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Abstract

If a discrete non-equilibrium system is in contact with an equilibrium reservoir
exchanging heat, power, and material with each other, a non-equilibrium non-
additive entropy rate of the system can be defined by use of non-equilibrium
contact quantities: contact temperature and dynamic chemical potentials. The
integrability of the entropy rate and the corresponding Maxwell relations are
investigated. The dissipation inequality is exploited for a simple material whose
state space includes the time rate of the contact temperature. A non-equilibrium
efficiency is introduced.

1. Introduction

There are two phenomenological descriptions of classic thermodynamic sys-
tems: the field formulation portraying mainly continuous systems and the
representation of heterogeneous systems in contact with each other as an
ensemble of discrete systems [1]. Whereas thermodynamics of continua is a
well-developed theory [2–8], the theoretical level of non-equilibrium thermo-
dynamics of discrete systems is rather low, as remarked in the literature [9,10].
The reason for that is the following: In the field formulation of thermodynam-
ics, temperature and entropy are introduced as so-called “primitive concepts”
(that means, do not ask for the background), although one knows that these
quantities are only well defined in equilibrium. This procedure may be accept-
able for a field theory, but for the non-equilibrium theory of discrete systems,
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18–19 September 2008, Barcelona, and at the Thermodynamik-Kolloquium und Ingenieurdaten, 24–26 September
2008, Universität Erlangen/Nuremberg.

J. Non-Equilib. Thermodyn. · 2009 · Vol. 34 · No. 1
© 2009 Walter de Gruyter · Berlin · New York. DOI 10.1515/JNETDY.2009.005Bereitgestellt von | Technische Universität Berlin

Angemeldet
Heruntergeladen am | 01.10.18 17:14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/161589345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


76 W. Muschik

the problem of defining temperature and entropy far from equilibrium be-
comes unavoidable. There is an auxiliary procedure to detour this problem,
namely endoreversible thermodynamics [11]. In this frame, the discrete sys-
tems are approximately presupposed as equilibrium ones exchanging heat,
power, and material with each other without disturbing their internal equilib-
rium.

Here, we do not use the endoreversible procedure, instead, we introduce by
choosing a non-equilibrium state space an entropy rate, and a non-equilibrium
temperature (the contact temperature) and the dynamic chemical potentials
are defined as contact quantities [12]. It can be proved that the entropy rate
and the internal energy rate are independent of each other for pure heat ex-
change between the non-equilibrium system and a heat reservoir. The ques-
tion of whether this non-equilibrium entropy rate is integrable is answered
by investigating the adiabatic uniqueness of the non-equilibrium system. The
dissipation inequality is used for discussing a simple class of materials be-
longing to a state space which includes besides the internal energy and the
contact temperature also its time rate. Finally, by using contact temperatures,
a non-equilibrium efficiency is introduced which is smaller than the Carnot
efficiency, thus representing a more realistic measure.

2. Discrete systems

2.1. Thermostatics

A resting discrete equilibrium system G∗ is characterized by the state space

Z∗ = (U∗, a∗, n∗), (1)

spanned by its internal energy U∗, the work variables a∗, and the mole numbers
n∗. The differential of its equilibrium entropy is given by Gibbs’ fundamental
equation

dS∗ = 1

T ∗ dU∗ − A∗

T ∗ da∗ − μ∗
T ∗ dn∗, (2)

introducing the generalized forces A∗ and the chemical potentials μ∗. The
equilibrium entropy S∗ = S∗(U∗, a∗, n∗) is a state function, and therefore
the given equilibrium temperature T ∗, the generalized forces A∗, and the
mole numbers n∗ determine the partial derivatives of the equilibrium entropy

∂S∗
∂U∗ = 1

T ∗ ,
∂S∗
∂a∗ = −A∗

T ∗ ,
∂S∗
∂n∗ = −μ∗

T ∗ . (3)

The first law of G∗ states

DQ∗ = dU∗ − A∗ · da∗ − h∗ · dne∗. (4)
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Contact Quantities of Discrete Systems 77

Here DQ∗ is the “equilibrium heat exchange”, h∗ the molar enthalpy and
dne∗ the “external equilibrium change of mole numbers”. Later on, we will
consider non-equilibrium states and their time rates, which will be denoted
by a dot (˙). For convenience, we will replace the differentials

D �∗ and d�∗ → �̇∗
(5)

also by a dot, knowing that they are not time rates if they belong to equilibrium
sytems: These dots are directional derivatives along the “reversible process”
(a trajectory in the state space (1)). Consequently, the first law (4) states

Q̇∗ = U̇∗ − A∗ · ȧ∗ − h∗ · ṅe∗. (6)

This formulation of the first law and the differential (2) of the entropy

Ṡ∗ = 1

T ∗ U̇∗ − A∗

T ∗ · ȧ∗ − μ∗
T ∗ · ṅ∗ (7)

is all that is necessary to know from the equilibrium system G∗.

The time rates of the mole numbers can be split into an external e and an
internal i part

ṅ = ṅe + ṅi, ṅ∗ ≡ ṅe∗. (8)

There is no internal time rate of mole numbers in G∗, because chemical reac-
tions do not take place in equilibrium1. Introducing the molar entropies

s∗ := 1

T ∗
(
h∗ − μ∗), (9)

we obtain from Eq. (7) by use of Eqs. (8) and (9)

Ṡ∗ = Q̇∗

T ∗ + s∗ · ṅe∗. (10)

2.2. Non-equilibrium

In non-equilibrium, the state space (1) has to be extended,

Z = (U , a, n,�, ξ ), (11)

1The macroscopic reaction velocity is zero in equilibrium, although the microscopic rates of the partial reactions
do not vanish. According to the Guldberg–Waage law, the concentrations of the components are constant in
equilibrium. If the macroscopic reaction velocity vanishes, the mole number rate ṅi is zero according to Eq. (60)
below.

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 1
Bereitgestellt von | Technische Universität Berlin

Angemeldet
Heruntergeladen am | 01.10.18 17:14



78 W. Muschik

by additional non-equilibrium variables � and ξ characterizing the non-
equilibrium state beyond the equilibrium variables. Here, � is a non-equi-
librium temperature of the system G, which later on will be identified with
the contact temperature [13–15]. The ξ are other non-equilibrium variables
which do not need to be characterized in more detail at the present stage of
discussion [16]. How to define the contact temperature by a measuring pro-
cedure is discussed later on in Section 4. For the present, we will take � as
an unknown placeholder.

Now we define the time rate of a non-equilibrium entropy of G. According to
Eq. (11), the non-equilibrium time rate of entropy becomes

Ṡ := 1

�
U̇ − A

�
· ȧ − μ

�
· ṅ + α�̇ + β · ξ̇ . (12)

A comparison with the time rate of the equilibrium entropy (7) shows that the
equilibrium temperature T is replaced by the as yet undefined temperature
�; the equilibrium quantities A∗ and μ∗ are substituted by non-equilibrium
quantities A and μ. Additionally, α and β appear, which have no analogues
in equilibrium, because � and ξ do not appear in Z∗. For the present, the
physical meaning of �,μ, α,β , and ξ remains open. Additionally, we will
not presuppose that the time rate of the non-equilibrium entropy Ṡ is the time
derivative of a state function S(U , a, n,�, ξ ). Consequently, at the present
stage of discussion we do not have in non-equilibrium integrability conditions
analogous to Eq. (3) .

Analogously to Eq. (6), the first law of G states

Q̇ = U̇ − A · ȧ − h · ṅe. (13)

Analogously to Eq. (8), we define the molar entropy in non-equilibrium as

s := 1

�
(h − μ) . (14)

By the use of Eqs. (8) and (14), the entropy rate in non-equilibrium states (12)
becomes

Ṡ = 1

�

[
Q̇ + h · ṅe]− μ

�
· ṅ + α�̇ + β · ξ̇ . (15)

The entropy rates (10) and (15) can be split into the entropy exchanges

�∗ := Q̇∗

T ∗ + s∗ · ṅe∗ = Ṡ∗, � := Q̇

�
+ s · ṅe = Ṡ − �, (16)

and into the entropy production in G,

� := −μ

�
· ṅi + α�̇ + β · ξ̇ ≥ 0, (17)
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Contact Quantities of Discrete Systems 79

by isolatingG andG∗:The entropy rate of an isolated system is by definition its
entropy production. As expected, Eq. (16)1 shows that there is no entropy pro-
duction in equilibrium systems, so that in such systems the entropy exchange
is equal to its entropy rate.

In Eq. (17) it is presupposed that �̇ and ξ̇ are quantities which are not influ-
enced by isolating G, as obviously the internal change of mole numbers due
to chemical reactions ṅi are not. In contrast to �̇ and ξ̇ , the exchange terms
Q̇ and ṅe in Eq. (16)2 are set to zero by isolatingG. The inequality in Eq. (17)
stems from the strong formulation of the second law for G [17].

3. Compound system

We consider an isolated compound (or composite) system [17] which con-
sists of two subsystems which are in contact with each other: One of them is
“the system G” being in non-equilibrium, the other one is a reservoir in equi-
librium marked by ∗ and is called “the environment G∗” of the considered
non-equilibrium system G. Both are separated by the bounded surface ∂G en-
closing the system G. This surface ∂G allows exchanges of power, mass, and
heat betweenG and its equilibrium environment G∗. Because the environment
is presupposed to be a reservoir, it is always in equilibrium, also during the
contact between G and G∗. Consequently, G∗ can be described by the tools
of thermostatics and its entropy is given by Eq. (10), whereas that of G is
Eq. (15).

3.1. Defining inequalities

Now we have to define an entropy rate for the compound system G∗ ∪ G,
consisting of G and G∗ which are contacted by ∂G. If we presuppose that
the composite system is an isolated one, we know according to the strong
formulation of the second law that its entropy rate is equal to its non-negative
entropy production. Summing up Eqs. (16) and (17), we obtain with Eq. (15)

Ṡ∗ + Ṡ = �∗ + � + �. (18)

From Eqs. (16), (9), and (14) follows

�∗ + � = 1

T ∗
[
Q̇∗ + h∗ · ṅe∗]−

−μ∗

T ∗ · ṅe∗ + 1

�

[
Q̇ + h · ṅe]− μ

�
· ṅe. (19)
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80 W. Muschik

This equation is invariant under changing the star quantities of G∗ with the
unstarred quantities of G.

An inert partition, one which does not emit or absorb heat nor particles, is
defined by [18,19]

Q̇∗ + h∗ · ṅe∗ = −Q̇ − h · ṅe, ṅe∗ = −ṅe. (20)

Consequently, for an inert partition Eq. (19) results in

�∗ + � =
(

1

T ∗ − 1

�

)[
Q̇∗ + h∗ · ṅe∗]+

(
μ

�
− μ∗

T ∗

)
· ṅe∗. (21)

The invariance of changing G∗ with G remains also valid for Eq. (21). We
now use Eq. (20) again:

�∗ + � = 1

2

(
1

T ∗ − 1

�

)[
Q̇∗ + h∗ · ṅe∗ − Q̇ − h · ṅe]+

+1

2

(
μ

�
− μ∗

T ∗

)
· (ṅe∗ − ṅe). (22)

As shown in the appendix, a short calculation taking Eqs. (9) and (14) into
account results in

�∗ + � − 1

2

(
1

T ∗ − 1

�

)[
T ∗s∗ + �s

] · ṅe∗ =

= 1

2

(
1

T ∗ − 1

�

)
(Q̇∗ − Q̇) + 1

2

(
1

T ∗ + 1

�

)
(μ − μ∗) · ṅe∗. (23)

The invariance of changing G∗ with G is still valid for Eq. (23).

We recall that the contact temperature � and the chemical potentials μ are
as yet only placeholders which we now will define by two inequalities, called
the defining inequalities of � and μ whose interpretation will be discussed
in detail in the next section:(

1

T ∗ − 1

�

)[
Q̇∗ − Q̇

] ≥̇ 0, (24)

(
μ − μ∗) · ṅe∗ ≥̇ 0. (25)

The latter should be valid for each of the K components in G,(
μj − μ∗

j

)
ṅe∗

j ≥̇ 0, j = 1, 2, ..., K . (26)
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Contact Quantities of Discrete Systems 81

3.2. Total entropy rate

According to Eqs. (17) and (18), the defining inequalities (24) and (25) enforce
that the second law is satisfied for the isolated composite system, if the total
entropy rate is defined as follows:

Ṡtot := Ṡ∗ + Ṡ − 1

2

(
1

T ∗ − 1

�

)[
T ∗s∗ + �s

] · ṅe∗ ≥ 0. (27)

The entropy rates ofG∗ andG are only additive, if there is no material exchange
between system and environment and/or the contact temperature of the system
is equal to the thermostatic temperature of the environment.

It is possible to avoid a non-additive total entropy rate: If in the formulations
of the first law (6) and (13) the molar enthalpies h∗ and h are replaced by the
chemical potentials μ∗ and μ, the external mole number rates ṅe∗ and ṅe do
not appear in Eqs. (10) and (15). Formally, in this case the molar entropies
s∗ and s have to be set to zero and, consequently, the entropy exchanges (16)
are defined without a part belonging to the material exchange. Although the
total entropy rate becomes additive in this case, according to Eq. (27), we will
not pursue this path, because the entropy exchange coupled to the material
exchange is ignored.

Another consequence of the defining inequalities (24) and (25) is that the
entropy exchange through inert partitions is discontinuous in contrast to the
combined material and heat exchanges (20)1. From Eq. (23) we obtain

�∗ + � ≥ 1

2

(
1

T ∗ − 1

�

)[
T ∗s∗ + �s

] · ṅe∗. (28)

Continuity of the entropy exchange enforces the equality in Eq. (28) and that
� = T ∗ and/or ṅe∗ = 0 are valid. We now will investigate whether the entropy
exchange can be continuous in one of these two cases.

First of all, we need the following proposition [20]:

X · f(X) ≥ 0, for all X ∧ f continuous at X = 0 ⇒ f (0) = 0. (29)

Starting out with � = T ∗ and applying Eq. (29) to the defining inequality
(24), we obtain

Q̇∗ − Q̇ = 0 −→ Q̇∗ = 0 and Q̇ = 0, (30)

because signQ̇∗ = −signQ̇ is valid. Consequently, the entropy exchanges
(16) become

�∗ + � = s · ṅe + s∗ · ṅe∗ 	= 0. (31)
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82 W. Muschik

Thus, the entropy exchange is discontinuous, if s 	= s∗.

Starting out with ṅe∗ = 0 = −ṅe, the entropy exchanges (16) become

�∗ + � = Q̇∗

T ∗ + Q̇

�
≥ 0, (32)

because the inequality follows according to Eq. (20) and the defining in-
equality (24). Also in this case, the entropy exchange is not continuous. That
means, the entropy exchange at inert partitions is only continuous and zero
in equilibrium.

The result of this section is astonishing: Also in classical thermodynamics,
the total entropy rate is non-additive in general. The reason for this fact is that
the entropy exchanges (16) should be formulated with the correct exchange
term due to material exchange. According to Eq. (27), the total entropy rate
becomes additive in the special cases of equal temperatures � = T ∗, that
is, vanishing heat exchange, and of ṅe∗ = 0, that is, vanishing material
exchange between the system and its environment. The entropy exchange is
discontinuous in any case, except that of equilibrium. Of course, all these
statements depend on a satisfying interpretation of the defining inequalities
(24) and (25), which will be given in the next section.

4. Contact quantities

Recall what we are considering a discrete non-equilibrium system in contact
with an equilibrium (reservoir) environment exchanging heat, power, and
material. For describing the non-equilibrium system, we introduced in Eq. (12)
two nonequilibrium quantities, a temperature �, and a chemical potential
μ, as place holders whose physical meaning has remained open up to now.
For defining the total entropy rate (27) and the entropy exchange (23), two
inequalities (24) and (25), the defining inequalities are presupposed which
define the � and μ, as dicussed in the following section.

4.1. Contact temperature

The defining inequalitiy of � (24) in connection with the proposition (29)
and taking signQ̇∗ = −signQ̇ into account yields

T ∗ > � ⇐⇒ Q̇∗ − Q̇ < 0 �⇒ Q̇∗ < 0, Q̇ > 0, (33)

T ∗ < � ⇐⇒ Q̇∗ − Q̇ > 0 �⇒ Q̇∗ > 0, Q̇ < 0. (34)

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 1
Bereitgestellt von | Technische Universität Berlin

Angemeldet
Heruntergeladen am | 01.10.18 17:14



Contact Quantities of Discrete Systems 83

What is the heat exchange between G and G∗, if T ∗ = �? To answer this
question, we presuppose the following:

Axiom I
For inert partitions, the heat exchange Q̇∗ − Q̇ between open systems
is a continuous function of the temperature difference [� − T ∗].

According to Eq. (29), we obtain

� = T ∗ ⇐⇒ Q̇∗ = 0 = Q̇. (35)

Consequently, the inequality (24) is the

Definition
of the contact temperature � [21] as that thermostatic temperature of
the environment G∗ for which the net heat exchange between the open
systems G andG∗ through an inert partition ∂G vanishes by undergoing
a change of its sign [19].

This definition makes it possible to measure the contact temperature by
calorimetry.

We will now demonstrate that the contact temperature � and the internal
energy U are independent of each other. For this purpose, we choose a rigid
inert partition (ȧ = 0) which is impervious to matter ( ṅe = 0) and a time-
dependent environment temperature T ∗(t) which is always equal to the value
of the momentary contact temperature of G:

T ∗(t)
.= �(t) �⇒ Q̇∗(t) = Q̇ = 0 �⇒ U̇∗(t) = U̇ (t) = 0. (36)

The last implication is due to the first law (6) and (13) of closed systems
without power exchange. Because � is time-dependent and U constant, both
quantities are independent of each other.

4.2. Dynamic chemical potentials

We now consider the defining inequality (25) for μ. Analogously to axiom I,
we state:

Axiom II
For inert partitions, the ṅe∗ are continuous functions of the differences
of the molar entropies [μ − μ∗].

Analogously to Eq. (35), we obtain from Eq. (25) and axiom II by applying
Eq. (29)

μ = μ∗ �⇒ ṅe∗ = 0. (37)
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84 W. Muschik

Consequently, the inequality (25) is the

Definition
of the dynamic chemical potentials μ of G as those chemical potentials
μ∗ of the environment G∗ which cause vanishing external mole number
exchanges under change of their signs [21].

5. Adiabatical uniqueness

The integrability conditions (3) of the equilibrium entropy of G∗ are for the
present not satisfied for the non-equilibrium entropy rate (12):There is no state
function non-equilibrium entropy defined on the state space (11). One reason
for that may be that the state space is a small one [21,22] and consequently the
non-equilibrium entropy depends on the history of the processes on Eq. (11).
All consideration about contact quantities made above are also valid in small
state spaces, because no integrability conditions are necessary for defining
contact quantities.

We now ask the question: What conditions are necessary so that the non-
equilibrium entropy rate (12) satisfies integrability expressions analogously
to Eq. (3)? We consider an arbitrary system undergoing a family of processes
all starting out from an equilibrium state Aeq and going to a non-equilibrium
state B:

C : Aeq −→ B, for arbitrary C. (38)

Arriving at B, the system in consideration is isolated and reaches an equili-
brium state Ceq:

I : B −→ Ceq, (Q̇ = 0, Ẇ = 0, ṅe = 0). (39)

We now give the

Definition
A system is called adiabatically unique, if for each arbitrary, but fixed
non-equilibrium state B after isolation of the system, the process I
ends always in the same final equilibrium state Ceq, independently of
how the process C to B was performed.

For exploiting the adiabatical uniqueness of a system, we have to remember
the embedding axiom of non-equilibrium thermodynamics [23]:

Axiom III
The non-equilibrium entropy rate has to be in accordance with the
equilibrium entropy:
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Contact Quantities of Discrete Systems 85

T
∫ Ceq

Aeq
Ṡdt = Seq

C −Seq
A , for arbitrary T between Aeq and Ceq. (40)

We now specify the arbitrary process T in Eq. (40)

T = C ∪ I �⇒ C
∫ B

Aeq
Ṡdt + I

∫ Ceq

B
Ṡdt = Seq

C − Seq
A , (41)

by the successive performance of the processes defined in Eqs. (38) and
(39) which are used in the definition of adiabatical uniqueness. If adiabat-
ical uniqueness is now presupposed, Ceq is unique, is determined by B, and is
independent of all allowed C according to Eq. (38). Then Eq. (41) results in

C
∫ B

Aeq
Ṡdt + Seq

C − SB = Seq
C − Seq

A , for all C. (42)

Consequently, the integral in Eq. (42) is path independent. Introducing its
value SB − Seq

A into Eq. (41), we obtain

SB = Seq
C − I

∫ Ceq

B
Ṡdt, (43)

which is the definition of a non-equilibrium entropy (and not of a rate!) of B.
Therefore, we proved the

Proposition

If a system G is adiabatically unique, a non-equilibrium entropy exists

S = S(U , a, n,�, ξ ), (44)

and the path integrals on the state space over the entropy rate are path
independent.

6. Integrability conditions

If the system G is adiabatically unique, a comparison between Eqs. (44) and
(12) results in the integrability conditions

∂S

∂U
= 1

�
,

∂S

∂a
= −A

�
,

∂S

∂n
= −μ

�
, (45)

∂S

∂�
= α,

∂S

∂ξ
= β, (46)

which are analogous to those in equilibrium (3). Because � and U are in-
dependent of each other according to Eq. (36), we can integrate Eq. (45)1
immediately:

S(U , a, n,�, ξ ) = 1

�
U + K (a, n,�, ξ ). (47)
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86 W. Muschik

Consequently, the non-equilibrium entropy is a linear function of the internal
energy. Here,

−�K = F(a, n,�, ξ ) (48)

is the free energy F of G. In the case of equilibrium, the non-equilibrium vari-
ables of the state space (11) become dependent on the equilibrium variables.
Thus, Eq. (47) becomes in equilibrium by taking Eq. (48) into account:

�eqSeq = U eq−F(aeq, neq,�(U eq, aeq, neq), ξ (U eq, aeq, neq)), (49)

an expression which is in contrast to Eq. (47) non-linear in U eq.

From the integrability conditions (45) and (46) follows that, except for α, all
constitutive equations do not depend on the internal energy U :

∂

∂a

∂S

∂U
= 0 �⇒ ∂A

∂U
= 0, (50)

∂

∂n

∂S

∂U
= 0 �⇒ ∂μ

∂U
= 0, (51)

∂

∂ξ

∂S

∂U
= 0 �⇒ ∂β

∂U
= 0, (52)

∂

∂�

∂S

∂U
= − 1

�2
= ∂α

∂U
. (53)

Differentiating Eq. (47) and comparison with Eqs. (45) and (46) result for the
free energy (48) in

∂F

∂�
= −S − �α,

∂F

∂a
= A,

∂F

∂n
= μ,

∂F

∂ξ
= −�β. (54)

According to Eq. (54)1, the constitutive mapping α is as well linear in the
internal energy as the non-equilibrium entropy (47).

7. Dissipation inequality

There are three inequalities: the dissipation inequality (17), the defining in-
equality of the contact temperature (24), and that of the dynamic chemical
potentials (25). The latter inequalities contain the intensive variables T ∗ and
μ∗ of the environment of the system. Consequently, the exchange quantities
Q̇ and ṅe depend also on the state of the environment, and therefore these
exchange quantities cannot be included in the state space (11).
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Contact Quantities of Discrete Systems 87

First of all, we want to fix a special state space by choosing the variables ξ .
Here we specify

ξ
.= �̇. (55)

Consequently, the state space (11) becomes

Z = (U , a, n,�, �̇), (56)

and Eq. (47) results in

S(U , a, n,�, �̇) = 1

�
U − F

�
(a, n,�, �̇). (57)

The so-called higher derivatives of the state space (56) are [24]

y = (U̇ , ȧ, ṅi, ṅe, �̈). (58)

Presupposing the state space (56), the entropy production (17) results in

� = −μ

�
· ṅi +α�̇+λ�̈ ≥ 0, −λ := 1

�

∂F

∂�̇
= − ∂S

∂�̇
. (59)

Here Eqs. (54)4 and (47) yield Eq. (59)2. The constitutive equations μ, α, and
λ depend on the state space variables (56), and therefore they are independent
of the higher derivatives y which are outside of the state space (56). Two rates
in the entropy production (59)1, ṅi and �̈, are higher derivatives.

If the higher derivatives do not depend on the state space variables by balance
type equations, their values can be chosen local arbitrarily. By this possible
choice, we could destroy the dissipation inequality (59)1. Consequently, the
factor belonging to the higher derivative has to be set to zero in this case, and
the considered term does not appear in the entropy production. Here, both
the higher derivatives in Eq. (59)1 depend on the state variables, as we will
demonstrate below.

The internal rates of the mole numbers due to chemical reactions can be
represented by the reaction velocities κ̇ [25]:

ṅi = ν · κ̇ . (60)

Here ν is the kr-matrix of the stochiometric coefficients of r reactions between
k components. Therefore we obtain

−μ

�
· ṅi = −μ

�
· ν · κ̇ =:

1

�
A · κ̇ (61)
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with the affinitiesA of the r reactions in G defined by

A := −μ · ν. (62)

Because the reaction velocities κ̇ depend on the affinitiesA/� [25],

κ̇ = f

(A
�

)
, f(0) = 0, (63)

we obtain from Eqs. (60) and (45)3 relaxation equations

ṅi = ν · f

(A
�

)
= ν · f

(
∂S

∂n
· ν
)

. (64)

Applying this procedure, we have replaced the internal change of mole num-
bers ṅi by the reaction velocities κ̇, and the chemical potentials μ by the
affinitiesA. The dissipation inequality (59)1 results in

� = 1

�
A · κ̇ + ∂S

∂�
�̇ + ∂S

∂�̇
�̈ ≥ 0, (65)

if Eqs. (46)1 and (59)2 are taken into account.

Applying Eq. (29) to Eq. (65) and taking Eq. (63) into account, we see that κ̇,
�̇, and �̈ are homogeneous in A/�, ∂S/∂�, and ∂S/∂�̇:

⎛
⎝ κ̇

�̇
�̈

⎞
⎠ =

⎛
⎝ b 0 0

k l m
o p q

⎞
⎠
⎛
⎝ A/�

∂S/∂�
∂S/∂�̇

⎞
⎠. (66)

The constitutive mappings b(Z), k(Z), l(Z), m(Z), o(Z), p(Z), and q(Z) are
defined on the state space (56). The matrix equation (66) is not a linear map-
ping, but describes the homogeneity relation due to Eq. (65). The zeros of the
matrix in Eq. (66) result from Eq. (63).

If

∂S

∂�
= 0 ∧ ∂S

∂�̇
= 0 �⇒ 1

�
A · κ̇ ≥ 0 (67)

follows from Eq. (65). Because κ̇ and A/� do not depend on ∂S/∂� and
∂S/∂�̇ according to Eq. (66), the inequality (67) is valid in general. Con-
sequently, we obtain by Eq. (66) that the constitutive mapping b is positive
semi-definitely:

A · b ·A ≥ 0. (68)
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The two last rows of Eq. (66) are

�̇ = k(Z) · (A/�) + l(Z)
∂S

∂�
+ m(Z)

∂S

∂�̇
, (69)

�̈ = o(Z) · (A/�) + p(Z)
∂S

∂�
+ q(Z)

∂S

∂�̇
. (70)

These two equations are of different meaning: Eq. (69) is a constraint for the
constitutive equations and the state space variable �̇. In contrast to Eq. (69),
the second equation (70) is a relaxation type equation of the higher derivative
�̈. Consequently, by this relaxation equation the higher derivative �̈ becomes
a function of the independent basic state space variables.

The choice of the state space (56), the resulting dissipation inequality (65),
and the homogeneity conditions (66) define a class of materials which is
characterized by all the constitutive equations which are compatible with the
first law (13), with the dissipation inequality and the homogeneity conditions.

8. Efficiency

We consider a cyclic, power-producing process of a closed discrete system
which works between two heat reservoirs of constant thermostatic tempera-
tures T ∗

H > T ∗
L . The contact temperatures of the two contacts between the

system and the reservoirs are �H and �L, the heat exchanges through the in-
ertial contacts are Q̇∗

H < 0 and Q̇∗
L > 0. According to the defining inequality

(24), we obtain for the closed system

(
1

T ∗
H

− 1

�H

)
Q̇∗

H ≥ 0,

(
1

T ∗
L

− 1

�L

)
Q̇∗

L ≥ 0. (71)

These inequalities yield

T ∗
H ≥ �H , �L ≥ T ∗

L . (72)

Integration over the cycle time results in

∮
Q̇∗

H

�H
dt ≤ 1

T ∗
H

∮
Q̇∗

H dt =:
1

T ∗
H

Q∗
H , (73)

∮
Q̇∗

L

�L
dt ≤ 1

T ∗
L

∮
Q̇∗

Ldt =:
1

T ∗
L

Q∗
L. (74)
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We obtain with the mean value theorem

∮
Q̇∗

H

�H
dt = Q∗

H

[�H ]
≤ Q∗

H

T ∗
H

−→ T ∗
H ≥ [�H ], (75)

∮ Q̇∗
L

�L
dt = Q∗

L

[�L]
≤ Q∗

L

T ∗
L

−→ [�L] ≥ T ∗
L . (76)

Here, the square brackets denote mean values over the cyclic process. A def-
inition of a non-equilibrium efficiency is

ηneq := 1 − [�L]

[�H ]
≤ 1 − T ∗

L

T ∗
H

= ηCAR. (77)

The latter inequality stems from Eq. (75) and (76).The efficiencyηneq is a more
realistic measure for non-equilibrium processes than the Carnot efficiency
ηCAR, which belongs to reversible processes.

9. Conclusion

There are many different definitions of non-equilibrium temperatures [26].
The main point with respect to such definitions is to find a thermometer mea-
suring this so defined non-equilibrium temperature. Here, in accordance with
the second law, a non-equilibrium temperature, the contact temperature, and
dynamic chemical potentials are phenomenologically introduced as contact
quantities in comparison with the appropriate quantities of the contacting
reservoir. As a result, these contact quantities can be measured directly by
zeros of the related exchange quantities. The non-equilibrium entropy rate
is integrable if the system is adiabatically unique. Because the contact tem-
perature is independent of the internal energy, the Maxwell relations of the
non-equilbrium entropy have a slightly different shape than those in equilib-
rium. As usual in continuum thermodynamics, also in the non-equilibrium
theory of discrete systems, the dissipation inequality represents a constraint
for the constitutive equations, a fact which is demonstrated for a simple ma-
terial in non-equilibrium.
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10. Appendix

Starting out with the second part of Eq. (22), we obtain

1

2

(
μ

�
− μ∗

T ∗

)
· (ṅe∗ − ṅe) =

= 1

2

1

�

(
μ − μ∗) · ṅe∗ − 1

2

1

T ∗
(
μ − μ∗) · ṅe +

+ 1

2

(
1

T ∗ − 1

�

)
μ · ṅe − 1

2

(
1

T ∗ − 1

�

)
μ∗ · ṅe∗ =

= 1

2

(
1

T ∗ + 1

�

)
(μ − μ∗) · ṅe∗ − 1

2

(
1

T ∗ − 1

�

)
(μ + μ∗) · ṅe∗. (78)

The first part of Eq. (22) becomes

1

2

(
1

T ∗ − 1

�

)[
Q̇∗ + h∗ · ṅe∗ − Q̇ − h · ṅe] =

= 1

2

(
1

T ∗ − 1

�

)
(Q̇∗ − Q̇) + 1

2

(
1

T ∗ − 1

�

)
(h∗ + h) · ṅe∗. (79)

Inserting Eqs. (78) and (79) into Eq. (22) results in Eq. (23):

�∗ + � = 1

2

(
1

T ∗ − 1

�

)
(Q̇∗ − Q̇) + 1

2

(
1

T ∗ + 1

�

)
(μ − μ∗) · ṅe∗ +

+ 1

2

(
1

T ∗ − 1

�

)
(T ∗s∗ + �s) · ṅe∗. (80)
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