocities will be introduced into the mesoscopic
theory.

Another effect, not described by our simple Rice—Griffith dynamics, is the rel-
atively slow and stable crack growth substantially below the Griffith critical
length observed in some materials, like rocks. Such subcritical crack growth
can be accounted for by a growth law with a probability of crack growth be-
ing proportional to an exponential function of an activation energy and the
stress intensity factor (see for instance [6], page 176).

Finally, the presence of another crack at a finite distance leads to a modifica-
tion of the effective applied stress on the considered crack, depending on crack
distance and relative orientation. This problem has been considered for vari-
ous regular distributions of cracks (see e.g., [7]). Accounting for this effect in
the mesoscopic theory would lead to a single crack growth that depends on
the orientation distribution of cracks. This would result in general in an ani-
sotropic growth law.

The damage evolution equation has been derived here from the mesoscopic
background independently of macroscopic thermodynamics. A thermody-
namic theory of damage, including the interpretation of failure as loss of ther-
modynamic stability, can be found in [§]. For a comparison to experimental
results, see [9].
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