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Abstract

Thermal heat efficiency, represented by the heating gain factor, is calculated
by using non-equilibrium thermodynamics of discrete systems, thus replacing
former estimations and results by finite-time thermodynamics. For performing
this calculation, an irreversible Jaynes engine is introduced and compared with
conventional heating by heat conduction. Starting out with the second law, repre-
sented by Clausius inequalities for the particular parts of the Jaynes engine, the
heating gain factor is expressed by their efficiency factors. The entropy produc-
tions of the reversible and the totally irreversible limits are considered. The profit
of heat supply and the higher stationary temperature of the heated room obtained
by using a Jaynes engine are calculated. Comparison with the conventional heat-
ing demonstrates that fuel saving is possible by changing the traditional heating
technology.

1. Introduction

In contrast to thermal engine efficiency, which was intensely studied for more
than 200 years, thermal heating efficiency has only been considered from time
to time [1–3]. A more recent paper from the assets of the late E. T. Jaynes [4]1,
which also includes historical remarks, gives rise to treating the problem of
heating efficiency again, using methods of non-equilibrium thermodynamics
of discrete systems together with a concept of finite-time thermodynamics to
introduce the cycle times of the real running machines [5]. This procedure is

1This paper is dedicated to the memory of Edwin T. Jaynes († 1998), the creator of the famous MaxEnt-principle
of information-theoretical statistical physics.
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Figure 1 Comparison between heating by conventional heat conduction (left-hand side) and by use
of a Jaynes engine.

more general than that used by endoreversible thermodynamics [6], because
here, instead of endoreversible (i. e., non-running) engines, real irreversibly
running ones are considered (for more details, see [7]).

Jaynes [4] introduced a thermal device which we will call a Jaynes engine
(see Figure 1). This Jaynes engine consists of two coupled machines, a heat
to power engine operating between two heat reservoirs of the temperatures
T1 < T2, and a heat pump running between the reservoirs of the temperatures
T0 < T1.The heat pump is driven by the heat to power engine. Differently from
endoreversible thermodynamics, “thermal resistors” do not appear because
both the considered machines themselves are operating irreversibly. Because
the heat pump, marked by ∗, absorbs a heat exchange Q∗

0 from the reservoir of
the low temperature T0 in each cycle of operating and emits a heat exchange
Q∗

1 to the reservoir of the temperature T1, this reservoir absorbs more heat,
as if no heat pump would take part in the process. The three temperatures
T0 < T1 < T2 can be identified with the temperature T0 of the environment,
the temperature T1 of the room to be heated, and the temperature T2 of the
heating medium.

Jaynes [4] estimates the heating gain factor by

G ≤ T1

T2

T2 − T0

T1 − T0
. (1)

Another approach using methods of finite-time thermodynamics was proposed
in [8]. There, an endoreversible heater consisting of an endoreversible heat
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engine coupled to an endoreversible heat pump has been defined and the
following optimum heating gain factor was obtained:

Gopt = T1/T2
(√

T0/T2 − 1
)

T0/T2 − T1/T2
. (2)

In this paper, the heating gain factor is not only estimated, but also calculated
by introducing the efficiency factors of both parts of the Jaynes engine. Beyond
that, heating performed by a Jaynes engine is compared with usual heating
by heat conduction and/or convection.

From this result, one can conclude that it is possible to heat buildings with less
fuel than one consumes now. This conclusion makes the heating efficiency
problem important from a practical point of view.

2. First and second laws

As already mentioned, the Jaynes engine consists of a heat to power machine
of n numbers of revolution (reciprocal cycle time) and a heat pump of n∗
numbers of revolution. The first laws per cycle time for these devices run as
follows:

Q2 + Q1 + W = 0, Q2 > 0, Q1 < 0, W < 0, (3)
Q∗

1 + Q∗
0 + W ∗ = 0, Q∗

1 < 0, Q∗
0 > 0, W ∗ > 0. (4)

Here the heat exchanges Q1 and Q2 as well as the power W are related to the
cycle time τ = 1/n of the heat to power machine, whereas the heat exchanges
Q∗

0 and Q∗
1 and the power W ∗ belonging to the heat pump are related to its

cycle time τ ∗ = 1/n∗.

Because both parts of the Jaynes engine are coupled without any losses, we
obtain for the works per unit of time

Wn = −W ∗n∗. (5)

Using Eqs. (3) to (5), we obtain

nQ1 + n∗Q∗
1 + nQ2 + n∗Q∗

0 = 0. (6)

Consequently, the heat supply per unit time Q to the reservoir of temperature
T1 is (see Figure 1)

−Q := nQ1 + n∗Q∗
1, → Q > 0, Q = nQ2 + n∗Q∗

0 . (7)
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The second laws represented by Clausius inequalities are

Q2

T2
+ Q1

T1
≤ 0, (8)

Q∗
1

T1
+ Q∗

0

T0
≤ 0. (9)

3. Factors of efficiency

The inequalities (8) and (9) give rise to the introduction of efficiency factors
of the heat to power machine and of the heat pump:

T2

T1
≥ Q2

−Q1
=: α ≥ 0, (10)

T0

T1
≥ Q∗

0

−Q∗
1

=: β ≥ 0. (11)

From this and Eqs. (3) and (4) follow inequalities for the efficiency factors

1 ≤ α ≤ T2

T1
, (12)

0 ≤ β ≤ T0

T1
< 1, (13)

β < α. (14)

Starting out with Eq. (7)3 and inserting Eqs. (11), (7)1, and (10), we obtain
after a short calculation for the heat supply of the reservoir of temperature T1

Q = nQ2
α − β

α(1 − β)
≥ nQ2. (15)

This is the exact expression that replaces Jaynes’ inequality (6)1 in Eq. (4).
The advantage with respect to this inequality is obvious: The heat supply Q,
and thus the heating of the reservoir of the temperature T1, depends on the
efficiencies of the machines that form the Jaynes engine. Beyond that, the
number of revolution n comes into play. This factor and also the efficiency
factors are missing in Jaynes’ [4] publication. We will rediscover Jaynes’
inequalities as reversible limits of Eq. (15).

The heating gain factor is defined by

G(α, β) := Q

nQ2
= nQ2 + n∗Q∗

0

nQ2
= α − β

α(1 − β)
≥ 1. (16)
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This makes clear that the heating gain factor G depends only on the efficiency
factors α and β and is independent of the numbers of revolution.The minimum
of G is realized, if Q∗

0 = 0 or Qmin = nQ2, i. e., if the work of the heat engine
is totally thermalized. According to Eq. (16), the efficiency factors are in case
of minimal supply:

Qmin −→
{

α = 1, β arbitrary, G(1, β) = 1,
α arbitrary, β = 0, G(α, 0) = 1.

(17)

If α = 1, the heat to power engine does not produce power according to
Eq. (10). If β = 0, the heat pump does not absorb heat from the reservoir of
the lowest temperature. In all other cases, the heating gain factor is greater
than one, i. e., the Jaynes engine is heating better than conventional heating,
as we will see below in more detail.

4. Reversible limit

According to Eqs. (12) and (13), we obtain for the reversible limit

αrev = T2

T1
, βrev = T0

T1
. (18)

Consequently, the reversible limit of Eq. (15) becomes

Qrev = nrevQrev
2

1 − T0/T2

1 − T0/T1
> nrevQrev

2 , (19)

Grev = 1 − T0/T2

1 − T0/T1
> 1. (20)

This is just the inequality (6) derived by Jaynes if nrev
.= 1 would be adopted

for the reversible limit. But, in fact, the reversible limit enforces very slow
processes with nrev → 0. In this sense, Jaynes’ considerations are idealized.

Now the question arises whether the reversible heating gain factor Grev is
maximal, i. e., is the equation

G(αrev, βrev) = max
α,β

G(α, β) (21)

valid? Its proof is easy: First of all, the following relations are valid:

∂αG(α, β) .= 0 → α arbitrary, β = 0, (22)

∂βG(α, β)
.= 0 → α = 1, β arbitrary. (23)
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Figure 2 Isolines of heating gain factors as functions of the heat engine efficiency and the coefficient
of performance of the heat pump.

That means, the only extremal value of G is G(1, 0) = 1, and that is the
minimum of G. Consequently, the maximum of G is on the surface of the
domain of the (α, β) described by Eqs. (12) and (13). Because

d

dα
G(α, βrev) > 0,

d

dβ
G(αrev, β) > 0 (24)

are valid, Eq. (21) is true. Consequently, a real running Jaynes engine has a
heating gain factor satisfying the inequality

1 ≤ G(α, β) ≤ Grev . (25)

The dependence of the heating gain factor G(η, COP) on the efficiency η of
the heat engine and on the common coefficient of performance COP of the
heat pump

η := 1 − 1

α
, COP := 1

1 − β
(26)

is shown in Figure 2. The following values are adopted: T2 = 2000 K , T1 =
293 K , and T0 = 263 K . These values result in a reversible heating gain factor
of Grev = 8.48. Present-day technology allows heat engine efficiencies up to
about 0.5 and COP values up to 4 to 5. This corresponds to a heating gain
factor of about G = 2, 5. Significant improvements in thermal equipment
performance are therefore necessary in order to take advantage of Jaynes’
heater technology.

Can inequalities such as Eq. (25) also be derived for the entropy production
of the Jaynes engine? We will answer this question in the next section.
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5. Entropy production

The entropy production of the Jaynes engine is, according to Figure 1, given
by the entropy fluxes with respect to the heat reservoirs:

� := −nQ2

T2
− nQ1

T1
− n∗Q∗

1

T1
− n∗Q∗

0

T0
≥ 0. (27)

The inequality results from Eqs. (8) and (9). Now, in Eq. (27), Q1 and Q∗
1 are

replaced by Q, if Eq. (7)1 is used, and Q∗
0 is replaced step by step using Eqs.

(11), (7)1, (10), and (15); finally one finds

�(n, α, β) = nQ2

[
− 1

T2
+ β

αT0
+ α − β

α(1 − β)

(
1

T1
− β

T0
.

)]
. (28)

As expected, we obtain by inserting Eq. (18)

�rev := �(nrev , αrev, βrev) = 0. (29)

Another representation of the entropy production follows from Eqs. (27) and
(7)1:

� = nQ2

[
− 1

T2
+ G

1

T1
− n∗Q∗

0

nQ2

1

T0

]
. (30)

Inserting Q∗
0 by use of Eq. (7)2, we obtain

� = nQ2

[
− 1

T2
+ 1

T0
+ G

(
1

T1
− 1

T0

)]
. (31)

Since

− 1

T2
+ 1

T0
≥ 0,

1

T1
− 1

T0
≤ 0 (32)

are valid, we obtain for the maximum of �

G
.= 1 ↔ �max = nQ2

[
− 1

T2
+ 1

T1

]
, (33)

and with Eq. (16) follows, as expected, the case (17)1, i. e., the entropy pro-
duction is maximal if the work of the heat engine is totally thermalized.
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6. Comparison with normal heating

The thermodynamic diagram of normal heating is on the left-hand side of
Figure 1. It consists of two parts: the heat conduction between T2 and T1 and
that between T1 and T0. The corresponding heat exchanges per unit of time
are

Q2
′ = κ1

(
1

T1
− 1

T2

)
≥ 0, Q0

′ = κ2

(
1

T0
− 1

T1

)
≥ 0. (34)

Here, κ1 and κ2 are the heat conductivities describing the thermal contacts
between the corresponding reservoirs.

The heat exchanges of the reservoir of temperature T1 are

normal heating: Q ′ := Q2
′ − Q0

′, (35)

Jaynes engine: Q′′ := Q − Q0
′. (36)

For comparing the normal heating with the Jaynes engine, we have to set

Q2
′ .= nQ2, (37)

and we obtain with Eq. (15)

Q′′ − Q ′ = Q − Q2
′ = nQ2G − Q2

′ = Q2
′(G − 1) ≥ 0. (38)

Consequently, the profit by using the Jaynes engine for heating is

Q′′ − Q ′ = κ1

(
1

T1
− 1

T2

)
(G − 1). (39)

The example considered above with G = 2.5 results in a 50% better heating.

This better heating generates a higher stationary room temperature, as we
will now demonstrate. The condition of stationarity in the case of the Jaynes
engine is by use of Eqs. (15) and (37)

Q′′ .= 0 → Q = Q0
′ → Q2

′G = Q0
′. (40)

Inserting Eq. (34), we obtain the temperature T stat
1 (G) of the stationary state

κ1

(
1

T stat
1 (G)

− 1

T2

)
G = κ2

(
1

T0
− 1

T stat
1 (G)

)
. (41)

Because of T0 < T2, this results immediately in

T0 < T stat
1 (G) < T2, for all G. (42)
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From Eq. (41) follows

1

T stat
1 (G)

= κ1G/T2 + κ2/T0

κ1G + κ2
(43)

which results in

1

T stat
1 (1)

− 1

T stat
1 (G)

= κ1κ2(G − 1)

(κ1G + κ2)(κ1 + κ2)

(
1

T0
− 1

T2

)
≥ 0, (44)

→ T stat
1 (1) ≤ T stat

1 (G). (45)

As expected, the higher heat supply of Eq. (39) results in a higher stationary
temperature (43) of the room to be heated.

7. Conclusion

Our results show that important fuel savings may be achieved by changing
the traditional heating technology. At the same fuel consumption, in practice
heating may be improved by 50%. A further increase in heating performance
requires technological improvements of heat pumps operating at small tem-
perature differences.
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