
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/73161

Please be advised that this information was generated on 2020-09-09 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16157632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/73161

Exploiting Coarse Grained Parallelism
in Conceptual Data Mining

[Finding a needle in a haystack as a distributed effort]

Mark Blokpoel
Institute for Computing and

Information Science,
Radboud University Nijmegen

P.O. Box 9010, 6525 ED
Nijmegen, The Netherlands

blokpoel@acm.org

Franc Grootjen
Nijmegen Institute for

Cognition and Information,
Radboud University Nijmegen

P.O. Box 9104, 6500 HE
Nijmegen, The Netherlands

grootjen@acm.org

Egon L. van den Broek
Center for Telematics and
Information Technology,

University of Twente
P.O. Box 217, 7500 AE

Enschede, The Netherlands
vandenbroek@acm.org

ABSTRACT
A parallel implementation of Ganter’s algorithm to calculate
concept lattices for Formal Concept Analysis is presented.
A benchmark was executed to experimentally determine the
algorithm’s performance, including an AMD Athlon64, In-
tel dual Xeon, and UltraSPARC T1, with respectively 1,
4, and 24 threads in parallel. Two subsets of Cranfield’s
collection were chosen as document set. In addition, the
theoretically maximum performance was determined. Due
to scheduling problems, the performance of the UltraSPARC
was disappointing. Two alternate schedulers are proposed
to tackle this problem. It is shown that, given a good sched-
uler, the algorithm can massively exploit multi-threading ar-
chitectures and so, substantially reduce the computational
burden of Formal Concept Analysis.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems

General Terms
Parallelism, Formal Concept Analysis, Ganter algorithm

1. INTRODUCTION
Searching for information on the world wide web frequently
feels like searching a needle in a haystack. To relief the latter
feeling, a broad plethora of techniques have been introduced
in the field of Information Retrieval (IR). Formal Concept
Analysis (FCA) [18] is one of the most appealing techniques
since it enables the automatic categorization of items, with-
out loss or approximation errors. Hence, if the needle is in
the haystack, it will be found. However, its downside is the
enormous amount of possible concepts, and the complexity

of the generation process, as expressed through its execution
time.

The number of generated concepts used by the FCA may
grow exponentially with an increasing number of objects.
Fortunately, several studies have shown that in practice the
growth is limited to n3 (e.g., see [12]). Still, for challenging
applications, the generation of full blown lattices may take
several days.

Despite the incredible expansion of the computer’s process-
ing speed in the last decade, efficiency of algorithms is still
of the highest interest. A few of the most important reasons
for this are 1) the expansion of the information in databases
and, especially, of the web, 2) the power consumption (and
the heat as its residue) that increased parallel to the process-
ing speeds, and 3) the main memory, which latency is lagging
processor performance with at least an order of magnitude.
Various techniques have been applied to relief all of the lat-
ter problems; e.g., resulting in on-processor caches and out-
of-order execution, which optimized at least the processor
usage.

To increase the efficiency of nowadays computers, processor
manufacturers developed multi-core and multi-threaded ar-
chitectures. These new architectures exploit memory wait-
ing times and run on lower clock frequencies, reducing power
consumption dramatically. However, to effectively make use
of the offered parallelism, the software should be suited to
run in a parallel fashion. Moreover, this does not reduce the
problem of information overload, although it provides the
premises to do so.

This article introduces a parallel version of the Ganter algo-
rithm [8], which should restrain the computational burden
with FCA through utilizing multi-core and multi-threaded
architectures. In Section 2, we briefly describe FCA. Sec-
tion 3 (re)introduces the original Ganter algorithm followed
by the newly developed parallel implementation of the Gan-
ter algorithm in Section 4. A benchmark with three ma-
chines, using the parallel Ganter algorithm, is presented in
Section 5 followed by its analysis in Section 6. Then, the
topic of scheduling is discussed in Section 7. The paper fin-
ishes with some final conclusions (Section 8).

2. FORMAL CONCEPT ANALYSIS (FCA)
In 1982, Wille [18] introduced the Formal Concept Analysis
(FCA) to enable the conceptualization of data. Obviously
this theory has been widely embraced by IR researchers and
used to solve quite some IR problems. As shown in [7], FCA
can be seen as a Dualistic Ontology, just like Singular Value
Decomposition [6, 14].

Various resources on FCA exist on all levels; e.g., [10], [11], [9],
and [19]. Therefore, we will now only briefly define FCA.

Let us assume that D is a set of documents and A is a set of
attributes (words, phrases) that describe these documents.
The relation R ⊆ D × A expresses this notion: we write
(d, a) ∈ R iff the document d is described by attribute a.
Let ∼ be the infix notation for R, so:

d ∼ a ⇔ (d, a) ∈ R

We now lift ∼ to sets: Let D ⊆ D and A ⊆ A. Then:

d ∼ A ⇔ ∀
a∈A

[d ∼ a]

D ∼ a ⇔ ∀
d∈D

[d ∼ a]

Define two polar functions:

leftPolar(D) = {a ∈ A | D ∼ a}

rightPolar(A) = {d ∈ D | A ∼ d}
A (formal) concept is a pair (D, A) with:

leftPolar(D) = A ∧ rightPolar(A) = D

The set of formal concepts can be ordered: let (D1, A1) and
(D2, A2) be two concepts. We define

Definition 1

(D1, A1) ⊆ (D2, A2) ⇐⇒ D1 ⊆ D2

The set of concepts form a complete lattice. The Hasse di-
agram of this lattice (its transitive reduct) can be used for
navigational purposes [15].

Some of the successfull applications of FCA in Information
Retrieval are: author identification [17], conceptual doc-
ument classification, query by navigation and conceptual
query expansion [12].

3. GANTER’S ALGORITHM
In 1984, Ganter introduced his algorithm to calculate lat-
tices [8]. In first instance, it was published as a technical
report. Surprisingly, it took some time before it became
known and its importance was acknowledged; however, since
then the algorithm is widely used.

3.1 Sorted power set
The idea behind Ganter’s algorithm is to define a total or-
der on all possible document sets. Assume the documents
themselves are ordered somehow. For X, Y ⊆ D we define:

Definition 2 (Lectic order)
X ≤ Y ⇐⇒ X = Y or max((X ∪ Y) \ (X ∩ Y)) ∈ Y

ad

abcde

Ø

ab ac aebc bd becd ce de

abde bcdeabceabcd acde

a b c d e

abc abd acd bcd abe ace bce ade bde cde

Figure 1: The lectic order for the set of documents
D = {a, b, c, d, e}.

As seen in [16], we now have the following order on the power
set of a given set D = {a, b, c, d, e} with a < b < c < d < e

∅ < a < b < ab < c < ac < bc < abc < · · · < abcde

In order to generate all concepts, Ganter’s algorithm will try
all document sets in the lectic order. Effectively, it traverses
depth-first through a tree (see Figure 1). Notice that the
lectic order is compatible with the inclusion order; hence,
X ⊂ Y implies X < Y .

3.2 Ganter’s ingenuity
The final ingredient for Ganter’s algorithm is based on a
mathematical proof. This proof states that starting with a
node, if we find a concept under certain conditions, it is the
smallest one larger than the starting node. Consequently, a
lot of subsets can be skipped, which results in a significant
speedup.

3.3 The algorithm
A prerequisite for the algorithm is a function that generates
the next subset after a current subset D given a i ∈ D and
i /∈ D.

Definition 3
Let D ⊂ D and i ∈ D such that i /∈ D.

nextSet(D, i) = (D ∪ {i}) \ {j ∈ D | j < i}

For example, nextSet({a, b, d, e} , c) = {c, d, e}.

Theorem 1
Let D ⊂ D and γ = RightPolar ◦ LeftPolar the closure
operator on the power set of D. If i is the smallest ele-
ment of D \ D for which max(γ(nextSet(D, i))) \ D) ≤ i,
then γ(nextSet(D, i)) is the smallest concept greater then
D (with respect to the lectic order).

Using this theorem the Ganter algorithm is able to find all
concepts. The algorithm can be expressed in pseudo code,
as follows:

if(γ(∅) = ∅)
{

CL = {∅};
}

else

{

D = ∅;
I = D;
while(D 6= D)
{

i = smallest element of I;
I = I \ {i};
T = nextSet(D, i);
T ′ = γ(T);
if(greatest element of (T ′ \ D)<=i)

{

CL = CL ∩ T ′;

D = T ′;

I = D \ D;

}

}

}

Legend of symbols:

D – set of documents
CL – closure set, when the algorithm is finished

this set contains all concepts of D
D – a subset of D
I – D \ {i}
i – a document of D

T – next subset of D containing i:
T = nextSet(D, i)

T ′ – Closure of T : T ′ = γ(T)

4. DIVIDE AND CONQUER
In the previous section, we have seen that Ganter’s algo-
rithm builds an ordered power set that can be considered
as a tree. The key issue here is that the concepts found in
one branch of the tree do not influence the outcome of the
other branches. Furthermore, the function nextSet does
not require its argument to be a concept. This means that
we could split our problem area (the entire power set) into
smaller ones that can be calculated concurrently. However,
Ganter’s original algorithm starts with an empty set and
stops when it has reached the complete set. To exploit multi
processor machines and calculate small sets concurrently, we
aimed to modify it in such a way that it starts and stops with
sets of our choice.

4.1 Parallel algorithm
We will present the parallel version of the Ganter algorithm
in Java. There are several reasons to implement the algo-
rithm in Java:

• Java has a very lightweight parallel (thread) support
with (on some platforms) an extremely efficient hard-
ware implementation [1].

JNISet a=startSet.copy();

while(!a.isUniverse())

{

int i=objectUniverse.getSize()-1;

for(;;)

{

while(a.isElement(i))

i--;

a.truncate(i);

c=a.leftPolar().rightPolar();

if(!a.smaller(c,i))

break;

i--;

}

numConcepts++;

a=c;

printStream.print(a);

if(!a.greater(stopSet))

break;

}

Figure 2: The parallel Ganter algorithm in Java.

• The highlevel language constructs of Java are conve-
nient and expressive.

• Thanks to JNI (Java Native Interfacing) low level rou-
tines can in implemented in C or machine language.

The variable c is used to store the potential concept. JNISet
a is initialized with the interval’s start set. The algorithm
will loop until a equals the total set (called universe). Differ-
ent from the original algorithm, the algorithm will also stop
when a set greater than the defined stop set is encountered.

1. i is set to the smallest element

2. a is truncated on i

3. check if a is a concept;
if so: break out of the infinite loop, a concept is found;
if not: continue with the next element i

4. loop to 1

5. print the concept

6. check if the concept found is greater than the stop set
if so: break out of the while loop, this sub-problem is
solved

Since we are now capable of running Ganter for a sequential
subset of D we should investigate how to make an efficient
partition of the powerset of D.

4.2 Scheduling
To run the parallel Ganter algorithm, the total powerset
should be split up in sequential intervals (with respect to the
lectic order). Unfortunately, the time needed to generate
concepts from a certain set is not directly related to the

interval’s size. So, to prevent lag from a single thread that
consumes too much time, it is smart to create more intervals
than number of available threads that can be executed in
parallel on the hardware.

The user can specify an arbitrary number of threads to the
scheduler. These threads run simultaneously, if possible,
managed by the Java Virtual Machine and Operating Sys-
tem. As soon as one thread finishes the scheduler starts a
new thread, trying to keep the number of threads as specified
at the start. If no more intervals are available the scheduler
waits until all threads are finished.

5. BENCHMARK
In contrast with previous adaptions of Ganter’s original al-
gorithm that solely provide a formal specification of their
work, we chose to run a benchmark to test the algorithm’s
functioning in practice.

5.1 Benchmark setup
Three hardware architectures were used within the bench-
mark, namely:

• T1000: UltraSPARC T1 1.0 GHz processor (with 6
cores × 4 strands) with CoolThreads technology; 2GB
main memory.

• Athlon64: AMD Athlon64 3000+ (1.8 GHz); 1GB main
memory.

• Dual Xeon: Intel Dual Xeon 2.8 Ghz with hyperthread-
ing; 1GB main memory.

As test set for the benchmark we used the Cranfield set [4, 3,
5], which incorporates 1398 technical, scientific abstracts1.
The collection contains 246174 words, of which 14877 are
unique.

To efficiently run tests, we used the following subsets of the
Cranfield collection:

• cran100: The first 100 documents of the collection,
containing 19837 words (2283 unique).

• cran200: The first 200 documents of the collection,
containing 40723 words (3278 unique).

An important characteristic of the Cranfield collection is
that the vocabulary follows Heaps’ Law [13]. Figure 3 shows
how the vocabulary size varies with the text size. Heaps’
Law predicts the vocabulary size to grow sub-linear with
the text size. More precise, let x be the text size in words,
than the corresponding vocabulary is of size kxβ , with k and
β text dependent constants. Normally k is between 10 and
100, and β between 0.4 and 0.6 [2]. A very precise fit (i.e.,
asymptotic standard errors of 0.4366% for k and 0.05893%
for β; see Figure 3) yields k = 7.095 and β = 0.6167.

1The abstracts are numbered 1 to 1400. Abstracts 471 and
995 are missing.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 50000 100000 150000 200000 250000

#u
ni

qu
e

w
or

ds

#words

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 50000 100000 150000 200000 250000

#u
ni

qu
e

w
or

ds

#words

fitted

Figure 3: The vocabulary size (#words) of Cran-
field’s collection in relation to the number of unique
words (#unique words). This relation follows
Heaps’ law.

5.2 Results
The benchmark was executed in two, subsequent, stages.
The first run was executed with the cran100 set and its
results were inspected. Next, the second run was executed
with the cran200 set and its results were inspected. Both
runs were executed with 1, . . . , 30 threads. The results are
presented in this section and analyzed in the next section.

The results of the first stage are presented in Figure 4, which
presents the plots of the results on the Cranfield set of the
first 100 documents (cran100), yielding 311853 concepts.

As nicely illustrated in the plot of Figure 4, the performance
of the Athlon64 machine is determined by its one processor.
The number of concepts handled per second is stable for
threads 1, . . . , 30. The latter is independent of the size of
the collection; hence, with the second run its performance
would be similar. Henceforth, the Athlon64 machine was
excluded from the second run.

The second stage was executed on the Cranfield set of the
first 200 documents (cran200), yielding 3285489 concepts.
The result is presented in Figure 5. Both machines show a
similar performance as on the cran100 set; cf. Figure 4 and
Figure 5.

6. ANALYSIS OF BENCHMARK
To acquire a full understanding of the results found with
the benchmark, a further introduction of the machines used
(see also Section 5.1) can be useful, as will be provided now.
The T1000 machine, as a parallel computer, was designed
for throughput, not speed. It uses limited power resources
(72W) and runs on 1.0 GHz; however, it should be able to
handle 24 threads in parallel using each of the 4 strands on
each of its 6 cores. The dual Xeon machine (2.8 GHz) facili-
tates up to 4 threads with its two processors (power supply:
110W each), each using hyperthreading. Consequently, the
Xeon can handle 4 threads in parallel. Moreover, it can
do this with a much higher speed than the T1000 machine,
due to its relatively fast processors. The Athlon64 machine

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C
on

ce
pt

s
pe

r
se

co
nd

of threads

T1000
Xeon

Athlon

Figure 4: The relation between the number of
threads (# of threads) and the number of concepts
per second processed as determined through the
first stage of the benchmark, with the first 100 doc-
uments of the Cranfield collection (cran100).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C
on

ce
pt

s
pe

r
se

co
nd

of threads

T1000
Xeon

Figure 5: The relation between the number of
threads (# of threads) and the number of concepts
per second processed as determined through the
first stage of the benchmark, with the first 200 doc-
uments of the Cranfield collection (cran200).

Threads Athlon Xeon T1000
concepts/sec. concepts/sec. concepts/sec.

1 1637 1395 439
2 1637 2710 871
3 1635 3139 1298
4 1634 3516 1711
5 1634 3526 2103
6 1634 3525 2445
12 1635 3488 3074
18 1636 3230 2951
24 1635 3314 2843
30 1635 3114 2840

Table 1: Results of the benchmark on the first 100
documents of the Cranfield collection (cran100) with
the Xeon and T1000 architectures.

Threads Xeon T1000
concepts/sec. concepts/sec.

1 498 167
2 987 333
3 1141 497
4 1293 660
5 1292 821
6 1293 978
12 1283 1423
18 1254 1395
24 1266 1361
30 1261 1317

Table 2: Results of the benchmark on the first 100
documents of the Cranfield collection (cran200) with
the Xeon and T1000 architectures.

uses one processor with a clock frequency of 1.8GHz (power
supply: 89W). AMD claims that the performance of this
processor is equal to that of an Intel Pentium processor run-
ning on 3.0 GHz, as is denoted with 3000+. However, its
efficient processing on this clock frequency does not change
that it can handle only 1 thread.

The hardware architecture of the three machines maps nicely
on the performance as measured through the benchmark,
as described in Section 5.1. In parallel, however, it also
raises some questions in particular on the performance of
the T1000 machine.

The performance of the T1000 rises almost linear with the
number of threads. However, this relation only holds up to
around 8 threads for the cran100 run and 9 threads for the
cran200 run. From these moments on, the performance of
the T1000 rapidly declines to a limit of respectively 3000 and
1400 concepts per second. Taking into account the architec-
ture of the T1000, it was expected that three distinct phases
could be identified in its throughput/performance within the
benchmark: 1) up to 6 threads, 2) up to 24 threads, and 3)
with 25 threads of more. Within the second phase, three
subphases were expected: a) up to 12 threads, b) up to 18
threads, and c) up to 24 threads, denoting respectively 2, 3,
and 4 threads per core.

The Xeon machine outperformed the T1000 on the cran100
set with on average respectively 3400 and 3000 concepts per
second processed, as is also shown in Figure 4. On the
cran200 set, up to 8 threads the Xeon machine was the
fastest; with 9 threads and more the T1000 was slightly bet-
ter than the Xeon (approx. 1400 opposed to 1250 concepts
per second processed), see also Figure 5. Hence, the perfor-
mance of the T1000 lags behind expectation.

The performance of the Xeon and T1000 can be explained
through the thread usage of both machines over time. Fig-
ures 6 and 7 show the thread usage for the optimal number of
assigned threads with the cran200 set. Figure 6 shows the
decline of T1000’ processor usage over time. From 35 sec-
onds on, the number of used threads handled by the T1000
decreases significantly. In contrast, the processor usage of
the Xeon machine is constant over time, as is illustrated in
Figure 7.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120

us
ed

 th
re

ad
s

time (s)

T1000

Figure 6: Thread usage of the T1000 (UltraSPARC
T1, 1.0 GHz) machine with the first 200 documents
of the Cranfield collection executed with 24 threads.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80 90

us
ed

 th
re

ad
s

time (s)

Xeon

Figure 7: Thread usage of the Intel dual Xeon (2.8
GHz) machine with the first 200 documents of the
Cranfield collection executed with 4 threads.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

P
ro

ce
ss

or
 u

sa
ge

 (
%

)

of threads

T1000
Xeon

Figure 8: The processor usage of both the T1000
(UltraSPARC T1, 1.0 GHz) and the Intel dual Xeon
(2.8 GHz) machine in relation to the number of
threads the algorithm was executed with.

Figure 8 shows the processor usage for both architectures,
using the current scheduler. As is visualized in Figure 8, the
T1000 cannot use all threads during the execution of the
program. Consequently, its processor is not optimally used,
as is shown in Figure 8. From 8 threads on, the overall
average processor usage drops significantly to 44%. The
scheduler is not able to assign more than 8 threads efficiently.
In contrast, the Xeon, with a maximum of four threads and
a higher clock frequency uses all 4 threads almost optimally
(99%); hence, the scheduler utilizes all threads (99%).

7. SCHEDULING
Scheduling is of key importance for parallel processing, this
is no different for our parallel implementation of the Ganter
algorithm, as has been denoted in Section 6. We will now
denote what the performance of our algorithm would have
been, without the limitation of the scheduler. Subsequently,
the steps to be made to develop an efficient scheduler for
our algorithm will be described.

7.1 Theoretic optimal performance
To achieve an optimal performance of the parallel Ganter
algorithm, 100% of the processing capacity should be used,
preferably for all possible number of threads. In Figure 8,
the algorithm’s usage of the processor during the benchmark
on the cran200 set is presented. Figure 9 presents the al-
gorithm’s performance on the same set in case of perfect
scheduling; i.e., a constant 100% processor usage. The ap-
plication of such an ideal scheduler would improve the per-
formance of the Xenon machine slightly and would reduce
the variability of its performance; cf. Figures 5 and Figure 9.
In contrast, the scheduler would boost the performance of
the T1000 machine; cf. Figures 5 and Figure 9.

At the start of the previous section, the architecture of each
of the three machines was discussed. As with the experi-
mental results, the theoretical performance of the algorithm
can be explained through the machines’ architectures. As
denoted before, the performance of the T1000 can be char-
acterized by three phases, with a second phase in which

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C
on

ce
pt

s
pe

r
se

co
nd

of threads

T1000
Xeon

Figure 9: The relation between the number of
threads (# of threads) and the number of concepts
per second processed in the case of a a constant
100% processor usage, with the first 200 documents
of the Cranfield collection (cran200).

three subphases can be identified. Altogether, it can be ex-
pected that the relation between the number of concepts
determined per second and the number of threads allocated
changes per step of six threads. The latter is nicely illus-
trated in Figure 9, which presents a very slowly declining
graph. However, the graph mostly illustrates the excellent
handling of the 24 threads (through 6 cores) by the T1000
processor. In contrast with the T1000, the Xenon machine
is, as hypothesized before, hardly limited by the current
scheduler, its performance in the benchmark is near the the-
oretical optimum.

7.2 Alternative schedulers
As is illustrated by the algorithm’s hypothetical performance,
using an optimal scheduler, the latter component is essen-
tial for the parallel implementation of Ganter’s algorithm as
introduced in this paper. We will now briefly denote two
alternative schedulers that could boost the algorithm’s per-
formance in practice: a predictive and a dynamic scheduler.

A predictive version of the current scheduler tries to estimate
(beforehand) how long a specific interval will run. If this
estimation is longer then a preset value, it will split up the
interval accordingly. It is still uncertain whether such an
estimation function exists.

A dynamic scheduler just starts threads for reasonable inter-
vals. As soon as there are no more intervals left, and there
are still threads running, the scheduler will intervene: it will
stop a running thread, notes the progress it made, and will
split up the remaining interval and reschedule them to new
threads. Obviously this involves some interthread commu-
nication, but will lead to optimal load distribution.

8. CONCLUSIONS
A parallel implementation of Ganter’s algorithm to calculate
concept lattices for Formal Concept Analysis is presented.
A benchmark was executed to experimentally determine the
algorithm’s performance. Three machines were used with 1

(AMD Athlon64), 4 (Intel dual Xeon), and 24 (UltraSPARC
T1) threads in parallel and two subsets of Cranfield’s collec-
tion were chosen as document set. In addition, the theoret-
ically maximum performance was determined. The perfor-
mance of the UltraSPARC in the benchmark was somewhat
disappointing. Scheduling appeared to be the problem. To
relief the latter problem, either a predictive scheduler or a
dynamic scheduler are proposed. However, the latter solu-
tions are not yet fully functional. Nevertheless, with the
latter solution in mind, a promising, highly efficient algo-
rithm is introduced, optimized for parallel machines. Conse-
quently, the algorithm can massively exploit multi-core and
multi-threading architectures and so, substantially reduce
the computational burden of Formal Concept Analysis.

Acknowledgment
This research was supported by the Netherlands Organiza-
tion for Scientific Research (NWO) under project number
634.000.018.

9. REFERENCES
[1] SUN Fire T1000 and T2000 Server Architecture:

Unleashing the UltraSPARC T1 Processor with
CoolThreads Technology. Technical report, Sun
Microsystems, Inc., 2005.
http://www.sun.com/servers/coolthreads/

coolthreads_architecture_wp.pdf.

[2] R. Baeza-Yates and G. Navarro. Block-addressing
indices for approximate text retrieval. Journal of the
American Society for Information Science,
51(1):69–82, 2000.

[3] C. Cleverdon. The cranfield tests on index language
devices. Aslib Proceedings, 19(6):173–194, 1967.

[4] C. W. Cleverdon. ASLIB cranfield research project:
report on the first stage of an investigation into the
comparative efficiency of indexing systems. Technical
report, The College of Aeronautics, Cranfield,
England, September 1960.

[5] C. W. Cleverdon. The significance of the Cranfield
tests on index languages. In E. Fox, editor,
Proceedings of the 14th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 3–12, Chicago, Illinois,
United States, October 1991. New York, NY, USA:
ACM.

[6] S. C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis. Journal of the American
Society of Information Science, 41(6):391–407, 1990.

[7] F. A. Grootjen and Th. P. van der Weide. Dualistic
ontologies. International Journal of Intelligent
Information Technologies, 1(3):1–20, 2005.

[8] B. Ganter. Two basic algorithms in concept analysis.
Technical Report FB4-Preprint No. 831, TH
Darmstadt, 1984.

[9] B. Ganter, G. Stumme, and R. Wille. Formal concept
analysis: Theory and applications. Journal of
Universal Computer Science, 10(8):926–926, 2004.

[10] B. Ganter and R. Wille. Formale Begriffsanalyse,
Mathematische Grundlagen. Springer-Verlag Berline,
1996.

[11] B. Ganter and R. Wille. Formal Concept Analysis:

Mathematical Foundations. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1997. Translator-C. Franzke.

[12] F. A. Grootjen. A Pragmatic Approach to the
Conceptualization of Language. PhD thesis, Radboud
University, Nijmegen, The Netherlands, 2004.

[13] J. Heaps. Information Retrieval - Computational and
Theoretical Aspects. Academic Press, Inc., New York,
1978.

[14] E. Hoenkamp. Unitary operators on the document
space. Journal of the American Society for
Information Science and Technology, 54(4):319–325,
2003.

[15] W. Roelofs and F. Grootjen. Navcon, Navigating the
conceptual space. In M. M. Dastani and E. de Jong,
editors, Proceedings of the 19th Belgian-Dutch
Conference on Artificial Intelligence (BNAIC 2007),
pages 447–448, Utrecht, the Netherlands, November
2007.

[16] D. Taouil, N. Pasquier, Y. Bastide, and L. Lakhal.
Applications and performances computing closed set
lattices: Algorithms, applications and performances,
2003.

[17] L. van der Knaap and F. Grootjen. Author
identification in chatlogs using formal concept
analysis. In M. M. Dastani and E. de Jong, editors,
Proceedings of the 19th Belgian-Dutch Conference on
Artificial Intelligence (BNAIC 2007), pages 181–188,
Utrecht, the Netherlands, November 2007.

[18] R. Wille. Restructuring lattice theory: An approach
based on hierarchies of concepts. In I. Rival, editor,
Ordered sets, pages 445–470. D. Reidel Publishing
Company, Dordrecht–Boston, 1982.

[19] K. E. Wolff. A first course in formal concept analysis.
How to understand line diagrams, volume 4, pages
429–438. Stuttgart, Germany: Gustav Fischer Verlag,
1994.

