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With the purpose of modeling the process of mountain building, we investigate the evolution of the
ridge produced by the convergent motion of a system consisting of two layers of liquids that differ
in density and viscosity to simulate the crust and the upper mantle that form a lithospheric plate. We
assume that the motion is driven by basal traction. Assuming isostasy, we derive a nonlinear
differential equation for the evolution of the thickness of the crust. We solve this equation
numerically to obtain the profile of the range. We find an approximate self-similar solution that
describes reasonably well the process and predicts simple scaling laws for the height and width of
the range as well as the shape of the transversal profile. We compare the theoretical results with the
profiles of real mountain belts and find an excellent agreement. © 2010 American Institute of
Physics. �doi:10.1063/1.3431740�

I. INTRODUCTION

Mountain ranges are one of the most striking features of
the Earth and their origin and evolution have been investi-
gated for a long time. It is known that the lithosphere �the
outer solid layer of the Earth� is a two-layer structure in
which the crust rests on the denser upper mantle, being sepa-
rated by the Mohorovičić discontinuity �called Moho�. The
lithosphere is divided into several approximately rigid plates
that rest on the hotter and more fluid asthenosphere. The
relative motion of these plates is the cause of mountain
building, because of the shortening and consequent thicken-
ing of the crust that occurs when two continental plates col-
lide �see Fig. 1 for a sketch� or when an oceanic plate is
subducted beneath a continent. On the time scale of the oro-
genic processes the lithosphere is in local hydrostatic equi-
librium �a condition called isostasy� that implies that the vis-
ible regional topography is accompanied by a corresponding
antitopography �called root� of the Moho.

Clearly mountain building is an important problem that
involves many disciplines and interests a broad range of sci-
entists. To attempt a realistic and detailed theoretical descrip-
tion of mountain building is an exceedingly complex task
�see, for example, the recent review by Avouac1 where the
field data were discussed� because across the lithosphere
there are large variations of the temperature, density, and
rheological parameters as well as other properties �many of
which, to compound the issue, are poorly known�. To this
should be added the complications due to the geometry and
the time dependence of the motion of the plates. Since the
pioneering work of England and McKenzie2,3 several models
called collectively “thin sheet models” that treat the
lithosphere as a thin viscous layer or layers have been devel-
oped to take into account in a simplified way some of the
above mentioned features �a classification can be found in

Refs. 4 and 5�. These models have been used to describe
mountain building, mainly by means of extensive and de-
tailed numerical simulations that deal with specific ranges.

The basic phenomena that govern the large scale evolu-
tion of mountain belts are the spreading flow at the depth of
the roots together with isostasy and crustal shortening. The
profile of the ridge is determined by the dynamic balance
between buoyancy and viscous forces. Based on these ideas,
Gratton6 used dimensional arguments to derive scaling laws
for the evolution of the height and the width of a mountain
belt and argued that the evolution of the profile of a range is
self-similar, even if he could not compute the exact shape. To
this purpose he estimated the viscous forces assuming that
the vertical gradient of the horizontal velocity takes place
near the root. However, we shall show later that this assump-
tion is not correct since the whole lithospheric mantle is
involved in the flow. As a consequence the scaling laws of
Ref. 6 cannot describe the evolution of mountain ranges.

More recently we investigated a related problem,
namely, the formation of a ridge by the convergent flow of a
single liquid layer over a solid moving substrate,7–9 and
found that for small time T there is a self-similar regime in
which the height and the width of the range scale as T1/2

regardless of the asymmetry of the flow and the rheology of
the liquid. For large time, however, a different self-similar
regime is achieved in which the height and the width follow
the scaling laws obtained in Ref. 6. Other researchers also
investigated independently this problem theoretically and
with a laboratory model10 as well as numerically.11,12

Following our previous works we here reduce the prob-
lem to its basic essentials, taking into account the two-layer
structure of the lithosphere but disregarding rheological and
geometrical details. For simplicity we assume a Newtonian
rheology for the crust and for the lithospheric mantle, and
that the problem depends on a single horizontal Cartesian
coordinate. We also ignore erosion. In this way we find ap-
proximate analytic solutions, scaling laws, and the

a�Electronic mail: perazzo@favaloro.edu.ar. Researcher of CONICET.
b�Electronic mail: jgratton@tinfip.lfp.uba.ar. Researcher of CONICET.

PHYSICS OF FLUIDS 22, 056603 �2010�

1070-6631/2010/22�5�/056603/7/$30.00 © 2010 American Institute of Physics22, 056603-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1063/1.3431740
http://dx.doi.org/10.1063/1.3431740


asymptotic behavior of the process, thus achieving a deeper
physical understanding of the process.

This paper is organized as follows. In Sec. II we describe
the assumptions and we derive the governing equations. In
Sec. III we derive the self-similar regime developed in the
process. In Sec. IV we compare the self-similar theoretical
profile with the topography of several mountain ranges. Fi-
nally in Sec. V we discuss our work, whose main conclu-
sions are �1� the simple two-layer model describes quite well
the evolution of many mountain belts, �2� their profiles have
a universal shape, and �3� to a good approximation the
evolution is self-similar, with the height and width increasing
as T1/2.

II. THE TWO-LAYER MODEL

Our aim is to describe the essentials of the mountain
building process, using a model as simple as possible, in
order to clarify the basic physics involved. To this purpose
we consider a two-layer liquid film, as shown in Fig. 1, and
we assume for simplicity plane symmetry. The upper layer
�the crust� has viscosity �c, density �c, and thickness
Hc�X ,T�. The lower one �the upper mantle� has viscosity �m,
density �m, and thickness Hm�X ,T�. Typically for a continen-
tal plate �c�2.7 g /cm3, �m�3.2 g /cm3, and �c��m.

Initially, both layers are uniform and Hc�X ,0�=C and
Hm�X ,0�=M. To model the basal traction that is believed to
drive the plate motion, we assume that at T=0 the bottom of
the lithosphere �Z=0� starts moving with a prescribed veloc-

ity Ub�X�. We next assume isostasy, which means that for
0�Z�Hm �see the dashed line in Fig. 1� the pressure does
not depend on X. Notice that this implies that as the thick-
ness of the crust increases, part of the mass of the
lithospheric mantle crosses the boundary between the
lithosphere and the asthenosphere. As a consequence the
mass of the lithospheric mantle is not conserved.

To derive the governing equations we assume a slow
viscosity-dominated flow and employ a slight generalization
of the well-known lubrication approximation �see, for ex-
ample, Refs. 13–15� to take into account the motion of the
bottom of the lithosphere. We neglect inertia and assume that
the slope of the free surface is gentle so that the horizontal
components of the velocities of the fluids are much larger
than the vertical ones and that their vertical gradients are
much larger than the horizontal gradients. In this way the
Stokes equation takes the form

�P

�X
= �m

�2U

�Z2 ,
�P

�Z
= �mg , �1�

for 0�Z�Hm, and

�P

�X
= �c

�2U

�Z2 ,
�P

�Z
= �cg , �2�

for Hm�Z�Hm+Hc. In these equations P is the pressure,
U�X ,Z ,T� is the horizontal velocity, and g is the gravity. The
second equations in Eqs. �1� and �2� mean that the pressure is
hydrostatic; integrating them and using the isostasy condition
��P /�X=0 for 0�Z�Hm� we find �m�Hm /�X
=−�c�Hc /�X. Integrating this equation and using the initial
condition we obtain

Hm = M +
�c

�m
�C − Hc� . �3�

This allows elimination of Hm thus yielding an equation for
the single dependent variable Hc.

To derive the velocity profile we assume that U�Z=0�
=Ub, that the velocity and the shear stress are continuous at
Z=Hm, and that the shear stress vanishes at Z=Hm+Hc. Then
we integrate twice the first equations in Eqs. �1� and �2� with
respect to Z to obtain

U = �Ub −
g�c

�m
Hc� �Hc

�x
+

�Hm

�x
�Z , 0 � Z � Hm,

Ub +
g�c

�c
� �Hc

�x
+

�Hm

�x
�	1

2
�Z − Hm��Z − 2Hc − Hm� −

�c

�m
HcHm
 , Hm � Z � Hm + Hc.� �4�

Notice that the velocity profile is linear in the lithospheric
mantle and parabolic in the crust and that the average shear
stress in the crust is exactly half of that in the lithospheric
mantle. This means that in most situations the velocity drop

in the crust is a small fraction of that within the mantle. As
we will show later these features of the velocity field are
crucial to determine the scaling laws for the growth of the
range.
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FIG. 1. Geometry of the two-layer model employed to describe the forma-
tion of a ridge. The line separating the crust and the upper mantle is the
Moho. The dashed line represents an isobar.
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We define the vertically averaged velocity in the crust as

Vc =
1

Hc
�

Hm

Hm+Hc

UdZ . �5�

We set Ub�X�=U0u�X�, where U0 is the maximum basal ve-
locity so that u verifies u�1. Next we introduce the follow-
ing dimensionless quantities:

h = Hc/C, v = Vc/U0, x = X/X0, t = TU0/X0. �6�

Here the horizontal scale X0 is given by

X0 = �1 −
�c

�m
��cgMC2

�mU0
. �7�

Finally inserting the second of Eq. �4� in Eq. �5� and using
Eq. �6�, we obtain

v = u − �1 +
�cC

�mM
�h

�h

�x
−

C

M
� �m

3�c
−

�c

�m
�h2�h

�x
. �8�

This equation together with the continuity equation,

�h

�t
+

��vh�
�x

= 0, �9�

governs the dimensionless thickness of the crust. The preced-
ing equations can be easily extended to two dimensions to
deal with more general geometries.

To describe the convergence of two plates we make the
simplest assumption: u�x�=1 for x�0 and u�x�=−1 for x
�0. In this way the thickness of the crust starts to increase in
the region of convergence. The initial condition is h�x ,0�
=1 and the boundary conditions are h��� , t�=1. At x=0 we
impose the continuity of h and v.

In general this problem must be solved numerically. In
Fig. 2 we show some solutions. All the results shown in Figs.
2–4 were calculated for C=30 km, M =100 km, �c

=2700 kg /m3, �m=3200 kg /m3, and �c /�m=10. These
values are representative of those found in the lithosphere so
that the results shown can be applied, in general, to the
mountain building process.

III. SELF-SIMILAR REGIME

We now seek the asymptotics of the problem for small t.
We define r= �1−�c /�m��h−1�, then R�Cr is the visible to-
pography of the range. Since at the beginning of the phenom-
enon h−1	1, Eqs. �8� and �9� can be linearized, and with
the assumption u�x�= �1 for x
0 reduce to

�r

�t
= �

�r

�x
+ �1 + ��

�2r

�x2 , x � 0, �10�

where �=�mC /3�cM. With typical values for the
lithosphere ��10−2 so that it can be neglected and in this
approximation, the problem depends only on the scales X0,
C, and U0.

A solution of Eq. �10� as an infinite series similar to that
given in Ref. 7 exists �see the Appendix�. Here we shall
show an approximate self-similar solution rss that for r	1
represents the asymptotics of the full solution. It is given by

rss � �1 −
�c

�m
� 2�t
�1 + �

f�� , �11�

where

f�� =
e−2

��
−  erfc��,  �

x

2��1 + ��t
. �12�

Here erfc is the complementary error function. According to
this solution the height and the width of the ridge follow a
simple t1/2 scaling. We define �arbitrarily� the dimensionless
width of the ridge as w=2x�=1�=4��1+��t �so the width
is the distance between the two points in which the height is
9% of the peak height�. Then the height and the width W
=X0w of the ridge are given by
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Hm/C

FIG. 2. �Color online� Numerical solutions of Eqs. �8� and �9� with u�x�
= �1 for x
0 and h�x ,0�=1, for t=0.25, 1.31, and 4.00 �C=30 km, M
=100 km, �c=2700 kg /m3, �m=3200 kg /m3, and �c /�m=10�.

−8 −7 −6 −5 −4 −3 −2 −1 0 1
−5

−4

−3

−2

−1

0
log rm

log t

FIG. 3. �Color online� Evolution of the maximum relief rm=r�0, t�. The
circles correspond to the numerical solution with the same parameters as in
Fig. 2; the straight line is rss�0, t�.
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FIG. 4. �Color online� Scaled relief of the numerical solutions �circles� for
t=1.4�10−6 ���, 5.7�10−5 ���, 2.3�10−3 �+�, 9.7�10−2 ���, and 6.2
�10−1 ���. The solid line is rss /�t.
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R =
2U0

���1 + ��
��1 −

�c

�m
� �m

�cgM
T1/2, �13�

W =
4C

�1 + �
��1 −

�c

�m
��cgM

�m
T1/2. �14�

It is interesting that W depends on C but not on U0. On the
other hand R depends on U0 and is nearly independent on C
�it depends on C only through ��. Notice also that the aspect
ratio �=W /R of the ridge is constant and equal to

� =
2���cgCM

�mU0
. �15�

Within the uncertainties in the parameters involved, these
formulas give the correct order of magnitude of R and W for
real mountain ranges.

It is interesting to compare this approximate self-similar
solution with the numerical solutions of the full nonlinear
problems �8� and �9�. In Fig. 3 we show the numerical r�0, t�
and rss�0, t�. In Fig. 4 we compare the numerical solutions
with solution �11�. From these figures it can be appreciated
that the self-similar solutions �11� and �12� describe quite
well the shape and the evolution of the ridge, even for quite
large t when it might be expected to fail �notice that the last
circle of Fig. 3 corresponds to h�0, t=4�=3, and that h�0, t
=0.62�=1.82 for the last profile in Fig. 4�. In terms of the
topography this implies that mountain ranges whose height
does not exceed approximately 5 km are well described by
Eqs. �11� and �12�. We then conclude that the self-similar
solution describes reasonably well the solution of the full
nonlinear problem up to this point. We observe that for the
parameters of the numerical calculations shown in these fig-
ures, h�0, t�=4.95 corresponds to the root of the ridge touch-
ing the asthenosphere, after which the relief cannot increase
anymore.

IV. COMPARISON WITH REAL MOUNTAIN RANGES

It is interesting to compare the present theory with the
real profiles of mountain ranges. However at this point it is
convenient to point out that some mountain systems are not
linear so that they cannot be described by the present theory.
For our comparisons we used the digital elevation data
GTOPO30 �these data are available in the website of U.S.
Geological Survey’s Earth Resources Observation and Sci-
ence Center� to obtain locally averaged profiles of ten ap-
proximately rectilinear segments of the Alps, Andes �two
segments�, Barisan Mountains in Sumatra, Caucasus �two
segments�, New Zealand Alps, Pyrenees, and Urals �two seg-
ments�. For each segment we have drawn 50 transversal pro-
files of 101 points each. All the ten segments we examined
have the same “pagoda roof” profile. However four of them
�one segment of the Andes, Caucasus, and Urals, and the
New Zealand Alps� are markedly asymmetric, having one
side steeper than the other; in addition the foot of the steeper
side is lower than the other.

In Fig. 5 we show the average of the 50 profiles of a
segment of the Pyrenees along with the best fit of these data
to af��X−b� /c�+d, where f is given in Eq. �12� and a, b, c,
and d are constant lengths.

In Fig. 6 we show the theoretical profiles �11� and �12�
and the six more symmetric average profiles. To merge these
profiles in a single graph we plotted �Ri−di� /ai versus �Xi

−bi� /ci �i=1, . . . ,6�. To obtain the constants ai, bi, ci, and di

we followed the same procedure as we did for the Pyrenees.
It can be appreciated that the self-similar approximate solu-
tion gives an excellent fit to the actual shapes.

V. DISCUSSION AND CONCLUSIONS

As can be seen in Figs. 5 and 6 the agreement of the
profiles of actual ranges with the self-similar shape is very
good, even for a very ancient range as the Urals. However
some explanations are opportune.

The theoretical profiles are sharply peaked due to the
discontinuity of u�x� at x=0. It is easy to solve numerically
the problem with a continuous transition of u�x�. We have
done it assuming that u=tanh�x /w0�, where 2w0 is the width
of the transition. In Fig. 7 we compare the numerical solution
for w0=0.4 �this value was chosen for better visibility� with
the solution for the discontinuous u case for the same time
�t=1.31�. We see that a continuous transition leads to the
same profile, except near the top where it is rounded. The
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FIG. 5. �Color online� Comparison of the average topography �dots� of a
segment of the Pyrenees �shown in the inset� with theoretical profiles �11�
and �12�. The full line is af��X−b� /c�+d, where a, b, c, and d are constant
lengths determined by fitting the actual topography.
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FIG. 6. �Color online� Comparison of the theoretical profile from the model
with the Andes �+�, Caucasus ���, Alps �� �, Urals ���, Pyrenees ���, and
Barisan Mountains ���.
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width of this rounded region is always �2w0, but since the
width of the range increases as t1/2 the difference between the
continuous and discontinuous cases reduces with time. We
conclude that the self-similar solutions �11� and �12� describe
the profile increasingly well.

The actual topographies shown in Figs. 5 and 6 are the
result of averaging all the transversal profiles of each range.
All the profiles employed to prepare these figures have a
peak, but on averaging them a rounded summit is obtained.
Notice that the noise present in the data due to the local
topographical accidents �that occur near the surface of the
crust and are not a consequence of the average lithospheric
flow we are considering� introduces a horizontal scale wnoise

of a few kilometers, which sets a limit to the size of the
features that can be compared to the theoretical model. Then
the rounded top of these figures whose sizes are of the order
of wnoise do not contradict the sharp theoretical profile. In
addition, this fact suggests that the transition of the basal
velocity occurs on a horizontal scale shorter than 2wnoise.

In our calculations we assumed, for simplicity, a perfect
symmetry. However it is not difficult to extend our model to
a nonsymmetric situation in which u as well as C are dif-
ferent in each side of the ridge. To appreciate the effects of
both kinds of asymmetries we show in Fig. 8 the numerical
solutions for the symmetric case and those corresponding to
a nonsymmetric basal velocity �u=1.9 for x�0 and
u=−0.1 for x�0� and to a nonsymmetric thickness of the
crust �h�x�0,0�=0.9 and h�x�0,0�=1.1�, for t=1.31. The
parameters have been chosen to ensure that in the three cases
the added dimensionless mass is equal to 2t. We can observe
that regardless of the asymmetry the crest remains at x=0.
For brevity we omit more details, which will be published
elsewhere. We believe that the nonsymmetric segments of

the Andes, Caucasus, Urals, and the New Zealand Alps can
be reproduced by adequate choices of the parameters.

The present theory assumes a Newtonian rheology for
the lithosphere, although it is believed that its behavior is
non-Newtonian. In a recent article9 we considered the effect
of a power-law rheology in the one layer model of Ref. 7. We
found that in the linear regime the maximum height and the
width of the ridge increase as t1/2 regardless of the rheologi-
cal parameters. On the other hand the profile of the ridge
depends on the rheology, but only weakly �see Fig. 4 of Ref.
9�. The two-layer model used here can be extended to in-
clude non-Newtonian behavior but to do this exceeds the
scope of the present paper. However based on the results of
the one-layer model we expect that similar results will be
obtained for the two-layer model since in the linear regime
both models give analogous equations.

We do not take into account in our model the effect of
erosion. Several authors considered the role of glacial and
fluvial erosion in the orogenic process, modeling the result-
ing redistribution of mass at large scale as a diffusive process
�see, for example, Refs. 16 and 17 and references therein�.
The inclusion in our model of this effect would modify the
coefficient of the diffusion term �2r /�x2 in Eq. �10�. This
means that a self-similar solution of the same kind as Eqs.
�11� and �12� would result, but with different scales. Inciden-
tally, this could be the explanation why our self-similar pro-
file describes quite well all the ranges analyzed regardless of
their erosion history. Notice also that this change should not
modify the sharp apex of the ridge so that a rounded summit
will not result. We leave for future work a detailed investi-
gation of the effects of erosion.

The present model can be easily generalized to include
three-dimensional �3D� effects replacing u by a two-
dimensional vector u=u�x ,y� and � /�x by the two-
dimensional gradient operator �= �� /�x ,� /�y�. The 3D char-
acter arises from the dependence of u on both Cartesian
coordinates. The resulting problem must then be solved nu-
merically. The 3D effects will be important in those parts of
a range where the average curvature radius of the crest of the
ridge is smaller than or of the order of its width. On the
contrary, our results can be applied whenever the curvature
radius is much larger than the width.

The t1/2 scaling law can be justified with a dimensional
argument based on isostasy, conservation of the crustal mass
during the shortening, and the balance between gravitational
and viscous stresses, entirely analogous to that employed in
Ref. 6. In that paper different scaling laws were obtained
because the viscous stress was incorrectly estimated since it
was not realized, the key feature of the two-layer model dy-
namics, namely, that the entire lithospheric mantle is
involved.

Most of the papers about mountain building deal with
specific ranges, chiefly the Himalaya–Tibet orogeny, which
cannot be described by the present model. It is interesting to
compare the results of our two-layer model with those of
one-layer models �see, for example, Refs. 12 and 7�, and
those from the two-layer model of Royden.18 The one-layer
models consider a single viscous layer on a solid horizontal
substrate with convergent motion. According to Refs. 7 and
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FIG. 7. �Color online� Comparison of a profile for a continuous basal ve-
locity �w0=0.4, dotted line� with the discontinuous case �full line�, for
t=1.31.
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FIG. 8. �Color online� Comparison of the solution for symmetric case �full
line� with those for nonsymmetric basal velocity �dashed line� and nonsym-
metric thickness of the crust �dotted line�.

056603-5 Convergent flow in a two-layer system and mountain building Phys. Fluids 22, 056603 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



12 the height and the width of the wedge increase as t� and
t1−�, respectively. In Ref. 12 it is found that � decreases with
time and that the evolution of the wedge can be divided into
three phases. Initially, �=1 so that the wedge grows only in
height. The second phase exhibits an almost self-similar
growth in which �=1 /2 so that the height and the width
increase as t1/2. For later times a last phase is achieved in
which � decreases below 0.4. In Ref. 7 two self-similar re-
gimes were found corresponding to �=1 /2 for short times
and to �=1 /4 for large time. In our two-layer model and for
realistic values of the thickness of the lithosphere, we ob-
serve only a t1/2 self-similar regime because the root touches
the asthenosphere before significant departures from this re-
gime occur. On the other hand a �=1 initial phase can be
obtained in our two-layer model if we assume that the basal
velocity has a continuous transition whose horizontal extent
is 2w0; this phase ends around t= �4 /��w0

2 �for brevity we
omit details�. Thus the one-layer and our two-layer models
yield power laws for the evolution of the height and the
width which have the same exponents; notice however that
the factors are quite different.

The two-layer model of Royden18 considers only the
crust, which is divided into an upper layer with uniform vis-
cosity and a lower layer in which the viscosity decreases
exponentially with the depth. The basal traction condition is
assumed to hold at the bottom of the crust. It is shown that
two regimes can occur. In the first, the crustal flow is directly
coupled to the underlying mantle. In the second the upper
crustal to midcrustal flow is decoupled from the underlying
mantle. Which one of these regimes that occurs depends on
the viscosity just above the Moho, which in turns depends on
its depth. If no significant low-viscosity zone develops,
crustal deformation is coupled to the motion of the underly-
ing mantle, and a triangular mountain range develops. If a
low-viscosity zone is initially absent but develops during
crustal thickening a steep-sided flat-topped plateau ulti-
mately forms. If a low viscosity zone is present in the lower
crust prior to convergence, a wide orogen with low topo-
graphic relief develops. In the last two cases crustal flow is
decoupled from the mantle except at the edges of the flat
region. The triangular profiles that are obtained in the
coupled mode look quite similar to those obtained here. No-
tice however that the simplicity of our model allowed us to
obtain analytic formulas for the shape of the range and its
scaling laws, not previously known. Furthermore, according
to our two-layer model the flow within the crust should de-
couple from basal traction when the root touches the as-
thenosphere, being driven only by gravity, possibly yielding
a flat-topped profile similar to those discussed in Ref. 18. We
have not yet investigated this regime.

We conclude that the simple two-layer model describes
quite well the evolution of many mountain belts. Although
the lithosphere is described by many parameters, to a good
approximation the orogenic process involves only U0, C, and
the combination X0 �Eq. �7��. Furthermore as long as �m

	�c the viscosity of the crust is not relevant, since most of
the vertical gradient of the velocity occurs in the lithospheric
mantle. The evolution of mountain belts is to good approxi-

mation self-similar and in the symmetric case the profile is
given by Eqs. �11� and �12�.
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APPENDIX: LINEARIZED SERIES SOLUTION

Introducing the scaled variables,

t̃ = t/�1 + ��, x̃ = x/�1 + ��, r̃ = r/�1 + �� ,

in Eq. �10� and following the procedure described in the
appendix of Ref. 7, we obtain the solution for x�0 as

r̃ =
e−s2

��
	2�t̃H−2�s� + �

j=1

�

�2�t̃� jH−1−j�s�
 , �A1�

where s= �t̃+ x̃� /2�t̃ and Hq�s� denotes the Hermite function
of order q. To obtain the solution for x�0 one must change
x for −x in Eq. �A1�.
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