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Abstract

The goal of this paper is to announce the NicIcon col-
lection of handwritten sketches containing iconic gestures.
These data have recently been collected in our group with
the goal to develop and assess pen input recognition tech-
nologies for the domain of crisis management. In our en-
visaged scenarios, users can use the pen to enter, e.g., in-
formation about the location of certain objects or the oc-
currence of certain events, on a depicted photograph or
digital map. Typically, these sketches contain representa-
tions of drawings that are not contained in publicly avail-
able databases, which mainly contain handwritten texts.
We report on our classification performances achieved for
these data and make the data freely available to the hand-
writing recognition community.
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1. Introduction
Databases for training and testing automated read-

ing systems have become readily available for the hand-
writing recognition community. These databases mostly
contain either online or offline data, acquired on a mul-
titude of acquisition devices. The first large publicly
available datasets were UNIPEN [7], consisting of on-
line isolated characters and handwritten words from West-
ern scripts, and the CEDAR database [8], containing of-
fline scans of address information like city names, state
names, and zip codes. Other well-known databases con-
taining Western handwriting are IRONOFF [17] and the
IAM database [10]. The past decade, many other scripts
like Japanese [9, 11], Tamil [2, 3], and Arabic [14] have
become available. Because of these databases, many re-
searchers in handwriting recognition have been able to de-
velop and assess their recognition technologies on gen-
erally accepted benchmarks. Besides handwriting, other
categories of pen input are musical scores, mathematical
expressions, command gestures, and sketches. Unlike the
availability of handwriting databases, collections of these

other categories are scarcely available. The goal of this
paper is to announce the NicIcon collection of handwrit-
ten sketches containing iconic gestures. Similar to the
IRONOFF collection [17], the NicIcon collection com-
prises simultaneously acquired online pen trajectories and
offline scans. In this paper, our first classification perfor-
mances on these data are reported and a number of chal-
lenging future research issues are described. The NicI-
con collection will be made freely available (through the
unipen.org website) to the research community, with
the aim to stimulate other researchers to develop and as-
sess their technologies on the relatively unknown domain
of iconic sketches.

Within our research on multimodal interaction, the
recognition of sketches has played a prominent role. For
example, in the European COMIC project, we developed
a conversational bathroom salesman that provided the user
with options to sketch a blueprint of their bathroom [4]. In
the ICIS project [15, 22], pen-based sketches are used to
indicate events on interactive maps in the domain of cri-
sis management. In the scenarios pursued in ICIS, users
can draw sketches of situations (on a pen input device
like a tabletPC or PDA). We previously reported about
a large study on the typical pen interactions that emerge
in these scenarios in [20]. The categorization of the ob-
tained pen gestures showed that next to route descriptions
and markings of locations, the iconic sketchings of, e.g.,
houses, cars, fires, and persons, occurred quite frequently.
We also concluded that the recognition of these uncon-
strained sketches (with a large variability within and be-
tween users), resulted in a recognition performance that
was unacceptable for the envisaged target domain.

Therefore, we performed another significant data col-
lection effort with the goal to reduce the variability in the
data. As discussed in [6], users can convey rather complex
messages using a limited set of icons. Inspired by [6], we
designed a set of 14 icon shapes representing important
information relevant to the domain of crisis management.
In total 32 participants were asked to sketch these iconic
representations of events on a digitizing tablet. The result-



ing NicIcon database contains 24,441 icons. In the subse-
quent sections, we will (i) describe the NicIcon data col-
lection process and contents of the data, (ii) demonstrate
the performance of our feature extraction and recognition
techniques on the online part of the data, as a baseline for
future research, (iii) provide details on how to obtain the
database and (iv) conclude with a number of challenging
research issues.

2. Database

A set of 14 icons that are important in the domain of
crisis management and incident response systems was se-
lected. The icons were designed such that (i) they have a
visual resemblance to the objects they represent or corre-
spond to well known corresponding symbols (so that they
are easy to learn by the users), and (ii) are distinguishable
by the computer. Figure 1 shows the 14 selected icons.

Figure 1. Examples of the 14 different icons, as they
were produced by one of the participants. The num-
bers correspond to the numbers in Table 1.

In total, 32 participants, all volunteers, participated in
the experiment. They were all Dutch students in the age
range of 19 to 30 (µ = 21.63, σ = 2.35), of which 29
were male, and 3 were female.

2.1 Forms

Each participant was asked to fill out 22 paper forms,
using an inking stylus. Each form contained 35 boxes ar-
ranged in 7 rows and 5 columns, two calibration crosses
and an identification area. Each box measured 22x22 mm
in size. Left to each row, the stimulus (the to-be-drawn
icon and a size instruction (’small’, ’medium’ or ’large’))
was specified. The participants were asked to fill each row
of boxes by drawing one instance of the specified icon in
each box. The first two forms were intended as trial forms,
which would prepare the participants to the real task. The
forms contained one row for each of the 14 different icons,
and no size specification was given. Since the quality of
the icons produced on the trial forms was comparable to
the quality of the rest of the icons, we decided to add the
trial icons to the database. They were marked as being
trial icons, however (see Section 2.4).

2.2 Procedure

For each form (see Figure 2), the participants were
asked to first touch the centers of the calibration crosses
with the pen tip. Knowing the location of these crosses
on the tablet allowed us to automatically segment the on-
line data, using knowledge of the form layout and box
locations. Furthermore, these locations are required for
aligning the online trajectories to the corresponding of-
fline scanned images. Subsequently, the participants were
asked to mark the empty spaces in the binary code box
with small crosses. By doing this, they attached the unique
code of the form to the online data. After the calibration
process of the form, the participants were asked to fill each
row of query boxes by drawing five instances of the icon
specified for that row. No strict instructions were given
about these size specifications which were varied to get
some size variations. Each participant was asked to draw
the same icons/size combinations, but the order in which
they were drawn was randomized.

2.3 Equipment

A Wacom Intuos2 A4 oversize tablet was as digital in-
put device. This tablet has a resolution of 100 lp/mm, an
accuracy of +/- 0.25, a reading height of 10 mm, and a
maximum data rate of 200 pps. The device can distin-
guish 1024 pressure levels. The tablet was connected to
a computer running Microsoft Windows XP. Specially de-
veloped software was used to record spatial coordinates,
time coordinates and pressure coordinates. An A4-sized
sheet of 160 grams/m2 paper was clamped to the tablet.
A Wacom writing pen, with a green Lamy M21 pen tip1,
was used by the participants to draw the data.

Each sheet of paper was scanned using a HP Scanjet

1www.lamy.com/eng/b2c/Refills and inks/M 21



Figure 2. A piece of paper was clamped to a writing
tablet. The subjects used an inking stylus to draw the
icons. The resulting data contains online trajectories
and offline scans of the paper.

7400C flatbed scanner at 300dpi resolution in 24bits color.
Note that, although we simultaneously captured both on-
line and offline data, in this paper we focus only on the
online data. Both online and offline data are available for
download as described in Section 5.

2.4 Data

Each paper sheet contained seven rows of five
columns, resulting in 35 drawing areas. Each of the 32
participants had to fill in 22 paper sheets, resulting in 770
icon gestures per participant. Some participants appeared
to have skipped certain gestures (199 gestures in total), so
the total number of usable iconic ink gestures is 24,441.
The distribution of the data per icon can be seen in Ta-
ble 1.

Table 1. Distribution of the 24,441 gestures over the
14 icon classes.

Description Icon n Description Icon n

Accident 1736 Gas 1745

Bomb 1750 Injury 1775

Car 1720 Paramedics 1780

Casualty 1750 Person 1755

Electricity 1735 Police 1740

Fire 1740 Roadblock 1750

Fire brigade 1725 Flood 1740

The data was saved in an ASCII-based HWR-format
and was later converted to Unipen format [7] format.

Using the calibration crosses and unique code, we were
able to segment and label each data sample automatically.
Each icon was labeled with the participant ID, the page
number, the row and column number, the type of the icon,
and the size (S/M/L/Trial).

3. Recognition experiment
In this section, we report on the typical recognition

performances that can be obtained on these data. Three
different classifiers were trained to distinguish between
the different icons. We used a multilayered percep-
tron (MLP) and a linear multi-class SVM classifier us-
ing three types of features: the 28 features described by
Willems [19, 21], and two instances of feature sets com-
puted as described in [18]. Furthermore, we used the Dy-
namic Time Warping (DTW) implementation described
by Niels et al. [13].

The classifiers were organized in a multiple-classifier
system (MCS), which employed majority voting [16] for
combining classifier outputs. In case of a tie, the output of
the DTW classifier was used to rule the outcome.

For a writer dependent (WD) test, the full set of icons
was randomly divided into a train set of 60%, and a test
set of the other 40% of the icons. For a writer independent
(WI) test, the train set contained all icons written by 60%
of the writers, and the test set contained all icons written
by the other 40% of the writers.

3.1 Features

Three feature sets were computed from the icon data,
respectively referred to as g-28, t-30, and t-60. Note that
the g-28 features are global features computed from each
total trajectory, whereas the t-30 and t-60 features com-
prise local features running along each trajectory. The g-
28 features are described in [19, 21] and employed in a
pen gesture recognition system used for interactive map
applications. Most pen gesture data, on which these fea-
tures were tested, consisted of deictic gestures [20] that
users produced when marking objects on the interactive
maps, like arrows, encirclements, and crosses. Handwrit-
ing and some iconic gestures were also produced while us-
ing the interactive map application. These 28 features in-
cluded spatial features: (1) length of pen stream, (2) area
of convex hull, (3) compactness, (4) eccentricity, (5) ra-
tio of the coordinate axes, (6) closure, (7) circular vari-
ance, (8) curvature, (9) average curvature, (10) perpendic-
ularity, (11) average perpendicularity, (12) centroid offset
along major axes, (13) length along first principle axis,
(14) rectangularity, (15) initial horizontal offset, (16) final
horizontal offset, (17) initial vertical offset, (18) final ver-
tical offset, (19) straight line count, (20) largest straight
line ratio, (21) straight line ratio, (22) largest straight line,
(23) macro perpendicularity, (24) average macro perpen-



dicularity, and (25) ratio of the principal axes. Also in-
cluded were three features based on the pressure data also
available in the online data: (1) average pressure, (2) pen
down count, (3) pen up/down ratio.

The t-30 and t-60 features are described in [18]. These
trajectory-based features are computed from spatially re-
sampled pen strokes. The features that are calculated for
each resampled data sample containing n points are the
the x, y and z-coordinates, the running angles, and angu-
lar velocities, resulting in 3∗n+2∗(n−1)+2∗(n−2) fea-
tures. As explained in [18], a typical resampling of West-
ern characters requires n = 30 (204 features). Given that
many of the collected iconic gestures have a more com-
plex shape than the average Western character, we also
explored resampling to n = 60 (414 features), resulting in
a better coverage of the original trajectory with resampled
points.

3.2 Classifiers

Three algorithms were used to experiment with the
three feature sets discussed above. The first two classi-
fiers are relatively standard algorithms which require lit-
tle explanation. For the first classifier (SVM), we used
public domain software implementing the linear multi-
class LIBSVM-classifier [5]. The data in the train sets
(writer dependent or writer independent) was used to de-
velop the SVM models, and the data in the test sets (writer
dependent or writer independent) was used to evaluate
the performance of the classifier. For the second classi-
fier (MLP), several architectures and learning parameters
were varied to train multilayered perceptrons on the three
feature sets. The third classifier uses the dynamic time
warping (DTW) algorithm described in [13], which cal-
culates the DTW-distance between two data samples by
summing the normalized Euclidean distances between the
matching coordinates of two data samples. Whether or
not two coordinates i of sample A, and j, of sample B
match, is decided using three conditions: (i) the continu-
ity condition, which is satisfied when coordinate i is on the
same relative position on A as coordinate j is on B, (ii)
the boundary condition, which is satisfied if i and j are
both at the first, or both at the last position of their sam-
ple, (iii) the penup/pendown condition, which is satisfied
when both i and j are produced with the pen on the tablet,
of when they are both produced with the pen above the
tablet. i and j match if either the boundary condition, or
both other conditions are satisfied. Classification of a test
sample was performed through nearest neighbor matching
with the DTW distance function.

3.3 Multi-classifier system

As described above, 7 classifiers were used to clas-
sify the data: the SVM-classifier and the MLP-classifier

(each using the 3 described feature sets), and the DTW-
classifier. The resulting classifications were combined in
a simple majority voting MCS. Table 2 shows the cor-
rect classification performance for each classifier (where
a classifier is the combination between the used classifica-
tion method and the used features) and the overall perfor-
mance of the MCS, for both the writer dependent and the
writer independent setting.

Table 2. Correct classification performances of the in-
dividual classifiers using the different feature sets and
the multi-classifier system on writer dependent (WD)
and writer independent (WI).

Classifier Feature set WD perf. WI perf.
SVM g-28 84.39% 79.99%

t-30 98.57% 92.63%
t-60 98.51% 92.16%

MLP g-28 94.00% 90.72%
t-30 96.63 % 92.40%
t-60 97.79% 92.92%

DTW - 98.06% 94.70 %
MCS - 99.32% 96.49%

When observing Table 2, it shows that the trajectory-
based feature sets t-30 and t-60 result in a better perfor-
mance than the global features g-28. Furthermore, the re-
sults of the MCS significantly improve each single clas-
sifier. Although this can be expected, leaving any of the
classifiers out of the MCS results in a lower performance.
Apparently, although the g-28 features are less discrimi-
native, they provide necessary extra information that im-
proves recognition.

3.4 Conflicting classes

To explore conflicting classes between the different
icon shapes, below the confusion matrix for the writer
dependent setting is presented (see Table 3). From this
confusion matrix, it can be concluded that especially the
’boxed’ icons (icons which consist of a base in a frame:

, , and ) are harder for the system to distinguish.
As illustrated in Figure 3, the main reason for this con-
fusion is that users in some occasions mix up the shape
and orientation of the boxes. Two other categories of typi-
cal misclassifications are cases where users retrace the pen
trajectories and cases where the pen input is sloppy.

4. Discussion and future challenges

In this paper, we have introduced a new dataset con-
taining 24,441 hand drawn icons from the domain of cri-
sis management. The 14 icon classes were designed and
constrained such that they (i) were easy to learn by hu-
man subjects and (ii) they can be distinguished well by
computer software. We have demonstrated high recogni-



Table 3. Confusion matrix of the writer dependent
classification. Hyphens (’-’) denote confusions of
0.0%.

Predicted
Real

99.4 - - - - 0.1 0.3
- 100.0 - - - - -

0.1 - 99.9 - - - -
- 0.1 - 99.6 - - -
- - - 0.1 99.6 - 0.1
- - - 0.1 - 99.9 -

0.3 - - 0.2 - 0.2 98.9
- - - - - - 0.1
- - 0.1 - - - 0.1

0.4 - 0.1 - - 0.3 0.4
- - - 0.4 0.1 0.1 -
- - 0.1 - - 0.4 0.7
- 0.1 - - - - 0.7
- - 0.4 - - 0.1 0.1

Real
- - - - - 0.1 -
- - - - - - -
- - - - - - -
- - - 0.3 - - -
- - - - 0.1 - -
- - - - - - -
- - 0.2 - 0.3 - -

99.7 - 0.1 - - - -
- 99.7 - - - - -
- - 98.4 0.1 - 0.1 -
- - - 99.3 - - -
- - 0.1 0.3 98.2 - -
- - 0.6 - - 98.6 -
- - - - - - 99.3

tion performances by using three feature sets and combin-
ing three different classifiers. Using a multiple-classifier
system ruled by majority voting, 99.3% of the writer-
dependent and 96.5% of the writer independent test sam-
ples were classified correctly. Trajectory-based features
result in a significantly better performance than when us-
ing global features. An analysis of the conflicting error
classes revealed that — apart from apparent slips of the
user —, in particular the boxed classes and cases where a
user retraces the trajectories yield conflicts. One approach
to solve the confusion of boxed classes, might be to re-
move the box part and apply character recognition to the
remaining part.

We are currently further developing and assessing our
pen input recognition technologies in more elaborate ex-
periments, involving pen input data acquired in less con-
strained situations. Two settings will be explored: (i) an
evaluation of our new recognition systems on the less con-
strained gesture repertoire described in [20], and (ii) a new

Figure 3. Examples of the three main conflicting
cases: (i) retraces, (ii) sloppy drawings and (iii) wrong
box shapes.

interactive experiment in which new data will be collected
from novel writers in a less-constrained setting as well.
Both datasets will be made available as part of the NicI-
con collection.

Our second research interest in these data is concerned
with our work on UPX, an upcoming standard for the
specification of online data[1]. A relatively underspecified
issue in UPX is the specification of links between multi-
modal data like the NicIcon collection introduced here.
Our goal is to use the NicIcon data as a testbed for devel-
oping a specification format for linking regions of interest
(in the scanned image) to online trajectories specified in
inkML.

The third direction concerns the combination of the
online data recorded on the digitizing tablet and the of-



fline scanned images. Here, not only offline recognition
of iconic gestures will be pursued, but the availability of
pen input data acquired in both modalities also opens up
the possibilities of (i) exploring the relation between ink
distribution as present in the offline scan and the online
trajectories containing pressure information, and (ii) per-
forming research on the extraction of dynamic informa-
tion from the scanned images. The problem of extracting
the intended trajectory from offline data is still unsolved
and having the new NicIcon collection available may con-
tribute to new steps ahead in this area.

5. Obtaining the database
The NicIcon dataset introduced in this paper is

freely available for download. Online data is
stored in the Unipen [7] format and the PNG im-
age format is used for the offline images. Please
visit http://unipen.nici.ru.nl/NicIcon for
download instructions and further details about the
datasets, like writer population, class distributions and the
coupling between online and offline samples.
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