
ar
X

iv
:c

on
d-

m
at

/0
50

50
67

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  3
 M

ay
 2

00
5

On the equivalence between the energy and virial routes to the equation of state of
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The energy route to the equation of state of hard-sphere fluids is ill-defined since the internal
energy is just that of an ideal gas and thus it is independent of density. It is shown that this
ambiguity can be avoided by considering a square-shoulder interaction and taking the limit of
vanishing shoulder width. The resulting hard-sphere equation of state coincides exactly with the
one obtained through the virial route. Therefore, the energy and virial routes to the equation of
state of hard-sphere fluids can be considered as equivalent.

PACS numbers:

Given a fluid of particles interacting via a two-body po-
tential ϕ(r), its equation of state (EOS) can be obtained
in terms of the radial distribution function g(r; ρ, β),
where ρ is the number density and β = 1/kBT is the
inverse temperature, through a number of routes.1 The
most common ones are the virial route,

βp

ρ
≡ Z(ρ, β) = 1+2d−1vdρ

∫

∞

0

dr rdy(r; ρ, β)
∂

∂r
e−βϕ(r),

(1)
the compressibility route

(

β
∂p

∂ρ

)

−1

≡ χ(ρ, β) = 1 + 2ddvdρ

∫

∞

0

dr rd−1

× [h(r; ρ, β) − 1] , (2)

and the energy route

u(ρ, β) =
d

2β

[

1 + 2dvdρβ

∫

∞

0

dr rd−1ϕ(r)e−βϕ(r)

×y(r; ρ, β)] . (3)

In Eqs. (1)–(3), p is the pressure, Z is the compress-
ibility factor, d is the dimensionality of the system,
vd = (π/4)d/2/Γ(1+d/2) is the volume of a d-dimensional
sphere of unit diameter, χ is the isothermal suscep-
tibility, u is the internal energy per particle, y(r) ≡
exp[βϕ(r)]g(r) is the cavity function, and h(r) ≡ g(r)−1
is the total correlation function. If the exact function
g(r; ρ, β) is inserted, the three routes are thermodynam-
ically consistent, i.e.,

χ−1(ρ, β) =
∂

∂ρ
[ρZ(ρ, β)] , (4)

ρ
∂

∂ρ
u(ρ, β) =

∂

∂β
Z(ρ, β). (5)

On the other hand, if an approximate function g(r; ρ, β)
is used, the compressibility factor obtained directly from
Eq. (1) does not necessarily coincide with that obtained
from the combination of Eqs. (2) and (4) or with that
obtained from the combination of Eqs. (3) and (5).

Let us now particularize to the hard-sphere (HS) in-
teraction

ϕHS(r) =

{

∞, r < σ,

0, r > σ.
(6)

In that case, y(r; ρ, β) = yHS(r; ρσd) and Eq. (1) becomes

ZHS(ρσd) = 1 + 2d−1vdρσdyHS(σ; ρσd). (7)

On the other hand, Eq. (3) reduces to

uHS(β) =
d

2β
. (8)

Since ZHS is independent of temperature and uHS is in-
dependent of density, Eq. (5) is trivially satisfied as 0 = 0
and so it is not possible in principle to get the compress-
ibility factor from the internal energy.

A way of circumventing the ill-definition of the energy
route to the EOS of an HS fluid consists of considering
a convenient interaction potential that encompasses that
of hard spheres in certain limits but for which the tem-
perature plays a relevant role. The simplest choice for
such a potential is perhaps the so-called square-shoulder
(SS) potential:2

ϕSS(r) =











∞, r < σ,

ǫ, σ < r < σ′,

0, r > σ′,

(9)

where ǫ is a positive constant. For this potential, Eq. (3)
becomes

uSS(ρ, β) =
d

2β

[

1 + 2dvdρβǫe−βǫ

∫ σ′

σ

dr rd−1ySS(r; ρ, β)

]

.

(10)
The SS interaction is equivalent to an HS interaction of
diameter σ in the infinite-temperature limit (βǫ → 0)
and to an HS interaction of diameter σ′ in the zero-
temperature limit (βǫ → ∞). Of course, the equivalence
SS → HS also holds in the limit of zero shoulder width
(σ′ → σ).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dehesa. Repositorio Institucional de la Universidad de Extremadura

https://core.ac.uk/display/161589144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/cond-mat/0505067v1


2

Let us now imagine that ySS(r; ρ, β) is known, either
exactly or approximately (e.g., as obtained from the
Percus–Yevick approximation), and thus it is possible
to compute uSS(ρ, β) from Eq. (10). Then, we can get
ZSS(ρ, β) from Eq. (5) as

ZSS(ρ, β) − ZHS(ρσd) = 2d−1dvdǫρ
∂

∂ρ
ρ

∫ β

0

dβ′ e−β′ǫ

×

∫ σ′

σ

dr rd−1ySS(r; ρ, β′),

(11)

where we have made use of the property
limβǫ→0 ZSS(ρ, β) = ZHS(ρσd). Taking into account
the complementary condition limβǫ→∞ ZSS(ρ, β) =

ZHS(ρσ′d), Eq. (11) yields

ZHS(ρσ′d) − ZHS(ρσd)

ρσ′d − ρσd
=

2d−1dvdǫ

σ′d − σd

∂

∂ρ
ρ

∫

∞

0

dβ e−βǫ

×

∫ σ′

σ

dr rd−1ySS(r; ρ, β).

(12)

Equation (12) can be considered as the condition defin-
ing the compressibility factor of an HS fluid associated
with the energy route. To proceed further, we take the
limit σ′ → σ. Thus,

lim
σ′

→σ

ZHS(ρσ′d) − ZHS(ρσd)

ρσ′d − ρσd
= σ−d ∂

∂ρ
ZHS(ρσd), (13)

lim
σ′→σ

1

σ′d − σd

∫ σ′

σ

dr rd−1ySS(r; ρ, β) =
1

d
yHS(σ; ρσd).

(14)
Therefore, Eq. (12) reduces in the limit σ′ → σ to

∂

∂ρ
ZHS(ρσd) = 2d−1vd

∂

∂ρ
ρσdyHS(σ; ρσd). (15)

Finally, integrating over density and imposing the ideal
gas boundary condition ZHS(0) = 1, the virial EOS (7)
is reobtained.

The generalization to mixtures (either additive or non-
additive) is straightforward. In that case, the SS poten-
tial for each pair ij is defined by Eq. (9) with the changes
ǫ → ǫij , σ → σij , and σ′ → σ′

ij = λσij , where the factor
λ is common to all the pairs. The equation equivalent to
Eq. (12) in the case of mixtures is

ZHS(ρσ′d
eff) − ZHS(ρσd

eff)

ρ(λd − 1)
=

2d−1dvd

λd − 1

∂

∂ρ
ρ

∑

ij

xixj

×ǫij

∫

∞

0

dβ e−βǫij

∫ σ′

ij

σij

dr rd−1ySS
ij (r; ρ, β), (16)

where {xi} are mole fractions and σd
eff ≡

∑

i,j xixjσ
d
ij ,

σ′d
eff ≡

∑

i,j xixjσ
′d
ij = λdσd

eff. Taking the limit λ → 1 in

Eq. (16) one gets

ZHS(ρσd
eff) = 1 + 2d−1vdρ

∑

ij

xixjσ
d
ijy

HS
ij (σij ; ρσd

eff),

(17)
which is not but the virial EOS for an HS mixture.

In summary, in this note I have shown that the ill-
definition of the energy route to the EOS of an HS fluid
is saved by first considering an SS fluid and then tak-
ing the limit of vanishing shoulder width. The resulting
EOS coincides exactly with the one obtained through the
virial route. From that point of view, the energy and
virial routes to the EOS of HS fluids can be considered
as equivalent.
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Löwen, J. Phys.: Condens. Matt. 9, L1 (1997); P. Bolhuis

and D. Frenkel, ibid. 9, 381 (1997); A. Lang, G. Kahl, C. N.
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