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ABSTRACT

There are two major current trends that can easily be identified
in computer industry: (i) the shift towards massively paralleliza-
tion fostered by multi-core technology resulting in growing num-
bers of cores per processor and (ii) the increasing importance
of energy-awareness in computing due to rising energy costs
and environmental awareness. In current operating systems,
these two issues are often addressed independently: one com-
ponent, the scheduler, assigns processes to cores and a sec-
ond component manages the power states of individual cores
in time. In this paper, we explain why this orthogonal treatment
can lead to problems such as a considerably degraded system
performance in case of on-demand processor power state
management. Furthermore, we present an approach to energy-
aware multi-core scheduling at the operating system level
avoiding the performance penalty while still saving energy. To
corroborate our argumentation and to illustrate the applicability
of the presented approach, we give numbers from experiments
based on Linux and current multi-core processors.

Index Terms
energy-aware computing, green IT, operating systems, proces-
sor scheduling, multi-core processors

I INTRODUCTION

For several decades, raising the clock frequency of processors
was an important mean to increase computing power. For ex-
ample, the clock frequency had been raised nearly by a factor
of 1,000 from 4.77 MHz of Intel’s 8086 presented in 1978 to
about 3.8 GHz of Intel’s Pentium IV which arrived in 2005. How-
ever, since about 2005 the situation has changed substantially
because processors hit a “power wall” that made it impossible
to further increase the clock frequency with the same speed as
it was possible previously. Now, massive parallelism is seen as
the “silver bullet” for the still rapidly growing demand for com-
puting power. Although first implemented in IBM’s Power 4 in
2001 [7], dual-cores reached mass market in mid 2005 with the
introduction of AMD’s Athlon X2 and Intel’s Pentium D. The for-
mula was simple because it was possible to stay within the
same power envelope for two cores instead of one by reducing
the clock frequency by just 200 (AMD) or 600 (Intel) MHz. This
development continued, introducing quad-cores to mass market
and octacores to smaller segments of it (e.g., Sun’s Niagara [2])
and is still evolving. Currently, research projects target as many
as 80 cores on a single chip [6], [8].

The global increase of energy costs and environmental aware-
ness brought power consumption of computer systems into
public view. Current processors usually still operate near the
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“power wall” and consume a considerable proportion of a com-
puter’s overall power consumption. Thus, besides the emer-
gence of multi-core processors, a second trend of the last years
was to reduce the energy consumption of desktop and server
systems by incorporating technologies previously known from
mobile systems, namely the ability to dynamically adapt the
clock frequency and voltage of a processor to the computing
demand and to disable certain units of the processor when they
are temporarily not needed.

Initially, frequency scaling was done by affecting the whole
chip, i.e., processor. This means that when one core, for exam-
ple of an AMD K8 Athlon X2, needs to run at a high frequency,
all cores have to run at this frequency and the implied high volt-
age. Intel Core 2 Quad processors are composed of two dual-
core dies and allow two independent clock domains consisting
of two cores each. However, all four cores are required to run at
the same voltage because the socket has only a single power
plane. AMD’s “native” quad-core K10 implements individual
clock generators for each core enabling them to run at different
frequencies. Although these processors include two power
planes, only one is used to power all cores, so they have to run
at the same voltage even if they run at different frequencies; the
other plane is used to feed the uncore parts of the processor.
The highest frequency then determines the voltage to be sup-
plied to all cores. All these approaches are not optimal since
many of today’s applications are still single threaded or, in case
of a quad-core, have a parallelism less than four. In this case,
idle cores are forced to run at high frequency or at least high
voltage not saving as much energy as it would be possible. One
possible solution, as found in Intel’s Core i7, is to combine the
approach of a single clock domain with the ability to turn off un-
utilized cores which avoids wasting energy by idling at high fre-
quency and voltage. In multi-socket systems the situation is dif-
ferent in that each socket forms its own clock domain and has
its own voltage regulators. In this case, at least the cores of dif-
ferent sockets can run at different frequencies and voltages.

The approach of dynamically adjusting the frequency – and
voltage if supported – of individual cores actually saves energy.
However, it can lead to severe performance problems when
these issues are not adequately addressed by the scheduler.
Ignoring power management, scheduling tasks on a multi-core
is similar to classical SMP scheduling that makes decisions on
where and when a task is executed. The question of where also
deals with fairness and is usually answered by using the proc-
essor with the lowest load, targeting an equal distribution of
load among the processors. Considering power management
that is able to adjust frequencies of individual cores, a central
assumption of SMP scheduling is invalidated since cores, due
to their different operating frequencies, are no longer equal as
it is assumed by SMP (symmetric multiprocessing). We will
show that not considering this fundamental change can lead to
severe performance degradations. The goal of our work is to
address this problem and to introduce an approach to conserve
energy while not degrading performance.

The remainder of this paper is organized as follows: In Section II,
we further introduce the problem and illustrate it using a real-
world example and corresponding measurements as well as
considerations of existing solutions in current processors. We
continue with related work in Section III and present an ap-
proach of energy-aware multi-core scheduling in Section IV. Its
potential is evaluated in Section V with initial experiments. Fi-
nally, our conclusions are presented.

II PROBLEM STATEMENT

If the objective is to optimize the ratio between useful amount of
computation and total power spent (i.e., the computational per-
formance per Watt for the whole computer, not just the proces-
sor), the best solution is often to set all cores to the highest fre-
quency possible. Then, the calculation can be finished rather
early allowing to switch off the whole computer afterwards.
However, this scenario is not very realistic since many comput-
ers (especially servers) run 8 to 24 hours per day, where most
cores are idle most of the time. Following this observation, the
objective should be to save as much energy as possible while
avoiding a performance penalty when executing applications.
However, current implementations of power management fail to
achieve this goal and can cost a remarkable amount of comput-
ing performance as shown next.

Imagine a situation in a multi-core system, where the level of
application parallelism is less than the number of cores and
where power management (i.e., frequency and voltage scaling)
is applied per core.1 In this case, some cores are utilized run-
ning at a high frequency and voltage to maximize performance,
while others are idle running at the lowest frequency and volt-
age to save energy. Whenever a new process is created, most
operating system schedulers assign it to the core with the long-
est idle time due to load balancing and fairness. As a conse-
quence, this core increases its clock frequency and voltage.
This process takes some time (e.g., about 600 µs in AMD’s K8
processor and about 100 µs in current quad-cores from both
AMD and Intel) because the hardware must increase voltage
and frequency in small increments stabilizing inbetween. Al-
though some processors such as Intel’s Core 2 are able to ex-
ecute code for certain periods of the transition (e.g., while the
voltage is ramped up but before the frequency is raised), the
processor runs at the desired frequency only when the transi-
tion has finally finished. Furthermore, the decision to change to
a higher power state is usually not taken by the scheduler but a
separate component. In Linux, for example, a governor period-
ically polls the load of individual cores and decides on switching
clock rates – for Linux 2.6.25 on an AMD Phenom quad-core of
the first generation and many Intel Core 2 processors this poll-
ing interval defaults to 200 ms with a minimum of 100 ms, on an
AMD Phenom II quadcore it defaults to 80 ms with a minimum
of 40 ms, while for an AMD K8 it defaults to 1240 ms with a min-
imum of 620 ms. Therefore, the overall switching time also in-
cludes the time it takes to actually recognize the higher load. As
modern processors continue operation while switching and
switching times are decreasing, the polling interval becomes
the main part. This is not a severe problem if the runtime or
length of activity phases of an average task is much higher than
the overall switching time as the processor is then utilized
enough to prevent a transition back to a lower power state.
Also, it is not a problem if the overall load is high enough to
keep all cores at maximum frequency. If, however, both as-
sumptions do not hold (i.e., the system is executing an applica-
tion with an average parallelism less than the number of cores
and individual tasks have runtimes or activity phases in the or-
der of the overall time needed for frequency switching) the sys-
tem suffers from a performance degradation.

This degradation is actually caused by a combination of two ef-
fects. The first one, which we will refer to as Problem A, is that

1 The following argumentation also holds if only frequency scaling is applied
per core as in case of AMD’s K10 because voltage scaling does not affect
performance.
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new workload is assigned to cores residing in the lowest power
state and is, thus, executed slow (until the load, if kept up long
enough, is recognized and these cores actually reach a higher
power state). The second effect, Problem B, relates to inaccu-
rate load measurement by the governor: It is very likely that a
core became active or inactive somewhere in the middle of the
polling interval. Therefore, the average load during the last poll-
ing interval, which is measured by the governor, does not reflect
the actual value. This, in turn, might cause the governor to
make wrong decisions. For instance, if a scheduler reassigns
long-running tasks to different cores as it can be observed with
Windows XP, Windows Vista, and Windows 7 Beta, this can
even lead to a single-threaded application running permanently
with the lowest available frequency on a quad-core. Again, the
degradation becomes worse with low parallelism and short
jobs, as none of these jobs might take long enough in order to
trigger a transition to a higher power state.

A prominent example of an application demonstrating this deg-
radation is the compilation of a large piece of software, com-
posed of hundreds or thousands of individual source files. De-
pendencies among those files restrict parallelism, meanwhile
modern processors are able to compile average source files in
fractions of a second. A good test scenario for this kind of ap-
plication is the Linux kernel. It can be compiled parallelized
with restricted parallelism (make –jN). Furthermore, it consists
mainly of C-code that can be compiled very fast. Fig. 1 shows
the results of a simple experiment to demonstrate the perform-
ance degradation due to both problems identified before. A
Linux kernel is compiled using the same configuration and dif-
ferent make-parallelisms (from 1 to 12, further increasing the
parallelism slows down the compilation again on our test ma-
chine) on a dual quad-core (8-way) machine with one core per
clock-domain. In order to avoid impact of caching and I/O,
compilation takes place on a RAM disk and each run is exe-
cuted three times. For each parallelism, the compilation is ex-
ecuted with (a) the ondemand governor, which switches fre-
quencies of individual cores of the two AMD Opteron 2352
used for this experiment dynamically between the lowest
(1.05 GHz) and highest frequency (2.1 GHz) depending on the
load of a core, and (b) the performance governor, which keeps
all eight cores at the highest frequency. The polling interval of
the on-demand governor is kept at the default of 200 ms which
is similar or greater than the time needed to compile most of
the source files.

The figure clearly shows the performance degrading effect de-
scribed above. Furthermore, it also shows that the effect is
more pronounced if there is a large distance between the
number of available cores and the parallelism of the application
(in this case consisting of many small parts that are executed
as individual processes). This again proves the importance of
solving these problems: Surfacing already on current quad-
cores, it will certainly get worse in future as it can be expected
that the gap between number of cores and parallelism of such
applications widens because of an increasing number of cores.
Parallelism, on the other hand, is mostly always limited by de-
pendencies among different tasks or threads of an application.
This is also true for the experiment described above: Although
most of the time even a parallelism of 12 can be seen, there are
also intervals during kernel compilation with a parallelism much
smaller. Results showing a similar performance degradation
can also be derived for Windows. For example on Windows
Server 2003 R2, the execution of a single-threaded compilation
is delayed by 26% on a single quad-core machine using individ-
ual frequencies per core.

As Intel’s Core i7 has only one clock domain with the additional
ability to halt an unused core completely, this eliminates the im-
pact of Problem A nearly completely in case of single-socket
systems. However, it does not solve Problem B: For a proces-
sor with only one clock domain, the frequency is derived by cal-
culating the maximum of the loads of the individual cores during
the last interval. In case of short running processes with a low
parallelism, this again results in a too low maximum and there-
fore too low new frequency. Initial tests show that this problem
really exists: A Core i7 940 quadcore (Turbo Boost and Hyper-
Threading disabled) compiles a Linux kernel with a parallelism
of one with the on-demand governor 12% slower compared to
the performance governor. For an AMD Phenom 9750 proces-
sor with individual clock domains, however, the slowdown is
27% (low frequency is half of high frequency). First tests with
AMD’s new Phenom II 940 show that the problem even in-
creases to 34% due to a higher distance between high and low
frequency (3 GHz vs. 800 MHz). Therefore, this comparison
enables us to differentiate between the effects of Problem B
alone (Core i7) and Problem A and Problem B together (AMD
K10). It also shows that restricting the number of clock domains
to one does not solve all problems. Especially, in case of multi-
socket systems Problem A still exists even with only one clock
domain per socket.

III RELATED WORK

Although the area of energy awareness in general and energy-
efficient scheduling in particular is rather new – the first papers
on this subject dates from the mid 1990s – there exists already
an extensive number of publications in this area.

Since sensor (and actor) networks are systems that are espe-
cially energy-critical, a remarkable amount of research is done
in this area. For an overview see [9]. The objective of a sensor
network is in most cases to perform its duty as long as possible
with its limited amount of energy. This is achieved by putting as
many sensor nodes as possible into adequate sleep modes
while still keeping the network’s functionality as required, i.e.,
some predefined QoS objectives. Also, tasks requiring energy
may be rotated among multiple nodes to prolong the lifetime of
individual sensor nodes and, therefore, the complete network.
In our scenario, we do not have to deal with limited energy.
Nevertheless, processors as Intel’s Core i7 allow to switch off

Fig. 1 Compile times of a Linux kernel with different frequency governors 
on a dual AMD Opteron 2352 system (dual quad-core, 2.1 GHz 
highest frequency, 1.05 GHz lowest frequency)
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individual cores completely, thus, we are presented with a sim-
ilar problem not network wide, but in a single multi-core proces-
sor (or a set of multi-core processors inside a system).

Focusing on single processors, energy can be saved by scaling
down the processor’s frequency and voltage. This has been re-
searched for real-time systems, where it is possible to lower
down these settings to the point where given deadlines are just
fulfilled [5]. A similar approach is also possible for non real-time
systems: Process Cruise Control [10] adjusts the processor’s
frequency for individual threads. Depending on the characteris-
tics of a thread, it is possible to save energy without a signifi-
cant loss of performance (e.g., slowing down memory intensive
applications and thereby masking the memory latency partly).
Such approaches are orthogonal to our problem as we focus on
multiple processors or cores. Indeed, it is possible to realize
them on top of our proposed solution.

In [4] tasks are scheduled on multiprocessor systems in a way
that the energy consumption is evenly distributed among all
processors. This avoids temperature peaks in individual proc-
essors, allowing savings in the cooling infrastructure without
performance losses due to processor throttling. This is contrary
to our approach (cf. Section IV) as we concentrate workload on
only a subset of processors to slow down others and, thus,
save energy efficiently, i.e., without impacting performance.
Still, it is possible to adapt this temperature awareness to com-
plement our energy awareness.

Scheduling on multiprocessor architectures, where individual
processors run at individual but fixed speeds, is considered
in [3]. Similar to our approach, they ascertain that today’s
schedulers cannot handle processors running at different fre-
quencies well. Our scenario differs in that we are able to control
the frequencies of individual processors. Therefore, we deal
with dynamic asymmetry instead of static asymmetry and use
both the assignment of tasks to cores as well as the ability to in-
fluence that asymmetry as means for our solution.

Bircher and John [1] analyze the effect of dynamic power man-
agement on multi-core processors on performance and energy
consumption. Similar to us, they observe that the scheduling of
an operating system can have a negative effect on perform-
ance when dynamic power saving is applied. However, they
state that the main cause for performance degradation is the in-
teraction between active and idle cores caused by cache prob-
ing. As cache probing only occurs between cores that share
some data, this problem is avoided by our approach because
we concentrate the workload on a subset of cores (running at
high frequency) and therefore limit cache probe traffic in a way
that it only occurs between cores at high frequency. Further-
more, a main cause for this problem is eliminated by latest-gen-
eration processors: Due to inclusive L3 cache (Intel) and copy-
ing L2 cache content of inactive cores to L3 cache (AMD) cache
probing becomes independent of inactive cores.

IV SCHEDULING

Energy consumption is a non-functional property. Such proper-
ties are often neglected in the first place, and realized only sub-
sequently. This can also be seen in the way operating systems
such as Linux deal with controlling core frequencies: A gover-
nor monitors the behavior of cores and their load using polling
and makes decisions based on those observations. Obviously,
this idea follows a strict “divide-and-conquer”-approach sepa-

rating the (functional independent) issues of scheduling tasks
and controlling energy consumption. However, this introduces
problems such as those described in Section II. Moreover, it
also increases response times for interactive users, because
an increase of frequency always follows an increase of load. To
be more precisely, it occurs after the governor has figured out
by polling that load has increased. Tasks that require high com-
putation power for a very limited amount of time are therefore
finished before frequency increases. This becomes even worse
with larger polling intervals. E.g., Linux’s on-demand governor
uses a default interval of more than one second on an AMD K8
processor (this is because the default interval is 2,000 times the
transition latency of the CPU in order to limit load introduced by
polling – a K8 has a much larger transition latency than, e.g., a
K10 or an Intel Core 22).

The non-functional problem described above could partially be
attenuated by increasing the polling frequency of the governor.
However, this also increases the overhead. It is our believe that
the problem has to be targeted at the point where additional
load is recognized first (i.e., inside the scheduler) and not by re-
constructing information outside the scheduler that is already
available inside of it. Especially, this way Problem B is targeted
directly.

In the following, we introduce our approach of defining high/
low-sets in Section IV-A. Next, we give the sketch of our ap-
proach in Section IV-B together with ideas for additional optimi-
zations in Section IV-C. Section V presents results of three ini-
tial experiments showing the applicability of our ideas.

A High/Low-Sets

The effects described in Section II can be shown very clearly by
monitoring individual core frequencies during kernel compila-
tion with a parallelism less than the number of cores (make –jN,
with N less than the number of cores) using the on-demand
governor. Moreover, it can be seen that there are always two
sets of cores: one set with low frequency and one with high or
highest frequency. However, as described in Section II, the
membership is constantly changing and does not necessarily
reflect the actual load distribution. This is due to the fact that
frequencies are controlled based on local observations (load of
individual cores) and the impact of a fairness-based task distri-
bution.

This leads to the basic idea of our approach: We define two
sets of cores and run cores from one set (high set, called H) al-
ways at the maximum frequency and cores from the other set
(low set, called L) always at the lowest frequency. Workload is
only scheduled on cores from the high set. Instead of managing
frequencies locally, we now change set membership based on
information regarding actual parallelism inside the scheduler.
That way, membership only changes if parallelism changes – in
case of an application that requires constant parallelism noth-
ing changes at all avoiding the problems described in Section II.

In a multi-socket system this approach can, however, cause
asymmetric heat distribution inside the computer resulting in
noise (one fan running at maximum speed while others are

2 Repeating the experiment from Section II using the default polling interval
of an K8 (1240 ms) leads to results much worse. However, as K8 dual-
cores cannot change frequencies of its two cores independently, this
mainly matters for multi-socket systems – single-socket K8 systems are
affected by Problem B only.
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turned off) or shorter lifetimes of individual fans. This is be-
cause we abandon the fairness-based approach that considers
all cores and tries to use them equally. Instead, we introduce
asymmetry up to a point where one core does all work while
others are idling. However, this minor problem can be solved
easily by changing set membership depending on temperature
or by applying a long-term fairness scheme that reassigns
cores at intervals in the order of minutes. Another option would
be to use the results from work such as [4] for assignment in-
side the high set.

A further point in favor of our approach is that cores from the
set L are idling for long intervals. This gives us the additional
freedom of completely disabling cores in set L if supported by
hardware (such as for Core i7). Although this is also possible
using the fairness-based approach, it can be assumed that re-
enabling a core needs some time which again leads to an effect
similar to Problem A described in Section II.

The main challenge of the set-based approach is to develop an
algorithm that effectively decides on set membership.

B Approach

To realize our idea we have to implement three mechanisms
that closely cooperate and that are part of the operating system
scheduler:

– Set Control: First, the sets H and L have to be established.
In order to do this, we have to solve two subproblems:
– A reasonable size of the set H has to be derived from the

given task set.
– The question which core should enter or leave H in case

of changes in set size has to be solved. From a theoreti-
cal point of view, this can be done randomly, but there are
practical arguments in favor of more deterministic selec-
tions.

– Task Assignment: The second mechanism implements
SMP-scheduling of the given task set on the cores of set H.
Here, we propose to use the regular scheduler of the op-
erating system with the adoption that the size of the proc-
essor set changes over time.

– Frequency Control: Finally, the frequencies of all cores
have to be adopted based on their assignments to sets H
and L. This is based on the size of H defined by set con-
trol and uses the existing functions to control frequencies
and voltages of cores.

Task assignment and frequency control can use well-estab-
lished approaches. Selecting set members based on set size
seems to be a minor problem that we address in Section V-F.
Therefore, we concentrate on the question of calculating a rea-
sonable size of H at runtime using a given task set and their pa-
rameters in the following.

Currently, we are considering two approaches:

– On-demand with spare: The obvious approach is to
change the size of H according to the actual demand. How-
ever, for the reasons discussed in Section II it is not suffi-
cient to let the power management governor determine the
demand using polling. The threads of the applications in
consideration would have done most of their work before the
governor is even informed about their existence.

Load is introduced by threads becoming active. A (new)
thread becomes active if it enters the ready state, i.e., as an
result of a thread creation (fork, clone in case of Linux) or a
deblock operation. By instrumenting these state change op-
erations, we determine the needed size of H at the time ad-
ditional load occurs. To avoid a negative impact of frequency
transition itself, we choose the size of H as a value that is al-
ways one more than currently needed, i.e., we add a spare
core. That way, we introduce a small additional waste of en-
ergy for the benefit of a better response time that is similar to
the respond time of the symmetric case with all cores run-
ning at maximum frequency.
In order to maintain the size of H according to actual de-
mand, it is also necessary to instrument the opposite state
change operations. However, with respect to response times
this operation is not as time critical as increasing H. For en-
ergy consumption, the opposite is true.

– Support by application: The best a-priori information on
the degree of parallelism of an application is probably owned
by the application’s developer. Our second approach is to
keep this information as metadata. When an application
starts or the application’s degree of parallelism changes, it is
transmitted to the operating system. In our current design,
there is a special system call for that purpose. Nevertheless,
it could be possible to “enrich” an existing call with an appro-
priate parameter. In this way, we can avoid the spare core in H.
However, this approach requires support by the programmer
(or development tools, if the metadata can be generated au-
tomatically) and is, thus, not feasible in short range. Moreo-
ver, for optimal operation all applications should behave this
way.

C Optimizations

As an extension to the approach described above, it is possible
to define a third set (“green set”) of cores which are operating at
the most energy efficient frequency/voltage pair for given tasks.
This information can, for example, be derived using Process
Cruise Control [10].

This approach can be varied based on the understanding of en-
ergy-efficiency: If a system is never turned off, energy efficiency
is calculated based on the difference in energy consumption
compared to idle mode, while the energy consumption of the
whole system has to be considered if a system is turned off af-

Fig. 2 Performance ratios of execution times of  make –jN in 
dependence of N for different policies. Other parameters are the 
same as in Fig. 1.
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ter computation. For most processors, in the first case the low-
est frequency is most efficient while for the latter a higher fre-
quency is better.

V EXPERIMENTAL RESULTS AND DISCUSSION

In order to show the applicability of our approach, we present
the results of three initial experiments that target at the example
from Section II by applying the approaches described in Sec-
tion IV-B manually. Furthermore, we examine Problem B in iso-
lation as seen on processors with a single clock domain in Sec-
tion V-E. We are aware that these experiments cover only a
small subset of possible applications and do not address other
issues such as locality which will be discussed in Section V-F.
For future work, we plan to conduct more experiments based
on an implementation of the presented approach inside the
Linux scheduler.

Our goal is to improve performance in cases where parallelism
is lower than the number of cores and not all cores run at their
maximum frequency in order to save energy. Therefore, run-
ning all cores at their highest frequency defines the base case
for our comparison with respect to performance. Fig. 2 depicts
the results of the experiments compared to this base case and
to the results of the on-demand frequency governor from Fig. 1.

The application is again compiling a Linux kernel (using the
same parameters as in Section II) with different parallelism de-
fined by the parameter N of make –jN. This is similar to the sec-
ond approach in Section IV-B because the known application
parallelism is used to estimate the size of set H.

A Simple Sets with polling-based on-demand governor

Experiment A evaluates the idea of having two sets in a simple
way. It applies the original polling-based on-demand governor
to all cores while restricting the execution of tasks to the proc-
essor cores in set H. The execution restriction is achieved by
the command taskset which defines an affinity mask for the
compilation processes containing only cores in H.

The results of Experiment A depicted in Fig. 2 show that this
approach behaves significantly better than the original on-de-
mand approach for small parallelisms, while still being slower
than the performance achieved with the performance governor
which runs all cores at the highest frequency possible. For par-
allelisms between 6 and 7, it is a little worse than the on-de-
mand approach without core restrictions. This may be caused
by make conflicting with the compiler processes it starts while
being limited in the number of cores. With our approach this
maps to a not accurately estimated parallelism resulting in a
too small size of set H. For parallelisms from 8 onwards, the
approach is equal to the on-demand approach (which is obvi-
ous because set H includes all cores in that case), but still
worse than the performance governor because phases with
lower parallelism are still affected by the problems identified in
Section II.

B High/Low Sets

Experiment B completely removes the polling-based on-
demand governor and directly implements the idea of high/low
sets as introduced in Section IV-A: all cores from set L run al-

ways at lowest frequency (1.05 GHz in case of our test ma-
chine), while cores from set H are pinned to the highest fre-
quency (2.1 GHz). Similar to the first experiment, taskset is
used to restrict process execution to set H.

The results of Experiment B depicted in Fig. 2 show that there
is an improvement compared to Experiment A in the range of
parallelism from 2 to 7. This is due to the fact that problems
caused by transition delays are now avoided as frequencies are
not switched during the experiment. However, there is still a
gap to the optimum that has probably the same origin as de-
scribed in the previous section: Set H is too small to provide
enough computing power to both make and the compiler proc-
esses. For a parallelism of 8 or higher, this problem vanishes
and the optimum is reached. This is obvious because in this
case all cores are used running at their maximum frequency.

However, the results also show that this approach performs al-
ways better or equal to the original on-demand governor while
still saving energy by not running all cores at their maximum fre-
quency.

C High/Low Sets with Spare

Experiment C applies the idea of adding a spare as described
in Section IV-B. Again, we assume the parallelism to be known
and equal to the parameter N of make –jN. This is done by re-
peating Experiment B with an appropriate change in size of set H
(namely N+1 cores).

This approach improves performance significantly by reducing
the gap to the optimum to 5% and less (Experiment C in Fig. 2).
For parallelism of 1 and 7 and larger it even reaches the opti-
mum. For parallelism in range from 2 to 6 that led to worst per-
formance degradations in Experiments A and B, a significant
improvement is achieved.

The existence of this 5% performance gap, however, shows
that the simple approach of estimating the parallelism by using
the parameter N of make –jN is not sufficient in all cases.
Therefore, more fine grain means of adjusting the size of set H
as described in Section IV-B are needed.

Table I Energy consumption of  make –j1 for different policies.

D Energy Consumption

The final goal of our work is to save energy with no or almost no
impact on performance. So far, we have evaluated the impact
on performance with the presented experiments. In order to
give initial results on energy consumption, we ran a set of ex-
periments using an AMD Phenom 9750 processor measuring
the energy consumption of the whole system. In future, we will
extent this by more fine grained measurements (e.g., the proc-
essor isolated). Table I shows the results of compiling a kernel

Scenario Run-time Power Energy

Performance Governor 6:04 min 136 W 13.77 Wh

High/Low Set 6:11 min 121 W 12.55 Wh

High/Low Set with Spare 6:04 min 126 W 12.80 Wh

On-Demand Governor 7:44 min 113 W 14.64 Wh

All cores low frequency 11:47 min 79 W 15.57 Wh
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with a parallelism of one in five different scenarios:
(1) performance governor, (2) “High/Low Set” (with one core in
the high set), (3) “High/Low Set with spare” (two cores),
(4) standard on-demand governor and, for comparison,
(5) running all four cores at low frequency. It can be seen that
“High/Low Set” leads to the lowest energy needed for finishing
the task although it is neither the fastest nor has the lowest
power requirements. Therefore, this approach delivers the best
performance per watt ratio. Furthermore, “High/Low Set with
spare” performs equal to performance governor but decreases
energy consumption.

E Processors with a single Clock Domain

In order to isolate the effects of the two problems described in
Section II, we executed some initial experiments using an Intel
Core i7 940 with Turbo Boost and Hyper-Threading disabled. A
Core i7 has only a single clock domain, so all cores must run at
the same frequency. However, individual cores have the ability
to halt completely resulting in a situation similar to Problem A
due to the time required to resume execution if a task is sched-
uled on a halted core. However, as re-enabling is done in hard-
ware, the effect is expected to be neglectable compared to the
delay caused by software governors. Our first results confirm
this: using the on-demand governor instead of the performance
governor to compile a kernel with a parallelism of one de-
creases performance by 12% due to Problem B. “High/Low
Set”, on the other hand, performs similar to the performance
governor and “High/Low Set with spare” even slightly better
(around 0.5-1%). Therefore, our approach is suited both for
solving Problem B as well as addressing processors such as In-
tel’s Core i7 that disable individual cores if unloaded. With ena-
bled Turbo Boost, “High/Low with spare” even outperforms the
performance governor by 3% as the number of active cores is
reduced and therefore the efficiency of Turbo Boost gets in-
creased due to improved locality of execution.

F Further Aspects

As mentioned in Section IV-B, there are further aspects that
have to be considered. Here, we mainly approach two problem
domains: The first one deals with fairness aspects and related
side conditions of the assignment of cores to the set H (with a
given size of H), while the second considers application as-
pects that are not covered by our scenario of having a large
number of short-living processes (or, by having processes that
belong only for short time intervals to the active set).

Although we give up the approach of being fair, this is only true
with respect to the workload distribution among individual proc-
essor cores. Fairness among processes is still present. Espe-
cially, our approach does not affect the assignment of a task to
a core within the set H, it only restricts the available cores from
all cores to members of the set. Therefore, in case of a fully
loaded machine our approach is not any different from the es-
tablished approach. Dropping fairness regarding cores does
only matter for aspects such as cooling or memory access in
case of NUMA machines. However, both problems can be
solved easily by influencing the decision which cores enter or
leave set H – we already discussed the issue of cooling in Sec-
tion IV-A. With respect to a NUMA system, it seems reasonable
to construct H according to application requirements. For proc-
esses that are memory-independent, it makes sense to repre-
sent all NUMA partitions more or less equally in H.

Another issue related to the assignment of cores to set H is
cache locality. One problem area of our approach are scenarios
where the overall number of running processes is larger than
the number of cores but having a much smaller parallelism (this
applies, e.g., to I/O-intensive processes). In this case, our ap-
proach introduces more task switches on individual cores in-
creasing the number of cache misses. On the other hand, there
are also cases where restricting the number of used cores im-
proves cache efficiency by locality.

Beside the assignment of cores to H, we target onto special use
patterns, namely, a large number of processes being only ac-
tive for a very short time. However, as the runtime of processes
is usually not known in advance, the impact onto other scenar-
ios is important. For long running processes the problems intro-
duced in Section II do not apply as it is simple to execute them
on the same core in case of parallelism less or equal than the
number of cores. On the other hand, even this seems to be an
issue on operating systems (e.g., Windows), where tasks
“jump” frequently between cores. In such cases, our approach
of dropping fairness may also improve behavior of long running
processes.

Another scenario that we consider is interactive usage. Due to
the power of modern computers, this kind of usage usually
does not introduce high load on processors causing them to
switch to low frequencies. If the polling interval of a frequency
governor is relatively large, interactive usage may even not
lead to a higher frequency, so that user initiated actions are ex-
ecuted at low frequency only. While this does not matter in
many cases, reducing speed of a “visible” action to half can be
noticed by most humans. In fact, using an interactive applica-
tion on a K8 using the on-demand governor with a polling inter-
val of 1240 ms “feels” less responsive than running the ma-
chine at its highest frequency all the time. It can be expected
that many users disabled power management due to this rea-
son. Since interactive processes usually stay in active state
only for a limited time (in response to user actions), they are
also appropriate for our approach. This way, such applications
are assigned to a core from set H and are in consequence exe-
cuted at highest frequency. This leads to faster response times
at the cost of slightly increased energy consumption as at least
one core must be kept at high frequency.

VI CONCLUSIONS

In this paper, we have addressed problems resulting from the
fact that, in current operating systems, scheduling tasks to
cores and power management per core are managed by differ-
ent components although these issues are not independent of
each other. In lightly loaded systems, these problems lead to a
significantly degraded performance compared to a disabled
power management. They will even become more prominent in
future with an increasing number of cores per processor be-
cause it can be expected that application parallelism will not
raise with the same speed. To tackle these problems, we pro-
pose to treat power state management (i.e., frequency and volt-
age scaling) together with task assignment inside the sched-
uler. This way, we can react to new load demands directly when
they are injected into the system, thereby avoiding the delay
caused by the usual polling approach.

As a solution that can easily be integrated in current operating
systems, we propose to give up fairness and to apply a set-
based approach which partitions the cores into two sets running
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at low and high frequency/voltage pairs, respectively. We react
to changing application parallelism by adapting the size of
these sets. This is done inside the scheduler enabling fast and
fine-grained reactions. The experiments we conducted with an
initial version of our approach show that the performance deg-
radation can nearly be avoided while still saving energy. Fur-
thermore, by having a spare core in the high set, we improve in-
teractive response times noticeably.

Currently, the energy saving of our approach mainly stems from
the difference between idle consumptions at lowest and highest
frequency. However, as latest-generation processors allow to
disable cores completely, we expect larger energy savings for
such processors with even smaller impacts on performance.
Our approach ideally fits such a scenario as we do not suffer
from the delay to reactivate a core.
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