

UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks!

Title	Refining the evaluation of growth and the growth hormone/insulin-like growth factor-I axis in children	
Author(s)	Hawkes, Colin Patrick	
Publication date	2018	
Original citation	Hawkes, C. P. 2018. Refining the evaluation of growth and the growth hormone/insulin-like growth factor-I axis in children. PhD Thesis, University College Cork.	
Type of publication	Doctoral thesis	
Rights	© 2018, Colin Patrick Hawkes. http://creativecommons.org/licenses/by-nc-nd/3.0/	
Embargo information	Not applicable	
Item downloaded from	http://hdl.handle.net/10468/7034	

Downloaded on 2019-12-02T14:53:01Z

REFINING THE EVALUATION OF GROWTH AND THE GROWTH HORMONE / INSULIN-LIKE GROWTH FACTOR-I AXIS IN CHILDREN

Author: Colin Patrick Hawkes

Supervisor: Dr Deirdre Murray and Professor Adda Grimberg

Head of Department: Professor Jonathan Hourihane

Date of Submission: 22nd January 2018

Research conducted through:

The Department of Paediatrics and Child Health, University College Cork
The Division of Endocrinology and Diabetes, The Children's Hospital of
Philadelphia, USA

Thesis submitted to National University of Ireland, Cork, in candidature for the degree of Doctor of Philosophy.

TABLE OF CONTENTS

DECLARATION OF OWNERSHIP	5
ACKNOWLEDGEMENTS	6
List of Figures	8
LIST OF TABLES	10
LIST OF ABBREVIATIONS	12
PUBLICATIONS AND PRESENTATIONS ARISING FROM THIS THESIS	15
Peer-reviewed Publications	15
Manuscripts Under Review	16
Book Chapters	
Presentations at International Meetings	
GRANT APPLICATIONS	
Awarded	
Unsuccessful	
Abstract	
OVERVIEW OF THIS THESIS	
Aim of Thesis	
Structure	21
Chapter 1.1: Introduction	25
CHAPTER 1.2: NORMAL GROWTH AND GROWTH MONITORING	26
1.2.1 The Normal Pattern of Childhood Growth	26
1.2.2 The Medical Assessment of Faltering Growth	
1.2.3 Growth Hormone Deficiency	
1.2.4 The Diagnostic Approach to Growth Hormone Deficiency	
1.2.5 Summary	40
CHAPTER 1.3: IMPROVING THE SPECIFICITY OF THE GROWTH STIMULATION TEST THROUGH SERIAL GROWTH HORMONE MEAS	
AFTER IV CATHETER PLACEMENT	
1.3.1 Aim	
1.3.2 Methods.	
1.3.3 Results	
1.3.4 Discussion	
1.3.5 Chapter Conclusion	
CHAPTER 1.4: EVALUATING CHILDREN WITH HYPOGLYCAEMIA FOR	GROWTH
HORMONE DEFICIENCY	
1.4.1 Overview of Glucose Homeostasis	

]	.4.2 Improving the Specificity of the Diagnostic Fast for Growth Horr Deficiency
	.4.2.2 Methods
	.4.2.3 Results
	4.2.4 Discussion
	.4.3 Chapter Conclusion
	on 2: Insulin-like Growth Factor Measurement with I
-	APTER 2.1: INTRODUCTION
	APTER 2.2: CHALLENGES IN THE MEASUREMENT OF INSULIN-LIKE GRO
,	.2.1 The Growth Hormone / Insulin-like Growth Factor-I axis in Infanca.2.2 Assays used in Measuring Growth Hormone and Insulin-like Gractor-I
	.2.3 Measurements of Growth Hormone and Insulin-like Growth Fac
	1 Children aged 0-18 months
	2.4 Discussion
	2.5 Chapter Conclusion
	.3.1 The Effect of Insulin-like Growth Factor Binding Protein Interfer n Insulin-like Growth Factor-I Measurement .3.2 Mass Spectrometry is Less Sensitive than Immunoassay nterference .3.3 Chapter Conclusion.
Сн	APTER 2.4: CORRELATION OF INSULIN-LIKE GROWTH FACTOR-I ANI
Co	NCENTRATIONS MEASURED BY MASS SPECTROMETRY AT BIRTH V
	OWTH FROM BIRTH TO TWO MONTHS
	.4.1 Background
	4.2 Aim
	.4.3 Methods
	.4.4 Results
	4.6 Chapter Conclusion
•	.4.0 Chapter Conclusion
	on 3: Genetic Approaches to Disorders of the Growth Hormon-Like Growth Factor-I Axis
Сп	APTER 3.1: INTRODUCTION
	1 1 Growin Hormone Signating
,	.1.1 Growth Hormone Signaling

Chapter 3.2: The role of Glucose Regulated Protein 94 in Insu	LIN - LIKE
GROWTH FACTOR-I PROCESSING	118
3.2.1 Background	118
3.2.2 Aim	
3.2.3 Methods	120
3.2.4 Results	
3.2.5 Discussion	
3.2.6 Chapter Conclusion	
CHAPTER 3.3: GENETIC APPROACH TO INSULIN-LIKE GROWTH F	ACTOR-I
RESISTANCE	126
3.3.1 IGF-I Resistance	126
3.3.2 Aim	127
3.3.3 Methods	127
3.3.4 Results	131
3.3.5 Discussion	
3.3.6 Chapter Conclusion	
Section 4: Nutrition and the Growth Hormone / Insulin-like Growth I Axis	
Chapter 4.1: Introduction	135
CHAPTER 4.2: NUTRITION, GROWTH AND THE GROWTH HORMONE /	
LIKE GROWTH FACTOR-I AXIS	
4.2.1 Introduction	
4.2.2 Aim	
4.2.3 The Growth Hormone / Insulin-like Growth Factor-I A	
Potential Interaction with Nutrition	
4.2.4 Nutrition and Insulin-like Growth Factor-I from the Fetus	_
Adolescence	
4.2.5 Undernutrition and Insulin-like Growth Factor-I	
4.2.6 Excess Nutrition and Insulin-like Growth Factor-I	
4.2.7 Insulin-like Growth Factor-I Concentrations and Bioavaila	-
Obesity	
4.2.8 Clinical Implications	
4.2.9 Chapter Conclusion	152
CHAPTER 4.3: BODY COMPOSITION IN THE FIRST FEW DAYS OF LIFE	
4.3.1 Background	
4.3.2 Aim	
4.3.3 Methods	
4.3.4 Results	
4.3.5 Discussion	
4.3.6 Chapter Conclusion	163

CHAPTER 4.4: DEFINING BODY COMPOSITION IN THE FIRST TWO MO	NTHS OF
LIFE AND CORRELATING WITH GROWTH AT TWO YEARS	164
4.4.1 Introduction	164
4.4.2 Aim	165
4.4.3 Methods	165
4.4.4 Results	168
4.4.5 Discussion	174
4.4.6 Chapter Conclusion	176
CHAPTER 4.5: CORRELATION OF INSULIN-LIKE GROWTH FACTOR-I	and –II
WITH BODY COMPOSITION	178
4.5.1 Introduction	178
4.5.2 Background	178
4.5.4 Results	181
4.5.5 Discussion	186
LIFE AND CORRELATING WITH GROWTH AT TWO YEARS 4.4.1 Introduction 4.4.2 Aim 4.4.3 Methods 4.4.4 Results 4.4.5 Discussion 4.4.6 Chapter Conclusion CHAPTER 4.5: CORRELATION OF INSULIN-LIKE GROWTH FACTOR-I AWITH BODY COMPOSITION. 4.5.1 Introduction 4.5.2 Background 4.5.3 Methods 4.5.4 Results 4.5.5 Discussion 4.5.6 Chapter Conclusion Section 5: Conclusion of Thesis 5.1: OVERVIEW 5.1.1 Main Findings of this Research 5.1.2 Summary of Impact on my Clinical Care 5.1.3 Summary of Contribution to the Medical Literature and Future Directions 5.1.4 My Future Directions 5.1.5 Personal Reflection 5.1.6 Personal Growth References	188
ection 5: Conclusion of Thesis	189
5.1: Overview	190
Future Directions	194
5.1.4 My Future Directions	196
	201
Keterences	
	204

DECLARATION OF OWNERSHIP

This thesis submitted is my own work and has not been submitted for another degree, either at University College Cork or elsewhere.

Colin Patrick Hawkes

Colin Hanker

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support and guidance of many mentors and friends. My supervisors, Dr Deirdre Murray and Professor Adda Grimberg have been extremely generous in sharing their time, experience and expertise with me throughout this process and to them I am particularly grateful. I am also grateful to The National Children's Research Centre for funding this work as a Clinical Research Fellowship.

Due to the varied nature of the studies included in this thesis, I have worked with many new collaborators and friends in completing this work. Professor Babette Zemel has played a significant role in shaping my development as a researcher over the past three years. In addition, I am also grateful for the direction that I have received in studying basic science (Professor Yair Argon), genetics (Dr Andrew Dauber, Dr Struan Grant); calcium metabolism (Professor Michael Levine); growth in type 1 diabetes (Dr Steven Willi); glucose homeostasis (Professor Charles Stanley and Dr Diva de Leon) and laboratory assays (Dr Michael McPhaul, Dr Richard Reitz and Dr Michael Caulfield at Quest Diagnostics). I have also been lucky to have the support of a number of paediatric endocrinologists in Ireland who provided guidance and support in a number of my studies (Dr Nuala Murphy, Dr Declan Cody and Dr Susan O'Connell). The Cork BASELINE Study investigators (Dr Deirdre Murray, Prof Jonathan O'B Hourihane, Prof Alan Irvine, Prof Louise Kenny and Dr Mairead Kiely) have also been supportive in our collaborative work.

I am also grateful to the two physicians who helped to put me on the research path. As an early trainee in paediatrics, I was fortunate to work under the mentorship of Professor Eugene Dempsey and Professor Tony Ryan. They helped me to develop my primitive research skills, and directed my enthusiasm towards performing achievable and focused research studies. Gene and Tony remain my role models and friends and, despite their limited interest in growth, have also provided advice and guidance over these past three years.

Funding for the research described in this thesis was predominantly provided by a grant from The National Children's Research Centre. Additional smaller grants to support this work have been provided by The Children's Hospital of Philadelphia and the Diabetes Center at The Children's Hospital of Philadelphia.

Finally, and most importantly, this work would not have been possible without the help of my wife, Debbie, and children, Clodagh and Aisling. Their love and support has been my inspiration in times of disappointment, and has amplified the enjoyment of the successes.

LIST OF FIGURES

Figure 1.1: This thesis evaluates three different approaches to evaluating childhood growth. This includes: Systemic (measurement and nutrition); Hormonal evaluation of the GH/IGF-I axis; and Genetic approaches23
Figure 1.2.1: The observed patterns of linear growth seen when a child is measured six- to twelve-monthly, weekly or daily
Figure 1.2.2: The linear growth of de Montbeillard's son (1759-1777), plotted on the modern Center for Disease Control Growth Chart
Figure 1.2.3: There is a reduction in expected height when the child's position changes from supine to standing. This figure demonstrates this reduction by juxtaposing the CDC supine 0-2 year and standing 2-20 year growth charts for boys and girls at 2 years (Adapted from CDC ³⁸⁻⁴¹)
Figure 1.1.4: Current diagnostic approach to the child with suspected GHD35
Figure 1.3.1: The protocol for insulin tolerance testing used in this study, with additional measurements prior to insulin administration marked
Figure 1.3.2: The number of patients with growth hormone or cortisol concentrations above the defined thresholds in the 30 minutes following intravenous line placement and following insulin administration
Figure 1.3.3: The serum growth hormone concentration profiles in children in Group 1 whose peak growth hormone concentration was ≥ 7 ng/ml at 0, 15 and 30 minutes from intravenous line insertion without a subsequent peak ≥ 7 ng/ml after insulin administration
Figure 1.3.4: Peak cortisol or growth hormone in the 30 minutes prior to insulin administration plotted against the peak after administration of insulin49
Figure 1.4.1: Glucose thresholds for neuroendocrine and neuroglycopenic responses to hypoglycaemia
Figure 1.4.2: Protocol for additional growth hormone measurements after glucagon administration, in the context of a diagnostic fasting study60
Figure 1.5.3: The percentage of children with growth hormone concentrations greater than or equal to thresholds of 5, 7 or 10 ng/ml at the time of glucagon administration at the end of the diagnostic fasting study, or 30, 60, 90, 120, 150, 180 or 210 minutes later
Figure 1.5.4: Receiver-Operating Characteristics curve demonstrating an increased area under the curve when serial GH measurements are used in addition to baseline GH measurement during hypoglycemia
Figure 2.3.1: The principles of competitive immunoassays in IGF-I measurement, and the potential effects of IGFBP interference
Figure 2.3.2: The principles of non-competitive immunoassays in IGF-I measurement, and the potential effects of IGFBP interference94
Figure 2.3.3: Overview of Vitamin D metabolism

Figure 2.4.1: Sex-specific centile charts for IGF-I and IGF—II concentrations in term infants in a healthy population-based cohort, according to gestational age from 37 to 42 weeks' gestation
Figure 2.4.2: The relationship between IGF-I and –II Z-Scores at birth with head circumference, weight and length Z-Scores at birth
Figure 2.4.3: The effect of smoking, preeclampsia and maternal obesity or umbilical cord IGF-I and –II age- and-sex specific Z-Scores
Figure 3.1.1: Growth hormone intracellular signaling
Figure 3.1.2: IGF-I intracellular signaling
Figure 3.3.1: The stepwise approach to using the electronic health record identify children with high IGF-I concentrations and short stature
Figure 3.3.2: Example medical note documentation of pubertal status and laboratory IGF-I report of IGF-I concentration requiring reconcilliation129
Figure 4.2.1: The effect of undernutrition on GH secretion
Figure 4.2.2: Nutrition and Intracellular Growth Hormone Signaling139
Figure 4.2.3: Seven days of 50% caloric restriction (35 Cal/kg) resulted in a reduction in mean IGF-I amongst eight prepubertal children
Figure 4.2.4: The effect of nutritional treatment on serum IGF-I and GH in a group of children with severe protein-energy malnutrition
Figure 4.3.1 Body fat percentages for males and females at 36-37 ⁺⁶ , 38-39 ⁺⁶ and 40-41 ⁺⁶ weeks gestation
Figure 4.4.1: The number of subjects recruited and undergoing body composition measurement at birth and two months, and body mass index measurement at two years
Figure 4.4.2: Sex-specific centile charts for fat mass/length ³ , fat mass and body fat percentage in term infants
Figure 4.4.3: Sex-specific centile charts for fat free mass, and fat free mass/length ² in term infants. Note that these charts show normative data from days 0 to 4, and 49 to 86 days in this population
Figure 4.5.1: Scatter-plot and linear regression comparing IGF-I and –II concentrations with age- and sex-corrected FM/L ³ and FFM/L ² Z-Scores at birth 183
Figure 4.5.2: Scatter-plot and linear regression comparing IGF-I and –II concentrations at birth with age- and sex-corrected FM/L ³ and FFM/L ² Z-Scores at 2 months
Figure 5.1: The current clinical approach to disorders of the GH/IGF-I axis190
Figure 5.2: The contributions of this thesis to the established literature supporting the current clinical approach to disorders of the GH/IGF-I axis190

LIST OF TABLES

Table 1.2.1: Recommended screening tests for children with unexplained short stature 31
Table 1.2.2: Price Comparison for growth hormone products in Ireland in 2015 (per milligram). Note that the total annual cost does not include discarded growth hormone at the end of each vial
Table 1.2.3: The sensitivity and specificity of IGF-I and IGFBP-3 measurement for GHD
Table 1.3.1: Demographics of the patients undergoing insulin tolerance testing in this study
Table 1.3.2: The number of tests with peak stimulated growth hormone concentrations greater than 3 ng/ml, 5 ng/ml and 7 ng/ml following intravenous line placement, insulin administration, or both
Table 1.4.1: Demographic data, diagnoses, critical sample measurements and serial growth hormone concentrations following glucagon administration are shown
Table 1.4.2: Details of the ten children with peak growth hormone concentrations less than 7 ng/ml after fasting study and glucagon administration64
Table 2.2.1: Random GH Measurement within the first 18 months of life77
Table 2.2.2: Assay Specific IGF-I measurement in umbilical cord blood80
Table 2.2.3: Assay Specific IGF-I measurement 0-6 months of age. Blank cells represent unreported data. 83
Table 2.2.4: Assay Specific IGF-I measurement 6-18 months of age 89
Table 2.3.1: Clinical characteristics and laboratory findings in two adolescents presenting with 25(OH)D intoxication 96
Table 2.4.1: Characteristics of the infants and pregnancies included in this cohort. 102
Table 2.4.2: The relationship between sex- and gestational age-corrected IGF-I and IGF-II Z-Scores and growth parameters at birth and 2 months, and growth trajectory from birth to 2 months
Table 2.4.3: Comparison of gestation- and sex-corrected mean (SD) Z-Scores for IGF-I and –II concentrations at birth, according to maternal smoking, maternal obesity, pre-eclampsia, and length, weight and OFC percentiles107
Table 3.2.1: IGF-I and IGFBP-3 concentrations, height, age and BMI according to P300L carrier status 122
Table 3.2.2: Height and IGF-I in P300L carriers and controls in the Longevity Genes project 123
Table 3.2.3: Height of male and female subjects in the Danish cohort, according to P300L carrier status 123

Table 3.1.1: Excluded children from analysis 132
Table 3.1.2: Recruited subjects from CHOP. 132
Table 4.3.1 Demographic data of study population, categorised by gestationa age 158
Table 4.3.2: Male and Female measurements at different gestational ages159
Table 4.3.3: Stepwise linear regression of factors affecting body fat percentage 160
Table 4.3.4: Centiles for body fat percentage according to gestational age and sex
Table 4.4.1: Body Composition Measurements within the first four days of life in term infants 168
Table 4.4.2: Regression analysis of length on FM and FM/L* at birth and two months of age 170
Table 4.4.3: Linear regression models for BMI Z-score at two years173
Table 4.4.4: The odds ratio of having BMI Z-Score ≥ 2 at two years for every unit increase in Z-Score of body composition measurements at birth and two months of age
Table 4.5.1: Characteristics of population 182
Table 4.5.2: The relationship between sex- and gestational age-corrected FM/L and FFM/L ² Z-scores at birth and years, with IGF-I and IGF-II concentrations a birth

LIST OF ABBREVIATIONS

1,25(OH)₂D 1,25-dihydroxvitamin D

25(OH)D 25 hydroxyvitamin D

ADP Air Displacement Plethysmography

ADHD Attention deficit and hyperactivity disorder

AGA Appropriate for Gestational Age

AIDS Acquired Immune Deficiency Syndrome

ALS Acid Labile Subunit

AKT Protein Kinase B

BASELINE Babies After Scope; Establishing the Longitudinal Impact using

Neurological and nutritional Endpoints

BCH Boston Children's Hospital

%BF Percentage Body Fat

BIA Bioelectric Impedance Analysis

BMI Body Mass Index

CCHMC Cincinnati Children's Hospital Medical Center

CHOP Children's Hospital of Philadelphia

CYP Cytochrome P450

D₂ Ergocalcifierol

D₃ Cholecalciferol

DXA Dual-energy x-ray absorptiometry

ECL Enzyme-linked Chemiluminescent Assay

EHR Electronic Health Record

ELISA Enzyme-linked Immunosorbent Assay

ESR: Erythrocyte Sedimentation Rate

FFM Fat Free Mass

FFMI Fat Free Mass Index

FGF21 Fibroblast Growth Factor 21

FM Fat Mass

FMI Fat Mass Index

GH Growth Hormone

GHBP Growth Hormone Binding Protein

GHD Growth Hormone Deficiency

GHR Growth Hormone Receptor

GHRH Growth Hormone Releasing Hormone

GHST Growth Hormone Stimulation Test

GRIN Genomics Research and Innovation Network

GRP94 Glucose Regulated Protein 94

GTP Guanosine Triphosphate

HV Height velocity

IGF-I Insulin-like Growth Factor-I

IGFBP Insulin-like Binding Protein

IGFBP-3 Insulin-like Binding Protein-3

ITT Insulin Tolerance Test

JAK Janus Kinase

L Length

LCMS Liquid Chromatography / Mass Spectometry

LMP Last Menstrual Period

MAPK Mitogen-activated protein kinase

MEK MAPK/ERK Kinase

MRI Magnetic Resonance Imaging

mTOR Mechanistic Target of Rapamycin

NCGS National Cooperative Growth Study

NPY Neuropeptide Y

NSD Neurosecretory Dysfunction

OLCHC Our Lady's Children's Hospital Crumlin

PI3K Phosphoinositide-3-kinase

PTH Parathyroid hormone

RIA Radioimmunoassay

Ral Ras-related protein

SCOPE Screening for Pregnancy Endpoints

SGA Small for Gestational Age

SOCS2 Suppressor of Cytokine Signaling 2

SH2 Src Homology

STAT Signal Transducer and activator of transcription

T1D Type 1 Diabetes

VDR Vitamin D Receptor

WHO World Health Organization

PUBLICATIONS AND PRESENTATIONS ARISING FROM THIS THESIS

PEER-REVIEWED PUBLICATIONS

- Hawkes CP, Mavinkurve M, Fallon M, Grimberg A, Cody DC. Serial GH measurement after intravenous catheter placement alone can detect levels above stimulation test thresholds in children. J Clin Endocrinol Metab. 2015;100(11):4357-63. (Appendix B)
- 2. **Hawkes CP**, Grimberg A, Dzata VE, De Leon DD. Adding glucagon-stimulated GH testing to the diagnostic fast increases the detection of GH-sufficient children. Horm Res Paediatr. 2016;85(4):265-72. (Appendix D)
- 3. **Hawkes CP**, Grimberg A. Measuring growth hormone and insulin-like growth factor-I in infants: what is normal? Pediatr Endocrinol Rev. 2013;11(2):126-46. (Appendix F)
- 4. **Hawkes CP**, Murray DM, Kenny LC, Kiely M, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A. Correlation of insulin-like growth factor-I and –II concentrations at birth measured by mass spectrometry and growth from birth to two months. Horm Res Paediatr. 2018 Jan. doi 10.1159/000486035 [Epub ahead of print]. (Appendix I)
- 5. Marzec M, **Hawkes CP**, Eletto D, Boyle S, Rosenfeld R, Hwa V, Wit JM, van Duyvenvoorde HA, Oostdijk W, Losekoot M, Pedersen O, Beng Yeap B, Flicker L, Barzilai N, Atzmon G, Grimberg A, Argon Y. A human variant of glucose-regulated protein 94 that inefficiently supports IGF production. Endocrinology. 2016;157(5):1914-28. (Appendix J)
- 6. **Hawkes CP**, Grimberg A. Insulin-like growth factor-I is a marker for the nutritional state. Pediatr Endocrinol Rev. 2015;13(2):465-77. (Appendix K)

- 7. **Hawkes CP**, O'B Hourihane J, Kenny LC, Irvine AD, Kiely M, Murray DM. Gender- and gestational age-specific body fat percentage at birth. Pediatrics. 2011;128(3):E645-E51. (Appendix L)
- 8. **Hawkes CP**, Zemel BS, Kiely M, Irvine AD, Kenny LC, O'B Hourihane J, Murray DM. Body composition within the first 3 months: optimized correction for length and correlation with BMI at 2 years. Horm Res Paediatr. 2016;86(3):178-187. (Appendix N)

MANUSCRIPTS UNDER REVIEW

1. **Hawkes CP**, Zemel BS, Kenny LC, Kiely M, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A, Murray DM. The relationship between IGF-I and –II and body composition at birth and over the first 2 months of life.

BOOK CHAPTERS

Hawkes CP, Stanley CA. Pathophysiology of neonatal hypoglycemia.
 In: Polin RA, Fox WW, Abman SH, editors. Fetal and Neonatal Physiology: Expert Consult - Online and Print. 5 ed: Elsevier/Saunders; 2016. p. 1550-60. (Appendix C)

PRESENTATIONS AT INTERNATIONAL MEETINGS

- Hawkes CP, Grimberg A, Dzata VE, De Leon DD. Integrating growth hormone testing with hypoglycaemia investigation. American Pediatric Society / Society for Pediatric Research, May 2014. (Poster Presentation). (Appendix E)
- 2. **Hawkes CP**, Murray DM, Kenny LC, Kiely M, Sikora K, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A. Measurement of IGF-I and –II concentrations at birth by mass spectrometry in a large birth cohort: correlation with anthropometry. Pediatric Endocrine Society, Washington DC. September 2017 (Poster Presentation) (Appendix H)
- 3. **Hawkes CP**, O'B Hourihane J, Kenny LC, Irvine AD, Kiely M, Murray DM. Body Composition at birth; normative values. American Pediatric Society / Society for Pediatric Research. Denver, May 2011 (Poster Presentation). European Society for Paediatric Research, Newcastle, Sept 2011 (Poster Presentation). (Appendix M)
- 4. **Hawkes CP**, Zemel BS, Kiely M, Irvine A, Kenny LC, O'B Hourihane J, Murray DM. Body composition in the first 2 months of life optimized correction for length, reference data and correlation with obesity at 2 years. American Pediatric Society / Society for Pediatric Research. Baltimore, May 2016 (Poster Presentation). (Appendix O)
- 5. **Hawkes CP**, Zemel BS, Kenny LC, Kiely M, Sikora K, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A, Murray DM. The relationship between IGF-I and –II and body composition at birth and over the first 2 months of life. Pediatric Endocrine Society, September 2017 (Poster Presentation). (Appendix P)

GRANT APPLICATIONS

AWARDED

PhD Grant. National Children's Research Centre, Ireland.

Junior Investigator Pilot Grant 2015, The Children's Hospital of Philadelphia (Appendix Q)

UNSUCCESSFUL

Pfizer ASPIRE Endocrinology Junior Investigator Grant 2015

Junior Investigator Pilot Grant 2014, The Children's Hospital of Philadelphia

Junior Investigator Pilot Grant 2013, The Children's Hospital of Philadelphia

Pfizer ASPIRE Endocrinology Junior Investigator Grant 2014

University of Pennsylvania Foerderer Award 2014

Pediatric Endocrine Society Clinical Scholar Award 2015

Endocrine Society Early Investigator Award 2015

ABSTRACT

Introduction

The growth hormone (GH)/Insulin-like growth factor-I (IGF) axis is a key mediator of childhood growth. Current diagnostic tests have poor specificity for disorders affecting this system, namely the growth hormone stimulation test (GHST) and IGF-I measurement. Furthermore, advances in genetics and body composition analysis may provide new approaches to diagnosing disorders involving this axis.

Aim

To improve the diagnostic evaluation of children with poor growth and possible GH deficiency (GHD) through novel approaches to 1) modifying the GHST and diagnostic fasting study; 2) utilising liquid chromatography mass spectrometry (LCMS) to measure IGF-I and –II concentrations; 3) exploring rare genetic causes of poor growth; and 4) studying the association between early body composition and early infant growth.

Methods

I used various approaches including: additional timed GH measurements during the diagnostic GHST and fasting study; IGF-I and –II measurement by LCMS in a well-characterised birth cohort; population-based screening for genetic polymorphisms; focused whole exome testing for rare clinical phenotypes; and body composition analysis measured using air displacement plethysmography.

Results

Intravenous line placement (IVP) is a stimulus for GH secretion and serial additional GH measurement after placement will improve the specificity of the GHST. Similarly, serial measurement of GH in the context of a diagnostic fasting study will improve the specificity for disease. Nutrition interacts with the GH/IGF axis, and I have described reference data for body composition to improve measurement of nutritional status in infancy. In normal infants, there is

a doubling of body fat in the first two months. Using liquid chromatography mass spectrometry, I have described reference data for IGF-I and –II at birth and demonstrated a relationship between these measurements and this rapid accumulation body fat in early infancy. Using a rare phenotype approach and chart review to identify potential genetic causes of short stature, we have also identified a novel *IGF1R* mutation in a child with a phenotype consistent with IGF-I resistance.

Conclusions

Diagnosing disorders of the GH/IGF-I axis remain a significant clinical challenge. I have expanded the clinical approach to evaluating the child with short stature through refining the approaches to the GHST, diagnostic fasting study and body composition evaluation. I have also described reference data for body composition and IGF-I and –II in infancy, and explored potential novel genetic causes of disordered growth. Future work will focus on studying other clinical tools in evaluating the child with short stature and predicting the clinical response to GH treatment.

OVERVIEW OF THIS THESIS

AIM OF THESIS

The aim of this thesis is to refine the diagnostic approaches to normal and abnormal growth in childhood, and disorders of the GH / IGF-I axis.

STRUCTURE

Section 1: The Diagnosis of Growth Hormone Deficiency

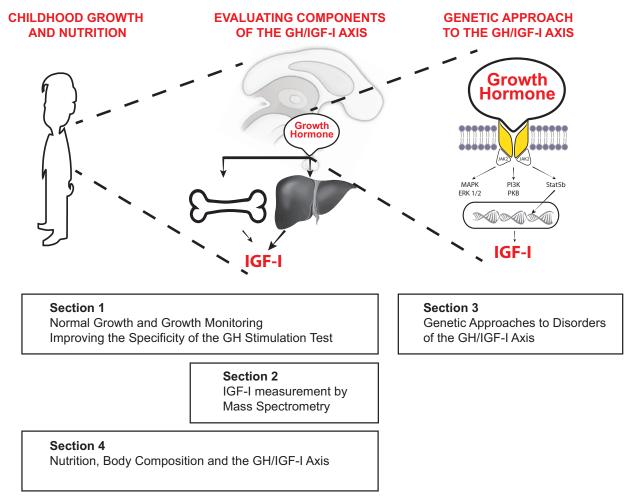
In the first section, I will explore the potential of modifications to the GHST to improve specificity for GHD. This will focus separately on children with possible GHD undergoing insulin tolerance tests (ITT), and on children with unexplained hypoglycemia undergoing diagnostic fasting studies.

Section 2: Mass Spectrometry and Insulin-like Growth Factor-I Measurement

GH mediates systemic and local IGF-I production, and IGF-I concentrations are more consistent in serum than GH. Thus, IGF-I levels are often used as a screening tool for GHD^{1, 2}. However, IGF-I measurement has limitations, most notably interference in measurement from binding proteins. Radioimmunoassays have traditionally been used to measure IGF-I concentrations but LCMS represents an opportunity to remove this interference from IGF-I measurement. In the second section of this thesis, I will review the literature and describe a study in which we used LCMS to measure serum IGF-I levels in a pediatric birth cohort.

Section 3: Genetic Approaches to Disorders of the GH / IGF-I Axis

There have been significant advances in the molecular and genetic understanding of the GH/IGF-I axis in recent years. In the third section of this thesis, I will focus on genetic approaches to improving our understanding of disorders of this axis. Given of the rarity of these disease-causing mutations, multi-centre collaboration is required to identify and study subjects with specific mutations. I


will describe a study in which separate collaborations were formed to demonstrate the pathogenicity of one common population variant, and a separate study to identify mutations causing a rare clinical phenotype. Although many investigators were involved in each of these studies, I will highlight my specific contributions to these bodies of work.

Section 4: Nutrition, Growth and the GH / IGF-I Axis

In the fourth section of this thesis, I will focus on the role of nutrition in childhood growth and the interaction between this and the GH / IGF-I axis. In addition to reviewing the interaction between nutrition and the GH/IGF-I axis, I will investigate the changes in body composition in early infancy and how this related to growth. The interplay between these new reference data for body composition in infancy with IGF-I and IGF-II measurement will also be described in this section.

Conclusion of Thesis

I will conclude this thesis with a summary of the contributions that this research has made to the evaluation of children with possible disorders of the GH / IGF-I axis. I will also provide an overview of my own personal development over the course of this thesis, and describe a number of active research studies that are building on this work.

Figure 1.1: This thesis evaluates three different approaches to evaluating childhood growth. This includes: Systemic (measurement and nutrition); Hormonal evaluation of the GH/IGF-I axis; and Genetic approaches.

GH=Growth Hormone, IGF-I=Insulin-like Growth Factor-I.

SECTION 1

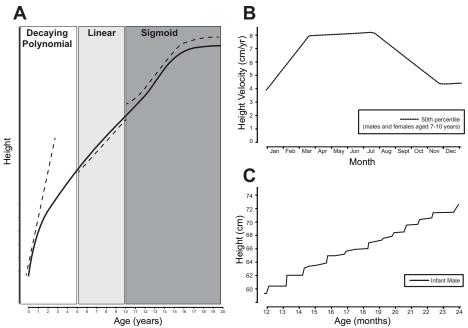
DIAGNOSING GROWTH HORMONE DEFICIENCY IN CHILDHOOD

CHAPTER 1.1: INTRODUCTION

Growth in childhood is a dynamic process that is dependent upon genetic, psychosocial, nutritional, and medical factors. Disruption of any of these factors can affect growth, and deviations from normal growth patterns may consequently be the initial presenting sign of a long list of potential diagnoses. Thus, the monitoring of childhood growth is a crucial component of routine paediatric care and represents a valuable screening tool for detecting disease³⁻⁵.

The growth hormone (GH) / insulin-like growth factor (IGF)-I axis is a key mediator of childhood growth, and disordered GH secretion or action is considered as a possible cause of short stature when systemic disease has been ruled out⁶. Despite human GH replacement therapy being available since 1956 and synthetic GH being produced since 1978⁷, the diagnostic approach to GH deficiency (GHD) is limited by tests that have poor specificity for disease^{8, 9}. For this reason, GHD has been described as "the most difficult condition to diagnose, but easiest to treat" Deviations from the expected growth pattern may be an early sign of disease, but can also represent measurement error or normal variants of childhood growth^{6, 11}. This will be reviewed in Chapter 1.2.

Variation in the diagnostic approaches to GHD is a direct result of the absence of a suitable "gold standard" test. The growth hormone stimulation test (GHST) is widely used, but poorly specific for disease. This is also true for the random measurement of GH during hypoglycaemia¹², despite erroneously being described as a "quick and definitive diagnostic tool" in this setting¹³. In Chapters 1.3 and 1.4, I will describe studies in which I have developed and tested modified protocols to improve the specificity of these tests for diagnosing GHD.


CHAPTER 1.2: NORMAL GROWTH AND GROWTH MONITORING

Growth is a sensitive indicator of health in childhood. The multifactorial influences on growth include psychological, systemic and nutritional factors^{6, 14}. Hence the detection of abnormal growth prompts a more detailed systemic evaluation, requiring the physician to consider and rule out a long list of possible diagnoses^{3, 15}.

In this chapter, I will first provide an overview of normal childhood growth before outlining the clinical approach to children with abnormal growth patterns, including the diagnostic evaluation of GHD.

1.2.1 THE NORMAL PATTERN OF CHILDHOOD GROWTH

The observed pattern of normal childhood growth depends on the frequency of measurement. When measured every 6 to 12 months, a smooth and distinct growth trajectory is seen. This trajectory shows three different growth phases throughout childhood (Figure 1.2.1A). Weekly measurements unmask a seasonal variation in growth rate^{16, 17} (Figure 1.2.1B), whereas daily measurements demonstrate growth bursts in a pattern of "saltation and stasis"^{18, 19} (Figure 1.2.1C). An understanding of these patterns of observed growth is key to interpreting interval growth measurements in a particular child. Measurement error^{20, 21}, as well as diurnal variation^{22, 23} in height, may introduce further challenges when small increments in childhood growth are being observed.

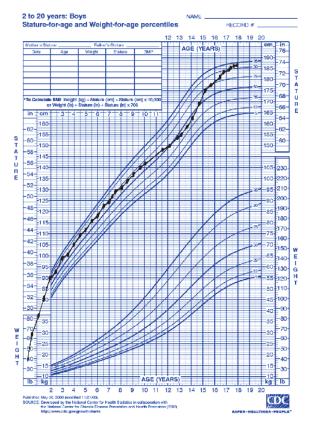


Figure 1.2.1: The observed patterns of linear growth seen when a child is measured six- to twelve-monthly (A), weekly (B) or daily (C).

Six- to twelve monthly measurements show distinct phases of constant growth throughout childhood (A). More frequent measurement unmasks seasonal variation, as demonstrated in 7-10 year old children measured three-monthly (adapted from Marshall¹⁶). Saltation and stasis of growth is seen if daily measurements are used, as shown in a male infant (adapted from Lampl¹⁹)(C)

1.2.1.1 The Growth Chart

The earliest known longitudinal description of childhood growth was reported by George Louis Leclerc, who described Philibert Guneau de Montbeillard's measurements of his son every six months from his birth in 1759 until he was 18 years of age²⁴ (Figure 1.2.2). The concept of describing an individual's growth pattern relative to the population followed, with percentiles being proposed as a method of describing population anthropometric variation by Francis Galton in 1875²⁵. Henry Bowditch was the first to design a chart of height and weight with percentiles in 1891²⁶, and his method has evolved into the growth charts that we use today²⁷. Current growth reference standards utilise these charts to describe linear growth in reference populations. When used in paediatric practice, they allow for the identification of abnormal growth patterns in a child through comparison of an individual's growth measurements with population norms.

Figure 1.2.2: The linear growth of de Montbeillard's son (1759-1777), plotted on the modern Center for Disease Control Growth Chart. This was the first longitudinal description of the pattern shown in Figure 1.2.1A.

1.2.1.2 Linear Growth Pattern

When measured every six months to one year, growth follows a predictable pattern that can be described mathematically. This includes rapid but decelerating growth in infancy and early childhood, which slowly deviates from a straight line and has the appearance of a decaying polynomial. Growth is relatively constant and linear through middle childhood and this is followed by a sigmoid curve through adolescence (Figure 1.2.1)²⁸. There are genetic and sex differences in the timing of these phases of growth²⁹, but the general patterns remain consistent.

1.2.1.3 Seasonal Growth

Leclerc also observed that there is seasonal variation^{17, 30} in the rate of childhood growth. There are between three and six growth spurts each year, each lasting from 13 to 155 days³¹. Height velocity peaks in summer/autumn^{17, 32}, with

relatively slower growth in winter and spring^{17, 23}. The difference in rate of growth between these seasons is as high as 30%¹⁷. This can give an appearance of fluctuating height velocity when followed closely throughout the year. Marshall demonstrated these observed patterns of growth velocity in children aged 7 to 9 years, and these data are shown in Figure 1B¹⁶.

When considering longitudinal linear growth, the season of measurement can influence interpretation of growth pattern. Where a child's height is measured frequently, seasonal slowing of growth may be misattributed to pathology³³. As will be discussed later, time of day and measurement error can also be of significance. This is particularly true when small increments in height are being observed.

1.2.1.4 Daily Growth

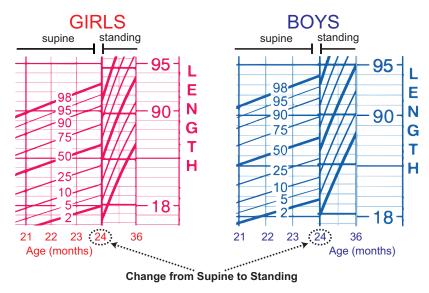
Daily height measurements also demonstrate that growth does not follow the linear pattern shown in Figure 1A. In fact, it occurs in bursts (saltation), interspersed with periods of stasis (Figure 1C). Lampl et al described this in 31 infants who were measured frequently over the course of 21 months. This group showed that infant growth only occurred during 5 to 10% of this time with bursts interspersed by periods of no growth lasting between 2 and 63 days¹⁹.

1.2.1.5 Sources of Measurement Error

Accuracy of measurement is a significant challenge in describing and monitoring childhood growth. Where minor increments in growth are being detected, small errors may provide false concern or reassurance. The most common sources of error are related to equipment or human error.

People are taller in the morning than later in the day^{22, 23}, although the magnitude of this effect varies between studies. In a study of 53 children, Voss *et al* reported that 0.31 cm in height was lost between 09:00 and 11:00 am, with a further 0.2 cm being lost by 1 pm. Other studies have reported a decrease in height of up to 1.5 cm from morning to late afternoon^{34, 35}, with reversal of this

decrease after an afternoon nap³⁵. It has been suggested that gentle upward traction on the child's mastoid processes would correct for this diurnal variation in height^{23, 36}, but this may just increase the measured height nonspecifically by approximately 3 mm²².


Children under the age of two years should be measured supine by two observers, using a moveable footplate. The infant should be placed on a stable surface. Over the age of two years, a wall mounted stadiometer should be used³⁷. Growth charts have been developed using this mode of measurement, and there is an approximately 0.7 cm difference between a supine and standing 2-year-old³⁷. If a child under the age of two years is measured using a standing stadiometer, their recorded height percentile will be lower as the growth chart has been developed based upon supine measurements. After two years of age, the change in position of measurement results in a reduction in the expected height at each percentile. Juxtaposition of growth charts before and after two years of age demonstrates this effect, and is demonstrated in Figure 1.2.3³⁸⁻⁴¹.

Additional recommendations regarding technique are made in an effort to minimise inter-observer variation. Shoes should be removed and the child should stand against a wall with head, shoulders, buttocks and heels touching the wall. The child's head should be in the Frankfort plane, where the upper margin of the ear canal and lower margin of the orbits are on the same horizontal plane^{37, 42}. Similar recommendations are made for the supine infant, but this can be difficult to achieve. To improve reliability, a minimum of two measurements within 4 mm of each other should be taken, and the average recorded⁴².

Regular calibration of equipment is recommended to minimise this potential source of measurement error. The importance of this is highlighted by a study by Voss *et al* in 1990. This group evaluated 230 different measurement devices in active use in hospitals, schools, and primary care centres in the United Kingdom. They used the devices to measure a 100 cm rod and showed that measurements

ranged from 90 to 105.2 cm, and that microtoises tended to be fixed too low (resulting in an overestimation of the child's height)⁴³.

Despite closely following these recommendations, height measurement is often inaccurate. Inappropriate or damaged equipment⁴⁴, use of length instead of height, incorrect technique²⁰ and/or child movement may all contribute to unreliable measurements. Training and standardisation of equipment can improve accuracy and facilitate improved growth surveillance²¹.

Figure 1.2.3: There is a reduction in expected height when the child's position changes from supine to standing. This figure demonstrates this reduction by juxtaposing the CDC supine 0-2 year and standing 2-20 year growth charts for boys and girls at 2 years (Adapted from CDC³⁸⁻⁴¹).

1.2.2 THE MEDICAL ASSESSMENT OF FALTERING GROWTH

The differential diagnosis for faltering growth may include systemic illness, psychosocial deprivation, endocrine disorders (e.g. thyroid dysfunction, adrenal insufficiency) and familial growth patterns (e.g. constitutional delay in growth and puberty). Screening laboratory tests are indicated in all patients where an aetiology is not identified⁴⁵. These tests are shown in Table 1.2.1.

Table 1.2.1: Recommended screening tests for children with unexplained short stature 45

Test	Patients

Full Blood Count	All
Erythrocyte Sedimentation Rate	All
Creatinine	All
Electrolytes	All
Bicarbonate	All
Calcium	All
Phosphate	All
Alkaline Phosphatase	All
Albumin	All
Thyroid stimulating hormone, thyroxine	All
IGF-I	All
IGFBP-3	All
Celiac disease screen	All
Bone age x-ray	All
Karyotype	Boys with genital abnormalities
	All girls
Skeletal Survey	If body proportions suggest skeletal
	dysplasia, or height significantly
	below family target

Using this approach, up to 5% of children with unexplained short stature are identified as having an underlying cause³. However, in one study of 1373 patients, only 2% of patients with short stature had all of the recommended tests performed¹⁵, and it has been suggested that this screening approach in the absence of symptoms may not be cost effective¹⁵. This study estimated the laboratory cost at over \$100,000 for each new diagnosis identified by these tests alone.

1.2.3 GROWTH HORMONE DEFICIENCY

GH is a key mediator of childhood growth, and deficiency usually presents with short stature. An exception to this is in infancy, where GH plays a less prominent role in mediating growth. In infants with GHD, microphallus or hypoglycaemia are often the presenting clinical features^{13, 46} (Chapter 1.4).

As will be briefly described here, and recur as a theme throughout this thesis, the diagnostic tests for GHD have poor specificity for disease. Many normally growing children without GHD will appear to have this condition if these tests

are relied upon to make a diagnosis⁴⁷⁻⁴⁹, thus the tests should be considered "confirmatory" rather than "diagnostic". However, there are also conditions where patients with neurosecretory dysfunction (NSD) may pass a stimulation test but have GHD^{50, 51} (see 1.2.4.3).

1.2.3.1 The cost of a GHD misdiagnosis

Between 30 and 50% of children treated with GH do not show a significant improvement in growth, indicating that the misdiagnosis of GHD is unfortunately common⁵². This difficulty in making the correct diagnosis is further highlighted by the variation in the reported prevalence of GHD from 1 in 2,000 to 1 in 30,000⁵³⁻⁵⁵ children. This emphasises the need to improve the diagnostic tests for GHD, as unnecessary treatment with GH has significant costs for society, the family and, importantly, the child.

Recombinant GH is expensive and this cost is borne by society, either through taxes or health insurance costs. The estimated cost varies according to brand of medication used (Table 1.2.2), dosing schedule⁵⁶, IGF-I response to treatment⁵⁷ and weight. In the U.S., the cost is estimated at \$15,000 per year for a 30 kg child, which can increase to over \$50,000 in a pubertal adolescent^{58, 59}. Consequently, GH generates almost \$2 billion in annual sales revenue⁶⁰. When used in the absence of GHD (i.e. idiopathic short stature), it has been argued that the cost of 4 cm additional growth achieved by treatment of one child could provide 200,000 vaccinations against measles for children in developing countries⁶¹.

Table 1.2.2: Price Comparison for growth hormone products in Ireland in 2015 (per milligram)⁶². Note that the total annual cost does not include discarded growth hormone at the end of each vial.

Formulation	Cost per mg	Cost of 1 mg daily
		over one year
Genotropin (Pfizer)		
Go Quick 5.3 mg	€ 21.75	€ 7,938.75
Go Quick 12 mg	€ 26.53	€ 9,683.45
Miniquick	€ 28.65	€ 10,457.25
Norditropin (Novo No	ordisk)	
SimpleXx 15 mg	€ 30.23	€ 11,033.95

SimpleXx 10 mg	€ 38.33	€ 13,990.45
SimpleXx 5 mg	€ 38.48	€ 14,045.20
Saizen (Merck Seron	0)	
20 mg	€ 30.51	€ 11,136.15
12 mg	€ 30.51	€ 11,136.15
8 mg	€ 30.51	€ 11,136.15
6 mg	€ 30.51	€ 11,136.15
Zomacton (Ferring)		
10 mg	€ 21.80	€ 7,957

GH is administered by daily subcutaneous injection, which may cause discomfort to the child⁶³. Long-term surveillance studies have shown conflicting data regarding a potential increased risk of mortality, malignancy^{64, 65} and stroke⁶⁶⁻⁶⁹. Other possible risks of treatment include intracranial hypertension, slipped capitulum of the femoral epiphysis⁷⁰, and exacerbation of scoliosis; although the latter two of these are considered to be secondary to increased linear growth. Although generally considered to have a good safety record, the Pediatric Endocrine Society and European Society for Paediatric Endocrinology have recommended continued surveillance of children and adults who have been exposed to GH treatment⁷¹. Given this background of concern for potential risks associated with treatment, avoiding treatment in children for whom there is minimal benefit would be preferred. However, the currently available diagnostic tools often do not accurately identify these children.

1.2.4 THE DIAGNOSTIC APPROACH TO GROWTH HORMONE DEFICIENCY

Current consensus guidelines for diagnosing GHD include the interpretation of height both absolutely and relative to the heights of the parents and siblings, height velocity, bone age, serum IGF-I and serum insulin-like growth factor binding protein 3 (IGFBP-3), and GHST⁷². Each of these tests has poor specificity for diagnosing GHD, making it extremely important to accurately measure children and to only investigate children with a clinical phenotype suggestive of GHD. The diagnostic steps are summarised in Figure 1.1.4.

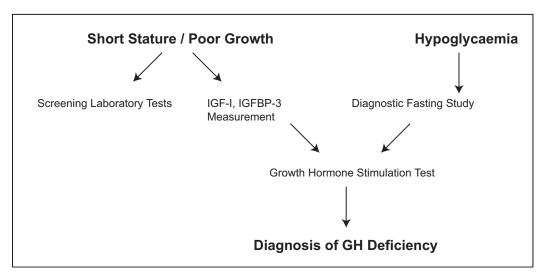


Figure 1.1.4: Current diagnostic approach to the child with suspected GHD

1.2.4.1 IGF-I Measurement

IGF-I is a 70 amino acid polypeptide⁷³ with structural similarities to insulin^{73, 74}. The somatomedin hypothesis linking GH with hepatic IGF-I production and subsequent cellular growth was proposed in 1957⁷⁵, but has undergone numerous revisions. The current understanding of the complex relationship between GH, IGF-I and growth includes: GH-independent IGF-I mediated prenatal growth; GH-dependent postnatal growth mediated by interplay between hepatic IGF-I, IGFBP-3 and Acid Labile Subunit (ALS); and local autocrine and paracrine GH-dependent IGF-I production and action⁷⁶. Despite circulating levels being comprised predominantly of hepatic IGF-I, local autocrine and paracrine action of IGF-I can maintain normal linear growth in the absence of hepatic IGF-I production⁷⁷. Therefore, despite the established role of IGF-I measurement in the screening for GHD, it is possible that circulating IGF-I does not reflect IGF-I action at the growth plate.

The potential role of serum IGF-I measurement by radioimmunoassay to identify children with GHD was first proposed in 1977 by Furlanetto⁷⁸. Copeland *et al* subsequently showed that IGF-I concentrations increase following GH administration⁷⁹. Spontaneous GH secretion was then shown to be associated with serum IGF-I concentrations⁸⁰. IGF-I and IGFBP-3 concentrations were then identified as a useful screen for GHD in children with short stature^{2, 81}, and

young adults with childhood onset GHD who were being evaluated for persistent GHD at completion of linear growth¹. The reported sensitivity and specificity of low IGF-I concentrations for GHD are shown in Table 1.2.3. The gold standard test used for the diagnosis of GHD in most of these studies was the GHST, which, as will be described later in this chapter, has limitations. Regardless, the sensitivity of IGF-I measurement ranges from 34 to 86% and specificity from 22 to 97%.

Limitations and potential areas for optimising IGF-I measurement will be explored throughout this thesis. Interference by IGFBPs provides a significant challenge for assays and the potential for mass spectrometry to advance this field will be studied (Section 2). Nutritional status influences growth and IGF-I concentrations, and I will study this association with measures of body composition in infancy (Section 4). In addition to this, unique cellular aspects of IGF-I production and action will be discussed in Section 3.

1.2.4.2 IGFBP-3 Measurement

IGFBP-3 is a member of the IGF superfamily of proteins, which contains five other IGFBPs. It binds IGF-I with higher affinity than the IGF-I receptor, and prolongs IGF-I half life as well as modulating free bioactive IGF-I availability⁸². ALS and IGFBP-3 bind approximately 75% of circulating IGF-I in a ternary complex, with other IGFBPs contributing in smaller proportions to IGF-I binding^{83, 84}. IGFBP-3 is expressed in numerous tissues, and differential local expression has been suggested to have an IGF-I independent role in colon⁸⁵, oesophageal^{86, 87}, prostate^{88, 89}, and breast⁹⁰ cancers.

Similar to IGF-I, IGFBP-3 concentrations reflect GH activity. Concentrations are elevated in acromegaly⁹¹, and reduced in adults with GH receptor deficiency⁹². IGF-I treatment of adults with GH receptor deficiency does not normalise IGFBP-3 concentrations, demonstrating that IGFBP-3 production is dependent upon GH rather than IGF-I⁹². In addition to GH, other factors can increase IGFBP-3 concentration and these include parathyroid hormone, 1,25-

dihydroxyvitamin D⁹³, insulin⁹⁴, interleukin-1⁹⁵, and tumor necrosis factor alpha⁹⁶. Factors such as androgens⁹⁷, estrogens⁹⁸, and glucocorticoids⁹⁹ can decrease IGFBP-3 concentrations.

IGFBP-3 measurement has an established role in the screening of short children with suspected GHD^{8, 9}, where low concentrations are suggestive of disease. However, the reported sensitivity and specificity of this approach varies from 22 to 97% and 60 to 100%, respectively¹⁰⁰ (Table 1.2.3).

1.2.4.3 Profiles of GH Secretion

GH is secreted in a pulsatile pattern, with increased amplitude of these pulses occurring during puberty. In childhood, these pulses are periodic and occur approximately every 200 minutes¹⁰¹. This pulsatile secretion represents a diagnostic challenge when trying to determine if a child has GHD.

The practice of performing 24-hour GH profiles has fallen from favour due to the labour-intensive nature of the test and limited additional information provided. Despite this, it has been suggested that some children with sufficient peak GH concentrations may have reduced spontaneous secretion¹⁰², termed NSD. This may be more common in children following cranial irradiation, and has been reported in that context in children who have been treated for acute lymphoblastic leukaemia^{50, 103, 104}. It is possible that NSD may be missed if the GHST is relied upon to make the diagnosis in GHD¹⁰⁵, although some studies have also shown no increase in the diagnostic yield by doing this 24-hour GH profile¹⁰⁶. As previously mentioned, IGF-I concentrations can correlate with spontaneous GH secretion⁸⁰. NSD may be considered in at-risk children with a suggestive clinical phenotype and low IGF-I concentrations, despite normal stimulated GH concentrations and normal nutritional status (Chapter 4.2).

Table 1.2.3: The sensitivity and specificity of IGF-I and IGFBP-3 measurement for GHD. Adapted from 100, MPHD=multiple pituitary hormone deficiency

Auth	or	Population		GHD Diagnosis		IGF-1			IGFBP-3	3
					Limit	Sens	Spec	Limit	Sens	Spec
					(Z)	(%)	(%)	(Z)	(%)	(%)

Blum 1990 ¹⁰⁷	132 patients with GHD (116 isolated GHD, 16 MPHD), mean age 11.2y (range 0.25-34.4).	Clinical diagnosis of GHD				-1.6	97	95
Hasegawa 1994 ¹⁰⁸	59 children with GHD	Peak GH < 5 ng/ml				-1.6	92	69
Bussieres 2000 ¹⁰⁹	43 prepubertal children with GHD (28 isolated GHD, 15 MPHD)	Peak GH <10 ng/ml	-1.6	72	95			
Nunez 1996 ⁸¹	104 children with GHD (aged 3-16 years)	Peak GH < 7 ng/ml	-1.7	69	76	-1.7	50	69
Boquete 2003 ¹¹⁰	34 children with GHD (23 isolated GHD, 11 MPHD)	Peak GH <7 ng/ml on 2 stimulation tests	-1.7	68	97	-1.8	90	60
Cianfarani 2002 ¹¹¹	33 children with GHD (32 prepubertal)	Peak GH <10 ng/ml Abnormal MRI brain Positive growth response to GH Rx	-1.9	73	95	-1.9	30	98
Mitchell 1993 ¹¹²	318 patients with GHD (aged 0.9 to 25.4 years)	Peak GH < 5.2 ng/ml Height Velocity <-0.8 Z	-2	62	47	-0.5	61	68
Das 2003 ¹¹³	134 children with GHD (mean age 5.2y, range 0.1- 16.9)	Clinical diagnosis of GHD	-2	86	100	-2	79	86
Lissett 2003 ¹¹⁴	244 children with childhood- onset GHD	Peak GH < 3 ng/ml	-2	86				
Rikken 1998 ¹¹⁵	63 children with GHD	Peak GH < 7.5 ng/ml	-2	65	78	-2	53	81
Tillmann 1997 ¹¹⁶	60 children with GHD (17 isolated GHD)	Height <-2 Z Height Velocity <-2 Z Delayed Bone Age >2y	-2	34	72	-2	22	92
Weinzimer 1999 ¹¹⁷	72 children with brain tumors and GHD	Height velocity < -2 Z Peak GH < 7 ng/ml	-2	73		-2	50	

1.2.4.4 GH Stimulation Testing

The GHST comprises the administration of a pharmacological stimulus for GH secretion and the subsequent serial measurement of GH concentrations. Various stimuli for GH secretion are used in the clinical evaluation of GH reserve, of which insulin induced hypoglycaemia is often considered to be the gold standard¹¹⁸. There are variations in protocols used for the timing of GH measurement during the insulin tolerance test (ITT), with most recommending measurement of GH concentrations at baseline and 30, 60 and 90 minutes following insulin administration. Other protocols recommend additional measurements within the first forty minutes following insulin administration¹¹⁹⁻¹²¹. Other commonly used pharmacological stimuli include clonidine, arginine, levodopa, and glucagon¹²². Similar to the ITT, protocols used for each of these stimuli include the serial measurement of GH after administration¹¹⁹⁻¹²¹.

A peak GH concentration below an arbitrary threshold between 5 and 10 ng/ml is generally used to determine if a child has GHD, but this approach is problematic.

These thresholds were developed using GH measurements by polyclonal assays, and measurements using these may not be consistent with modern monoclonal assays¹²³. There is even assay variability in GH measurements between monoclonal assays, so results may vary between hospitals depending on the specific assay used by the laboratory¹²⁴. Another factor that may influence result interpretation is inter-individual variation in GH pharmacokinetics, resulting in measured serum GH concentrations not necessarily reflecting secreted GH¹²⁵.

When considering all of these issues, it is conceivable that these tests do not correlate well with response to GH treatment. The sensitivity of a stimulated GH peak concentration below 10 ng/ml for detecting prepubertal children who will have a height increase by 0.5 SDS within one year of GH treatment is 82%. However, specificity for these parameters is 24%¹²⁶. Even lower peak GH concentrations also do not correlate well with growth response to treatment 126-128. Almost a quarter of normally growing children without clinical features of GHD have a peak GH concentration of less than 7 ng/ml during GHST, and almost half will have a peak serum GH concentration of less than 10 ng/ml⁴⁷. Although the sensitivity of these tests for GHD is favorable, many normal children without GHD will be characterised as having disease based on a low peak GH concentration on stimulation testing alone 47-49. Thus, GHST result should be interpreted in the clinical context and should not be considered in isolation to diagnose GHD⁷². It should also be noted that these tests are not benign and mortality has been reported with the inappropriate management of hypoglycaemia following insulin or glucagon administration as part of a GHST¹²⁹.

Despite their poor reproducibility^{130, 131} and the aforementioned challenges in interpreting results, the GHST remains central to diagnosing GHD⁷². Questions surrounding most aspects of GHSTs are debated amongst endocrinologists. These include when and how they should be performed, priming of peripubertal patients with sex steroids¹³², assays used, and interpretation of GHTS results are issues that remain unresolved. Multiple surveys of practice have highlighted

variations in each of these areas^{62, 133-135}. In 1995, only a third of endocrinologists believed that GH response to stimulation testing correlated with response to therapy¹³³, and more recent studies show that this hasn't changed. Only half of clinicians in 2010 reported that they would continue to use GHST if insurance providers did not insist on these prior to approving therapy¹³⁵.

1.2.4.5 Variation in Approach to diagnosing and treating GHD in Ireland

Given the aforementioned challenges in interpreting the diagnostic evaluation of the child with possible GHD, significant variations in clinical practice have been described through international questionnaire-based studies^{122, 133, 136, 137}. I have performed a similar survey in Ireland, and shown variable approaches to each step of the diagnostic and therapeutic approaches to GHD (Appendix A). This includes differences in: number of failed GHSTs required to diagnose GHD; GH secretagogues used; sex steroid priming; diagnostic approach to GHD in neonates; criteria used to select GH brand used; criteria for stopping GH treatment; and retesting after completion of treatment⁶².

1.2.5 SUMMARY

While monitoring childhood growth is a central component of general paediatric health surveillance, the interpretation of growth is complicated by measurement error, as well as daily, seasonal and annual growth variation. Medical causes of poor linear growth will be identified in 5% of cases by the recommended baseline laboratory screening. Evaluating for GHD is recommended in the subset of the remaining 95% with a suggestive clinical phenotype. IGF-I and IGFBP-3 measurement, as well as GHST play important roles in this evaluation but can often lead to the misdiagnosis of GHD. In this thesis, I will explore potential areas in which this diagnostic approach may be refined.

In the following chapters of this Section, I will describe novel interventions to improving the specificity of the GHST for diagnosing GHD in children with short stature (Chapter 1.3) and unexplained hypoglycemia (Chapter 1.4).

CHAPTER 1.3: IMPROVING THE SPECIFICITY OF THE GROWTH HORMONE STIMULATION TEST THROUGH SERIAL GROWTH HORMONE MEASUREMENT AFTER IV CATHETER PLACEMENT

Publication

Hawkes CP, Mavinkurve M, Fallon M, Grimberg A, Cody DC. Serial GH measurement after intravenous catheter placement alone can detect levels above stimulation test thresholds in children. J Clin Endocrinol Metab. 2015;100(11):4357-63. (Appendix B)

The GHST comprises a pharmacologic stimulus causing GH secretion, and serial serum GH being measured. In order to demonstrate GH sufficiency, one of these serum GH measurements should be greater than a predefined arbitrary threshold concentration. This is described in more detail in 1.2.4.

As early as 1968, Kaplan et al identified "excitement alone" as a stimulus for GH secretion that can complicate provocative testing¹³⁸. In their study of 134 children, 53 of whom had hypopituitarism, 18 (22%) of the children without GHD had a fasting GH concentration of greater than 9 ng/ml prior to receiving insulin. The GH concentration prior to insulin administration was higher than the peak concentration after insulin induced hypoglycaemia in eight of these. Of note, none of the children with hypopituitarism had a stimulated peak GH concentration of greater than 2.2 ng/ml in this study.

The hypothesis was that intravenous line placement (IVP) stimulates GH secretion and may deplete GH reserve in some children undergoing subsequent ITT. Consequently, frequent measurement of GH concentrations after IVP may identify GH sufficient children who would be missed if ITT measurements alone were used.

1.3.1 AIM

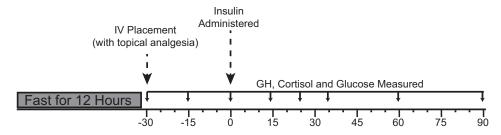
The aim of this study was to determine if measurement of GH at baseline, 15 and 30 minutes after IVP would identify additional GH sufficient patients, not identified by subsequent ITT. The secondary aim was to determine if this was also relevant for cortisol response to ITT.

1.3.2 METHODS

The ITT protocol was modified at Our Lady's Children's Hospital Crumlin (OLCHC), Dublin, Ireland to include additional serum GH measurements in the thirty minutes following IVP but prior to insulin administration. All children undergoing ITT at OLCHC between January 2013 and December 2014 were included in this study. This study was approved by the Institutional Review Board of OLCHC.

1.3.2.1 Baseline Evaluation

IGF-I was measured by enzyme-labeled chemiluminescent immunometric assay (Immulite 2000 XPi, Siemens Healthcare Diagnostics, Berlin, Germany). Z-scores were reported according to laboratory standards using chronological age and gender reference data. GH, cortisol and IGFBP-3 concentrations were also measured by enzyme-labeled chemiluminescent immunometric assays (Immulite 2000 XPi, Siemens Healthcare Diagnostics, Berlin, Germany). Bone age x-rays were performed and these were interpreted by paediatric radiologists using the standards of Greulich and Pyle¹³⁹.


1.3.2.2 Insulin Tolerance Test Protocol

According to protocol in this institution, all prepubertal patients with a recorded bone age over 10 years underwent sex steroid priming prior to insulin tolerance test. Variations in practice regarding sex steroid priming have been reported, and similar criteria to those used in this study for sex steroid priming are used in many centres internationally¹³⁶. Sex steroid priming for males consisted of one 100 mg dose of intramuscular testosterone ten days prior to the test, and for

females consisted of oral ethinylestradiol 10 mcg daily for three days prior to the test.

Children fasted for 12 hours prior to undergoing ITT. Ethyl chloride topical analgesia spray was used prior to insertion of an intravenous catheter. If placement was unsuccessful, this procedure was repeated with the use of analgesia spray. One intravenous line was placed 30 minutes prior to insulin administration, and this was used for insulin administration as well as GH and cortisol sampling.

Serum GH and cortisol concentrations were measured at the time of IVP and again 15 and 30 minutes later (t=-30, -15, 0). Intravenous insulin (0.1 u/kg) was administered 30 minutes after IVP (t=0) and GH, cortisol and glucose concentrations were measured at 15, 25, 35, 60 and 90 minutes following insulin administration (Figure 1.3.1). A glucose concentration of less than 45 mg/dL after insulin administration was required for test to be included in this study.

Figure 1.3.1: The protocol for insulin tolerance testing used in this study, with additional measurements prior to insulin administration marked.

1.3.2.3 Retrospective chart review procedure

Medical records were reviewed and weight, height, pubertal stage, parental heights, and comorbidities were recorded. IGF-I and IGFBP-3 concentrations, and bone age results were recorded. Puberty was defined as breast Tanner stage ≥ 2 in females or testicular volume ≥ 4 ml in males. Patient information was tabulated anonymously and maintained on a password-protected file on a secure server.

1.3.2.4 Statistical analysis

Patients were categorised according to the indication for ITT. Children undergoing initial evaluation of possible GHD were assigned to Group 1. Patients treated with GH who had completed linear growth and were undergoing ITT to determine if they had persistent GHD were assigned to Group 2. Peak stimulated GH concentrations of Groups 1 and 2 were analysed separately, but peak stimulated cortisol was analysed in both groups together. This distinction was made because many guidelines use different thresholds for stimulated peak GH concentrations in these two patient groups^{9, 118, 140}, whereas the threshold for peak stimulated cortisol concentrations is similar in both groups.

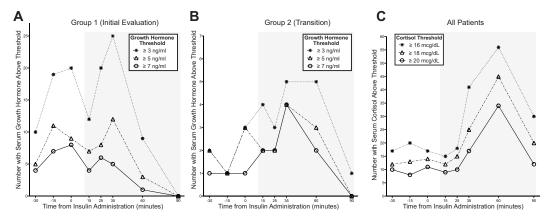
Height and weight z-scores at the time of stimulation test were generated using the World Health Organization standards¹⁴¹, using STATA/SE version 12.0 (StataCorp, College Station, TX, USA). All data analyses were performed using SPSS 22.0 (IBM, NY, USA). Figures were generated using Prism 5.0 (GraphPad Software Inc, CA, USA) and Adobe Illustrator 16.0 (Adobe Systems Inc., California, USA).

1.3.3 Results

During the study period, 97 patients underwent 99 ITTs. Two tests were repeated, as the initial test did not induce hypoglycaemia below 45 mg/dL and were not included in the analysis. Of the 97 patients, 76 were evaluated for a possible new diagnosis of GHD (Group 1) and 21 had been treated for paediatric GHD, completed linear growth, and were evaluated at transition for adult GHD (Group 2). The demographics of the patients who underwent testing are shown in Table 1.3.1. In the children in Group 1, mean (SD) baseline IGF-I z-score was - 1.2 (0.9) and bone age was delayed by 1.4 (1.9) years.

Table 1.3.1: Demographics of the patients undergoing insulin tolerance testing in this study. Continuous variables presented as mean (SD). *Children classified as having hypopituitarism have two or more anterior pituitary hormone deficiencies. CNS=Central Nervous System, SGA=Small for Gestational Age

50A Siliali foi Gestational Age		
	Group 1 (Initial Evaluation) (n=76)	Group 2 (Transition) (n=21)
Age (years)	10.9 (3.7)	17.1 (1.2)
Male (%)	58 (76.3%)	16 (76.2%)
Pubertal (%)	24 (31.6%)	21 (100%)
Comorbidity		
None	48 (63.2%)	11 (52.4%)
Hypopituitarism*	4 (5.3%)	1 (4.8%)
CNS mass or malignancy diagnosis	4 (5.3%)	5 (23.8%)
SGA	3 (3.9%)	0
Genetic Syndrome or Dysmorphism	8 (10.5%)	0
Other Dx (not associated with GHD)	7 (9.2%)	4 (19%)
Height z-score	-2.46 (0.96)	-0.73 (0.88)
Weight z-score	-1.75 (1.37)	-0.08 (1.27)
Midparental Height z-score	-0.29 (0.78)	0.22 (0.73)
Midparental Height z-score minus Height z-score	2.18 (0.85)	0.22 (0.73)


Serial GH measurement following IVP and prior to insulin administration increased the number of children passing the stimulation test from 8/76 (10.5%) to 19/76 (25%) if a threshold of 7 ng/ml were used (Table 1.3.2). Many patients in Group 1 had peak stimulated GH concentrations above thresholds of 3 ng/ml, 5 ng/ml and 7 ng/ml fifteen minutes after IVP (Figure 1.3.2), demonstrating that this measurement might identify additional children with sufficient GH secretion.

Of the 11 children with peak GH concentrations ≥ 7 ng/ml after IVP only, all were being investigated for isolated GHD and none had a coexisting risk factor for deficiency such as CNS malignancy or hypopituitarism. Three of these children had peak GH concentrations at the time of IVP, five peaked fifteen minutes later and five were 30 minutes later (Figure 1.3.3). Only one of these children had peak GH concentrations ≥ 7 ng/ml at more than one of these time points. This group had a mean (SD) age of 11.6 (3.9) years, IGF-I z-score of -1.3 (1), IGFBP-3 z-score of 0.8 (1.3), midparental height z-score of -0.04 (0.8), height z-score of -2.4 (0.9), weight z-score of -2.1 (0.8), bone age delay of 0.6 (2.1) years, and peak cortisol on ITT of 20.6 (3.5) mcg/dL. These were not

significantly different than the age (10.2 (3.8), p=0.4), IGF-I z-score (-1.2 (0.9), p=0.6), IGFBP-3 z-score (1 (1), p=0.9), midparental height z-score (-0.3 (0.8), p=0.3), height z-score (-2.5 (1), p=0.9), weight z-score (-1.7 (1.4), p=0.6), bone age delay (1.6 (1.9) years, p=0.2) or peak cortisol on ITT (18.7 (5.7) mcg/dL, p=0.2) of the other children in Group 1.

Table 1.3.2: The number of tests with peak stimulated growth hormone concentrations greater than 3 ng/ml, 5 ng/ml and 7 ng/ml following intravenous line placement, insulin administration, or both.

	Group 1 (Initial Evaluation)	Group 2 (Transition)	All (n=97)
Pook CII > 2 mg/ml	(n=76)	(n=21)	
Peak GH ≥ 3 ng/ml			
None	30	11	41
Intravenous line Only	13	1	14
Insulin induced hypoglycaemia Only	18	7	25
Both	15	2	17
Peak GH ≥ 5 ng/ml			
None	48	12	60
Intravenous line Only	10	3	13
Insulin induced hypoglycaemia Only	11	6	17
Both	7	0	7
Pools CII > 7 mg/ml			
Peak GH ≥ 7 ng/ml			
None	57	13	70
Intravenous line Only	11	2	13
Insulin induced hypoglycaemia Only	5	6	11
Both	3	0	3
Peak Cortisol ≥ 18 mcg/dL			
None	31	9	40
Intravenous line Only	2	2	4
Insulin induced hypoglycaemia Only	33	7	40
Both	10	3	13

Figure 1.3.2: The number of patients with growth hormone (A, B) or cortisol concentrations above the defined thresholds in the 30 minutes following intravenous line placement (Time -30 to 0) and following insulin administration (Time 15 to 90 minutes, shown with a grey background). The intravenous line was placed at time -30 minutes, and insulin was administered at time 0 minutes.

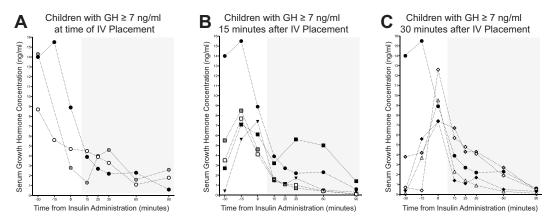
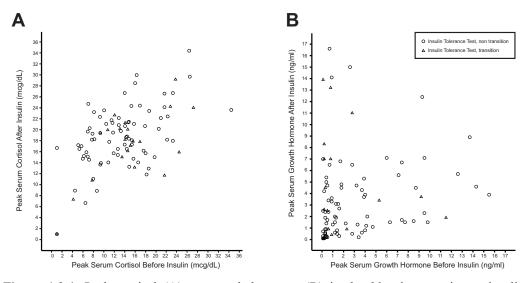



Figure 1.3.3: The serum growth hormone concentration profiles in children in Group 1 whose peak growth hormone concentration was ≥ 7 ng/ml at 0 (A), 15 (B) and 30 (C) minutes from intravenous line insertion without a subsequent peak ≥ 7 ng/ml after insulin administration. Each symbol and line represents the growth hormone profile in one patient. Note that one patient had growth hormone concentrations ≥ 7 ng/ml at each of these time points and is represented in each diagram.

Serial measurement of GH concentrations after IVP in Group 2 had a less significant effect on the number of patients reaching a predefined threshold GH concentration. The number of patients passing the test increased from 9/21 (42.9%) to 10/21 (47.6%) if a threshold of 3 ng/ml was used, or from 6/21 (28.6%) to 8/21 (38.1%) if a threshold of 7 ng/ml was used (Figure 1.3.2, Table 1.3.2). The total number of patients in both Groups 1 and 2 combined with a peak stimulated cortisol concentration of ≥ 18 mcg/dL increased from 57/97 (58.8%) to 61/97 (62.9%) with serial measurement before insulin administration. This represents an increase in specificity of 6.5%.

Peak GH concentration after IVP did not correlate closely with peak GH after ITT (Group 1 $R^2 = 0.05$, Group 2 $R^2 = 0.002$). In contrast the peak cortisol concentration prior to insulin administration was more closely related to the peak cortisol concentration during ITT (Group 1 $R^2 = 0.26$, Group 2 $R^2 = 0.41$) (Figure 1.3.4).

Figure 1.3.4: Peak cortisol (A) or growth hormone (B) in the 30 minutes prior to insulin administration plotted against the peak after administration of insulin.

1.3.4 DISCUSSION

We have demonstrated that many children undergoing evaluation for GHD can have a peak GH concentration greater than 7 ng/ml within 30 minutes of IVP, even without pharmacologic stimulation. The subsequent insulin induced hypoglycaemia during ITT does not always replicate this peak stimulated GH concentration. As a result, serial measurement of GH concentration following IVP may identify additional children with GH sufficiency who would not have been detected by ITT alone. Similar additional serial measurements of cortisol do not add significantly to the identification of children with adrenal sufficiency using the ITT.

The hospital environment and IVP may represent stressors to the child undergoing GHST, and stress may be a stimulus for GH secretion¹⁴². Some

authors have recommended that patients be admitted the night before a GHST, in order to acclimatise to the environment and to optimise the utility of the test¹⁴³. However, this is often impractical due to limited hospital resources. Most centres perform these tests in the outpatient setting, often completing two separate tests on the same day^{62, 133}. We have shown that frequent GH measurement after IVP should be considered in the context of GHSTs being performed as a day procedure.

Thirteen children (11/76 in group 1 and 2/21 in group 2) in this study had a peak GH concentration greater than 7 ng/ml following IVP without a subsequent response of similar magnitude to insulin-induced hypoglycaemia. Although we have performed this analysis only in children undergoing ITT, it is likely that this phenomenon is seen with IVP prior to the administration of alternative GH secretagogues. It is not clear if a stimulated GH surge prior to ITT will reduce the likelihood of subsequent response to ITT and there are children in this study with peak GH concentrations above the thresholds following both sequential stimuli. However, it is possible that a GH peak can have a negative effect on subsequent stimuli. In adult volunteers, sequential stimuli of GH secretion can result in an attenuated response to the second stimulus, although this is less pronounced when insulin induced hypoglycaemia is the second stimulus¹⁴². Similarly, the GH response to frequent bouts of heavy exercise is attenuated when the duration between these is reduced to less than one hour 144. Possible mechanisms for the reduction in GH response to a second stimulus include depletion of immediately releasable pituitary GH by the first stimulus, or an effect of GH autoregulation. GH inhibits GHRH production through direct negative feedback and indirectly via the production of somatostatin and IGF-I¹⁴⁵, both of which exert negative feedback on hypothalamic GHRH production and pituitary GH exocytosis¹⁴⁶.

While a large proportion of children categorised as having GH insufficiency on GHST will not respond to GH treatment, there are also children who have sufficient GH secretion and respond well to GH treatment. It seems likely that

the children who responded to IVP with a GH level greater than 7 ng/ml are truly GH sufficient, but this assumption cannot be verified because there is no gold standard test for GHD. In this centre, a stimulated GH threshold of greater than 7 ng/ml was used to determine whether or not GH was prescribed. Thus, we cannot determine whether additional GH measurement reduced the sensitivity of the provocative test for GH responsive short stature. We also note that 37% of the children in this study did not have a peak cortisol concentration greater than 18 mcg/dL. This may be due to the heterogenous group of patients included, many of whom had hypopituitarism or a CNS malignancy. In addition, we note that many children without adrenal insufficiency will have a peak stimulated cortisol of less than 18 mcg/dL on ITT¹⁴⁷.

The additional benefit of serial GH measurement following IVP shown in this study may be ameliorated by variations in practice elsewhere. As previously mentioned, the specificity of a single GHST for GHD is poor and many centres perform two tests to improve this specificity. The use of a second stimulation test in the patients described in this study may have detected more of the children with peak GH concentrations above the threshold following IVP. At the time of this study, there was no consensus regarding sex steroid priming prior to GHST in prepubertal children but the practice of using this for children with bone ages greater than 10 years is consistent with many centres 136 and the recent Pediatric Endocrine Society guidelines⁷². Sex steroid priming in younger prepubertal children may increase the specificity of the GHST for GHD¹⁴⁸, and it is possible that serial GH measurement following IVP would provide less additional benefit if sex steroid priming was used in all prepubertal children undergoing GHST. Thus, the results of this study should be interpreted in the context of serial measurements after IVP with a single stimulation test in a centre where sex steroid priming is only used in limited circumstances. Specifically, we report that serial GH measurement after IVP detected 13 children (13.4%) with a peak stimulated GH concentration of greater than 7 ng/ml, but it is not known if these children would have otherwise been detected in combination with a second GHST or sex steroid priming.

In conclusion, we advise caution when performing GHSTs, as delays in GH measurement may increase the number of patients misclassified as having insufficient GH secretion. If the GH secretagogue or stimulus is administered immediately following IVP, it is important to ensure that there are frequent additional measurements in the first 30 minutes following placement and administration of the GH provocative test substance. Also, if there is any delay in administering the intravenous stimulus following IVP, the frequent sampling of GH in the first thirty minutes following IVP should be performed.

1.3.5 CHAPTER CONCLUSION

The poor specificity of the GHST is well established, and have caused many endocrinologists to question whether or not these tests should even be performed¹⁴⁹⁻¹⁵¹. Any modification of this test that improves specificity is welcome, and will facilitate the diagnostic evaluation of children with suspected GHD. This study has been instrumental in the modification of the GHSTs at OLCHC and Children's University Hospital Temple Street. All institutions in Dublin now measure serial GH concentrations after placing IV lines in children undergoing GHST.

CHAPTER 1.4: EVALUATING CHILDREN WITH HYPOGLYCAEMIA FOR GROWTH HORMONE DEFICIENCY

Publications

Hawkes CP, Stanley CA. Pathophysiology of neonatal hypoglycemia. In: Polin RA, Fox WW, Abman SH, editors. Fetal and Neonatal Physiology: Expert Consult - Online and Print (In Press). 5 ed: Elsevier/Saunders; 2016. p. 1550-60 (Appendix C).

Hawkes CP, Grimberg A, Dzata VE, De Leon DD. Adding glucagon-stimulated GH testing to the diagnostic fast increases the detection of GH-sufficient children. Horm Res Paediatr. 2016;85(4):265-72 (Appendix D).

Presentation

Hawkes CP, Dzata VE, Grimberg A, De Leon DD. Integrating growth hormone testing with hypoglycaemia investigation. American Pediatric Society / Society for Pediatric Research, May 2014; Vancouver (Appendix E).

GH does not play a significant role in regulating prenatal growth, and length at birth in infants with congenital GHD is within the normal range. This is not the case for IGF-I, where infants with IGF-I resistance or deficiency can present with prenatal growth restriction^{152, 153}. Thus, identifying the infant with congenital GHD is a challenge.

The two largest studies of infants with GHD have characterised the clinical phenotype^{13, 46}. Bell et al included 169 infants with GHD who presented with hypoglycaemia in their study, over 90% of whom also had additional pituitary deficiencies and abnormal pituitary MRI evaluations¹³. Herber et al described 29 children with GHD and demonstrated that hypoglycaemia is more common in those presenting before 6 months of age, than after the first 6 months of life⁴⁶. As

the child becomes older, persistent impaired fasting tolerance is seen but hypoglycaemia becomes less problematic¹⁵⁴.

Given that neonatal hypoglycaemia may be the only presenting sign of children with congenital GHD, the diagnostic evaluation of infants with unexplained hypoglycaemia should include consideration of this potential underlying diagnosis. The diagnostic tests for GHD in infants are even more challenging than in older children. IGF-I measurement in this age group is of limited utility with current assays (Chapter 2.2)¹²⁴. GH measurement during hypoglycaemia has been suggested, and even erroneously described by Bell as "a quick and definitive diagnostic tool"¹³. The specificity of such an approach has subsequently been shown as close to 30%¹².

Hypoglycaemia in childhood can have numerous causes, and can even represent normal physiology in the first few days of life. In this chapter, I will provide an overview of the physiologic mechanisms for maintaining normoglycemia, highlighting the broad differential diagnoses for hypoglycaemia, which include GHD. I will then describe a study in which I have modified the local diagnostic evaluation of children with unexplained hypoglycaemia and suspected GHD to improve the specificity for GHD.

1.4.1 OVERVIEW OF GLUCOSE HOMEOSTASIS

Clinical hypoglycaemia is defined as a plasma glucose concentration low enough to cause signs or symptoms of impaired brain function. Recognition may be difficult when the patient cannot communicate symptoms (e.g., infants and neonates), but identifying hypoglycaemia is critical in the prevention of complications. The brain has a very high rate of metabolism and depends on a constant supply of glucose. Because the brain has little or no stores of glycogen, interruption of glucose delivery can have devastating consequences, including seizures and permanent brain injury 155-157.

As shown in Figure 1.4.1, the first stage of defence against hypoglycaemia is suppression of insulin secretion by pancreatic islets as plasma glucose concentrations fall below 80 mg/dL¹⁵⁸⁻¹⁶². The second stage is secretion of counter-regulatory hormones to stimulate glucose release from liver glycogen stores when plasma glucose concentrations fall to ~65 mg/dL (glucagon release from pancreatic islets and sympathetic discharge as reflected by a rise in plasma epinephrine). Plasma cortisol and GH concentrations also rise as glucose falls to ~60 mg/dL^{163, 164}. While increases in these hormones do not affect glucose levels acutely, they are required for long-term glucose homeostasis. The third stage of response to hypoglycaemia is the impairment of brain function itself at a glucose threshold of ~50 mg/dL. The glucose thresholds shown in Fig 1.4.1 come primarily from studies in adults, but they have been shown to also apply to children^{164, 165}. In addition, observations of responses to hypoglycaemia in infants and children with various hypoglycaemia disorders suggest that glucose thresholds are essentially the same across all ages^{166, 167}.

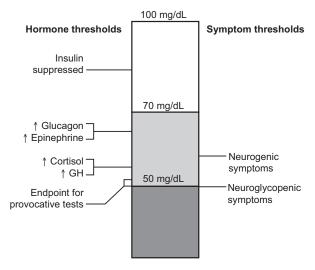


Figure 1.4.1: Glucose thresholds for neuroendocrine and neuroglycopenic responses to hypoglycaemia.

This demonstrates the progressive physiological responses to falling plasma glucose concentrations, and the thresholds for symptoms of hypoglycaemia (Adapted from Cryer et al^{158, 169}). The threshold used for ending provocative fasting studies and for performing laboratory evaluation of the fasting fuel response to hypoglycaemia is 50 mg/dL, demonstrated by the dashed line.

The importance of correctly detecting, diagnosing and treating infants with disorders of hypoglycaemia is emphasised by longitudinal follow up studies

demonstrating adverse complications. Kaser et al¹⁷⁰ used data from a statewide fourth-grade school exam and found that children who had a single plasma glucose level below 40 mg/dL during the neonatal period had a 50% lower odds ratio for proficiency for both literacy (0.43, 95% CI 0.28-0.67) and mathematics (0.51, 95% CI 0.34-0.78). Those with a single plasma glucose level below 35 mg/dL had even lower odds ratios for proficiency, (0.49, 95%CI 0.28-0.83) and (0.49, 95%CI 0.29-0.82), respectively. Even infants with a single glucose below a cutoff as high as 45 mg/dL had a reduced odds ratio for proficiency in literacy (0.62, 95% CI 0.45-0.85), although not mathematics (0.78, 95% CI 0.57-1.08). Koivisto et al¹⁷¹ followed neurodevelopmental outcomes in 151 newborns with blood glucose concentrations below 30 mg/dL. They found that only 38% of infants who had a hypoglycaemic seizure had normal development at 4 years, compared with 80% of asymptomatic infants with glucose concentrations in this range.

Thus, in newborns, the brain is sensitive to hypoglycaemia and early diagnosis of the causative aetiology and initiation of the correct treatment of infants with disorders of hypoglycaemia is of great importance. Incorrectly diagnosing a child with GHD in this context, for example, may result in treatment with GH but risk persistent recurrent hypoglycaemia.

1.4.2 IMPROVING THE SPECIFICITY OF THE DIAGNOSTIC FAST FOR GROWTH HORMONE DEFICIENCY

GH plays an important role in the regulation of substrate use in the fasting state. Prolonged fasting results in an increase in frequency and amplitude of GH bursts¹⁷² and GH secretion increases as blood glucose falls below 60 mg/dL^{173, 174}. GH promotes lipolysis¹⁷⁵ and reduces utilisation of protein¹⁷⁶⁻¹⁷⁸ and glucose¹⁷⁹. It also induces insulin resistance through direct downstream effects on insulin signaling^{180, 181}, as well as indirectly by increasing non-esterefied free fatty acid concentrations¹⁷⁵. Consequently, hypoglycaemia can be a presenting feature of GHD^{13, 154, 182}.

The standard approach to determining the aetiology of hypoglycaemia includes the measurement of the fuel and hormonal responses in the "critical" lab sample drawn during hypoglycaemia^{183, 184}. Where possible, these serum markers are measured during opportunistic hypoglycaemia, but a structured diagnostic fasting study may be required. Although GH concentrations increase as blood glucose concentration falls (Figure 1.4.1), low GH concentrations during hypoglycaemia are commonly seen at the time of drawing the critical sample even in the absence of GHD^{12, 185-187}.

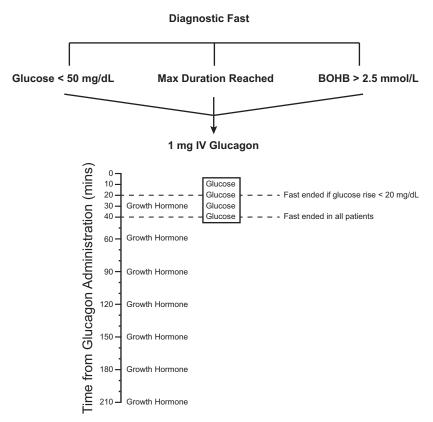
The evaluation of GHD as a potential cause of hypoglycaemia is complicated by the lack of a reliable and specific gold standard test for this condition, as also discussed in Chapters 1.2 and 1.3. Glucagon is used clinically to assess the inappropriate availability of glucose stores (glycogen) during hypoglycaemia. In a child with hypoglycaemia, an inappropriate rise in glucose concentration following glucagon administration may be consistent with hyperinsulinism^{183, 188} or hypopituitarism (in the newborn period)¹⁸⁹. Glucagon is also a GH secretagogue, and serial measurement of GH concentration following glucagon administration is used as one of the GHSTs of GH sufficiency in children with suspected GHD¹⁹⁰. When intramuscular glucagon is used to assess GH secretion, peak GH concentrations are generally seen between 90 and 120 minutes following administration^{191, 192}. Although glucagon is administered at the end of many fasting studies to evaluate glycogen stores, the routine serial measurement of GH following this glucagon administration is not performed as part of this fasting study.

1.4.2.1 AIM

The aim of this study was to determine if, in the setting of a diagnostic evaluation of a child with unexplained hypoglycaemia, serial measurement of GH concentrations following glucagon administration would improve the positive predictive value of the diagnostic fasting study for GHD.

1.4.2.2 METHODS

This study was performed at The Children's Hospital of Philadelphia (CHOP). All children presenting to this hospital between July 2012 and March 2015 were eligible for inclusion. Only children with unexplained hypoglycemia for whom there was a clinical concern for GHD as a possible diagnosis had the modified diagnostic fasting protocol performed (described below). This study was approved by the Institutional Review Board at CHOP.


Protocol

Given the poor specificity of GH measurement during hypoglycaemia for GHD¹², a clinical protocol for incorporating serial GH measurement after glucagon administration during hypoglycaemia was developed. The only additional intervention in this clinical protocol beyond the standard diagnostic fasting study was the serial measurement of GH following glucagon administration.

At the CHOP, the evaluation of children with unexplained hypoglycaemia includes a diagnostic fasting study^{188, 193, 194}. The maximum fasting time used in this evaluation is age dependent. Children aged less than 1 month fast for up to 18 hours, between 1 and 12 months for up to 24 hours, and over 1 year for up to 36 hours. The monitoring protocol depends on the clinical scenario, but generally includes blood glucose monitoring during the fast using a bedside glucometer (Nova StatStrip point-of-care glucose monitor, Nova Biomedical Corporation, Waltham, MA, USA) every 3 hours until blood glucose is less than 70 mg/dL, hourly until less than 60 mg/dL and every 30 minutes until less than 50 mg/dL. Betahydroxybutyrate is also measured at the bedside every 3 hours using a handheld meter (PrecisionXtra, Abbott Laboratories). The study is ended when a confirmatory glucose concentration of less than 50 mg/dL is recorded, if betahydroxybutyrate concentration exceeds 2.5 mmol/L, or if the maximum predetermined fasting time is reached.

A full diagnostic blood draw is taken at the end of the fast. This includes measurement of glucose, free fatty acids, beta hydroxybutyrate, insulin, ammonia, lactate, basal metabolic profile, acylcarnitine, c-peptide, carnitine, IGFBP-1, cortisol and GH. At the end of the diagnostic fast, glucagon is administered intravenously at a dose of 1 mg for all patients, and glucose is measured every 10 minutes by bedside glucose meter. Dextrose is administered if blood glucose does not rise by at least 20 mg/dL within 20 minutes. However, if glucose concentration rises by at least 20 mg/dL, then blood glucose checks are continued for a further 20 minutes before the fast is ended. If at any point during the glucagon test the child is unwell, dextrose is administered. The administration of dextrose at the end of the fast consists of a 2 ml/kg bolus of 10% dextrose and the child is provided a meal containing 40g of carbohydrates.

In addition to the standard protocol, additional GH concentrations were measured in patients in whom there was clinical suspicion of GHD. GH concentrations were measured at 30, 60, 90, 120, 150, 180 and 210 minutes following glucagon administration (Figure 1). Where there were clinical limitations to the blood volume that could be drawn, the 90 and 120 minute specimens were prioritised.

Figure 1.4.2: Protocol for additional growth hormone measurements after glucagon administration, in the context of a diagnostic fasting study

Laboratory Measurement

GH was measured by a solid-phase, two-site chemiluminescent immunometric assay (Immulite 2000, Siemens, Berlin, Germany), plasma glucose by an oxidase colorimetric reaction (Vitros 5600, Ortho Clinical Diagnostics, New Jersey, USA) and betahydroxybutyrate by a D-3 hydroxybutyrate dehydrogenase colorimetric reaction (Vitros 5600, Ortho Clinical Diagnostics, New Jersey, USA). IGF-I was measured by radioimmunoassay after acid ethanol extraction (Esoterix Laboratories, Texas, USA) and IGFBP-3 was measured by radioimmunoassay (Esoterix Laboratories, Texas, USA). Where relevant, assay-specific z-scores for age and gender were reported.

Statistical Analysis

The threshold GH concentration considered to represent GH sufficiency varies between centres and generally ranges from 5 to 10 ng/ml^{137, 195}. In our centre, we use 7 ng/ml as the threshold for GH sufficiency. In this study, we also describe

overall data if thresholds of 5 ng/ml or 10 ng/ml were used, as varying GH concentrations are considered to demonstrate sufficiency in different centres.

Height and weight z-scores at the time of stimulation test were generated using the World Health Organization standards¹⁴¹. Unless otherwise stated, continuous variables were presented as median (IQR). All data analyses were performed using SPSS 22.0 (IBM, NY, USA). Figures were generated using Prism 5.0 (GraphPad Software Inc, CA, USA) and Adobe Illustrator 16.0 (Adobe Systems Inc., California, USA).

1.4.2.3 RESULTS

Twenty-nine patients were enrolled in the study. Median (IQR) height z-score was -2.3 (-3.3, -1). Of these patients, six had a final diagnosis of GHD and were treated with GH. The remaining patients had a diagnosis of hyperinsulinism (n=9), ketotic hypoglycaemia (n=13) or mitochondrial disorder (n=1). Out of all children included in this study, 4 (14%), 3 (10%) and 1 (3%) had GH concentrations above thresholds of 5, 7 and 10 ng/ml respectively at the end of the diagnostic fast. The additional GH measurement after glucagon administration identified 24 (86%), 19 (66%) and 15 (52%) children with GH concentrations exceeding these thresholds, who would have been missed if baseline GH concentration alone was used. The demographics of the patients included in this study are shown in Table 1.4.1.

Table 1.4.1: Demographic data, diagnoses, critical sample measurements and serial growth hormone concentrations following glucagon administration are shown.

Note that n represents the number of datapoints available for GH measurement at each timepoint.

All data are presented as median (IQR).

Demographics	
Male, n (%)	16 (55%)
Age, years	1.8 (0.7, 3.4)
Height z-score	-2.3 (-3.3, -1)
Weight z-score	-1.2 (-2.3, -1)
Duration of fast, hours	15 (9.8, 20)
Final Diagnosis:	
Hyperinsulinism	9 (31%)
Ketotic Hypoglycaemia	13 (45%)
Mitochondrial Disorder	1 (4%)
Growth Hormone Deficiency	6 (21%)
Concentrations at end of fast	
Glucose, mg/dL	45 (42, 51.5)
Cortisol, mcg/dL	16 (10.3, 20.5)
Betahydroxybutyrate, mmol/L	2.4 (1.5, 2.75)
GH measurements (ng/ml)	
Baseline (n=29)	2.6 (1, 3.5)
30 minutes (n=16)	2.5 (1.6, 8.2)
60 minutes (n=18)	4.9 (2.4, 10.7)
90 minutes (n=27)	5.6 (4.2, 12.9)
120 minutes (n=27)	4.4 (2.5, 10.2)
150 minutes (n=21)	5.1 (2.2, 11)
180 minutes (n=7)	3.2 (1.2, 11.6)
210 minutes (n=3)	3.6 (2, 4.9)
Number of subjects who exceeded threshold	
GH > 5 ng/ml at Baseline	4 (14%)
GH > 5 ng/ml after Serial Measurements	25 (86%)
GH > 7 ng/ml at Baseline	3 (10%)
GH > 7 ng/ml after Serial Measurements	19 (66%)
GH > 10 ng/ml at Baseline	1 (3%)
GH > 10 ng/ml after Serial Measurements	15 (52%)

Of the 29 patients in this series, only three (10%) had GH concentrations above 7 ng/ml at the end of the fasting study and all three of these children also had GH measurements above this threshold again on serial testing. The percentage of samples with GH concentrations above 5 ng/ml, 7 ng/ml and 10 ng/ml at each timepoint is shown in Figure 1.5.3.

Growth Hormone Threshold 5 ng/ml 7 ng/ml 10 ng/ml Percentage of Measurements above Threshold (%) 50 180-20 8 210-8 20 150 210-8 ġ ġ ġ 9 Time from End of Fast (minutes)

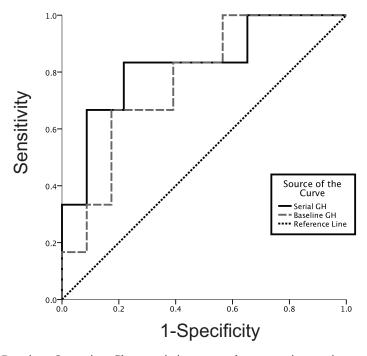
Figure 1.5.3: The percentage of children with growth hormone concentrations greater than or equal to thresholds of 5, 7 or 10 ng/ml at the time of glucagon administration at the end of the diagnostic fasting study (n=29), or 30 (n=16), 60 (n=18), 90 (n=27), 120 (n=27), 150 (n=21), 180 (n=7) or 210 (n=3) minutes later.

Of the 26 (90%) patients with GH concentrations less than 7 ng/ml during hypoglycaemia, 10 (34%) also had peak GH concentrations below this threshold on serial measurement after glucagon administration. Of these ten children without GH concentrations above 7 ng/ml, nine underwent additional GH stimulation testing using arginine and clonidine. Six were diagnosed with GHD and treated with GH. Two children were diagnosed with hyperinsulism and one with ketotic hypoglycaemia.

Characteristics and diagnostic evaluation of the ten patients with suboptimal peak GH concentrations are shown in Table 1.5.2. Additional diagnostic information on cases 7 and 8 from this series is provided, as the diagnosis may be unclear from the data presented in this table. Although Case 7 had normal growth factor concentrations, it should be noted that IGF-I concentrations are sensitive to nutrition¹⁹⁶ and, during infancy, do not reliably identify infants with GHD due to low IGF-I concentrations being normal in infancy¹²⁴. This infant also had low random GH measurements on days 3 (1.11 ng/ml) and 14 (0.334)

ng/ml) of life, also supporting the diagnosis of GHD¹⁹⁷. Case 8 had a diagnosis of focal hyperinsulinism based on a known pathogenic *ABCC8* mutation and previous fasting evaluations consistent with hyperinsulinism. The diagnostic evaluation presented in table 1.4.2 was from an evaluation after the focal lesion had been removed and the hyperinsulinism had resolved. Although his peak GH concentration did not exceed the threshold of 7 ng/ml, his linear growth pattern was not consistent with GHD and a decision was made to observe his growth rather than initiate treatment.

Table 1.4.2: Details of the ten children with peak growth hormone concentrations less than 7 ng/ml after fasting study and glucagon administration.


GH = Growth Hormone, GHD = Growth Hormone Deficiency, HI = Diazoxide Responsive Hyperinsulinism, KH = Ketotic Hypoglycaemia, AI = Adrenal Insufficiency, NA = Data not available. NP = Test not performed

available, NF = 1e	st not pc	Hommed								
Patient	1	2	3	4	5	6	7	8	9	10
Age, yrs	7.5	1.2	5.3	1.8	1.4	5.1	0.1	2.6	6.1	0.7
Sex	male	male	female	male	female	female	male	male	female	male
Height, z-score	-1.2	-0.81	-2.33	-2.2	-4.1	-0.75	-0.02	-2.47	-3.6	-0.94
Midparental Height, z-score	-0.43	NA	-0.68	0.24	-0.87	-0.46	NA	NA	-0.48	0.25
MRI Brain and Pituitary	normal	NP	NP	normal	NP	NP	abnormal corpus callosum	NP	ectopic neuro hypophys is	normal
Fast Duration, hours	24	15	20	17	10	16	4	13	14	10
Critical Sample										
Glucose (mg/dL)	41	45	49	47	43	51	46	53	45	52
Betahydroxybutyrate (mmol/L)	2.9	1.2	2.2	2.9	2.5	4	0.1	2.5	0.8	2.3
Growth Hormone, ng/ml	3.6	1	1.1	2.4	3.5	3.5	0.8	2.4	0.1	3.2
Cortisol, mcg/dL	20.8	14.4	28.9	9.3	14.3	40.7	14.9	16.3	6	20.6
Peak GH after glucagon (ng/mL)	5.4	5.2	5.5	5.1	4.7	5.7	4.3	4.7	0.3	6.6
Peak GH on repeat GH stimulation test (ng/mL)	7.1	4.6		6.5	3.7	8.2	1.9	6.2	0.4	1.5
Thyroid function tests	normal	NP	normal	normal	normal	NP	normal	normal	normal	normal
IGF-I z-score	-1.4	NP	0.1	-0.9	-3.1	NP	0.7	-1.5	-2.6	-0.7
IGFBP-3 z-score	-1.6	NP	-0.74	-0.18	-1.6	NP	0.77	-0.73	NP	-2
Diagnosis	GHD*	HI	КН	GHD	GHD	КН	GHD	Resolved focal HI	GHD, AI	GHD

A receiver operating characteristics curve showing the effect of adding serial GH measurements to the diagnostic fasting test for children with hypoglycemia

^{*}Additional clinical data supporting diagnosis of GHD: Height velocity 3 cm/yr, bone age delayed by 2 years (-2.3 SD from mean), improved growth and no further hypoglycaemia following GH treatment.

suspected GHD is shown in Figure 1.5.4.. Adding serial GH measurements increased the area under the curve from 0.77 (95% CI 0.57-0.96) to 0.83 (95% CI 0.63-1).

Figure 1.5.4: Receiver-Operating Characteristics curve demonstrating an increased area under the curve when serial GH measurements are used in addition to baseline GH measurement during hypoglycemia.

1.4.2.4 DISCUSSION

We have shown that serial measurement of GH following the administration of glucagon in the context of a fasting study can be a useful adjunct in children suspected of having GHD. GH measurement during hypoglycaemia has poor specificity for GHD and by adding serial GH measurements following glucagon administration, the number of children identified with peak GH concentrations above the arbitrary threshold of 7 ng/ml increased by 16 (55%). This resulted in a more focused evaluation of GH secretion in a smaller number of children than would otherwise have been performed.

The poor specificity of GH measurement during hypoglycaemia has previously been described. In a study including 84 children evaluated for unexplained

hypoglycaemia, only 30% had peak GH concentrations above 7.5 ng/ml¹². In our study, there was a lower number (10%) of children with peak GH concentration above 7 ng/ml during hypoglycaemia. However, additional GH measurements were only performed in children for whom there was clinical suspiction that GHD was the etiology of their hypoglycaemia, and this selection bias may have contributed to the discrepency in results between our baseline results and previously reported data.

One limitation to adapting our clinical protocol was the blood volume required for additional GH measurements in small infants with unexplained hypoglycaemia. Serial glucose measurement during the diagnostic fast, in addition to the critical sample can limit the blood volume that can be extracted for further testing. Previous studies suggest that the peak GH concentration following glucagon administration (glucagon stimulation test for GH reserve) generally occur after 90 and 120 minutes^{190, 192, 198, 199}. Where necessary, GH samples were prioritised at 90 and 120 minutes in this study, and we have shown that these are the most useful measurements in this context to identify GH sufficient children (Figure 1.5.3). Although not evaluated in this study, we note that cortisol responses to glucagon administration occur later, at 150 and 180 minutes^{191, 199}. This should be considered if future studies of this test are be adapted to evaluate cortisol response to glucagon in this context.

The mechanism of glucagon-induced GH secretion is not clear. Fluctuations in blood glucose following glucagon administration may contribute to GH secretion, although recent studies suggest that this may not be necessary^{190, 200}. Glucagon administration increases noradrenaline secretion²⁰¹, which may play a role in stimulating GH secretion. However, alpha adrenergic blockade does not prevent glucagon-induced GH secretion²⁰². Although fasting increases GH secretion^{203, 204}, it is not clear if allowing the patient to feed while measuring GH concentrations after glucagon administration would affect the ability of the test to identify children with GH concentrations above the stimulation threshold. A

large proportion (17/27) of children in this study had an appropriate stimulated GH response to glucagon despite being allowed to feed.

We do not know if the serial GH response noted in this study would have been seen if glucagon was not administered. Hypoglycaemia is a strong stimulus for GH secretion in the absence of additional pharmacological stimuli, and this is utilised in the commonly used insulin tolerance test of GH secretion. However, unlike the induced hypoglycaemia in the insulin tolerance test, Hussain at al have shown that the GH response to spontaneous hypoglycaemia in children is blunted¹⁸⁵. This makes the GH concentrations seen in this study more likely to be secondary to glucagon administration rather than hypoglycaemia alone. We also acknowledge that an intramuscular injection of glucagon may result in higher detectable concentrations of GH relative to intravenous glucagon²⁰⁵, possibly as a result of an additional painful stimulus increasing GH secretion²⁰⁶. As intramuscular or subcutaneous glucagon are more potent stimuli of GH secretion^{205, 207, 208}, it is possible that modifying the protocol to utilise these routes of administration would further improve the specificity for GHD. However, this route of glucagon administration is not routinely used in evaluating the glycaemic response to hypoglycaemia in our practice. Thus, we are unable to compare different routes of glucagon administration in this study.

It is important to note that many normal children will be characterised as having GHD on GHST alone 47-49, and these results should be interpreted in the clinical context. Depending on the GH stimulus and GH concentration threshold used, the proportion of normal children who do not reach the "sufficient" threshold can be as high as half 47. In this study, only children suspected as having GHD at the time of diagnostic fasting study underwent this additional serial GH measurement. Given the poor reliability of the GHST, we do not routinely perform GHST in children with peak GH concentrations below 7 ng/ml where the laboratory tests performed during hypoglycaemia indicate that an alternative diagnoses are more likely.

In conclusion, we have shown that additional GH measurements after glucagon administration following a diagnostic fast can improve the identification of children with stimulated GH concentrations above test thresholds. This test can be performed in addition to the diagnostic fasting study, and does not require prolongation of the fast. We also recommend that children with insufficient responses to glucagon in this setting should further have GHD confirmed by standard GHSTs if there is clinical suspicion of GHD.

1.4.3 CHAPTER CONCLUSION

Although short stature and impaired linear growth are the most common presentations of GHD in children, hypoglycaemia may be the only clinical sign in infancy. Correct diagnosis in this population is of critical importance in preventing adverse developmental complications of recurrent hypoglycaemia. Conversely, incorrectly attributing hypoglycaemia to be caused by GHD in this population may put the infant at risk through failure to treat the true underlying diagnosis. In this chapter, I have described a protocol with the potential to steer the physician away from an incorrect diagnostic path through increasing the specificity of the hypoglycaemia evaluation for GHD. This protocol has been adopted by The Hyperinsulinism Center at The Children's Hospital of Philadelphia, the largest referral centre for children with hypoglycaemia in North America.

Additional approaches to evaluating children for GH sufficiency, relevant to neonates who may have hypoglycaemia, will be discussed in subsequent sections of this thesis. Specifically, I will discuss IGF-I measurement in infancy in chapters 2.2 and 2.4, and will explore the utility of body composition measurement in evaluating growth in these children in chapter 4.2.

SECTION 2

INSULIN-LIKE GROWTH FACTOR MEASUREMENT WITH MASS SPECTROMETRY

CHAPTER 2.1: INTRODUCTION

As discussed in Section 1, the GHST alone has poor sensitivity and specificity for diagnosing GHD. Serum IGF-I concentrations are relatively constant in serum and mirror spontaneous GH secretion⁸⁰. Consequently, IGF-I measurement has a role in the diagnostic evaluation of GHD^{8, 9, 72} and in the monitoring of treatment efficacy^{56, 209, 210} in children receiving GH replacement therapy.

IGF-I circulates bound to binding proteins and this prolongs its serum half-life. Immunoassays are the mainstay of current IGF-I measurement, but these are subject to interference from circulating binding proteins. In Chapter 2.2, I will review IGF-I measurements in infants and demonstrate wide variability in the reported normal concentrations in this age group between assays.

I will then begin to explore mass spectrometry as a possible solution to binding protein interference. My interest in using mass spectrometry to overcome assay interference started with a clinical study where I showed that, in vitamin D intoxication, 25-hydroxyvitamin D interferes with the radioimmunoassay (RIA) for 1,25-dihydroxyvitamin D measurement (Appendix G)²¹¹. This study will be briefly summarised in Chapter 2.3, before I explore the utility of mass spectrometry in IGF-I measurement in infancy, and report reference data for this in Chapter 2.4.

This section of the thesis focuses on laboratory measurement of IGF-I. Genetic causes of abnormal IGF-I concentrations will be explored in Section 3, and the interaction between nutrition and the GH / IGF-I axis will be reviewed and explored in Section 4.

CHAPTER 2.2: CHALLENGES IN THE MEASUREMENT OF INSULIN-LIKE GROWTH FACTOR-I

Publication

Hawkes CP, Grimberg A. Measuring growth hormone and insulin-like growth factor-I in infants: what is normal? Pediatr Endocrinol Rev. 2013;11(2):126-46 (Appendix F).

Infants with isolated GHD have a normal weight and length at birth. In the neonatal period, hypoglycaemia or a small penis may be the only clinical feature of disease^{13, 46} (Chapter 1.4). IGF-I measurement is generally part of the first line screen for GHD, but there is wide variation in the reported IGF-I concentrations in normal infants¹²⁴. Similarly, random GH measurement has been suggested as a screen for GHD in infancy¹⁹⁷. In this chapter, I will systematically review the reported reference data for IGF-I and GH measurements in the first two years of life with an emphasis on assay variability.

2.2.1 THE GROWTH HORMONE / INSULIN-LIKE GROWTH FACTOR-I AXIS IN INFANCY

GH secretory patterns differ between neonates and older children²¹². Higher GH peaks are seen in the term neonate than the older child. These peaks become less pronounced within the first four days of life, and the frequency of secretory pulses also halves over the same time period²¹³. Even higher GH levels are seen in preterm infants, but the pulsatile pattern of release is similar to that of the term infant²¹⁴. Sleep is not a stimulus for GH secretion until three months of age^{215, 216}, but feeding and insulin release stimulate GH secretion at this early stage before sleep entrainment²¹⁷.

The role of GH in the fetus is poorly understood. Although GH is detected in the fetal pituitary gland as early as ten weeks' gestation, and the GH content of the

pituitary gland increases with gestational age²¹⁸, GH is not required for normal intrauterine growth²¹⁹.

Unlike GH, IGF-I plays a major role in fetal growth. IGF-I levels increase 2-3 fold from 33 weeks' gestation to term, ²²⁰ and cord blood levels of IGF-I positively correlate with weight, length and head circumference at birth ²²¹ (Chapter 2.4). Postnatal IGF-I production is involved in both somatic and brain growth, independent of gestational age and caloric intake ²²². Postnatally, IGF-I concentrations and bioavailability correlate with increased growth in low birthweight ²²³ and preterm infants ²²⁴.

Diagnosing GHD in infancy remains a challenge. A combination of clinical phenotype, stimulation testing, imaging and baseline IGF-I, IGFBP-3 and GH levels can be used^{72, 212, 225, 226}. Normative data for GH and IGF-I concentrations are limited in the non-GH deficient child under 18 months of age. This can be a challenge when interpreting IGF-I measurements in this age group.

2.2.2 Assays used in Measuring Growth Hormone and Insulin-like Growth Factor-I

2.2.2.1 Growth Hormone Assays

Two isoforms of GH are present in serum, as a consequence of alternative splicing during transcription. These two isoforms differ by the presence of 15 amino acids in the larger 22-kDa isoform. The absence of these amino acids in the 20-kDa isoform makes it more likely to dimerise. This isoform represents 5-10% of circulating GH and is less biologically active than the 22-kDa isoform²²⁷. Human serum contains hetero- and homodimers, as well as multimers, of these isoforms²²⁸. This heterogeneity in circulating GH complicates its measurement, as assays may recognise different isoforms and protein structures differently²²⁹, ²³⁰

Bioassays and radioreceptor assays have been developed to determine the biological activity of GH in a serum sample, but they are insensitive and time consuming and thus, not widely used in clinical practice²²⁷. Commercially available immunoassays are generally used to measure serum concentrations of GH, and the particular assay used may differ between centres^{231, 232}.

The two main types of immunoassays are the competitive immunoassay and the sandwich type immunoassay. In competitive assays, labeled GH is added to serum and competes with the sample's unlabeled GH for binding sites on an antibody-coated platform. The concentration of bound labeled GH can be used to determine the concentration of unlabeled GH in the sample. Sandwich type immunoassays use two different antibodies that bind to different epitopes of the GH molecule and are detected using radioactive, enzyme linked or chemiluminescent labels²³³ (Chapter 2.3.1). The method of detection determines the specific assay type: RIA; Enzyme-linked ImmunoSorbent Assay (ELISA) or Chemiluminescent assays (ECL).

Another difference between assays is the type of antibodies used. The antibodies can be directed at one epitope (monoclonal) or multiple epitopes (polyclonal) on the GH molecule²³³. This will restrict the comparability of results between assays, as polyclonal assays tend to recognise more isoforms and yield higher results²³³.

2.2.2.2 IGF-I Assays

Free IGF-I represents a small percentage of total IGF-I in the serum, with the majority forming a 150-kDa ternary complex with IGFBP-3 and acid labile subunit (ALS). Some IGF-I also circulates in binary complexes with the various IGFBPs²³⁴. In order to utilise immunoassays to measure IGF-I, IGF-I must first be separated from the complexes, and this process can result in significant interand intra-assay variability. The most commonly used technique for separating large molecular weight molecules involves ethanol extraction. While this dissociates IGF-I from its binding proteins and precipitates large molecules from

the sample, IGFBP-1 and IGFBP-4 do not precipitate well and may affect results²³⁵. Other techniques such as IGF-II saturation can be used to saturate the binding sites on the IGFBPs and thereby reduce the unmeasured IGF-I²³⁵⁻²³⁷. This can be combined with ethanol precipitation to further reduce the interference of binding proteins in IGF-I measurement.

Like the GH assays, antibodies used for IGF-I measurement can be polyclonal or monoclonal. Where IGF-II saturation has been used, cross reactivity of the antibody with IGF-II must be very low or the results will be falsely elevated.

Liquid chromatography mass spectrometry (LCMS) is a new method of measuring IGF-I (and –II) that is not affected by binding protein interference²³⁸ (See 2.4.3.5 for details). This method is becoming increasingly available and may represent the future of IGF-I measurement²³⁸⁻²⁴¹.

2.2.3 Measurements of Growth Hormone and Insulin-like Growth Factor-I in Children aged 0-18 months

2.2.3.1 Literature Review Methodology

A PubMed search was performed for "growth hormone" OR "IGF-I" in November 2012, limited from birth to 18 months. Titles were used to identify articles that were likely to include GH or IGF-I measurement in the fetus or infant less than 18 months of age. Abstracts were then read to determine if these articles included GH or IGF-I measurement of healthy children, and full articles were then accessed to determine a) assay used and b) reported values of GH and/or IGF-I concentrations.

Initial PubMed search identified 4451 articles. 525 articles were identified as relevant from screening titles. GH was measured in 44 of these articles in healthy children less than 18 months of age, while IGF-I was measured in 113. Relevant articles that reported mean values with standard deviations were included in this

review. Unless otherwise stated, values in this manuscript are presented as mean \pm 1 standard deviation.

2.2.3.2 Growth Hormone

Due to the pulsatile nature of GH secretion, timing is important in the interpretation of GH measurements. Except for the first 15 days of life, random GH measurement is of limited utility. Most studies in which this has been reported have shown a mean GH concentration below most accepted cutoff values for GH stimulation tests. This appears to be consistent regardless of assay used (Table 2.2.1).

Random GH measurement within the first 15 days of life may, however, be clinically useful. There is a GH surge at birth, and the lowest reported mean umbilical cord GH measurement in all assays was 9.2 $\text{ng/ml}^{242, 243}$. Cord GH concentration is higher in pregnancies complicated by preeclampsia²⁴⁴. Random GH rises further on day $\text{two}^{245, 246}$ and remains elevated up to day five, with mean values of 53.4 ± 30.8 ng/ml (IRMA)²⁴⁷ or 21.8 ± 11.2 ng/ml (IFMA)²²⁴. By day 15, the mean falls to 5.5 ± 3.7 ng/ml (IFMA) and by 3 weeks a mean of 8.7 ± 8.1 ng/ml (RIA)²⁴⁸ was shown. Assay variability makes comparison of values difficult, but a temporal trend is observed in all studies. By one^{224} and two^{248} months of age, low mean random GH values consistent with those seen in older children are seen.

Serial measurements of GH have described the secretory pattern of GH in infancy. Pulsatile secretion is also present during this early period of raised GH levels. When GH was measured every 20 minutes for 6 hours on the first day of life (by RIA with a polyclonal antibody), values ranged between 9 and 191 ng/ml. Five to six bursts of GH release occurred within the six hour study period²⁴⁹. Similarly, GH measurement every thirty minutes for 12 hours in infants ranging in age from 8 to 40 hours varied from 4.1 to 105 ng/ml using a double antibody RIA²¹³. In slightly older infants, aged between one and four

days, GH burst frequency was 7.7 over a 6 hour period²¹⁴. This is similar to the frequency seen in infants on day one of life.

With such a wide range of GH concentrations found on serial measurement in infancy, it would be clinically useful to identify a time when GH secretion is likely to peak. This would allow for optimally timed single sample measurement to identify GH sufficiency in infants where there is a clinical concern regarding possible GH deficiency. At two days of age, mean circulating GH concentrations measured by RIA after five minutes of active sleep, quiet sleep and waking were 33.4 ± 7 , 52.8 ± 11 and 43.5 ± 36 ng/ml, respectively. These high mean values were not seen between four and eight days of age, with respective values of 9.1 \pm 1.1, 9.5 \pm 1.3 and 8.3 \pm 1.2 ng/L noted²⁵⁰, and may represent the higher GH levels in the first few days of life. Sleep entrainment of GH secretion does not occur until after three months of age. 215 When GH concentrations were measured by RIA following 30 minutes of sleep and 30 minutes of wakefulness at different ages within the first six months of life, mean sleep and waking values were similar until three months of age. Mean awake/asleep GH concentrations were $20.6 \pm 10.9 / 17.6 \pm 9.1$ ng/ml at 1-4 weeks, $17.1 \pm 11.6 / 17.4 \pm 10.7$ ng/ml at 1-3 months, $6.5 \pm 3.4 / 15.1 \pm 13.1$ ng/ml at 3-6 months and $6.2 \pm 3 / 16.6 \pm 9.7$ ng/ml at 6-12 months²¹⁵.

Table 2.2.1: Random GH Measurement within the first 18 months of life

Author	Timing	Population	Number	Assay	-2SD	Mean (ng/ml)	+2SD
ELISA							
Leger 1996 ²⁵¹	Umbilical Cord	Term infants	44	Solid phase two-site Immunoradiometric assay (Elisa-hGH, CIS bio International)	1	19	37
Setia 2007 ²⁵²	Umbilical Cord	Term infants	50	Solid phase immunoradiometric assay	1	16.2	31.4
Binder 2010 ²²⁵	Day 2-4	Term infants	269	hGH-ELISA (Mediagnost, Reutlingen, Germany). Polyclonal Ab against 22kDa rhGH in rabbit. Measured from dried bloodspots on filter paper		16.6	
Radioimm			I	T	T	1	1
Desgranges 1987 ²⁵³	Umbilical Cord	Term infants	18	Radioimmunoassay Double-antibody incubation	4.2	17.4	30.6
Geary 2003 ²⁵⁴	Umbilical Cord	Term infants	1197	Radioimmunoassay – (Hybritech Europe, Liege, Belgium)	0	10.5	27.5
Kitamura 2003 ²⁵⁵	Umbilical Cord	Term infants	54	Radioimmunoassay (Daiichi Rasioisotope Laboratories, Tokyo, Japan)		17.8	
Cornblath 1965 ²⁴⁶	Umbilical Cord	Term infants		Radioimmunoassay	0	66	210.4
Laron 1967 ²⁴⁴	Umbilical cord	Term infants	9	Radioimmunossay		34	
Cornblath 1965 ²⁴⁶	Day 1	Term infants	15	Radioimmunoassay	0	52	130.6
Laron 1966 ²⁴⁵	Day 1	Term males	36	Radioimmunoassay		38.4	
Laron 1967 ²⁴⁴	Day 1	Term infants	9	Radioimmunoassay		69	
Laron 1966 ²⁴⁵	Day 1	Term females	25	Radioimmunoassay		50	
Cornblath 1965 ²⁴⁶	Day 2	Term infants	13	Radioimmunoassay	0	72	184.6
Laron 1966 ²⁴⁵	Day 2-3	Term males	36	Radioimmunoassay		76.6	
Laron 1966 ²⁴⁵	Day 2-3	Term females	25	Radioimmunoassay		54	
Cornblath 1965 ²⁴⁶	Day 2-6	Term infants		Radioimmunoassay	0	32	70.6
Laron 1966 ²⁴⁵	Day 4-5		36	Radioimmunoassay		19.3	
Laron 1966 ²⁴⁵	Day 4-5	Term females	25	Radioimmunoassay		26.2	
Cassio 1998 ²⁴⁸	3 weeks	Term infants	112	Commercial liso-solid phase radioimmunoassay (Technogenetics, Milan, Italy)	0	8.7	24.9
Cornblath 1965 ²⁴⁶	3-4 weeks	Term infants	8	Radioimmunoassay	0.8	16	31.2
Cassio 1998 ²⁴⁸	4 months	Term infants	8	Commercial liso-solid phase radioimmunoassay (Technogenetics, Milan, Italy)	0	2.8	5.8
Cassio 1998 ²⁴⁸	7 months	Term infants	10	Commercial liso-solid phase radioimmunoassay (Technogenetics, Milan, Italy)	0.2	2	3.8

Table 2.2.1 (continued)

2.2.1 (con Author	Timing	Population	Number	Assay	-2SD	Mean	+2SD
IRMA						(ng/ml)	
Chiesa	Umbilical	AGA Term	87	IRMA (CIS Bio	14.6	18.2	21.8
2008 ²⁵⁶	Cord	neonates		International, Schering S.A.)	11.0	10.2	21.0
Cance- Rouzaud 1998 ²⁴⁷	Within first 5 days of life	AGA Term infants		Immunoradiometric assay Protein binding to a first antibody was revealed by a second ¹²⁵ I-labelled antibody (ELISA kit, CIS- Bio International, Gif-sur- Yvette, France)	0	53.4	115
Leger 1996 ²⁵¹	6 months		12	Solid phase two-site Immunoradiometric assay (Elisa-hGH, CIS bio International)	0	3.4	8.2
Leger 1996 ²⁵¹	12 months		37	Solid phase two-site Immunoradiometric assay (Elisa-hGH, CIS bio International)	0	2.7	7.1
	orometric A		I	T	1.	1	1
Pagani 2007 ²²⁴	Day 5, (8-9am)	AGA Term infants	26	Immunoflurometric assay. Direct sandwich technique. AutoDELFIA hGH Kit (Wallacoy, Turku, Finland)	0	21.8	44.2
Pagani 2007 ²²⁴	Day 15, (8-9am)	AGA Term infants	26	Immunoflurometric assay. Direct sandwich technique. AutoDELFIA hGH Kit (Wallacoy, Turku, Finland)	0	5.5	12.9
Pagani 2007 ²²⁴	9am)	AGA Term infants		Immunoflurometric assay. Direct sandwich technique. AutoDELFIA hGH Kit (Wallacoy, Turku, Finland)	0	1.8	4.2
		unometric as				_	
Chanoine 2003 ²⁴² and 2002 ²⁴³	Umbilical Cord	AGA Term neonates	90	Chemiluminescent immunoassay (Beckman Coulter, Fullerton, Calif, USA)	0	9.2	35
Gesteiro 2009 ²⁵⁷	Umbilical Cord	Term infants	115	Cheminuminescent immunometric assays (Diagnostic Products Corporation, Flanders, New Jersey) Ref No LKGH1	0	16.7	36.3
Osmanagao glu 2005 ²⁵⁸	Umbilical Cord	AGA	50	Two-site chemiluminescent enzyme immunometric assay (Immulite 1000 human GH kit, DPC, Los Angeles, CA, USA)	7	11.6	16.2
glu 2005 ²⁵⁸	Umbilical Cord	SGA	60	Two-site chemiluminescent enzyme immunometric assay (Immulite 1000 human GH kit, DPC, Los Angeles, CA, USA)	1.8	11.6	21.4
Osmanagao glu 2005 ²⁵⁸	Umbilical Cord	LGA	50	Two-site chemiluminescent enzyme immunometric assay (Immulite 1000 human GH kit, DPC, Los Angeles, CA, USA)	3.2	12.2	21.2

2.2.3.3 Insulin-Like Growth Factor-I

Serum IGF-I levels reflect spontaneous 24-hour GH secretion⁸⁰ and, unlike GH, random levels are relatively stable²⁵⁹. IGF-I measurements are sensitive to extraction methods and assays used. Many studies identified in this review did not provide details regarding the extraction methods used, and this may account for the variation in reported values in studies where the same assay was used to measure IGF-I levels in children of similar ages and stature²⁶⁰. Tables 2.2.2, 2.2.3 and 2.2.4 summarise the IGF-I values reported in studies including healthy children aged less than 18 months.

Factors that may affect IGF-I concentrations in cord blood include ethnicity, maternal smoking, and some antenatal medication exposure. Chinese infants have higher IGF-I concentrations than Caucasian infants²⁶¹ while Caucasian infants may have a higher IGF-I concentration than African American infants²⁶². Maternal smoking may be associated with lower IGF-I levels in cord blood, even where infant sizes are similar²⁶³. Selective serotonin reuptake inhibitor use in pregnancy may be associated with lower umbilical cord IGF-I levels²⁶⁴. Many of these studies, however, involved small sample sizes and statistical significance was not demonstrated.

In studies where infants and children were categorised according to weight, the group of larger children consistently had higher IGF-I concentrations regardless of assay used. Some studies have shown that girls have higher IGF-I concentrations than age-matched boys with a similar weight, at birth, as well as at 12 and 24 months of age^{254, 265-268}. While the etiology of this difference in IGF-I concentrations between sexes is not clear, it may be related to differences in body composition between males and females that are not captured in weight measurement. At birth, girls have been shown to have a greater proportion of body fat than boys, even when boys are heavier^{269, 270}.

Table 2.2.2: Assay Specific IGF-I measurement in umbilical cord blood

Author	Timing	Population	Number	Weight	Assay	Extraction	-2SD	Mean	+2SD
	Ū	Î		(kg)	·			(ng/ml)	
ELISA	1	1	1	1	T	1		1	
Akram 2011 ²⁷¹	Umbilical cord		12	<2.5	ELISA (Mediagnost, Germany).		5.77	6.35	6.93
Akram 2011 ²⁷¹	Umbilical cord	AGA	21	>3.5	ELISA (Mediagnost, Germany).		8.86	14.08	19.6
Jayanthiny 2011 ²⁷²	Umbilical cord	Term Infants	200		Enzyme linked immunosorbent assay (Catalogue No. EIA-2947, DRG International, Inc., USA)		5.9	39	72
Rohrmann 2009 ²⁶²	Umbilical cord	African American Infants	75	3.2 (2.5-3.9)	ELISA (Diagnostic Systems Laboratory)		0	72.3	156.3
Rohrmann 2009 ²⁶²	Umbilical cord	Caucasian Infants	38	3.5 (2.7-4.3)	ELISA (Diagnostic Systems Laboratory)		0	90.6	208.2
Radioimmu	noassay	•	•						•
Bankowski 2000 ²⁷³	Umbilical		12	3.53	Radioimmunoassay	Acid		130	
Beltrand 2008 ²⁷⁴	cord Umbilical cord	Infants Highest antenatal growth tertile	78	(2.8-4.2) 3.18 (2-4.4)	Radioimmunoassay	Chromatography	0	85.6	182.8
Beltrand 2008 ²⁷⁴	Umbilical cord	Middle antenatal growth tertile	78	2.97 (1.7–4.3)	Radioimmunoassay		0	65.7	137.1
Beltrand 2008 ²⁷⁴	Umbilical cord	Lowest antenatal growth tertile	79	2.8 (2–3.6)	Radioimmunoassay		0	61.6	180.6
Bennett 1983 ²⁷⁵	Umbilical cord	Term Infants	32		Radioimmunoassay		41	113	185
Halhali 2000 ²⁷⁶	Umbilical cord		20	3.2 (2.5-3.8)	Radioimmunossay . (Nichols Institute Diagnostics)	Acid ethanol extraction	19	123	227
Klauwer 1997 ²⁷⁷	Umbilical cord	Term Infants	138	3.3 (2.2-4.4)	Radioimmunoassay	Acid extraction Excess IGF-II	19	61	103
Leger 1996 ²⁵¹	Umbilical cord	Term Infants	44	2.9 (1.5-4.3)	Radioimmunoassay using polyclonal IGF-I antiserum	Acid chromatography	13	85	157
Simmons 1995 ²⁷⁸	Umbilical cord		120	3.5 (2.3-4.5)	Radioimmunoassay (Ciba-Geigy, Basel, Switzerland)	Ethanol	8.7	57.1	105.5
Vatten 2002 ²⁷⁹	Umbilical cord		609		Radioimmunoassay (Mediagnost, Tuebingen, Germany)		10	64	118
Wang 2005 ²⁶⁶	Umbilical cord	Males	62	3.2 (2.4-4)	Radioimmunoassay (Daiichi Radioisotope Laboratory, Tokyo, Japan)		14.9	84.3	153.7
Wang 2005 ²⁶⁶	Umbilical cord	Females	57	3.1 (2.3-3.9)	Radioimmunoassay (Daiichi Radioisotope Laboratory, Tokyo, Japan)		20	95.2	170.8
Wiznitzer ²⁸⁰	Umbilical cord	AGA	20	3.3 (2.3-4.3)	Radioimmunoassay		16	80	144
Wiznitzer ²⁸⁰	Umbilical cord	LGA	40	4.3 (3.6-4.8)	Radioimmunoassay		5	139	273
IRMA									
Baik 2006 ²⁸¹	Umbilical cord	Term Infants	30		IRMA (Diagnostic Systems Lab)		0	54.3	128.5
Chiesa 2008 ²⁵⁶	Umbilical cord		87	3.19 (2.6–3.8)	IRMA (Immunotech)		0	99	203.7
Christou 2001 ²⁸²	Umbilical cord	AGA	96	3.2 (3.1–3.3)	IRMA (Diagnostic Systems Lab)		0	43.4	109.6
Christou 2001 ²⁸²	Umbilical cord	LGA	46	4 (3.9-4.1)	IRMA (Diagnostic Systems Lab)		0	73.8	153.4

Table 2.2.2 (continued)

Author	2.2 (continue) Timing	Population	Number	Weight	Assay	Extraction	-2SD	Mean	+2SD
	Ü			(kg)	·			(ng/ml)	
Cooley 2004 ²⁸³	Umbilical cord	Term Infants	1650	3.4 (2.3-4.5)	IRMA (Nichols Institute Diagnostics)	Acidification and IGF-II excess	22.8	217.5	412.2
Davidson 2009 ²⁶⁴	Umbilical cord	Antenatal SSRI exposure	21	3.2 (3–3.4)	IRMA (Diagnostic Systems Lab)		66.9	96.1	125.3
Davidson 2009 ²⁶⁴	Umbilical cord	Term Infants	20	3.3 (3.2–3.5)	IRMA (Diagnostic Systems Lab)		93.1	119.9	146.7
Geary 2003 ²⁵⁴	Umbilical cord	Males	515	3.5 (3.4-3.6)	IRMA (Nichols Institute Diagnostics)	Acidification and IGF-II excess	64	66.4	68.8
Geary 2003 ²⁵⁴	Umbilical cord	Females	472	3.5 (3.4-3.6)	IRMA (Nichols Institute Diagnostics)	Acidification and IGF-II excess	71.9	74.5	77.1
Ingvarsson 2007 ²⁶³	Umbilical cord	Maternal cigarettes	30	3.9 (2.9-4.9)	Two site IRMA (Active TM IGF-I)	Yes	0	54.4	119.4
Ingvarsson 2007 ²⁶³	Umbilical cord	No maternal cigarettes	60	3.4 (2.4-4.5)	Two site IRMA (Active TM IGF-I)	Yes	0	93.8	202.8
Lagiou 2009 ²⁸⁴	Umbilical cord	Caucasian American Infants	92	3.6 (2.6-4.5)	Immunoradiometric assay kit (Diagnostic Systems Laboratories, Webster, Texas)		22.8	98.4	174
Lagiou 2009 ²⁸⁴	Umbilical cord	Chinese Infants	110	3.5 (2.6-4.5)	Immunoradiometric assay kit (Diagnostic Systems Laboratories, Webster, Texas)		0	79	177
Lo 2002 ²⁸⁵	Umbilical cord		43	3.2 (2.4-4)	IRMA (Diagnostic Systems Laboratories, Webster, Texas)		13.1	66.5	119.9
Maffeis 1999 ²⁸⁶	Umbilical cord	Males	48		Immunoradiometric assay (CIS Bio International, Gif-sur-Yvette, France)		30	87.4	144.2
Maffeis 1999 ²⁸⁶	Umbilical cord	Females	50		Immunoradiometric assay (CIS Bio International, Gif-sur-Yvette, France)		0	73.9	148.9
Martinez- Cordero 2006 ²⁸⁷	Umbilical cord	SGA	50	2.3 (2-2.6)	Immunoradiometric assay (Biocode-Hycel, Liege, Belgium)		15.4	71	126.6
Martinez- Cordero 2006 ²⁸⁷	Umbilical cord	AGA	50	3.8 (3-4.5)	Immunoradiometric assay (Biocode-Hycel, Liege, Belgium)		0	76.5	154.7
Pringle 2005 ²⁸⁸	Umbilical cord		1192	3.5 (2.5-4.4)	Immunoradiometric assay (Nichols Institute Diagnostics, San Juan, Capistrano CA)	Acidification Excess IGF-II	17.7	68.5	119.3
		nunometric		1	I	1		1	
Gesteiro 2011 ²⁸⁹	Umbilical cord	Lowest quartile for cord insulin	33	3.2 (2.5-3.9)	Chemiluminescent immunometric assays (Diagnostic Products Corporation)		7	46.8	86.7
Gesteiro 2011 ²⁸⁹	Umbilical cord	Second quartile for cord insulin	43	3.3 (2.6-3.9)	Chemiluminescent immunometric assays (Diagnostic Products Corporation)		10	52.6	103.2
Gesteiro 2011 ²⁸⁹	Umbilical cord	Third quartile for cord insulin	44	3.4 (2.7-4)	Chemiluminescent immunometric assays (Diagnostic Products Corporation)		17.5	64.2	111
Gesteiro 2011 ²⁸⁹	Umbilical cord	Highest quartile for cord insulin	56	3.4 (2.7-4)	Chemiluminescent immunometric assays (Diagnostic Products Corporation)		0	63.7	128.3

Table 2.2.2 (continued)

Author	Timing	Population	Number	Weight (kg)	Assay	Extraction	-2SD	Mean (ng/ml)	+2SD
Gesteiro 2009 ²⁵⁷	Umbilical cord		109	3.3 (2.7-4)	Chemiluminescent immunometric assays (Diagnostic Products Corporation)		9.4	55.2	101
Ibanez 2008 ²⁶⁷	Umbilical cord	SGA females	24	2.3 (1.9-2.7)	Immunochemiluminescent assay (Immulite 2000; Diagnostic Products, Los Angeles, CA)		10	59	108
Ibanez 2008 ²⁶⁷	Umbilical cord	AGA males	24	3.4 (3-3.8)	Immunochemiluminescent assay (Immulite 2000; Diagnostic Products, Los Angeles, CA)		5.2	64	122.8
Ibanez 2008 ²⁶⁷	Umbilical cord	AGA females	24	3.4 (3-3.8)	Immunochemiluminescent assay (Immulite 2000; Diagnostic Products, Los Angeles, CA)		35	84	133
Ibanez 2008 ²⁶⁷	Umbilical cord	SGA males	24	2.3 (1.9-2.7)	Immunochemiluminescent assay (Immulite 2000; Diagnostic Products, Los Angeles, CA)		1.8	41	80.2
Kyriakakou 2009 ²⁹⁰	Umbilical cord	IUGR	20	2.4 (1.9-2.9)	2 site chemiluminescence immunoassay (Nichols Diagnostic Institute, San Juan Capistrano, CA)		17.6	42.6	67.6
Kyriakakou 2009 ²⁹⁰	Umbilical cord	AGA	20	3.2 (2.6-3.7)	2 site chemiluminescence immunoassay (Nichols Diagnostic Institute, San Juan Capistrano, CA)		19.6	45.5	71.4
Luo 2012 ²⁹¹	Umbilical cord		229	3.4 (2.5-4.3)	Enzyme-labeled chemiluminescent assay	Acid buffer dilution	8.5	60.5	112.5
Troisi 2008 ²⁶¹	Umbilical cord	Caucasian Infants	51	3.6	Direct chemiluminescent immunoassay. Immulite analyzer (Siemens Medical Solutions Diagnostics, Los Angeles, CA)		0	76.3	421.7
Troisi 2008 ²⁶¹	Umbilical cord	Chinese Infants	22	3.5	Direct chemiluminescent immunoassay. Immulite analyzer (Siemens Medical Solutions Diagnostics, Los Angeles, CA)		0	90.1	360.5

Table 2.2.3: Assay Specific IGF-I measurement 0-6 months of age. Blank cells represent

unreported data.

Author	Timing	Population	Number	Weight (kg)	Assay	Extraction	-2SD	Mean (ng/ml)	+2SD
ELISA									
Yuksel	3	Males	29		ELISA (Diagnostic		0	110.8	279.8
2011 ²⁶⁵	months				Systems Laboratories Inc)				
Yuksel	3	Females	22		ELISA (Diagnostic		0	111.3	290.7
2011 ²⁶⁵	months	27.1	44		Systems Laboratories Inc)			00.2	206.7
Yuksel 2011 ²⁶⁵	6	Males	41		ELISA (Diagnostic		0	89.3	286.7
	months	г 1	22		Systems Laboratories Inc)		0	(7.0	216
Yuksel 2011 ²⁶⁵	6 months	Females	33		ELISA (Diagnostic Systems Laboratories Inc)		0	67.8	216
Radioimm					Systems Laboratories Inc)				
Gunes	Day 1	Mothers	28	3.02	Radioimmunoassay	l	107.6	156.6	205.6
2007 ²⁹²	Day 1	who smoke	20	(2.7-3.3)	Biocode 1010 (Liege Belgium)		107.0	130.0	203.0
Gunes	Doy 1	Mothers	28	3.5	Radioimmunoassay		104	164.4	224.8
2007 ²⁹²	Day 1	who don't	28	(2.94-4)	Biocode 1010 (Liege		104	104.4	224.0
2007		smoke		(2.94-4)	Belgium)				
Koklu	Day 1	LGA,	30	4.3	Radioimmunoassay		85	205.2	325.4
2007 ²⁹³	Duy 1	mothers	30	(3.9-4.7)	(Biocode 1010, Liege,		0.5	203.2	323.4
		with		(0.5 11.)	Belgium)				
	1	diabetes			<i>3 ,</i>				
Koklu	Day 1	LGA	30	4.3	Radioimmunoassay		69.1	179.3	289.5
2007^{293}				(3.9-4.7)	(Biocode 1010, Liege,				
					Belgium)				<u> </u>
Koklu	Day 1	AGA	30	3.6	Radioimmunoassay		47	113.2	179.4
2007^{293}				(3.2-4)	(Biocode 1010, Liege,				
	1				Belgium)				
Koklu	Day 1	IUGR	40	2.4g	Radioimmunoassay		33.6	75.4	117.2
2007^{294}				(2.1-2.8)	(Biocode 1010, Liege,				
T7. 1.1	n :	10:	40	2.6	Belgium)		24:	00.0	1.55
Koklu	Day 1	AGA	40	3.6	Radioimmunoassay		24.4	90.8	157.2
2007 ²⁹⁴				(3.2-4)	(Biocode 1010, Liege,				
Rajaram	Day 1		51	3.3	Belgium) Radioimmunoassay		49.7	59.1	68.5
1995 ²⁹⁵	Day 1		31	(2.5-4.1)	(Endocrine Sciences,		49.7	39.1	08.5
1773				(2.3-4.1)	Calabasas Hills, CA)				
Iniguez	Day 2	SGA			Locally developed	With extraction	23.5	41.9	60.3
2006 ²⁹⁶	Duy 2	50.1			radioimmunoassay	,, in extraction	20.0	11.7	00.5
Iniguez	Day 2	AGA			Locally developed	With extraction	41.6	59.6	77.6
2006 ²⁹⁶	, _				radioimmunoassay				
Leger	Day 3		36		RIA using polyclonal IGF-I	Acid	0	66	138
1996 ²⁵¹					antiserum	chromatography	L		
Cassio	Day 3	SGA, Term	11	2.6	Radioimmunoassay	Heel prick	0	18	39
1986^{297}				(1.9-3.3)	(Nichols Institute Company	samples on filter			
	1				reagents) on capillary	paper. Eluted in			
					samples via heel prick	borosilicate			
	1					tubes with			
						protamine-free			
	1					buffer. Incubated 1hr			
						with antiserum.			
						and 16-20hr			
	1					with ¹²⁵ I-labelled			
						SmC.			
Cassio	Day 3	AGA,	198	3.4	Radioimmunoassay	Heel prick	0	18	39
1986 ²⁹⁷	[]	Term	1,0	(2.2-4.6)	(Nichols Institute Company	samples on filter		1.0	-
					reagents) on capillary	paper. Eluted in			
					samples via heel prick	borosilicate			
					•	tubes with			
						protamine-free			
						buffer.			
						Incubated 1hr			
						with antiserum,			
						and 16-20hr			
						with 125 I-labelled			
	1		1	Ì		SmC.	1	I	l

Table 2.2.3 (continued)

Author	Timing	Population	Number	Weight (kg)	Assay	Extraction	-2SD	Mean (ng/ml)	+2SD
Cassio 1986 ²⁹⁷	Day 4	SGA, Term	48	2.6 (1.9-3.3)	Radioimmunoassay (Nichols Institute Company reagents) on capillary samples via heel prick	Heel prick samples on filter paper. Eluted in borosilicate tubes with protamine-free buffer. Incubated 1hr with antiserum, and 16-20hr with ¹²⁵ I-labelled SmC.	7.5	19.5	31.5
Cassio 1986 ²⁹⁷	Day 4	AGA, Term	417	3.4 (2.2-4.6)	Radioimmunoassay (Nichols Institute Company reagents) on capillary samples via heel prick	Heel prick samples on filter paper. Eluted in borosilicate tubes with protamine-free buffer. Incubated 1hr with antiserum, and 16-20hr with ¹²⁵ I-labelled SmC.	4	19.5	34.5
Cassio 1986 ²⁹⁷	Day 5	SGA, Term	23	2.6 (1.9-3.3)	Radioimmunoassay (Nichols Institute Company reagents) on capillary samples via heel prick	Heel prick samples on filter paper. Eluted in borosilicate tubes with protamine-free buffer. Incubated 1hr with antiserum, and 16-20hr with ¹²⁵ I-labelled SmC.	0	19.5	43.5
Cassio 1986 ²⁹⁷	Day 5	AGA, Term	222	3.4 (2.2-4.6)	Radioimmunoassay (Nichols Institute Company reagents) on capillary samples via heel prick	Heel prick samples on filter paper. Eluted in borosilicate tubes with protamine-free buffer. Incubated 1hr with antiserum, and 16-20hr with ¹²⁵ I-labelled SmC.		24	48
Cassio 1986 ²⁹⁷	Day 6	AGA, Term	49	3.4 (2.2-4.6)	Radioimmunoassay (Nichols Institute Company reagents) on capillary samples via heel prick	Heel prick samples on filter paper. Eluted in borosilicate tubes with protamine-free buffer. Incubated 1hr with antiserum, and 16-20hr with ¹²⁵ I-labelled SmC.	0	28.5	58.5

Table 2.2.3 (continued)

Author	Timing	Ontinued) Population	Number	Weight	Assay	Extraction	-2SD	Mean	+2SD
Cassio	Day 7	AGA,	32	(kg) 3.4	Radioimmunoassay	Heel prick	4.5	(ng/ml) 28.5	52.5
1986 ²⁹⁷		Term		(2.2-4.6)	(Nichols Institute Company reagents) on capillary samples via heel prick	samples on filter paper. Eluted in borosilicate tubes with			
						protamine-free buffer.			
						Incubated 1hr with antiserum, and 16-20hr with ¹²⁵ I-labelled			
						SmC.			
Mitchell 1989 ²⁹⁸	1 week		99		Filter paper eluted in phosphate buffer containing rabbit anti-human IGF-I antibody, heparin and radiolabelled IGF-I overnight.	Goat antirabbit gamma-globulin in 6% polyethylene glycol.	0	13.5	31.5
Cassio 1986 ²⁹⁷	Day 7- 15	AGA, Term	50	3.4 (2.2-4.6)	Radioimmunoassay (Nichols Institute Company reagents) on capillary samples via heel prick	Heel prick samples on filter paper. Eluted in borosilicate tubes with protamine-free buffer. Incubated 1hr with antiserum, and 16-20hr with ¹²⁵ I-labelled SmC.	0	45	105
Mitchell 1989 ²⁹⁸	2-3 weeks		42		Filter paper eluted in phosphate buffer containing rabbit anti-human IGF-I antibody, heparin and radiolabelled IGF-I overnight.	Goat antirabbit gamma-globulin in 6% polyethylene glycol.	3	54	105
Cassio 1998 ²⁴⁸	3 weeks		12		Radioimmunoassay (Nichols Institute Diagnostics, San Juan Capistrano, CA)		0	68.2	175
Leger 1996 ²⁵¹	1 month		51		RIA using polyclonal IGF-I antiserum	Acid chromatography	20	90	160
Cassio 1998 ²⁴⁸	2 months		6		Radioimmunoassay (Nichols Institute Diagnostics, San Juan Capistrano, CA)		57.6	116	174.4
Rajaram 1995 ²⁹⁵	2 months		51	Birthweight 3.3 (2.5-4.1)	Radioimmunoassay (Endocrine Sciences, Calabasas Hills, CA)		49	55.2	61.4
Chellakooty 2006 ²⁹⁹	3 months	AGA, Term	942	Birthweight 3.6	Radioimmunoassay	Extracted by acid/ethanol and cryoprecipitated before analysis to remove binding proteins. Monoiodinated Tyr31 IGF-I used as radioligand.		92	

Table 2.2.3 (continued)

Author	Timing	Population	Number	Weight (kg)	Assay	Extraction	-2SD	Mean (ng/ml)	+2SD
Chellakooty 2006 ²⁹⁹	3 months	SGA, Term	49	Birthweight 2.5	Radioimmunoassay	Extracted by acid/ethanol and cryoprecipitated before analysis to remove binding proteins. Monoiodinated Tyr31 IGF-I used as		88	
Kai 2006 ³⁰⁰	3 months	Male		Birthweight 3.6 (2.6-4.6)	Radioimmunoassay . Monoiodinated Tyr IGF-I used as radioligand)	radioligand. Acid/ethanol extraction and cryoprecipitation	39.6	94	148.4
Kai 2006 ³⁰⁰	3 months	Female		Birthweight 3.5 (2.5-4.5)	Radioimmunoassay . Monoiodinated Tyr IGF-I used as radioligand)	Acid/ethanol extraction and cryoprecipitation	40.2	93	145.8
Leger 1996 ²⁵¹	3 months		16		RIA using polyclonal IGF-I antiserum	Acid chromatography	20	78	136
Ong 2009 ³⁰¹	3 months old	Breastfed	61 boys 57 girls		Radioimmunoassay (Mediagnost, Tubingen, Germany)	Extracted from filter paper using acidifying buffer	11.3	Boys 43.7 Girls	76.1
Ong	3	Formula	92 boys		Radioimmunoassay	Extracted from	8.1	37.3 Boys	66.5
2009 ³⁰¹	months old	fed	68 girls		(Mediagnost, Tubingen, Germany)	filter paper using acidifying buffer	12.2	55.4 Girls	98.6
C :	4		0		D 1: :		8.8	51	93.2
Cassio 1998 ²⁴⁸	months		8		Radioimmunoassay (Nichols Institute Diagnostics, San Juan Capistrano, CA)		4	77.2	150.4
Rajaram 1995 ²⁹⁵	4 months		51	Birthweight 3.3 (2.5-4.1)	Radioimmunoassay (Endocrine Sciences, Calabasas Hills, CA)		43.6	49.8	56
Hasegawa 1997 ³⁰²	1-6 months		52		Monoclonal radioimmunoassay developed by authors	Acid ethanol extraction	0	90.3	229.5
Leger 1996 ²⁵¹	6 months		12		RIA using polyclonal IGF-I antiserum	Acid chromatography	30	102	174
Rajaram 1995 ²⁹⁵	6 months		51	Birthweight 3.3 (2.5-4.1)	Radioimmunoassay (Endocrine Sciences, Calabasas Hills, CA)		35	41.2	47.4
Ong 2009 ³⁰¹	12 months	Breastfed	61 boys 57 girls		Radioimmunoassay (Mediagnost, Tubingen, Germany)	Extracted from filter paper using acidifying buffer	8	Boys 38.8 Girls	69.6
						burrer	3.6	56	108.4
Ong 2009 ³⁰¹	12 months	Formula fed	92 boys 68 girls		Radioimmunoassay (Mediagnost, Tubingen, Germany)	Extracted from filter paper using acidifying	4.8	Boys 47.6	90.4
*****						buffer	7.3	Girls 59.9	112.5
IRMA	D 1	I CC A	20	1.5	IDMA Astissa ICE I DCI	ICE I t	0	2.70	7.50
Baker Melo 2009 ³⁰³	Day 1	SGA	28	1.5 (0.3-2.7)	IRMA Active IGF-I DSL- 5600	IGF-I extraction via HCl ethanol solution. I-125 marked antibody.	0	2.78	7.52
Baker Melo 2009 ³⁰³	Day 1	AGA	26	2.4 (1-3.9)	IRMA Active IGF-I DSL- 5600	IGF-I extraction via HCl ethanol solution. I -125 marked antibody.	0	3.99	10.07

Table 2.2.3 (continued)

Author	Timing	Population	Number	Weight (kg)	Assay	Extraction	-2SD	Mean (ng/ml)	+2SD
Low 2001 ³⁰⁴	Day 1	Term, AGA	48	(kg)	Immunoradiometric assay (Diagnostic Systems Laboratories Inc, Webster, TX, USA). 2 site assay.		0.8	48.1	95.4
Satar 2004 ³⁰⁵	Day 1		19		Immunoradiometric assay (Immunotech)		20.7	121.5	222.3
Thieriot- Prevost 1988 ³⁰⁶	Day 3		62		Radioimmunoassay	Extraction on a Sep-Pak column using kits from Immuno Nuclear Corporation (Stillwater, MN)	0	48	118.9
Pagani 2007 ²²⁴	Day 4	Term, AGA	26		Immunoradiometric assay Diagnostic Systems	Acid ethanol extraction	32.5	51.2	69.9
Cance- Rouzaud 1998 ²⁴⁷	Day 0-5	AGA	64	2.7 (1.3-4)	IRMA (IGF-IRMA DSL- 9300 kit, Chiron Diagnostics, Cergy- Pontoise, France)	Ethanol extraction	0	11.7	28.1
Cance- Rouzaud 1998 ²⁴⁷	Day 0-5	SGA	26	1.5 (0.8-2.2)	IRMA (IGF-IRMA DSL- 9300 kit, Chiron Diagnostics, Cergy- Pontoise, France)	Ethanol extraction	0	6.6	14.6
Bozzola 1998 ³⁰⁷	Day 5	Term infants	19		Immunoradiometric assay (Diagnostic Systems Laboratories, Webster, Texas)	Acid-ethanol extraction	20.3	27	33.7
Bozzola 1996 ³⁰⁸	Day 5	Term infants	60		Immunoradiometric assay (Diagnostic Systems Laboratories, Webster, Texas)	Acid-ethanol extraction	0	67.6	148.2
Ermis 2004 ³⁰⁹	Day 7 Mothers who smoke		21	3.2 (2.5-3.8)	2 site IRMA (Diagnostic Systems Laboratories, Webster, Texas, USA)	"Sample processed according to manufacturer's instructions"	63	119	175
Ermis 2004 ³⁰⁹	Day 7 non- smoker mothers		23	3.2 (2.4-4)	2 site IRMA (Diagnostic Systems Laboratories, Webster, Texas, USA)	"Sample processed according to manufacturer's instructions"	56	126	196
Satar 2004 ³⁰⁵	Day 10		19		Immunoradiometric assay (Immunotech)		64.3	133.1	201.9
Bozzola 1996 ³⁰⁸	1 month	Term infants	60		Immunoradiometric assay (Diagnostic Systems Laboratories, Webster, Texas)	Acid-ethanol extraction	0	72.6	190.3
Pagani 2007 ²²⁴	1 month	Term, AGA	26		Immunoradiometric assay Diagnostic Systems	Acid ethanol extraction	19.1	73.3	127.5
Thieriot- Prevost 1988 ³⁰⁶	1 month		62		Radioimmunoassay	Extraction on a Sep-Pak column using kits from Immuno Nuclear Corporation (Stillwater, MN)	0	75	216.7
Bozzola 1998 ³⁰⁷	3 months	Term infants	19		Immunoradiometric assay (Diagnostic Systems Laboratories, Webster, Texas)	Acid-ethanol extraction	7.4	44.9	82.4
Bozzola 1996 ³⁰⁸	4 months	Term infants	60		Immunoradiometric assay (Diagnostic Systems Laboratories, Webster, Texas)	Acid-ethanol extraction	0	97.9	248.2
Low 2001 ³⁰⁴	6 months	Term, AGA	48		Immunoradiometric assay (Diagnostic Systems Laboratories Inc, Webster, TX, USA). 2 site assay.		0	42	92.4

Table 2.2.3 (continued)

AGA Day 4 Day 6 Day 1 and Day 4 Day 4 and Day 4 Day 6 Day 1 and Day 4 Day 6 Day 1 and Day 4 Day 1 and Day 4 Day 6 Day 1 and Day 4 Day 6 Day 1 and Capistrano, Calif) Day 6 Day 1 and Capistrano, Calif) Day 6 Day 1 and Capistrano, Calif) System (Nichols Institute, San Juan Capistrano, Cal) Day 1 and Capistrano, Calif) Day 1 and Capistrano, Calif Day 2 and Capistrano, Calif) Day 1 and Capistrano, Calif Day 3 and Capistrano, Calif Day 3 and Capistrano, Calif Day 4 and Capistra	Author	Timing	Population	Number	Weight	Assay	Extraction	-2SD	Mean	+2SD
		8	•			,			(ng/ml)	
	Chemilumin	escent im	munometric	assays						
Day 4 Diagnostic Institute, San Day 4 Diagnostic Institute, San Day 4 Day 1 AGA 20 3.2 2 site chemiluminescence immunoassay (Nichols Diagnostic Institute, San Day 1 12.8 21.7 30.9 Day 4 Day 1 Day 4 Day 4 Day 4 Day 4 Day 4 Day 4 Day 1 Day 4 Day 4 Day 4 Day 4 Day 4 Day 1 Day 1 Day 4 Day 4 Day 4 Day 4 Day 4 Day 1 Day 1 Day 4 Day 4 Day 4 Day 4 Day 4 Day 1 Da	Kyriakakou	Day 1	IUGR	20	2.4	2 site chemiluminescence			Day 1	
Variakakou Day 1 AGA 20 3.2 2.5 tie chemiluminescence Day 1 Day 1 Day 1 Day 4 Day 5 Day 6 Diagnostic Institute, San Juan Capistrano, Calif) Day 1 Day 4 Day 4 Day 6 Diagnostic Institute, San Juan Capistrano, CA) Day 6 Day 1-7 Day 1 Day 6 Day 1-7 Day 1	2009^{290}	and			(1.9-2.9)	immunoassay (Nichols		14.4	22.5	30.5
AGA 20 3.2 2.5		Day 4				Diagnostic Institute, San			Day 4	
2009 ³⁹⁰ and Day 4						Juan Capistrano, Calif)		13	22	30.9
2009 ³⁹⁰ and Day 4	Kyriakakou	Day 1	AGA	20		2 site chemiluminescence			Day 1	
Juan Capistrano, Calif) 11.8 21.7 31.5	2009^{290}	and			(2.6-3.7)	immunoassay (Nichols		12.8		30.8
Day 0-5 jaundice 209 3.3 Nichols Advantage Automated Specially System (Nichols Institute, San Juan Capistrano, CA)		Day 4				Diagnostic Institute, San			Day 4	
Day 0-5 jaundice 209 3.3 Nichols Advantage Automated Specially System (Nichols Institute, San Juan Capistrano, CA)		-				Juan Capistrano, Calif)		11.8	21.7	31.5
Automated Specially System (Nichols Institute, San Juan Capistrano, CA)	Skalkidou	Day 0-5	jaundice	209	3.3	Nichols Advantage			24	44.5
San Juan Capistrano, CA San Juan Capistrano, CA	2003310, 311		,			Automated Specially				
San Juan Capistrano, CA San Juan Capistrano, CA						System (Nichols Institute,				
Automated Specially System (Nichols Institute, San Juan Capistrano, CA) Automated Specially System (Nichols Institute, San Juan Capistrano, CA)						San Juan Capistrano, CA)				
System (Nichols Institute, San Juan Capistrano, CA) San Juan Capistrano, CA	Skalkidou	Day 0-5	Non	123	3.3	Nichols Advantage		2.1	29.1	56.2
System (Nichols Institute, San Juan Capistrano, CA) San Juan Capistrano, CA	2003310,311		jaundice			Automated Specially				
San Juan Capistrano, CA Two site, solid phase chemiluminescente enzyme immunometric assays (Immulite, Diagnostic Products, Los Angeles, CA) Two site, solid phase chemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) Two site, solid phase chemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) Tito diagnostic Products, Los Angeles, CA)			ľ							
Day 1-7										
Chemiluminescent enzyme immunometric assays (Immultie, Diagnostic Products Corp, Los Angeles, CA)	Elmlinger	Day 1-7		45			IGF-II used to	3	15	27
Communities	2004312						block IGFBP			
Products Corp, Los Assay specific Angeles, CA Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Angeles, CA) Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Angeles, CA) Two site, Solid phase chemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) Total Products Corp, Los Assay specific diluent used Total Products Corp, Los Angeles, CA) Total Products Corp, Los Angeles, CA) Total Products Corp, Los Angeles, CA) Total Products, Los Angeles, CA) Total						immunometric assays	binding sites			
Products Corp, Los Assay specific Angeles, CA Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Angeles, CA) Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Angeles, CA) Two site, Solid phase chemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) Total Products Corp, Los Assay specific diluent used Total Products Corp, Los Angeles, CA) Total Products Corp, Los Angeles, CA) Total Products Corp, Los Angeles, CA) Total Products, Los Angeles, CA) Total						_				
Angeles, CA diluent used							Assay specific			
Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Angeles, CA) Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Angeles, CA) Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Angeles, CA) Two site, solid phase chemiluminescent enzyme immunometric assays (Immunochemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) Two site, solid phase chemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) Two site, solid phase chemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products, Los Angeles, CA) Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific Total State						Angeles, CA)	diluent used			
Chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Angeles, CA)	Elmlinger	Day 8-		40		Two site, solid phase	IGF-II used to	7	25	43
Immunometric assays (Immulite, Diagnostic Products Corp. Los Assay specific diluent used	2004312			-			block IGFBP		-	_
Community Comm							binding sites			
Angeles, CA diluent used										
De Zegher 2 2 weeks AGA 72 3.9 Immunochemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA)						Products Corp, Los	Assay specific			
Col						Angeles, CA)	diluent used			
Col	De Zegher	2 weeks	AGA	72	3.9	Immunochemiluminescence		0	55	115.6
Angeles, CA) De Zegher 2 weeks SGA 102 2.9	2012313				(3-4.8)					
Angeles, CA) De Zegher 2 weeks SGA 102 2.9						Diagnostic Products, Los				
(1.9-3.9)						Angeles, CA)				
Diagnostic Products, Los Angeles, CA) De Zegher 2012 ³¹³ AGA 72 7.2 Immunochemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) De Zegher 4 months De Zegher 4 months De Zegher 2012 ³¹³ Again 102 6.4 Immunochemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) De Zegher 2012 ³¹³ Again 102 6.4 Immunochemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) Elmlinger 2004 ³¹² Diagnostic Products (Immuliminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific Assay specific	De Zegher	2 weeks	SGA	102	2.9	Immunochemiluminescence		0	46	107.8
Diagnostic Products, Los Angeles, CA) De Zegher 2012 ³¹³ De Zegher 4 months De Zegher 2012 ³¹³ De Zegher 4 months De Zegher 2012 ³¹³ De Zegher 2012 ³¹³ De Zegher 4 months De Zegher 2012 ³¹³ De Zegher 4 months Diagnostic Products, Los Angeles, CA) Immunochemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific	2012313				(1.9-3.9)	(IMMULITE 2000,				
De Zegher 2012 ³¹³ AGA 72 7.2 Immunochemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) De Zegher 4 months De Zegher 4 months De Zegher 2012 ³¹³ Again 102 6.4 Immunochemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) Elmlinger 2004 ³¹² 0.5-6 months De Zegher 4 months Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific					,	Diagnostic Products, Los				
months (5.5-8.9) (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) De Zegher 2012 ³¹³ 4 months 6.4 Immunochemiluminescence (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) 0 69 141.1 Elmlinger 2004 ³¹² 0.5-6 25 Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific Assay specific Assay specific Contact Cont						Angeles, CA)				
months months (5.5-8.9) (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) (5.4-7.4) De Zegher 2012 ³¹³ A months (5.4-7.4) (5.4-7.4) (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) (IMMULITE 2000, Diagnostic Products and Diagnostic Products and Diagnostic Products and Diagnostic Products Corp. Los (IMMULITE 2000, Diagnostic Products and Diagnostic Products Corp. Los (IMMULITE 2000, Diagnostic Products and Diagnostic Products Corp. Los (IMMULITE 2000, Diagnostic Products and	De Zegher	4	AGA	72	7.2	Immunochemiluminescence		7.7	51	94.3
Angeles, CA) De Zegher 4 months De Zegher 2012 ³¹³ De Zegher 4 months De Zegher 4	2012313	months			(5.5-8.9)	(IMMULITE 2000,				
De Zegher 4 months SGA						Diagnostic Products, Los				
months (5.4–7.4) (IMMULITE 2000, Diagnostic Products, Los Angeles, CA) Elmlinger 2004 ³¹² 0.5-6 months 25 Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific						Angeles, CA)				
Diagnostic Products, Los Angeles, CA) Elmlinger 2004 ³¹² 0.5-6 months 25 Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific	De Zegher	4	SGA	102	6.4	Immunochemiluminescence		0	69	141.1
Diagnostic Products, Los Angeles, CA) Elmlinger 2004 ³¹² 0.5-6 months 25 Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific	2012313	months			(5.4-7.4)	(IMMULITE 2000,				
Elmlinger 2004 ³¹² 0.5-6 months 25 Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific 4 156 306						Diagnostic Products, Los				
Elmlinger 2004 ³¹² 0.5-6 months 25 Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific 4 156 306										
months chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific	Elmlinger	0.5-6		25			IGF-II used to	6	156	306
immunometric assays (Immulite, Diagnostic Products Corp, Los Assay specific	2004 ³¹²									
(Immulite, Diagnostic Products Corp, Los Assay specific										
Products Corp, Los Assay specific						_				
							Assay specific			
Angeles, CA) unucit useu						Angeles, CA)	diluent used			

Author		Population			ment 6-18 months o	Extraction	-2SD	Mean (ng/ml)	+2SD
ELISA									
Yuksel	12	Males	54		ELISA (Diagnostic		0	82.1	211.1
2011 ²⁶⁵	months				Systems Laboratories Inc)				
Yuksel	12	Females	45		ELISA (Diagnostic		0	125.3	310.9
2011 ²⁶⁵	months	Temares			Systems Laboratories			120.5	310.7
					Inc)				
Radioimm			_	,					
Leger	6 months		12		RIA using polyclonal	Acid	30	102	174
1996 ²⁵¹	7 (1		10		IGF-I antiserum	chromatography	26.0	02.7	1.40.5
Cassio 1998 ²⁴⁸	7 months		10		Nichols Institute	Acid ethanol	26.9	83.7	140.5
1998					Diagnostics, San Juan Capistrano, CA	extraction			
Barton	12		40		Radioimmunoassay.		0	61	136.9
1996 ³¹⁴	months				DSL-6600 Diagnostic				
					Systems Laboratories,				
					Texas.				
Iniguez	12	SGA	50]	Locally developed	With extraction	27.4	67	106.6
2006 ²⁹⁶	months				radioimmunoassay				
Leger	12		37		RIA using polyclonal	Acid	3	73	143
1996 ²⁵¹ Mamabolo	months		116	0.41 (6.5	IGF-I antiserum RIA on the Cobra II	chromatography	0	24.0	02.2
2007 ³¹⁵	months		116	9.4kg (6.5- 12.2)	Gamma Counter.		U	24.8	82.2
2007	monuis			12.2)	(Diagnostic Systems				
					Laboratories Inc,				
					Webster, TX, USA)				
Ong	12	Breastfed	61 boys		Radioimmunoassay	Extracted from		Boys	
2009^{301}	months		57 girls		(Mediagnost,	filter paper using	8	38.8	69.6
					Tubingen, Germany)	acidifying buffer			
								Girls	
							3.6	56	108.4
Ong	12	Formula	92 boys		Radioimmunoassay	Extracted from		Boys	
2009^{301}	months	fed	68 girls		(Mediagnost,	filter paper using	4.8	47.6	90.4
					Tubingen, Germany)	acidifying buffer		Cirlo	
							7.3	Girls 59.9	112.5
Rajaram	12		51	Rirthweight	Radioimmunoassay		46.6	56	65.4
1995 ²⁹⁵	months		51	3.3	(Endocrine Sciences,		40.0	50	05.4
				(2.5-4.1)	Calabasas Hills, CA)				
Juul	1-2 years		44		Radioimmunoassay	Acid-ethanol	29	80	157
1994 ³¹⁶	-				(Mediagnost,	extraction and			
	L			<u> </u>	Tubingen, Germany)	cryoprecipitation.		L	<u> </u>
IRMA	112	læ.	140	ı	lr 1: .:		10	174	151.0
Low 2001 ³⁰⁴	12	Term,	48		Immunoradiometric		0	74	151.9
2001	months	AGA			assay (Diagnostic Systems Laboratories				
					Inc, Webster, TX,				
					USA). 2 site assay.				
Low	18	Term,	48		Immunoradiometric		0	104	233.8
2001 ³⁰⁴	months	AGA			assay (Diagnostic				
					Systems Laboratories				
					Inc, Webster, TX,				
					USA). 2 site assay.				1
Hyun	1-2 years	Males	35		IRMA (Immunotech,		0	57.9	123
		1	1	1	Marseilles, France)	1	1	1	1
2012^{268}	1.0	г .	2.5				^	00 1	102.0
2012 ²⁶⁸ Hyun 2012 ²⁶⁸	1-2 years	Females	25		IRMA (Immunotech,		0	92.4	183.8

Table 2.2.4 (continued)

Author	Timing	Population	Number	Weight	Assay	Extraction	-2SD	Mean (ng/ml)	+2SD			
Chemiluminescent immunometric assays												
Larnkjaer 2009 ³¹⁷	9 months	Formula Feeding	27		Automated chemiluminescent assay (IMMULITE 1000, DPC Biermann GmbH, Bad Nauheim, Germany)	Pretreatment with acid	20.2	58.4	96.6			
Elmlinger 2004 ³¹²	6- 12months		19		Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Angeles, CA)	IGF-II used to block IGFBP binding sites Assay specific diluent used	38	140	242			
Larnkjaer 2009 ³¹⁷	12 months	Formula Feeding	28		Automated chemiluminescent assay (IMMULITE 1000, DPC Biermann GmbH, Bad Nauheim, Germany)	Pretreatment with acid	7.8	54	100.2			
Brabant 2003 ³¹⁸	1-2 years		77		Two site chemiluminescent immunoassay (Nichols Advantage; Nichols Institute Diagnostics, Calif, USA)	Acidification Incubated with excess IGF-II and acridiumester labeled antibody	2	58	114			
Elmlinger 2004 ³¹²	1-2 years		27		Two site, solid phase chemiluminescent enzyme immunometric assays (Immulite, Diagnostic Products Corp, Los Angeles, CA)	IGF-II used to block IGFBP binding sites Assay specific diluent used	36	134	232			

2.2.4 DISCUSSION

Assay variability in GH and IGF-I measurement can present a significant challenge in the comparison of results between studies and in clinical interpretation. This review highlights the wide variability in reported measurements between studies related both to differences in the study population and in assays used.

The diagnosis of GH deficiency in the paediatric population can be challenging. In the absence of a robust test for diagnosing GH deficiency, paediatric endocrinologists vary in practice^{62, 135, 136}. Serum IGF-I levels are stable and random values can be clinically useful in this evaluation, with a sensitivity of 70-90% in the detection of isolated GH deficiency³¹⁹. The GHST is commonly used, but peak GH response to stimulation testing is influenced by assay

methodology²³³. Despite this, almost half of physicians who rely on stimulation testing do not know what type of GH assay is utilised by their laboratory¹³³.

Clinical, auxological and radiological data can also guide the clinician in diagnosing GH deficiency⁸, but these can be less useful in infants and small children. Children with isolated congenital GH deficiency have a normal birth weight and length, and often present only later with growth failure²¹⁹. Hypoglycaemia can be problematic in this population, and may be the only clinical feature^{13, 46, 212}.

GH and IGF-I measurements currently play a central role in our evaluation of children with possible GH deficiency. In this review, we have highlighted that there is wide variability in reported means and standard deviations for IGF-I and GH concentrations in this age group, and this adds to the difficulty in diagnosing GHD in infants.

2.2.5 CHAPTER CONCLUSION

Assay variability and interference can contribute to difficulty in using IGF-I and GH measurements to guide clinical care, and can cause misclassification of results as being abnormal in some cases. This review has demonstrated wide variability in the reported concentrations of IGF-I in this age group. In the following chapters, I will explore a new modality of measuring IGF-I that is less likely to be subject to the interference seen with current assays.

CHAPTER 2.3: MASS SPECTROMETRY

Publication

Hawkes CP, Schnellbacher S, Singh RJ, Levine MA. 25-hydroxyvitamin D can interfere with a common assay for 1,25-dihydroxyvitamin D in vitamin D intoxication. J Clin Endocrinol Metab. 2015;100(8):2883-9 (Appendix G).

In the previous chapter, I have reviewed the reference data for IGF-I concentrations in infancy and demonstrated wide variation across studies. IGFBP interference may contribute significantly to these differences between assays. In this chapter, I will provide an overview of the mechanisms of this interference in competitive and non-competitive assays. I will then explore the potential of mass spectrometry to overcome interference. This will provide the background for the next chapter, where I will describe reference data for IGF-I concentrations in infants using mass spectrometry.

2.3.1 THE EFFECT OF INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN INTERFERENCE ON INSULIN-LIKE GROWTH FACTOR-I MEASUREMENT

Competitive immunoassays rely upon serum IGF-I competing with a labeled antigen for an antibody (Figure 2.3.1A). Measurement of the antibody-labeled antigen complex allows for measurement of serum IGF-I using this technique. IGFBP binding to IGF-I can interfere with competitive immunoassays in two ways. When bound to an IGFBP, IGF-I may not bind to the antibody and give a falsely low measurement (Figure 2.3.1B). IGFBPs in serum may also bind to the labeled antigen and cause the opposite effect, i.e. result in a falsely high measurement of IGF-I (Figure 2.3.1C).

Non-competitive assays require the binding of labeled antibodies to specific epitopes on the protein of interest (Figure 2.3.2A). The presence of binding proteins bound to IGF-I can prevent epitope recognition, and consequently cause the measurement to be erroneously low (Figure 2.3.2B).

Separation of IGF-I from its binding proteins is necessary to overcome the unreliable measurements caused by IGFBP interference, although it is not generally possible to remove all IGFBPs from solution. As discussed in Chapter 2.2, the most common approach to this is the disassociation of IGF-I from IGFBPs through acidification, followed by separation using gel chromatography or ethanol precipitation³²⁰. Saturation of binding proteins is often performed by the addition of excess IGF-II or other IGFBP blocking agents.

It is important to note that performing any separation technique results in the measurement of total IGF-I and does not distinguish free from total IGF-I concentrations. The clinical utility of free IGF-I measurement is unknown and total IGF-I is currently considered to be appropriate for clinical use^{321, 322}.

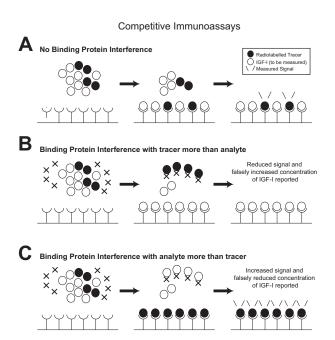


Figure 2.3.1: The principles of competitive immunoassays in IGF-I measurement, and the potential effects of IGFBP interference

Non-Competitive Immunoassays A No Binding Protein Interference Tracer IGF-1 (to be measured) IGF-1 detecting antibody Measured Signal Feduced signal and falsely reduced concentration of IGF-1 reported

Figure 2.3.2: The principles of non-competitive immunoassays in IGF-I measurement, and the potential effects of IGFBP interference

Numerous competitive and non-competitive IGF-I assays are currently available, and most are calibrated against the WHO 87/518 IGF-I standard³²³. Despite this calibration, differences are seen when assays are compared with each other^{260, 324} and it is thought that these differences are due to variations in sensitivity of each assay to interference from binding proteins³²³.

The following study highlights the potential of mass spectrometry to overcome interfering substances and provide more accurate measurements than RIAs. This study prompted our move towards studying IGF-I measured by this modality in subsequent chapters.

2.3.2 Mass Spectrometry is Less Sensitive than Immunoassays to Interference

My impetus for exploring the potential of mass spectrometry to overcome interference comes from a study I completed in using this modality in children with vitamin D intoxication (Appendix G)²¹¹. At the Children's Hospital of Philadelphia, we saw two patients with elevated serum levels of 25-

hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)₂D) when measured by RIA.

To become fully active, vitamin D must undergo two modifications by cytochrome P450 (CYP) enzymes. The first step is 25-hydroxylation of parent vitamin D_2 and D_3 by hepatic microsomal CYP2R1, which generates the prohormones 25-hydroxyvitamin D_3 (25(OH) D_3) and 25-hydroxyvitamin D_2 (25(OH) D_2), respectively³²⁵. A second hydroxylation occurs in the kidney where CYP27B1, a 1α -hydroxylase located in mitochondrion, converts 25(OH)D to the fully active form of the vitamin, 1,25-dihydroxyvitamin D (1,25(OH) $_2$ D) (Figure 2.2.3). 1,25(OH) $_2$ D is a potent hormone, and binds with high affinity to the vitamin D receptor (VDR), which mediates most physiological actions of vitamin D via modulation of the transcription of target genes.

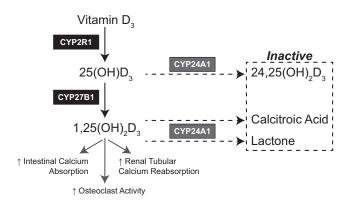


Figure 2.3.3: Overview of Vitamin D metabolism

The conversion of 25(OH)D to 1,25(OH)₂D by CYP27B1 is tightly regulated by calcium, parathyroid hormone (PTH) and fibroblast growth factor 23. Hence, as serum levels of 25(OH)D increase excessively there is a parallel decrease in levels of serum 1,25(OH)₂D, a phenomenon that reflects suppression of PTH by hypercalcaemia and a corresponding loss of PTH-dependent stimulation of CYP27B1 activity³²⁶.

Thus, elevated levels of 1,25(OH)₂D on RIA measurement seen in our two patients did not make sense. We subsequently used a LCMS assay to measure

 $1,25(OH)_2D$ in these patients and demonstrated that $1,25(OH)_2D$ levels were not elevated (Table 2.3.1).

Table 2.3.1: Clinical characteristics and laboratory findings in two adolescents presenting with 25(OH)D intoxication

	Reference Range	Case 1	Case 2
Age, Sex		15 years, male	17 years, female
Background Diagnoses		Well child	Ocular Albinism, Autism
Calcium (mg/dL)	8.8 - 10.1	13.8	11.3
Phosphorous (mg/dL)	2.9 - 5.4	4.2	4
Albumin (g/dL)	3.7 - 5.6	4.3	4.1
Parathyroid Hormone (pg/ml)	9 - 52 <3 <5.5		<5.5
Creatinine (mg/dL)	0.6 - 1.3	3.1	0.48
PTHrP (pmol/L)	<2	<2	<2
CYP24A1 gene		Normal	Normal
25(OH)D ₃ (ng/ml) LCMS	30 - 80	685	143
1,25(OH)D ₃ (pg/ml) RIA	15 - 75	>230	>190
1,25(OH)D ₃ (pg/ml) LCMS	25 – 86	45	68

This experience prompted me to explore the role of LCMS assays in other areas where assay interference may compromise the utility of RIA, notably IGF-I and –II measurement.

2.3.3 CHAPTER CONCLUSION

The majority of assays currently used to measure IGF-I concentrations are RIAs. Competitive and non-competitive immunoassays are subject to unpredictable interference by IGFBPs when used to measure IGF-I concentration. In this chapter, I have described my experience of using LCMS to overcome interference of 25(OH)D in the measurement of 1,25(OH)₂D with RIA. In the following chapter, I will explore the potential of a novel LCMS assay in measuring IGF-I and –II concentrations.

CHAPTER 2.4: CORRELATION OF INSULIN-LIKE GROWTH FACTOR-I AND —II CONCENTRATIONS MEASURED BY MASS SPECTROMETRY AT BIRTH WITH GROWTH FROM BIRTH TO TWO MONTHS

Publication

Hawkes CP, Murray DM, Kenny LC, Kiely M, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A. Correlation of insulin-like growth factor-I and —II concentrations at birth measured by mass spectrometry and growth from birth to two months. Horm Res Paediatr. 2018 Jan. doi 10.1159/000486035 [Epub ahead of print] (Appendix H).

Presentation

Hawkes CP, Murray DM, Kenny LC, Kiely M, Sikora K, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A. Measurement of IGF-I and –II concentrations at birth by mass spectrometry in a large birth cohort: correlation with anthropometry. Pediatric Endocrine Society, September 2017 (Poster) (Appendix I).

In the preceding chapters, I have described wide variability in GH and IGF-I concentrations in infancy and summarised the mechanisms for interfering substances in affecting these results. At birth, IGF-I concentrations are low and serum IGFBP concentrations vary. Consequently, if clinically significant assay interference occurs, newborn infant IGF-I measurement would be the age group with the most imprecise measurements.

2.4.1 BACKGROUND

IGF-I and –II play an important role in prenatal growth, as evidenced by mutations affecting IGF-I^{152, 327} and IGF-II^{328, 329} signaling significantly reducing birth size. The magnitude of this effect is up to 60% in mouse models^{330, 331}. Importantly, congenital GHD is associated with normal size at birth³³², demonstrating that prenatal IGF-I and –II regulation is less dependent on GH production³³³ than in the older child.³³⁴

Numerous factors outside of the GH/IGF axis may influence prenatal IGF-I and –II production. Umbilical cord blood samples from female infants have higher IGF-I concentrations than from males ³³⁵. Maternal factors such as cigarette smoking ³³⁶, obesity ³³⁷, and preeclampsia ^{279, 338} may also affect IGF concentrations, although most studies to date have focused on IGF-I and not IGF-II measurements. Furthermore, small studies have demonstrated a correlation between cord IGF-I concentration at birth and birth size ^{221, 262, 280}, but the association for IGF-II is reported to be weak or absent ^{221, 277, 339}.

Over 90% of circulating IGF-I and -II is bound to IGFBPs, prolonging their serum half-life and regulating their bioavailability. Prior to measurement, IGF-I and -II must be separated from these IGFBPs, and extraction methods such as acid ethanol precipitation are commonly used ³²⁰. This approach recovers only 75-80% of the IGF-I complexed to IGFBPs²³⁶, and may affect the reliability of the reported measurements. This interference is likely to be more problematic in infants, who have lower IGF concentrations and higher concentrations of some of the IGFBPs than older children¹²⁴. For example, IGFBP-1 concentrations can be increased by the stress of labour^{340, 341}, or in pregnancies complicated by preeclampsia²⁷⁹, and it is likely that interference will significantly affect IGF measurement accuracy when susceptible assays are used. Differences in IGF-I measurements also have been attributed to their reliance on different reference populations, resulting in assay-specific reference ranges. A study of six IGF-I immunoassays using the same healthy population-based reference samples still yielded different assay-specific reference ranges with variations most noticeable at higher IGF-I concentrations²⁶⁰.

LCMS assays are now available to measure IGF-I and –II concentrations³⁴², a method that is less susceptible to IGFBP interference even in the presence of supra-physiological levels of IGFBP-3²³⁸. Isotopically labeled IGF-I can be used with the LCMS assay to adjust for the IGF-I and –II lost in acid ethanol extraction and chromatography, further improving the accuracy of this method.

2.4.2 AIM

The aim of this study was to explore the relationships of age- and gestational age-corrected umbilical cord IGF-I and -II concentrations measured at birth by LCMS with weight, length, and occipitofrontal head circumference (OFC) at birth and two months. As a secondary objective, we aim to describe gestational age- and sex-specific reference data for IGF-I and IGF-II concentrations at birth using an LCMS assay.

2.4.3 METHODS

2.4.3.1 The SCOPE Pregnancy Study and Cork BASELINE StudyThe SCOPE pregnancy study³⁴³ is a multicentre cohort study that recruits primiparous, low risk women at 15±1 weeks' gestation. The aim of the SCOPE study is to develop biomarkers for the prediction of pre-eclampsia, fetal growth restriction and pre-term birth in a low risk population. Therefore the specific exclusion criteria were: multiple pregnancies, known major fetal anomalies, pre pregnancy essential hypertension, diabetes, renal disease, systemic lupus erythematous, antiphospholipid syndrome, major uterine anomaly, cervical cone biopsy, ≥3 miscarriages and treatment with low dose aspirin, calcium intake >1g/24 hours, low molecular weight heparin, fish oil and antioxidants.

The Cork BASELINE (Babies After Scope; Establishing the Longitudinal Impact using Neurological and nutritional Endpoints) study is a longitudinal birth cohort study established as a follow on to the SCOPE pregnancy study in Ireland. Women recruited to the SCOPE Ireland study were approached at 20 weeks' gestation and recruited to the BASELINE study. In addition, firstborn healthy children born between August 2008 and August 2011 were eligible for this study. A detailed description of this cohort has been reported previously³⁴⁴. The Clinical Research Ethics Committee of the Cork Teaching Hospitals approved this study.

2.4.3.2 Subjects

For this study, all children born between 37 and 42 weeks gestation were included. Gestational age was determined by the first day of the last menstrual period. If fetal ultrasound was performed before 16 weeks' gestation and a discrepency of greater than 6 days was noted, ultrasonographic gestational age was used. Similarly, gestational age was determined by ultrasound if performed up to 21 weeks' gestation and a discrepency of 10 days was noted. Smoking status during the first trimester was ascertained by self-report during pregnancy.

2.4.3.3 Anthropometry

Weight, length, and OFC were measured on the first day of life using standardised protocols. A Harpenden neonatometer (Harlow Healthcare, London, UK) was used to measure supine length, and naked weight was measured using the Seca 384 Baby Scales (Seca, Hamburg, Germany). Sex- and gestational agespecific z-scores for weight, length, and OFC were generated from the United Kingdom reference charts³⁴⁵ using Stata 12.0 (StataCorp, College Station, TX, USA)³⁴⁶. Subjects were measured again at two months of age using the same standardised protocols.

2.4.3.4 Sample collection and storage

Umbilical cord blood samples were collected at birth and processed to serum within three hours of collection. They were stored at -80°C until analysis.

2.4.3.5 Mass Spectrometry

IGF-I and –II concentrations were measured by Quest Diagnostics (San Juan Capistrano, CA, USA) using LCMS^{238, 241}. Isotopically labeled IGF-I was added to the sample as an internal standard for IGF-I and -II. IGF-I and -II were released from their binding proteins by an acid ethanol extraction followed by automated online extraction and analytical chromatography using an Aria TX-4 (Thermo-Fisher, San Jose, CA, USA). IGF-I and -II were quantitated using a time-of-flight mass spectrometer using narrow mass extraction of full-scan

spectra. The internal standard was used to adjust for any procedural losses during extraction.

Performance characteristics of this assay have been previously described^{238, 241}. For IGF-I using quality control samples the inter-assay coefficient of variation and percent recovery were 5% and 104% at 100 ng/ml, 5.2% and 103% at 400 ng/ml and 3.5% and 103% at 700 ng/ml. For IGF-II, the inter-assay coefficient of variation and percent recovery were 6.1% and 102% at 200 ng/ml, 3.2% and 99% at 500 ng/ml and 5.3% and 99% at 1200 ng/ml. Similar performance was seen with serum pools^{238, 241}.

2.4.3.6 Statistical Analysis

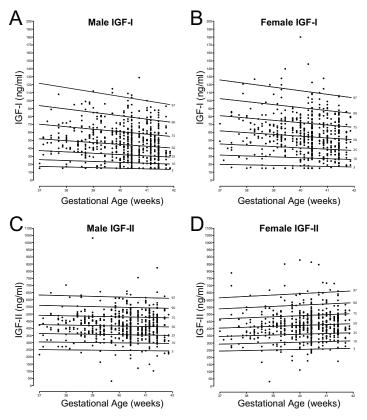
The lower limit of detection of IGF-I using this assay is 16 ng/ml; samples with concentrations below this limit were assigned a value of 15 ng/ml. Similarly, the lower limit of detection of IGF-II was 32 ng/ml; samples with concentrations below 32 ng/ml were assigned a value of 31 ng/ml.

Sex-specific reference curves for IGF-I and -II concentrations were generated using LMS Chartmaker Pro (Harlow Printing Ltd., Tyne and Wear, UK). The LMS method^{347, 348} uses a Box-Cox transformation to obtain normality. Three distinct curves were generated for skewness, median, and variability. These were combined in one graph, with smoothening of changes over time. They were then adjusted until fit of the curve was visually optimised as per software recommendations. IGF-I and -II concentrations were then converted to age- and sex-specific z-scores from this population for subsequent analysis.

Data analyses were performed using SPSS 22.0 (IBM, New York, NY, USA). Normally distributed data were described as mean (SD) and compared using independent-sample t-tests. Linear regression analysis was used to determine the relationship between continuous variables.

2.4.4 RESULTS

Eleven hundred term infants (563 male) met the inclusion criteria for this study. Characteristics of the population are shown in Table 2.4.1.


Table 2.4.1: Characteristics of the infants and pregnancies included in this cohort. Values of all

continuous variables are presented as mean (SD).

	Male	Female	All
Number of infants, n	563	537	1100
Gestational age, weeks	40.1 (1.1)	40.2 (1.1)	40.2 (1.1)
Weight, kg	3.55 (0.47)	3.48 (0.44)	3.52 (0.45)
Length, cm	50.7 (2.1)	50.2 (1.9)	50.4 (2)
Head circumference, cm	35.1 (1.4)	34.6 (1.3)	34.9 (1.4)
Maternal age, years	30.1 (4.6)	30 (4.2)	30.1 (4.4)
Maternal BMI at 15 weeks, kg/m ²	24.8 (4.1)	24.9 (4.2)	24.9 (4.1)
Caucasian, n	555	527	1082
Maternal smoking during first trimester, n	145	132	277
IGF-I, ng/ml	48.5 (23.2)	56.7 (23.9)	52.5 (23.9)
IGF-II, ng/ml	420.8 (95)	428 (101.4)	424.3 (98.2)

The mean (SD) IGF-I concentration was 52.5 (23.9) ng/ml (males 48.5 [23.3] ng/ml, females 56.7 [23.9] ng/ml). The mean (SD) IGF-II concentration was 424.3 (98.2) ng/ml (males 420.8 [95] ng/ml, females 428 [101.4] ng/ml). There was a significant difference between males and females in IGF-I (p < 0.001) but not in IGF-II concentrations (p = 0.2).

Linear regression analysis showed a slight reduction in IGF-I concentrations with increasing gestational age in both males (regression coefficient [SEM] -0.005 [0.002], p = 0.01) and females (regression coefficient [SEM] -0.004 [0.002], p = 0.03). Gestational age was not associated with IGF-II concentrations in either males (regression coefficient [SEM] 0 [0], p = 0.4) or females (regression coefficient [SEM] 0.001 [0], p = 0.06). IGF-I and -II concentrations in term male and female infants according to gestational age are presented in Figure 2.4.1.

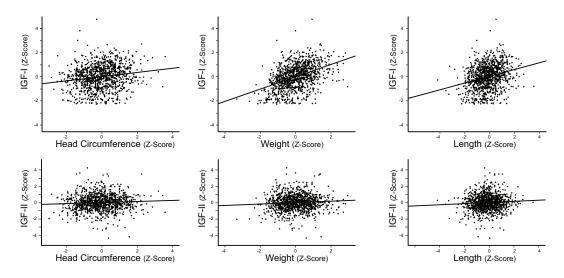


Figure 2.4.1: Sex-specific centile charts for IGF-I (A and B) and IGF-II (C and D) concentrations in term infants in a healthy population-based cohort, according to gestational age from 37 to 42 weeks' gestation.

Correlation with Anthropometry and Early Growth

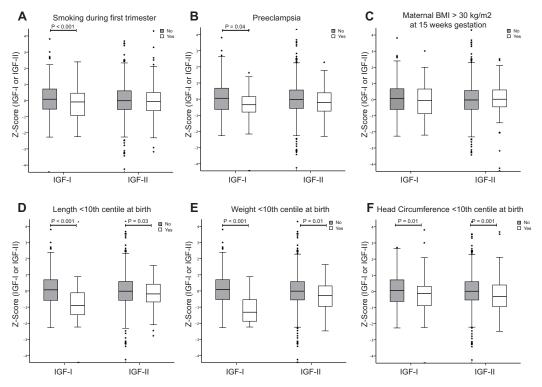
Z-Scores for gestational age- and sex-specific IGF-I concentrations at birth correlated with weight, length, and OFC z-scores at birth. The strongest association was with birth weight (R²=0.19). Length and weight z-scores at age two months correlated significantly with IGF-I concentrations at birth, but the strength of the association was lower than at birth. Over two months, weight R² decreased from 0.19 to 0.02 and length R² decreased from 0.07 to 0.04. Although IGF-II concentrations correlated significantly with weight, length, and OFC at birth, this accounted for <1% of the variance seen in each of these parameters (Table 2.4.2).

Both IGF-I and -II concentrations at birth were associated with length at age two months (p < 0.001 and p = 0.04 respectively), while only IGF-I concentration at birth was associated with weight at two months (p < 0.001). The rates of change in OFC and weight z-scores over the first two months of life were negatively associated with IGF-I concentrations at birth. IGF-II concentrations at birth were not associated with growth trajectories in weight, length, or OFC over the first two months (Figure 2.4.2).

Figure 2.4.2: The relationship between IGF-I and –II z-scores at birth with head circumference, weight and length z-scores at birth.

An increase in weight, OFC, and length z-score of 1 or more over the first two months was seen in 198, 250, and 343 infants respectively. Those with an increase in weight z-score of 1 or more had significantly lower mean IGF-I z-scores at birth (-0.6 vs 0.1, p<0.001), but not IGF-II z-scores (-0.06 vs 0.02, p = 0.4). Similarly, infants with an increase in OFC z-score during the first two months tended to have lower IGF-I z-scores (-0.2 vs 0.05, p = 0.003) but not IGF-II z-scores (-0.08 vs 0.02, p = 0.2). No difference was seen in IGF-I (p = 0.9) or IGF-II (p = 0.9) z-scores at birth in infants who had an increase in length z-score of 1 or more. Lower mean (SD) birth weight z-scores were seen in infants with increases in z-scores of 1 or more in the first two months for weight

(-0.5 vs 0.1, p < 0.001), length (-0.08 vs 0.09, p < 0.001) and OFC (-0.3 vs 0.1, p < 0.001).


Table 2.4.2: The relationship between sex- and gestational age-corrected IGF-I and IGF-II z-scores and growth parameters at birth and 2 months, and growth trajectory from birth to 2 months.

Length, weight and head circumference are presented as sex-, age- and gestation corrected z-scores. For this analysis, IGF-I and –II are the dependent variables and anthropometric measures are independent variables.

	IGF-I			IGF-II		
	R^2	Regression coefficient (SEM)	p	R ²	Regression coefficient (SEM)	p
Z-Scores at Birth						
Length	0.07	0.28 (0.03)	< 0.001	0.004	0.07 (0.03)	0.03
Weight	0.19	0.51 (0.03)	< 0.001	0.005	0.09 (0.04)	0.01
Head Circumference	0.028	0.17 (0.03)	< 0.001	0.004	0.07 (0.03)	0.04
Z-Scores at 2 months						
Length	0.04	0.21 (0.03)	< 0.001	0.004	0.07 (0.03)	0.04
Weight	0.022	0.15 (0.03)	< 0.001	0.002	0.05 (0.03)	0.16
Head Circumference	0.001	0.04 (0.04)	0.24	0.003	0.06 (0.04)	0.06
Delta z-score from birth to 2 months						
Length	0.002	-0.05 (0.04)	0.14	0.001	0.01 (0.04)	0.8
Weight	0.07	-0.31 (0.04)	< 0.001	0.001	-0.03 (0.04)	0.4
Head Circumference	0.02	-0.17 (0.04)	< 0.001	0.001	-0.02 (0.04)	0.5

Factors influencing IGF concentrations

Of the 1100 infants included in this study, 40 had birthlength and 57 had birthweight below the 10^{th} percentile. In those with birthlength below the 10^{th} percentile, IGF-I z-scores (-0.7 vs 0.1, p <0.001) and IGF-II z-scores (-0.3 vs 0, p 0.03) at birth were lower (Figure 3D). This was also seen in infants with birthweight below the 10^{th} percentile (IGF-I z-scores -1.2 vs 0.07, p < 0.001; IGF-II z-scores -0.4 vs 0, p = 0.01) (Figure 2.4.3).

Figure 2.4.3: The effect of smoking (A), preeclampsia (B) and maternal obesity (C) on umbilical cord IGF-I and –II age- and-sex specific z-scores. The association of birth length (D), birth weight (E) and birth length and head circumference (F) below the 10th centile with cord IGF-I and –II concentrations are also shown.

Maternal cigarette smoking during the first trimester and pre-eclampsia were associated with lower mean (SD) cord IGF-I concentrations (p < 0.001 and p = 0.04 respectively) but not IGF-II concentrations (p=0.2 and p=0.5 respectively). Maternal BMI > 30 kg/m² (n = 137) at 15 weeks' gestation was not associated with increased umbilical cord IGF-I or –II concentrations (p = 0.4 and 0.5 respectively) (Table 2.4.3).

Table 2.4.3: Comparison of gestation- and sex-corrected mean (SD) z-scores for IGF-I and –II concentrations at birth, according to maternal smoking, maternal obesity, pre-eclampsia, and

length, weight and OFC percentiles.

8. , 8	IGF-I z-score			IGF-II z-score		
	Yes	No	p	Yes	No	p
Smoking during	-0.2 (1)	0.07	< 0.001	-0.07 (1)	0.01	0.2
first trimester	n=277	(0.99)		n=277	(1.04)	
		n=823			n=823	
Maternal BMI >	-0.07	0.01	0.4	0.05	-0.02(1)	0.5
$30 \text{ kg/m}^2 \text{ at } 15$	(1.1)	(0.99)		(1.2)	n=963	
weeks' gestation	n=137	n=963		n=137		
Pre-eclampsia	-0.31	0.01(1)	0.04	-0.13	-0.01	0.5
	(0.85)	n=1066		(1.01)	(0.01)	
	n=34			n=34	n=1066	
Birthlength <10 th	-0.79	0.04(1)	< 0.001	-0.33	0 (1.02)	0.03
percentile	(0.87)	n=1052		(0.99)	n=1052	
	n=48			n=48		
Birthweight <10 th	-1.17	0.07	< 0.001	-0.35	0.01	0.01
percentile	(0.77)	(0.97)		(0.94)	(1.03)	
	n=59	n=1041		n=59	n=1041	
OFC <10 th	-0.21	0.03(1)	0.01	-0.31	0.03(1)	0.001
percentile	(1.01)	n=961		(1.2)	n=961	
	n=139			n=139		

2.4.5 DISCUSSION

We have described IGF-I and –II concentrations at birth using a LCMS assay²³⁸, thus generating accurate measurements at an age where concentrations tend to be low. Our large cohort of well-characterised term infants allowed us to investigate the relationship between these measurements and birth size and early infant growth. Consistent with previous studies using other assays, IGF-I and –II concentrations at birth were associated with weight, length, and OFC at birth. At age two months, weight and length were associated with birth IGF-I concentrations whereas only length was associated with birth IGF-II concentrations. Low IGF-I concentrations at birth were associated with accelerated increases in weight and OFC z-scores over the first two months. Maternal smoking and pre-eclampsia were associated with lower cord IGF-I but not IGF-II concentrations.

The correlation of an infant's birth weight and length with IGF-I concentration has been shown previously in smaller studies using RIAs^{221, 277, 278, 336, 349}. The relationship between birth weight and IGF-II levels are less well defined, with

some studies showing no correlation^{349, 350}. Our results support the findings of other studies, where a weak association has been shown^{221, 351}. This weak association between cord IGF-II and neonatal anthropometry is surprising given the significant effect of mutations affecting IGF-II signaling on mouse³³⁰ and human^{328, 329} size at birth. Possible explanations for this include a potential neutralising effect of circulating IGF-II receptors on the bioavailability of circulating IGF-II²²¹. This interference may be of clinical significance but not affect IGF-II measurement by LCMS. Alternatively, IGF-II may be more important in regulating growth prior to the third trimester^{352, 353}, and IGF-II concentrations at birth may be clinically less significant.

Infants with lower IGF-I concentrations at birth had a greater change in weight and OFC over the first two months of life. The mechanism of this effect is unclear, but this finding may be related to low IGF-I concentrations being a marker of nutritional status¹⁹⁶. Thus, this may represent "catch-up" growth in infants born small for gestational age who initially have lower IGF-I concentrations. An inverse relationship is also seen between early growth and cord leptin, another marker of nutritional status at birth³⁵⁴. Birth IGF-II concentrations do not correlate with early infant growth in any of these parameters, further supporting the interpretation that the role of IGF-II in fetal growth is less clinically significant by the time of birth.

Maternal smoking has been shown previously to be associated with reduced cord IGF-I concentrations in females³³⁶. However, we have shown that this effect is seen both in male and female infants. The interplay between IGF-I and –II and placental function may provide insight into this relationship. Placental vasculature is affected by maternal smoking, with reduced length of villous capillaries and decreased trophoblast volume³⁵⁵. This may affect nutrient availability to the fetus and subsequently reduce growth parameters and IGF-I concentrations. IGF-I and –II are both expressed in chorionic and basal plates of the placenta³⁵⁶, and thus may play a key role in regulating placentation.

The main strengths of this study in evaluating the relationship between IGFs and infant size are the large number of healthy term infants included, and the use of an LCMS assay. This assay has been shown previously to be free from IGFBP interference when measuring IGF-I and IGF-II concentrations²³⁸. A limitation of this study is that the Cork BASELINE birth cohort was a relatively homogenous population of Caucasian Irish healthy term infants. Consequently, it is not known if the reference data can be applied directly to other patient populations. This may be particularly important when considering the significant effect of smoking during the first trimester on cord IGF-I concentrations, as maternal smoking was seen in a quarter of included pregnancies. IGF-I concentrations may be marginally higher in populations with lower rates of cigarette smoking, such as America where 13% of all females smoke³⁵⁷. In addition, our findings are only applicable to term infants and it is not known if the associations are also seen in preterm infants. Not all infants in this cohort had cord blood available for analysis and it is not known if this introduced bias to our study, although this is unlikely as our findings are generally consistent with previous smaller studies. A small number of subjects had IGF-I and -II concentrations below the detectable limits of the assay, and this may also have influenced our results.

In conclusion, this study has provided reference data for IGF-I and IGF-II concentrations at birth in term infants, as measured by LCMS. These data will be useful clinically where prenatal defects of IGF production are suspected, and may support future research in evaluating the prenatal role of these growth factors. We recommend using the LCMS assay when measuring IGF-I and -II in conditions where IGFBP interference may significantly affect interpretation of results, particularly in young infants where IGF concentrations are generally low¹²⁴. Using this assay, we have corroborated many of the previously known associations between IGF-I concentrations and size at birth, demonstrated a weaker but significant association between IGF-II and size at birth and shown a negative association between IGF-I measurements at birth and change in weight or OFC over the first two months of life.

2.4.6 CHAPTER CONCLUSION

The measurement of IGF-I and, to a lesser extent, IGF-II can give insight into GH production and action and impaired IGF production can affect growth. In Section 1, I highlighted challenges in demonstrating sufficient GH production through stimulation testing. Here, I have focused on imperfections in IGF-I measurement and explored the potential of LCMS to improve accuracy. Interestingly, I have not demonstrated significant improvement in correlating IGF-I concentrations with prenatal growth than have been previously described with RIA. Thus, it is possible that under normal circumstances, IGF-I measurement by LCMS does not provide an advantage over RIA. However, proceeding to LCMS may be a reasonable next step in evaluating the GH/IGF-I axis where RIA measurement is suspected to be incorrect.

SECTION 3

GENETIC APPROACHES TO DISORDERS OF THE GROWTH HORMONE / INSULIN-LIKE GROWTH FACTOR-I AXIS

CHAPTER 3.1: INTRODUCTION

Sections 1 and 2 of this thesis focused on the clinical aspects of evaluating children with short stature. The focus was on optimising measurement of GH secretory capacity and serum IGF-I concentrations, with a view to improving the diagnostic evaluation of children with suspected GHD. In this section, I will focus on another clinical aspect of childhood growth and the GH/IGF-I axis. Specifically, I will describe studies aimed to identify and investigate novel genetic disorders of GH/IGF-I production and signaling.

Monogenic causes of isolated GHD, multiple pituitary hormone deficiencies and disordered GH/IGF-I signaling have been described³⁵⁸, but many genetic aetiologies of short stature remain to be discovered. Complicating the search for pathogenic mutations and novel of mechanisms of disease is the high prevalence of polymorphisms of unknown or limited clinical significance. Utilisation of established genomic databases, characterised cohorts with described genetic data, and inter-institutional collaborations are often required to establish the significance of previously unknown mutations. In addition to population and clinical data, laboratory-based functional evaluation of the *in vitro* relevance of new mutations is also critical.

I will begin this section by providing an overview of the GH/IGF-I signaling pathway. I will then describe two studies in which we have tried to identify novel mechanisms of disease. Note that, given the large-scale nature of genetic studies, multi-centre collaborations were involved in both studies. Where relevant, I will focus on my specific contribution while giving an overview of the collaborative work.

3.1.1 GROWTH HORMONE SIGNALING

The Growth Hormone Receptor (GHR) is a homodimeric transmembrane protein that is classified as a type 1 cytokine receptor. This consists of an extracellular

domain (ECD) connected to a helical transmembrane domain and an intracellular domain, which contains Box 1 and Box 2 motifs. The extracellular domain contains 267 amino-acids and is encoded by exons 2-7 of the GHR gene. The transmembrane domain contains 24 amino acids and is encoded by exon 8 and the intracellular domain contains 350 amino acids and is also encoded by exon 8.

It was previously thought that GH binding activated the GHR through dimerisation of GHR monomers on the cell membrane. However, it has been shown that GHR dimers exist on the cell surface in the absence of GH binding³⁵⁹. One GHR monomer binds with strong affinity to a site on the GH molecule, while the other monomer binds more weakly. This results in relative rotation of one of these monomers³⁵⁹, leading to repositioning of the intracellular domains and association of the intracellular Box 1 and Box 2 motifs with Janus Kinase (JAK) 2³⁶⁰ (Figure 3.1.1).

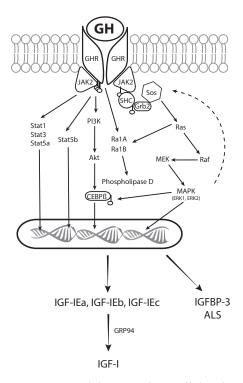


Figure 3.1.1: Growth hormone intracellular signaling

The intracellular domain does not have tyrosine kinase activity, but can bind to JAK2. JAK2 phosphorylates tyrosine residues on the intracellular domain of the

GHR. Phosphorylation of at least three of the seven tyrosines on the intracellular domain of the GHR (Y516, Y548, Y609) is essential for Signal Transducer and Activator of Transcription (STAT) 5b signaling³⁶¹. In addition to its kinase role in initiating the signaling pathway, JAK2 is also important for GHR stability and it reduces endosomal and lysosomal degradation of the GHR³⁶². GH predominantly acts through phosphorylation of JAK2, but does also cause phosphorylation of JAK1³⁶³ and JAK3³⁶⁴. The phosphorylated intracellular GHR and JAK2 are docking sites for intracellular signaling molecules.

Signal Transducer and Activator of Transcription (STAT) 5b Pathway

The phosphorylated intracellular tyrosines on the GHR recruit STAT5b, which docks via its Src Homology (SH)2 domain. This tyrosyl-phospho-STAT5b complex subsequently forms a homodimer and translocates to the nucleus, where STAT5b-dependent genes are expressed. These include IGF-I, IGFBP3, and ALS. Non-phosphorylated STAT proteins also exist as dimers and can be transcriptionally active at different genes to those targeted by phosphorylated forms³⁶⁵.

STAT1 and STAT3

STAT1 and STAT3 pathways are both initiated by GH binding to the GHR, independent of the critical tyrosine residues required for STAT5b signaling^{361, 366}. The specific roles of these pathways in growth are not clear, and they appear to play a more important role in immune function³⁶⁷⁻³⁶⁹.

Ras - Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway

In addition to phosphorylating itself and the intracellular component of the GHR, JAK2 also initiates signaling pathways that involve activation of other tyrosine kinases.

Phosphorylated tyrosine residues on JAK2 and/or the intracellular GHR activate the MAPK signaling pathway through initial binding and tyrosyl

phosphorylation of SHC. This then associates with Grb2³⁷⁰. SOS is then recruited to the cell membrane and this has guanine nucleotide exchange activity, which activates Ras by initiating guanosine triphosphate (GTP) binding. Once activated, Ras activates Raf, which has serine and threonine kinase activity. This phosphorylates MAPK/ERK Kinase (MEK), which phosphorylates Extracellular Signal Regulated Kinases (ERK1 and ERK2)³⁷¹, also known as the MAPK p44/42 pathway. This Raf-MEK-ERK pathway also has negative feedback on SOS through phosphorylation. This causes JAK2 to dissociate from SHC-Grb2, and terminates the signaling pathway.

ERK1 and 2 phosphorylate CEBPβ, a transcription factor that translocates to the nucleus and localises to areas of pericentric heterochromatin and plays a role in regulating MAPK dependent transcription^{372, 373}. Although ERKs can enter the nucleus via nucleosomes in an energy-independent fashion, phosphorylated ERKs enter the nucleus at an increased rate through energy dependent mechanisms³⁷⁴. Here, they play a role in cell adhesion, migration, survival and differentiation. They also modulate metabolism, and transcription³⁷⁴.

GH also stimulates the binding of Ras-related protein (Ral)A and RalB to GTP both through JAK2 dependent (via activated Ras) and independent pathways³⁷⁵. This increases phospholipase D activity and increases phosphatidic acid formation, which then activates MAPK. GH binding to the GHR also activates the Protein Kinase B (AKT) pathway via the phosphoinositide-3-kinase (PI3K) pathway³⁷⁶. This also activates CEBPβ, through release of inhibition from glycogen synthase kinase 3 beta³⁷⁷.

3.1.2 Insulin-like Growth Factor-I Processing and Signaling

IGF-I processing

Alternative splicing of the six exons of the *IGF1* gene on chromosome 12, as well as post-transcriptional modification, result in the production of various IGF-I isoforms. These isoforms differ in the length of their amino terminal polypeptides, and the composition of their extension polypeptides on the carboxy terminal (E-peptides: IGF-IEa, IGF-IEb, and IGF-IEc). Post-translational modification includes cleavage of these E-peptides³⁷⁸. The differential roles of each of these IGF-I isoforms are not well understood, but thought to modulate the different biologic effects of IGF-I. These include cell proliferation, differentiation, migration and survival³⁷⁹.

Glucose-regulated protein 94 (GRP94), a chaperone protein located in the endoplasmic reticulum, plays a key role in the post-translational modification of IGF-I³⁸⁰. This has been shown to be critical for the local production of muscle IGF-I. In the mouse model, there is a significant reduction in muscle mass and circulating IGF-I in the presence of depleted muscle GRP-94³⁸¹.

IGF Receptors

IGF-I signaling is mediated by binding to the IGF-I receptor. The type 1 IGF receptor (IGF-IR) is a heterotetramer comprising two extracellular α and two transmembrane β subunits. It has approximately 50% structural similarity to the insulin receptor (IR), and this is as high as 84% in the tyrosine kinase domain³⁸². Hybrid receptors comprising an IGF-IR $\alpha\beta$ heterodimer and an IR $\alpha\beta$ heterodimer have also been described³⁸³. The type 2 IGF receptor (IGF2R) is a monomeric glycoprotein receptor. Unlike the IGF1R, this does not have a signaling domain but undergoes endocytosis upon binding³⁸⁴. The IGF1R has greatest affinity for IGF-I and the IGF2R for IGF-II. However, the IR, IGF1R and IGF2R can each bind IGF-I, IGF-II and insulin with variable affinities. As this Section of my thesis will include investigations of mechanisms of IGF-I resistance, I will focus on signaling via the IGF-IR.

IGF Signaling via IGF-IR

IGF-IR is a tyrosine kinase receptor, and IGF-I binding results in autophosphorylation of the receptor, as well as phosphorylation of insulin receptor substrate (IRS) proteins and Shc. Phorsphorylated IRS-1 associates with PI3K, Grb2, Syp, and Nck. Shc can also associate with Grb2. Activated Grb2 associates with Sos, an exchange factor that can activate the Ras-MEK-ERK pathways. These protein kinases, as well as PI3K, and the mechanistic target of rapamycin (mTOR) pathways mediate the downstream effects of IGF-I, including phosphorylation of transcription factors and gene expression^{385, 386} (Figure 3.1.2).

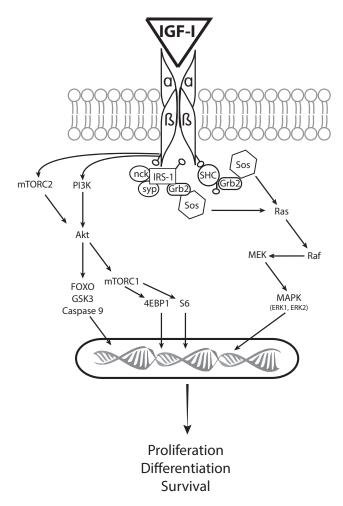


Figure 3.1.2: IGF-I intracellular signaling

CHAPTER 3.2: THE ROLE OF GLUCOSE REGULATED PROTEIN 94 IN INSULIN-LIKE GROWTH FACTOR-I PROCESSING

Publication

Marzec M, Hawkes CP, Eletto D, Boyle S, Rosenfeld R, Hwa V, et al. A human variant of glucose-regulated protein 94 that inefficiently supports IGF production. Endocrinology. 2016;157(5):1914-28 (Appendix J).

IGF-I is produced as a pro-hormone that is subsequently processed by proteases to create the mature, functional hormone. Only processed IGFs are competent to bind to the receptor and protect cells from apoptosis³⁸⁷, or instruct tissue development *in vivo*³⁸⁸. Pro-IGF-I and –II both associate with GRP94 and require its activity before they are processed³⁸⁷⁻³⁸⁹.

In this chapter, I describe a multicentre study focused on identifying the *in vitro* and *in vivo* effects of a hypomorphic mutation in *GRP94*, namely a proline substitution for lysine at amino acid 300 (P300L). My role in this study was in the analysis of the clinical phenotype of subjects with this mutation, and will be the focus of this chapter. Although I did contribute to the laboratory-based experiments, this component of the research was not designed by me and is only presented in this thesis as additional background information.

3.2.1 BACKGROUND

GRP94 is a chaperone protein that resides in the endoplasmic reticulum and is selective towards its client proteins. These include immunoglobulins³⁹⁰, β 1-integrins³⁹¹, glycoprotein Ib-IX-V complex³⁹², Toll-like receptors 2, 4, 5, 7, and 9³⁹³, and IGF-I and –II^{387, 388}.

Although many of the specific interactions of GRP94 with its clients are not fully understood, its function as a chaperone is likely mediated by its ability to bind nucleotides, facilitate ATP hydrolysis, bind calcium and peptides, and undergo conformational changes including dimerisation of its N-Terminal domain³⁸⁰. GRP94 exists primarily in an extended conformation in solution but the addition of these client proteins shifts this towards a more closed conformation^{394, 395}. The importance of GRP94 is demonstrated by the fact that homozygous mutations have never been described in humans. Homozygous knockout mutations of *GRP94* are incompatible with embryonic development³⁸⁸, and the *grp94* gene is also highly conserved in species.

During times of extreme stress, the unfolded protein response (UPR) is a complex system that either restores homeostasis or identifies a cell for apoptosis. GRP94 expression is increased during endoplasmic reticulum stress³⁹⁶ and plays an important role in this UPR. In addition to this, GRP94 also has a role in protein "quality control", where misfolded proteins are marked for cytosolic breakdown by the proteasome rather than secretion^{380, 397}.

The hypothesis that hypofunctioning mutations of *grp94* can affect IGF-I production and body size is supported by two observations. First, a mouse model with ablated striated muscle GRP94 has significantly reduced IGF-I concentrations and is 30% smaller than controls³⁸¹. Second, *in vitro* studies of the cellular response to stress in the form of serum withdrawal demonstrate that *grp94*-/- cells have an impaired response associated with reduced concentrations of IGF-II^{387, 388}.

In evaluating the clinical significance of GRP94 in IGF-I production, *grp94* gene sequencing was performed in 16 children with a combination of normal GH secretion, with short stature and low IGF-I concentrations³⁹⁸. One subject had a mutation of potential significance, and had a clinical phenotype suggestive of primary IGF-I deficiency. This included *in utero* growth restriction (birthweight z-score -2.82), postnatal growth failure, microcephaly and undetectable IGF-I at

4 months of age. He had a heterozygous substitution of C to T with a subsequent change in amino acid 300 for proline to lysine (P300L). His mother was also a carrier of this mutation and her height z-score was -0.9.

Functional studies of the effect of this mutation on GRP94 function are described in Appendix J, and demonstrated a reduction of IGF-II secretion to 58% when compared with wild type GRP94. The prevalence of this mutation in the normal population is up to 4%, which raised the question of whether this mutation contributes to variations in human IGF-I concentrations and height. The central hypothesis for this population-based study is that hypomorphic GRP94 heterozygous mutations are a cause of primary IGF-I deficiency and short stature.

3.2.2 AIM

The aim of my analysis was to determine if the P300L mutation is associated with short stature and low IGF-I concentrations in various population-based cohorts in whom P300L carrier status, height and/or IGF-I concentrations were available.

3.2.3 METHODS

Collaborations were formed between teams with the distinct cohort studies in which IGF-I concentrations were measured and height data were available. *Grp94* gene sequencing was performed where DNA was available, and subjects were characterised as carriers of the P300L mutation or wild type GRP94.

Population 1: Health In Men Study (HIMS, Australia)

The HIMS cohort study was initially designed to determine if screening for abdominal aortic aneurysms (AAAs) in at-risk adults reduced mortality and improved quality of life. 19,352 males over 65 years of age were identified from electoral databases and invited to attend baseline screening. Of these, 12,203 were recruited³⁹⁹. This study has demonstrated an insignificant reduction in

mortality from AAA through screening⁴⁰⁰, shown an association between glucose control and aortic diameter⁴⁰¹, and identified predictors of cognitive function in men over 80 years of age⁴⁰². This study provided an opportunity for collaboration as IGF-I concentrations were measured to evaluate a potential association between the GH/IGF-I axis and cardiovascular outcomes³⁹⁹. In addition, peripheral blood was collected for genetic analysis as part of this study⁴⁰³.

Population 2: Longevity Genes Project (New York)

The aim of the longevity genes project is to identify genes that are associated with health and independence at 95 years of age, in a cohort of subjects who are of Ashkenazi Jewish descent⁴⁰⁴. This study recruited centenarians and their offspring. Blood samples were collected for analysis of cardiovascular risk factors⁴⁰⁵ and other potential biomarkers of longevity⁴⁰⁶. This study has shown that low IGF-I concentrations are associated with longevity in females, and that low serum IGF-I is also associated with longer survival in subjects who had a prior diagnosis of cancer⁴⁰⁷.

Population 3: Danish Cohort Study

This cohort includes 15,663 subjects in 5 separate population-based Danish studies⁴⁰⁸. This is the largest cohort from which data were available on P300L phenotype, but IGF-I concentrations were not measured in these subjects. However, height measurements were available.

Given the age-related decline in adult height, subjects were grouped according to age (20-39 years, 40-59 years, 60-79 years) and sex for the analysis of the effect of P300L carrier status on height and IGF-I concentrations.

Statistical Analysis

For normally distributed continuous variables, mean (SD) were compared between P300L carriers and controls using independent samples t-tests. Non-

normally distributed data were summarised as median (IQR) and compared using nonparametric (Mann Whitney U) tests. Extremely high IGF-I values in an elderly population may represent pathology (e.g. acromegaly) or laboratory errors (e.g. assay artifact from IGFBP interference). For this reason, all IGF-I measurements above +3SD from the mean (above 315.5 ng/ml) were excluded as biologically implausible from the HIMS Study (26 wild type, 2 P300L carriers). Data were analysed using SPSS version 22.0 (IBM, New York, USA).

3.2.4 RESULTS

Health in Men Study (Australia)

IGF-I concentrations, height and age were available in 3862 men over 65 years of age in the HIMS study. Of these, 112 were heterozygous for P300L mutation (carrier rate 2.9%), and one was homozygous for this mutation. IGF-I concentrations were lower in P300L carriers (p=0.037). There were no significant differences between groups in the available known confounders of IGF-I concentration: age (p=0.6); or body mass index (p=0.73) (Table 3.2.1). One subject was homozygous for the P300L mutation, and he had an IGF-I concentration of 226 ng/ml.

Table 3.2.1: IGF-I and IGFBP-3 concentrations, height, age and BMI according to P300L carrier status. *IGF-I concentrations were not normally distributed and are represented as median (IQR). Data shown are mean (SD) with Student's t-test used to compare groups.

	Wild Type GRP94	P300L	р
	(n=3595)	(n=98)	
IGF-I (ng/ml)	140.3 (53.8)	130 (54.8)	0.037
IGFBP-3 (mg/L)	3.8 (0.9)	3.7 (1)	0.25
Height (cm)	171.9 (6.7)	173 (6.4)	0.13
BMI (kg/m ²)	26.6 (3.7)	26.7 (3.8)	0.73
Age	77.1 (3.6)	76.9 (3.5)	0.57

Longevity Genes Project (New York)

Of the 1369 genotyped subjects (642 male) in this cohort, there were 28 carriers (14 male) of P300L. Female carriers were slightly shorter than wild type, whereas there was no difference between males (Table 3.2.2). Only ten P300L heterozygotes and 22 wild type subjects had IGF-I concentrations measured. There was no difference in IGF-I concentrations when corrected for age.

Table 3.2.2: Height and IGF-I in P300L carriers and controls in the Longevity Genes project.

Mean (SD) shown. ns=not significant

	. no not significant		
	P300L	Wild Type	p
Males			
Number	14	628	
Age, yrs	78.1 (13)	72.6 (8.5)	ns
Height, cm	170.7 (6.9)	174 (8.6)	ns
Females			
Number	14	713	
Age, yrs	82.3 (13.2)	71.5 (8.7)	ns
Height, cm	154.9 (4.6)	159.5 (7.4)	< 0.01

Danish Cohort

P300L genotype was available in 15,633 subjects over 20 years of age (619 carriers). This represents a population carrier frequency of 4%. No significant growth attenuating effect of P300L carrier status was noted in any age- and sex-stratified subgroup of this population. In fact, female carriers of P300L aged between 20 and 59 years of age were taller than wild type counterparts (Table 3.2.3).

Table 3.2.3: Height of male and female subjects in the Danish cohort, according to P300L carrier status.

		Male				Female				
]	P300L		Wild-type		P300L		Wild-type		p
	n	Height	n	Height		n	Height	n	Height	
20-39 years	40	181.4	1056	180.9	0.6	50	169.5	1360	167.4	0.01
(n=1096)		(5.8)		(6.4)			(5.4)		(6.3)	
40-59 years	157	178.8	4212	178.4	0.6	181	166.6	4100	165.6	0.04
(n=4369)		(7.3)		(6.8)			(6.8)		(6.2)	
60-79 years	102	174.6	2367	174.9	0.6	87	162.2	1846	162.1 (6)	0.9
(n=2469)		(6.1)		(6.4)			(5.3)		, ,	
>80 years	0		33	174.8	n/a	2	162 (8.5)	41	159.3	0.7
(n=33)				(8.8)					(6.2)	

3.2.5 DISCUSSION

Despite convincing *in vitro* data to support the deleterious effect of the P300L mutation of *grp94* on IGF processing, we failed to demonstrate the expected clinical phenotype of short stature and reduced IGF-I concentrations in heterozygous carriers of this mutation. In the single subject who was homozygous for this mutation, IGF-I concentration was within the normal range for age.

The absence of a clear clinical phenotype in the larger population studies makes it likely that the P300L mutation seen in the original clinical patient was an incidental finding in the initial subject with unexplained primary IGF-I deficiency, microcephaly and severe short stature. This is supported by the fact that his mother was also a carrier of this mutation, and she had a height z-score of -0.9.

Numerous potential explanations for this lack of clinical significance are proposed. Firstly, the *in vitro* experiments measured GRP94 activity in the absence of a coexisting allele with an unaffected *grp94* gene. Although one homozygous subject was included, almost all subjects were heterozygous for P300L and had a normal gene that may have been compensatory. It is also possible that feedback mechanisms such as increased GH production could overcome the effect of a hypomorphic variant of GRP94 and result in normal IGF-I production and growth. GH measurements were not available to investigate this further.

3.2.6 CHAPTER CONCLUSION

In this chapter, we have taken a candidate gene with biological and *in vitro* plausibility to the population level to determine if the genetic and biochemical data correlate with a clinical phenotype. Although the results were disappointing, it highlights the challenges in identifying prevalent genes that may have a mild

clinical phenotype. These data required significant contributions from numerous collaborators and ultimately resulted in negative data.

Through this process, I learned to analyse phenotypes across numerous populations and gained insight and hands-on experience in using cell-based assays to perform *in vitro* studies. I also learned to appreciate the complimentary roles of clinical phenotyping, querying genetic databases and lab-based research in evaluating the significance of novel genetic mutations.

CHAPTER 3.3: GENETIC APPROACH TO INSULIN-LIKE GROWTH FACTOR-I RESISTANCE

In the previous chapter, we started with a relatively common gene mutation of potential significance and studied the clinical phenotype in large populations. Here, we describe the reverse process of starting with a rare clinical phenotype and taking a genome-wide approach to identifying genetic aetiologies.

In this chapter, I will describe the development of a multi-site genomic approach to identifying novel mutations in three of the leading children's hospitals in the United States: Children's Hospital of Philadelphia (CHOP); Boston Children's Hospital (BCH); and Cincinnati Children's Hospital Medical Center (CCHMC). We used this process to identify children with rare mutations causing IGF-I resistance.

3.3.1 IGF-I RESISTANCE

IGF-I plays a critical role in regulating prenatal and postnatal growth, and infants with IGF-I deficiency have significant intrauterine growth restriction and postnatal growth failure. In addition, sensorineural hearing loss⁴⁰⁹, microcephaly and developmental delay are part of this clinical phenotype¹⁵³.

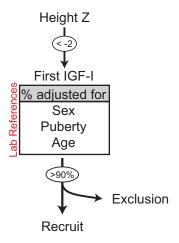
Haploinsufficiency of the IGF-1R can have variable effects on IGF-IR expression and reduced IGF-I signaling $(3.1.1)^{410}$. High IGF-I concentrations and short stature are consistent components of the phenotype. At the more severe end of the clinical spectrum with large deletions involving the entire *IGF1R* gene, cardiac defects, pulmonary hypoplasia and congenital diaphragmatic hernia may be seen^{411, 412}. It is postulated that these additional clinical features may be due to the effects of deletions on genes flanking *IGF-1R*⁴¹⁰⁻⁴¹².

Recently, a novel mechanism for IGF-I resistance has been reported as a cause of short stature. Mutations in pregnancy-associated plasma protein A2 (PAPP-A2)

have been shown to impair proteolytic cleavage of IGF-I from the ternary complex and lead to high concentrations of circulating total IGF-I but reduced free IGF-I activity^{413, 414}. The clinical phenotype was subtler with height and head circumference z-scores just below normal, with high circulating IGF-I and –II concentrations.

3.3.2 AIM

The aim of this study was to utilise electronic health records (EHRs) to identify children with a clinical phenotype consistent with IGF-I resistance and to identify novel genetic mechanisms for this phenotype.


3.3.3 METHODS

Genomics Research and Innovation Network (GRIN)

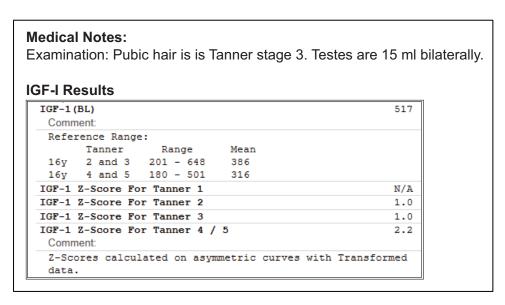
The GRIN is a collaborative network between CHOP, BCH and CCHMC. This was established in 2015 and provides an infrastructure for sharing expertise, protocols, ethics committee approval of parallel protocols, EHR search criteria, genetic material and research data. The identification of novel genetic mechanisms of the rare phenotype of IGF-I resistance was adopted as one of the three pilot studies as this infrastructure was being developed. The CHOP Institutional Review Board provided ethical approval for this study. A collaborative research agreement was also signed to facilitate the sharing of research data and protocols between institutions.

Subject identification – Height criteria

The EHR was searched to identify all children attending CHOP who had an ageand sex-specific height z-score of less than -2 using the Center for Disease Control growth standards⁴¹⁵.

Figure 3.3.1: The stepwise approach to using the electronic health record identify children with high IGF-I concentrations and short stature

IGF-I concentration: Lab-Specific Factors


In the United States, the laboratory used for patient tests is often dictated by contracts negotiated between health insurance companies and individual laboratories. In addition, the IGF-I assay used by each laboratory changes over time and this affects the reported reference ranges for each reported measurement. We contacted the three most frequently used laboratories and requested information on the reference ranges for each of their IGF-I assays used between 2000 and 2016. One of the laboratories (QUEST) was unable to provide us with this information, and the information provided by another laboratory (LabCorp) was inaccurate on manual review.

As an alternative approach, representative samples were identified for each of the IGF-I assays in each laboratory using the electronic health record (EHR). The reference ranges listed in each assay were recorded manually for the pubertal and/or age ranges. Mean and standard deviations were generated from these, and an algorithm was created to query the EHR and generate percentiles for each test according to pubertal stage and/or age. Some assays reported z-scores directly and, where possible, these were extracted and converted to percentiles.

In order to validate this approach, we counted the number of samples with IGF-I concentrations above the 90th percentile for each assay to ensure that no assay was over represented on initial screen.

IGF-I concentration: Patient-specific factors

IGF-I concentrations increase during puberty, and precocious puberty in a child with short stature would erroneously be identified as IGF-I resistance if age-specific reference values were used. Pubertal status is not a discrete field in the EHR, but is generally included in the text of clinical notes. An example of patient data that needed to be reconciled manually is shown in Figure 3.3.2.

Figure 3.3.2: Example medical note documentation of pubertal status and laboratory IGF-I report of IGF-I concentration requiring reconcilliation

As manually reviewing each chart to extract pubertal status was not feasible, a natural language query to extract pubertal status at the time of IGF-I measurement was developed. The following text was identified from medical records within 3 months of IGF-I measurement and extracted from the EHR for manual review: 100 characters before and 100 characters after the word if used): "Tanner", "testes", "testicular", "testis", "Pubic hair", "breast", as well as date of encounter. If this was in a string of text including a number of these words, all intervening text was extracted. Extracted data were then manually reviewed to modify IGF-I concentrations for pubertal status where necessary.

Exclusion Criteria

GH treatment can artificially increase IGF-I concentrations and was an exclusion criterion for this study. In order to exclude all forms of GH used, we excluded subjects receiving any of the following medications: Genotropin, Gentropin, Humatrope, Norditropin, Nutropin, Omnitrope, Saizen, Somatropin and growth hormone.

Further exclusion criteria were applied following manual chart review, to focus recruitment on children without co-existing disease or treatment that may independently affect IGF-I concentrations and/or growth. These included: chronic kidney disease; malignancy receiving treatment at the time of IGF-I measurement; high dose steroid treatment; known genetic diagnosis associated with short stature. In addition, children receiving GH treatment at the time of IGF-I measurement were excluded, unless IGF-I concentrations prior to treatment were also elevated. Children who attained height above -2 z-scores without treatment, or who had normal IGF-I concentrations at any time on chart review were also excluded.

Genetic Testing

In this collaborative study, Dr Andrew Dauber at CCHMC performed genetic testing and analysis. The process is summarised here for additional background, but performing this genetic testing was not my personal work.

Candidate gene testing comprised Sanger sequencing of the IGF-I receptor (*IGF1R*), and *PAPPA2*. If this was negative, whole exome sequencing was performed at the CCHMC Sequencing Core. This involved 1 ug of dsDNA undergoing 9 cycles of PCR amplification using the Clonetech kit (Clonetech Laboratories, CA, USA). This was sequenced using the Illumina HiSeq 2500 (Illumina Inc., CA, USA), and was analysed using the Broad Institute's Genome Analysis Toolkit (Broad Institute, MA, USA).

Variants of minor allele frequency were identified using public databases and excluded from analysis. In order to identify novel or *de novo* variants, dominant variants were eliminated if present in the public databases (e.g. Exome Aggregation Consortium website) and recessive variants were eliminated if a minor allele frequency of greater than 0.001 were noted. This reflects a disorder present in less than one in a million people. For potentially significant variants, parent samples were sequenced.

Following the identification of a candidate gene, additional searches were performed using OMIM, DECIPHER and PubMed to determine if this has been previously associated with human disease. *In silico* prediction tools, known gene function, animal model data and gene expression patterns were also reviewed to prioritise variants for further mechanistic studies.

3.3.4 RESULTS

This study was approved by the IRB at CHOP and parallel protocols were approved separately by the IRBs at CCHMC and BCH. For the purpose of this thesis, I will describe the results from the CHOP protocol.

We identified 68 children with IGF-I concentrations greater than the 90th percentile and height z-scores below -2. Of these, 54 children were excluded (Table 3.3.1), leaving 14 eligible for recruitment. Of the remaining 14 subjects, two no longer lived in the US, eight did not wish to participate, and four were recruited. Their clinical details are shown in Table 3.1.2.

Table 3.1.1: Excluded children from analysis

* rhabdomyosarcoma, hemophagocytic lymphohistiocytosis, acute lymphoblastic leukemia.

** trisomy 21, Turner syndrome, Angelman syndrome, neurofibromatosis type 1, retinitis pigmentosa. Aicardi Goutier syndrome. Noonan syndrome

Number	Reason for Exclusion			
4	Chronic kidney disease			
3	Malignant disease receiving treatment*			
8	IGF-I concentration normal when corrected for puberty			
15	Other IGF-I measurements in EHR were within normal range			
10	Normal height without treatment			
5	High dose steroids			
7	Known genetic disorder**			
2	Receiving growth hormone treatment			

Table 3.1.2: Recruited subjects from CHOP

Age (yrs)	IGF-I z-score	Height z-score	Birth weight z-score	Relevant Clinical Details
7.5	3	-2.8	-1.8	Attention deficit and hyperactivity disorder, constipation, familial short stature.
8.6	1.9	-3.3	3	Hypotonia, speech and fine motor developmental delay, upslanting palpebral fissures.
7.8	1.6	-2.4	1.1	Sensorineural hearing loss.
3.4	1.7	-4.4	-2.8	Ventricular septal defect, imperforate anus

Exome sequencing was performed on all four subjects. No candidate genes were identified in Subjects 2, 3 or 4. Subject 1 had a novel missense variant in the IGF1R gene (Val1013Phe). His mother is not a carrier of this mutation, and her height is 5 feet 1 inch. His father was not involved in the study and his genetic sample was not available for review. This mutation is being regenerated in Andrew Dauber's lab, and functionality is being assessed.

3.3.5 DISCUSSION

In this study, we have developed an EHR approach to identifying children with a clinical phenotype of IGF-I resistance. We have applied this approach to patients attending CHOP's healthcare system and identified 14 subjects who may have this rare clinical phenotype. Thus far, we have identified one potentially novel mechanism for IGF-I resistance and this is being investigated further.

Although we have only identified one potentially pathogenic mutation, this study has been successful on a number of fronts. We have formed a collaboration amongst the growth centers in three of the largest children's hospitals in the US, and established three parallel research protocols to recruit children with abnormal growth. We have also developed a mechanism for data and protocol sharing between these institutions. CCHMC and BCH are still recruiting subjects and it is possible that these centers will identify additional mutations of interest.

At CHOP, we have overcome a significant barrier to growth research using the EHR. We have developed an algorithm to extract IGF-I z-scores and pubertal status from the entire population of children attending this center. We now have the capacity to generate IGF-I z-scores from the entire population of children who attend CHOP, regardless of laboratory or assay used. We have also developed a mechanism for reliably extracting pubertal status from the EHR. We plan to utilise these algorithms for future genetic and clinical studies involving our patient population.

3.3.6 CHAPTER CONCLUSION

I have participated in large collaborative studies aiming to identify and describe novel genetic causes of short stature in childhood. In Chapter 3.2, we started with a mutation that was potentially pathogenic and worked through functional studies to demonstrate a potential effect on IGF production. In Chapter 3.3, we started with a rare clinical phenotype and developed algorithms to identify potential subjects using the EHR.

These studies highlight the challenge of finding novel genetic aetiologies of short stature. Short stature is a multifactorial trait, of which genetics may be one factor. In evaluating the child with short stature, an underlying genetic mechanism is possible and many of these have been described³⁵⁸. However, as we have shown, finding and proving new genetic aetiologies can be difficult.

SECTION 4

NUTRITION AND THE GROWTH HORMONE / INSULIN-LIKE GROWTH FACTOR-I AXIS

CHAPTER 4.1: INTRODUCTION

GH is a key regulator of IGF-I production. IGF-I measurement is amongst the first screening tests performed in children with suspected GHD, and Section 2 of this thesis focused on measuring IGF-I concentrations using a new assay. In Section 3, I explored genetic aetiologies of disordered IGF-I production and action.

In this Section, I will focus on nutrition, another clinical aspect of childhood growth linked to the GH / IGF axis. This appears to be particularly important in the fetus and young infant, where nutritional status is most closely associated with IGF-I concentrations.

In children identified as having short stature or poor growth of unclear aetiology, nutritional evaluation is a key component of the diagnostic evaluation. In early infancy, weight is generally considered to be a marker of nutritional status but weight measurement does not differentiate fat mass (FM) from fat free mass (FFM). In this section, I will explore body composition measures in infancy with an emphasis on generating reference data and determining the optimal measures of size-adjusted body composition.

Having generated reference data for body composition in infancy, I will then consider whether IGF-I and –II measurement at birth is associated with body composition and rate of change in body composition in the first two months of life. Thus, this section of the thesis will provide a new approach to describing nutritional status in infancy and will explore the relationship between these measures and the GH/IGF axis.

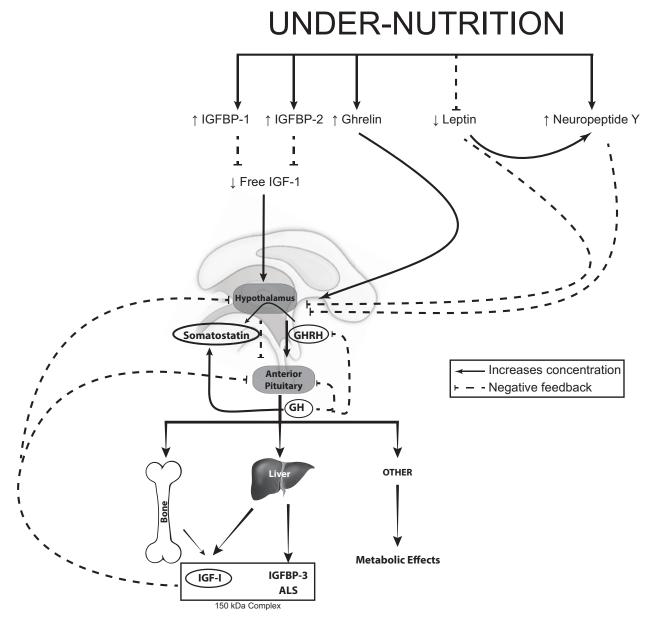
CHAPTER 4.2: NUTRITION, GROWTH AND THE GROWTH HORMONE / INSULIN-LIKE GROWTH FACTOR-I AXIS

Publication

Hawkes CP, Grimberg A. Insulin-like growth factor-I is a marker for the nutritional state. Pediatr Endocrinol Rev. 2015;13(2):465-77. (Appendix K)

4.2.1 Introduction

Faltering linear growth in childhood may be a sensitive but nonspecific sign of disease.⁴² Two of the diagnostic categories that can present with faltering growth are insufficient nutrition and disorders of the GH / IGF-I axis. GH stimulates IGF-I production, and measurement of IGF-I concentration is commonly used to screen for disorders of the axis (1.2.4.1)^{2, 9}. Nutritional status and GH signaling can both affect IGF-I concentrations, and an understanding of these overlapping effects on IGF-I production is essential in order to interpret IGF-I measurements in children.


4.2.2 AIM

The aim of this review is to provide an overview of the effects of nutrition on the GH/IGF-I axis and discuss the clinical implications of these interactions throughout childhood, both in undernutrition and overnutrition.

4.2.3 THE GROWTH HORMONE / INSULIN-LIKE GROWTH FACTOR-I AXIS AND POTENTIAL INTERACTION WITH NUTRITION

GH is secreted by the somatotrophic cells of the anterior pituitary gland in a pulsatile fashion, with approximately five to eight peaks each day⁴¹⁶. This pulsatile secretion is stimulated by hypothalamic GHRH, with endocrine feedback mechanisms further regulating this system. These include somatostatin, IGF-I, and ghrelin (Figure 4.2.1). Nutritional status can interact with the

GH/IGF-I axis at numerous points in the pathway, at both the hormone secretion and post-receptor signaling levels.

Figure 4.2.1: The effect of undernutrition on GH secretion. Leptin modifies hypothalamic regulation of GH secretion through hypothalamic receptors, and in severe undernutrition insufficient leptin reduces GH production both directly and through the consequent increase in Neuropeptide Y. Anterior pituitary GH secretion is controlled by hypothalamic GHRH and somatostatin, as well as feedback mechanisms through IGF-I, ghrelin and GH concentrations. GH= Growth Hormone, IGF-I = Insulin-like Growth Factor-I, IGFBP = Insulin-like Binding Protein, ALS = Acid Labile Subunit, GHRH = Growth Hormone Releasing Hormone

4.2.3.1 The impact of undernutrition on the regulation of growth hormone secretion

In chronic undernutrition, alterations in leptin and neuropeptide Y (NPY) concentrations can reduce GH secretion. Leptin is produced by adipose tissue⁴¹⁷, and normal concentrations of circulating leptin are required for GH secretion. In animal studies where leptin anti-serum was used to reduce serum leptin concentrations, there was an associated reduction in GH secretion⁴¹⁸. The mechanism for this interaction may be through a direct effect on hypothalamic leptin receptors, or indirectly through NPY. Leptin suppresses hypothalamic NPY production, and NPY suppresses GH release^{419, 420}. Thus, in starvation there are reduced leptin concentrations and increased hypothalamic production of NPY, which may reduce pituitary GH secretion.

The oxyntic glands of the gastric fundus secrete Ghrelin and this binds to the GH secretagogue receptor 1a, stimulating GH secretion by the anterior pituitary. Three days of caloric restriction prior to GH stimulation testing may increase the peak stimulated GH concentration achieved during testing of GH-sufficient children²⁰³. Ghrelin concentrations are increased during fasting and suppressed with feeding⁴²¹, and may mediate this effect. However, ghrelin administration in chronic malnutrition is not associated with a rise in GH concentration⁴²².

4.2.3.2 The impact of undernutrition on growth hormone signaling

The GH receptor is a type 1 cytokine receptor that is expressed predominantly by hepatocytes. GH binding results in rotation of one of the monomers of this dimeric receptor, and the intracellular domain binds JAK2³⁵⁹. This activates numerous signaling pathways, specifically the STAT -1, -3, -5a, -5b, MAPK and PI3K pathways³⁷⁶ (Figure 4.2.2). Activation of these intracellular signaling pathways, primarily STAT5b, stimulates transcription of IGF-I (This pathway is described in more detail in 3.1.1).

Undernutrition may affect GH signaling at multiple points on the pathway and cause a state of GH resistance. In animal and cell-based models, caloric

restriction is associated with a reduction in GH receptor mRNA transcription⁴²³, ⁴²⁴. Insulin increases hepatic GH receptor availability⁴²⁵, and reduced insulin concentration during fasting may play a role in the reduction of GH receptor transcription. Calorie and protein malnutrition can also cause GH resistance through effects on post-receptor signaling.

Under-nutrition



Figure 4.2.2: Nutrition and Intracellular Growth Hormone Signaling.

Growth hormone binds to the extracellular domain of the dimeric GH receptor, and results in activation of multiple intracellular signaling pathways. GH receptor expression is reduced in caloric restriction. FGF21 and Sirtuin-1 concentrations are increased in fasting, and both of these reduce tyrosine kinase phosphorylation of STAT5b.

JAK2 = Janus kinase 2, MAPK = Mitogen-activated protein kinase, ERK = Extracellular-signal regulated kinase, PI3K = Phosphoinositide 3 kinase, PKB = Protein kinase B (also known as AKT), Stat = Signal transducer and activator of transcription, FGF21 = Fibroblast growth factor 21, GH = growth hormone, IGF-I = insulin-like growth factor-I

Fibroblast growth factor 21 (FGF21) is produced by adipocytes and hepatocytes, and concentrations are increased in fasting⁴²⁶. FGF21 reduces STAT5b phosphorylation and increases Suppressor of Cytokine Signaling 2 (SOCS2) expression, both of which decrease IGF-I production⁴²⁷. FGF21 also increases IGFBP-1 expression, which further reduces IGF-I bioavailability for signaling⁴²⁸. Another potential mechanism involves Sirtuin-1, a deacetylase that mediates the metabolic response to fasting through its effects on glucose and lipid metabolism⁴²⁹. Sirtuin-1 also inhibits the tyrosine phosphorylation of STAT5⁴³⁰, and represents an additional cellular mechanism of GH resistance in malnutrition. Zinc⁴³¹, magnesium⁴³² and vitamin B6⁴³³ deficiencies may also be

associated with GH resistance and reduced IGF-I, although the mechanisms of each of these are unknown.

4.2.4 NUTRITION AND INSULIN-LIKE GROWTH FACTOR-I FROM THE FETUS THROUGH ADOLESCENCE

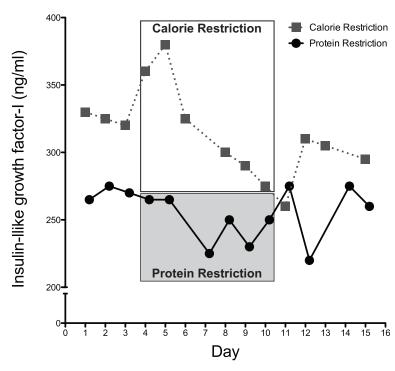
Prenatal GHD has minimal effect on birth size²¹⁹, whereas children with IGF-I receptor mutations or primary IGF-I deficiency are born with severe intrauterine growth restriction¹⁵³. The GH-independent regulation of fetal IGF-I is poorly understood, but the pattern of changes in fetal IGF-I concentration mirrors weight gain. Fetal serum IGF-I concentrations increase steadily throughout the third trimester³⁵⁰, which coincides with the period of most rapid increase in fetal weight. In addition, umbilical cord IGF-I concentrations at birth correlate with birth weight²⁷⁵ (Chapter 2.4).

Following birth, IGF-I levels are closely associated with weight and nutritional intake^{222, 434}. While adequate caloric intake is necessary for symmetrical infant growth, caloric excess will increase infant weight more than length and head circumference⁴³⁵. Changes in circulating IGF-I concentrations can reflect increases in protein and caloric intake, and IGF-I measurement has been suggested as a method of monitoring feeding, particularly in preterm infants⁴³⁶. In early infancy, formula fed infants have increased adiposity and higher IGF-I concentrations than breastfed infants^{313, 437, 438}. The effect of milk in increasing IGF-I concentrations has been studied further in 2 to 3 year-olds. In this population, circulating IGF-I is increased by 30% when milk intake increases from 200 to 600 ml/day, an effect predominantly due to the casein component of milk⁴³⁹⁻⁴⁴¹

In prepubertal children, lower BMI is associated with lower serum IGF-I concentrations⁴⁴². Although reduced caloric intake is associated with low circulating IGF-I, nutritional factors beyond calories and protein should also be considered in children with unexpectedly low IGF-I levels. Zinc deficiency, for

example, in peripubertal children is associated with lower IGF-I and IGFBP-3 concentrations. IGF-I concentrations improve with zinc replacement in these children^{431, 443}. Iodine deficiency is also associated with low circulating IGF-I, but replacement of iodine deficiency can have the effect of reducing IGF-I concentrations further⁴⁴⁴. This finding is most likely related to the effect of iodine replacement on thyroid function. Excess iodine can suppress thyroid function through the Wolff-Chaikoff effect. IGF-I concentrations are also reduced in hypothyroidism^{445, 446}.

IGF-I concentrations increase during puberty, and energy requirements are also increased during this time⁴⁴⁷. The sex steroids of puberty increase pituitary GH secretion, which in turn increases IGF-I production. The combination of increased sex steroids, GH and IGF-I cause the pubertal growth spurt. Insufficient nutrition can delay the onset of puberty⁴⁴⁸, and leptin concentrations above a certain threshold appear to be required for puberty to proceed^{449, 450}. Low IGF-I concentrations in adolescents suffering from malnutrition can appear even lower relative to reference ranges if age-based rather than pubertal stage-specific reference ranges for IGF-I are reported.


4.2.5 Undernutrition and Insulin-Like Growth Factor-I

4.2.5.1 Populations at risk for GH/IGF axis effects from insufficient intake Sufficient nutrition is a balance between caloric intake and energy expenditure. Caloric intake may be affected by food availability and appetite, and increased energy expenditure may put active or pubescent children at risk for undernutrition. In this section, we will review populations who are at particular risk.

Food availability can be a significant issue for many families, and may not be immediately apparent during a clinical visit. The worldwide prevalence of undernourishment is estimated at 11.3%⁴⁵¹, and an estimated 50 million people in the United States are uncertain of having enough food⁴⁵². This may affect the

type and quantity of food available^{453, 454}. As will be discussed later in this section, even a transient interruption to calorie or protein availability can result in a reduction in IGF-I concentrations (Figure 4.2.3)⁴⁵⁵. This may be relevant in families where the next paycheck is required before food can be purchased.

Dietary intake may be decreased despite adequate food availability due to certain feeding behaviors and/or diminished appetite. Sometimes the dietary intake is inadvertently over-restricted by the parent(s) and/or child due to fear of obesity⁴⁵⁶⁻⁴⁵⁸ or hypercholesterolemia⁴⁵⁸, to the extent that nutritional growth stunting ensues. Unstructured mealtimes, particularly those with distractions, as well as food aversions and dysfunctional parent-child interactions related to eating can all lead to failure to thrive, a topic extensively reviewed elsewhere 459. Undernutrition can also result from decreased appetite, which may be endogenous (such as from delayed gastric emptying) or secondary to medications. Attention deficit and hyperactivity disorder (ADHD) affects approximately 7% of children 460, and methylphenidate or dexamphetamine are commonly used to treat this disorder. These medications are associated with appetite suppression and subsequent weight loss⁴⁶¹. In a small study that included healthy children treated with methylphenidate, reduced weight and BMI were seen within 4 months of treatment and an associated reduction in IGF-I concentration was observed⁴⁶².

Figure 4.2.3: Seven days of 50% caloric restriction (35 Cal/kg) resulted in a reduction in mean IGF-I amongst eight prepubertal children. Mean IGF-I also decreased during 33% protein restriction (0.66 g/kg) in 6 other prepubertal children. Figure modified from Smith *et al*⁴⁵⁵

4.2.5.2 Populations at risk for GH / IGF axis effects from increased demands

The recommended caloric intake in children and adolescents is dependent upon energy expenditure. The estimated energy requirements in childhood varies according to age and sex, and ranges from 520 kcal/day in the infant female to 3,152 kcal/day in the adolescent male. This is increased further in the setting of regular rigorous exercise⁴⁴⁷. Nutritional intake should be considered in the context of an individual's activity level, as similar dietary intakes may be sufficient for a sedentary child but insufficient for an extremely active child. This chronic nutritional insufficiency may affect IGF-I concentrations.

Failure to meet the nutritional demands of competitive sport is prevalent amongst adolescents⁴⁶³⁻⁴⁶⁵. For example, a study of adolescent soccer players showed that the mean caloric intake was almost 500 kcal/day less than estimated requirements⁴⁶⁶. At the extreme end of the spectrum of undernutrition in sport, a triad that includes low energy availability, menstrual dysfunction and reduced bone mineral density has been well described in females⁴⁶⁷. Up to 8% of athletic

females have two or more features of this triad⁴⁶⁸, and low estrogen and IGF-I levels are thought to play a role in the pathogenesis of the low bone mineral density⁴⁶⁹. However, the adverse effects of undernutrition in males should not be underestimated, and the International Olympic Committee's recent guidelines has replaced the term "Female Athlete Triad" to "Relative Energy Deficiency in Sport"⁴⁷⁰. This expands the definition to include both male athletes and other health repercussions beyond the original three, and acknowledges the variable degrees of severity of this condition⁴⁷⁰. IGF-I concentrations in gymnasts are lower than in controls⁴⁷¹, and this may be a associated with the high prevalence of insufficient nutritional intake in this sport⁴⁶³.

Reduced IGF-I concentrations are also seen in systemic diseases associated with increased energy requirements and/or malabsorption. These conditions include inflammatory bowel disease, cystic fibrosis, cardiac disease (particularly cyanotic conditions and congestive failure) and acquired immune deficiency syndrome (AIDS). Ensuring adequate nutrition in each of these conditions is one of the key components of management. Poor linear growth is seen in children with severe disease, and low IGF-I concentrations may reflect insufficient nutritional intake in these children.

4.2.5.3 Populations at risk for GH / IGF axis effects from malabsorption

Low IGF-I concentrations may be an early sign of malabsorptive disorders, even in the absence of gastrointestinal symptoms. Celiac disease may present with a broad spectrum of symptoms and signs ranging from asymptomatic mild malabsorption (called monosymptomatic celiac disease, where the only symptom is growth failure ⁴⁷²) to severe malnutrition and secondary failure to thrive. Even in minimally symptomatic children, IGF-I concentration is lower than controls at diagnosis and normalises with a gluten-free diet in parallel to increasing BMI ⁴⁷³. In children with established celiac disease, gluten exposure leads to a reduction in circulating IGF-I concentration proportional to the degree of small bowel mucosal inflammation ⁴⁷⁴. The correlation of IGF-I levels with celiac disease activity has been demonstrated in many pediatric ⁴⁷⁴⁻⁴⁷⁶ and adult ⁴⁷⁷ studies, and

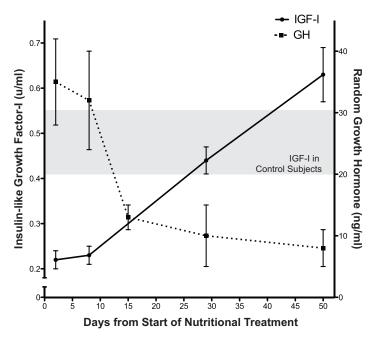
IGF-I has even been suggested as an additional marker for monitoring celiac disease activity for this reason⁴⁷⁵.

Complicating the observation of low IGF-I concentrations in children with undiagnosed celiac disease is the putative link between celiac disease and GH deficiency. Ferrante *et al* performed GH stimulation testing in adults with new onset celiac disease, and found that a quarter of patients were characterised as having impaired GH secretion on these tests⁴⁷⁸. It should be noted, however, that the stimulation tests were performed at baseline and not repeated following initiation of a gluten-free diet. As mentioned previously, blunted response to GH stimulation testing was found in children with protein malnutrition⁴⁷⁹. This responded to dietary replacement, and should caution physicians against performing stimulation testing prior to dietary management. However, a potential diagnosis of comorbid GHD should be considered in children with celiac disease who don't have improved linear growth despite adherence with a gluten-free diet^{480,481}.

Poor growth and low IGF-I concentrations may also be a presentation of pediatric Crohn's disease. One tenth of affected children are more than two standard deviations below the mean for height at diagnosis⁴⁸², and they have numerous reasons for having reduced IGF-I concentrations. These include malnutrition complicated by increased metabolic rate during illness, increased inflammatory cytokines, and delayed puberty⁴⁷³. IGF-I concentrations increase during disease remission⁴⁸³.

4.2.5.4 The effect of mild protein or caloric restriction on the GH/IGF-I axis The GH/IGF axis is sensitive to less severe and transient nutritional restrictions. Smith *et al*⁴⁵⁵ measured serum IGF-I levels in prepubertal children prior to and after six days of 50% calorie or 33% protein restriction. IGF-I levels were reduced during the periods of decreased intake of either calories or protein (Figure 4.2.3). This reduced IGF-I concentration during restriction is due to GH resistance rather than decreased GH secretion, as has been shown in similar

experiments in children with confirmed GHD receiving unchanged GH doses during dietary adjustments. In these children, IGF-I production in response to GH treatment was reduced during fasting⁴⁸⁴. In normal, fasted children, IGF-I levels returned to baseline concentrations following resumption of a normal diet⁴⁵⁵. Similar effects on IGF-I concentrations have also been shown in adults undergoing a short period of fasting⁴⁸⁵. In addition to reduced IGF-I concentrations, caloric restriction also renders the growth plate less responsive to IGF-I and GH through reduced expression of growth plate GH and IGF-I receptors⁴⁸⁶.


4.2.5.5 The effect of severe protein or caloric restriction on the GH/IGF-I axis

The GH/IGF-I axis has been studied in children with extreme deficiency of protein (kwashiorkor), calories (marasmus) or both protein and calories (marasmic kwashiorkor)⁴⁸⁷. In all three of these types of undernutrition, low IGF-I and increased GH concentrations are seen. When GH stimulation testing was performed in children with protein malnutrition prior to nutrition therapy, the baseline GH concentration was higher and the increase in GH secretion upon stimulation testing was lower than in controls or following refeeding⁴⁷⁹.

Hintz *et al*⁴⁸⁸ studied 27 Thai children under 5 years of age, and Soliman *et al*⁴⁷⁹ studied 51 Egyptian children under 3 years of age with kwashiorkor, marasmus or marasmic kwashiorkor and both showed similar results. Prior to nutritional repletion, GH concentrations were increased and IGF-I concentrations were decreased relative to controls. There were no significant differences in the magnitude of these changes between the three groups of severe undernutrition. Serum IGF-I and albumin levels did not correlate at baseline⁴⁸⁸, suggesting that reduced IGF-I concentration is not merely a result of decreased amino acid availability or reduced hepatic protein synthesis.

Nutritional replacement in children with severe protein and/or calorie malnutrition can normalise the GH/IGF-I axis. Within two weeks of re-feeding,

IGF-I concentrations can double in severely malnourished children, to a level within 2 standard deviations of the mean for the population⁴⁸⁹. After 50 days of intensive inpatient nutritional therapy⁴⁸⁸, basal GH and IGF-I levels are indistinguishable from those of controls (Figure 4.2.4). Interestingly, IGF-I z-scores are not associated with weight-for-height z-scores in severe malnutrition, but they have a linear relationship after two weeks of refeeding⁴⁸⁹. Similarly, nutritional interventions are associated with early increases in IGF-I levels, even before changes in anthropometric measures are observed.⁴⁹⁰

Figure 4.2.4: The effect of nutritional treatment on serum IGF-I and GH in a group of children with severe protein-energy malnutrition.

Mean \pm SEM IGF-I concentrations in healthy control subjects are shown in grey. Figure modified from Hintz et al. 488

4.2.6 EXCESS NUTRITION AND INSULIN-LIKE GROWTH FACTOR-I

Approximately one fifth of children in developed countries are overweight and, even in developing countries with a high prevalence of undernutrition, the percentage of children who are overweight is increasing^{491, 492}. Obese children are taller than non-obese in childhood, but enter puberty earlier⁴⁹³ and have comparable adult heights⁴⁹⁴⁻⁴⁹⁶. Children who develop obesity earlier in

childhood are more likely to have taller stature in childhood than their peers⁴⁹⁷. As will be outlined in this section, obesity affects the GH/IGF-I axis, and this may play a role in this accelerated statural growth.

4.2.6.1 Obesity and the GH/IGF-I Axis

Obesity is associated with reduced spontaneous total GH secretion through a reduction in both pulse frequency and amplitude^{498, 499}. Furthermore, the circulating half-life of GH in obese subjects is reduced to 11 minutes in comparison to 15 minutes in non-obese controls⁴⁹⁸. Decreased amplitude of GH secretion is seen also during provocative testing, where peak stimulated GH concentrations in obese children⁵⁰⁰⁻⁵⁰² and adults⁵⁰³ are lower than in non-obese controls. This can lead to children with increased BMI being misclassified as having GHD, even when BMI is within the normal range⁵⁰².

Despite reduced circulating GH levels, IGF-I concentrations in obese individuals are similar to, or higher than, non-obese controls (discussed later in this section)^{500, 504-506}. Growth hormone binding protein (GHBP) is the extracellular component of the GH receptor, and serum concentrations of GHBP are increased in obesity. This may reflect increased GH sensitivity at the receptor level in obese children.⁵⁰⁷ Increased GH sensitivity in children with higher BMI is supported by a study of IGF-I concentrations in children following administration of a fixed dose of GH. Children with high normal BMI had a greater rise in serum IGF-I concentrations when compared with those with low normal BMI⁵⁰⁸.

Numerous studies have shown an association between IGF-I and leptin concentrations⁵⁰⁹⁻⁵¹¹. Animal studies show that administration of low doses of exogenous leptin result in a transient change in GH secretion but sustained reduction in circulating IGF-I concentrations. At higher doses, there is suppressed appetite and increased IGF-I levels⁵¹². This effect of leptin on IGF-I production appears to be independent of GH. However, GH can play a role in regulating leptin, as high doses of GH can increase leptin mRNA expression⁵¹³.

Leptin may also play an independent role in linear growth, through its direct action on the growth plate. At the growth plate⁵¹⁴, leptin synergises with thyroid hormone in regulating chondrocyte differentiation.⁵¹⁵ A phenomenon of "growth without GH" has been described in children where obesity and leptin may play a role in transiently maintaining normal growth velocity in children with GHD. This can be seen in children with coexisting hypothalamic obesity and GHD associated with craniopharyngioma⁵¹⁶, or in other children with severe obesity and GHD⁵¹⁷. GHD may be masked by normal growth rate in these children, and they should be followed closely as this normal rate of growth may not be maintained and intervention with GH therapy may be indicated.

4.2.7 Insulin-like Growth Factor-I Concentrations and Bioavailability in Obesity

Undernutrition consistently results in a reduction of IGF-I concentrations, but the opposite effect is not seen in obesity. Reinehr *et al* measured serum IGF-I concentrations in 319 obese children prior to, and after, a weight loss intervention program. They found no difference between baseline IGF-I concentrations in obese subjects or controls, and no association between weight loss and reduction in IGF-I levels⁵¹⁸. This lack of association between obesity and increased IGF-I concentrations has been replicated elsewhere^{504, 519}. In a population-based study of over six thousand adults, an inverse U-shaped association between IGF-I concentration and BMI was shown, with peak IGF-I concentrations at a BMI range of 22.5 to 25 kg/m² in males and 27.5 to 30 kg/m² in females⁵⁰⁶.

Although total IGF-I concentrations may not be significantly increased in obesity, the amount of free IGF-I relative to total IGF-I is increased⁵⁰⁴. This increase in IGF-I bioavailability is largely due to the effect of nutrition on the IGF binding proteins (IGFBPs). Increased BMI and high insulin levels are associated with a reduction in levels of IGFBP-1^{520, 521} and IGFBP-2⁵⁰⁴, which

can increase free IGF-I concentrations. IGFBP-3 concentrations are similar in obese and normal weight children⁵⁰⁴.

4.2.7.1 Potential implications of GH/IGF-I changes from overnutrition

The association between obesity and risk for several diseases of adulthood is mediated, at least in part, by the increase in GH sensitivity and IGF-I bioavailability from overnutrition. Obesity is a risk factor for cancer⁵²², and increasing BMI by 5 kg/m² will increase the relative risk of developing many different types of malignancies⁵²³. Overweight patients who develop cancer have a worse prognosis than those with normal weight^{522, 524}. The mechanism for this association is not fully understood, but thought to be multifactorial and include the IGF-I signaling pathway⁵²⁵. There is evidence at the extreme ends of the spectrum of IGF-I to support this link: the incidence of colon cancer is increased in acromegaly⁵²⁶; and congenital IGF-I deficiency appears to confer protection against the development of malignancies^{524, 527, 528}. The link between the overexpression of growth factors, or their receptors, and cancer is established (reviewed in ⁵²⁹), and the increased concentrations of free IGF-I in obesity may play a role in this association.

4.2.8 CLINICAL IMPLICATIONS

The GH/IGF-I axis is sensitive to nutritional status, and under- or overnutrition can affect this axis at each level from regulation of secretion to intracellular signaling. Evaluating the child's nutritional status is essential in the proper interpretation of IGF-I concentrations, and failure to do this can result in misdiagnosis of a disorder of the GH/IGF-I axis.

4.2.8.1 The clinical implications of undernutrition and IGF-I measurements IGF-I measurement has a central role in the screening evaluation of potential disorders of the GH/IGF-I axis². GH stimulation testing is often used to confirm GHD in the child whose screening IGF-I concentration is low. However, these tests have poor reproducibility and specificity for this condition^{130, 131}.

Consequently many normal children will be misclassified as having GHD using these tests^{47, 48}, and this is a risk when children with low IGF-I concentrations from undernutrition undergo GH stimulation testing. These children have GH resistance and are unlikely to respond to GH therapy in the absence of nutritional replacement⁴⁸⁴. Ineffective GH treatment will also have significant healthcare resource implications⁵³⁰, and may expose patients to risk^{64, 66}.

The sensitivity of the GH/IGF-I axis to transient or minor changes in nutritional substrate availability is clinically relevant in children undergoing evaluation for short stature. Brief periods of reduced caloric intake can result in reduced IGF-I concentrations, even before any effect on body composition, weight or BMI is appreciated. Thus, nutritional history should include recent, as well as chronic, dietary intake. Similarly, energy expenditure through exercise, pubertal requirements or chronic disease should be considered when assessing the sufficiency of nutritional intake.

It should be remembered that the effect of nutrition on IGF-I concentration is not solely dependent on caloric intake. Inadequate protein consumption can also lower IGF-I levels. Deficiency of micro-nutrients including zinc, magnesium and iodine, as well as hormones including thyroxine (reduced in sick euthyroid syndrome during nutritional stress and/or disease) may also result in low IGF-I concentrations and should be considered as possible aetiologies.

Thus, careful evaluation of the patient's weight and BMI charts is as important as inspection of the height and height velocity charts. Three-day diet recording and analysis for macro- and micronutrient sufficiency is a worthwhile diagnostic test, as is repeating the IGF-I measurement following a period of nutritional intervention, in children suspected of undernutrition prior to performing any GH stimulation testing.

4.2.8.2 The clinical implications of overnutrition and IGF-I measurements

Unlike undernutrition, IGF-I concentrations in patients with overnutrition are less likely to result in diagnostic confusion. Total IGF-I levels are generally normal or elevated in obesity, although free IGF-I concentrations tend to be increased. Recent dietary history may be of relevance in these children, however, short-term caloric restriction in obese children may also reduce IGF-I concentrations. The effect of obesity on the GH/IGF-I axis should be considered when interpreting the results of provocative GH stimulation testing, as a blunted response to pharmacological stimuli has been reported in these children.

The long-term implications of obesity for adverse health outcomes are of significant concern in the current obesity epidemic. Nutrition-mediated alterations in the GH/IGF-I axis in obesity may play a causative role in the pathogenesis of many of these comorbidities, and is an active area of current research.

4.2.8.3 Potential new roles for IGF-I measurement

The consistent effect of undernutrition in reducing IGF-I concentrations may provide an additional clinical role to IGF-I measurement. Monitoring IGF-I concentrations has been suggested as a measure of nutritional sufficiency 436, 490, 531. Weight gain in preterm and low birth weight infants is mirrored by increases in IGF-I levels, and this may be an additional marker of nutritional sufficiency in this population 436. Another potential clinical role for IGF-I measurement may be the monitoring of activity of diseases associated with malabsorption, such as celiac disease 475. IGF-I concentrations are sensitive to short-term nutritional insufficiencies, and may be affected before symptoms such as weight loss are noticeable.

4.2.9 CHAPTER CONCLUSION

IGF-I concentration is sensitive to acute and chronic changes in nutritional status. Thus, interpretation of IGF-I measurements should take into account the nutritional status of the patient. Given the poor specificity of GH stimulation

testing for GHD, caution is advised against progressing to these tests prior to addressing nutritional issues in patients where nutrition may be affecting IGF-I measurements. Likewise, the diagnosis of primary IGF deficiency cannot be made until undernutrition is excluded as a cause of the low IGF-I levels. GH and recombinant IGF-I treatment are neither appropriate nor effective interventions for increasing growth of children and adolescents with nutritional stunting. Nutritional repletion is the therapy of choice in that setting.

While weight and BMI are the most commonly used methods for describing nutritional status, noninvasive methods for studying body composition are available. In the following chapters, I will describe reference data for body composition parameters in infancy. Having described normative data for IGF-I measurement in infancy (Chapter 2.4), I will then explore the relationship between these parameters and IGF-I and –II concentrations.

CHAPTER 4.3: BODY COMPOSITION IN THE FIRST FEW DAYS OF LIFE

Publication

Hawkes CP, O'B Hourihane J, Kenny LC, Irvine AD, Kiely M, Murray DM. Gender- and gestational age-specific body fat percentage at birth. Pediatrics. 2011;128(3):E645-E51. (Appendix L)

Presentation

Hawkes CP, O'B Hourihane, J, Kenny LC, Irvine AD, Kiely M, Murray DM. Body Composition at birth; normative values.

American Pediatric Society / Society for Pediatric Research. Denver, May 2011. European Society for Paediatric Research, Newcastle, Sept 2011. (Appendix M)

4.3.1 BACKGROUND

Nutrition is a key regulator of childhood growth. This is most obvious at the extreme end of caloric undernutrition, where adolescents with anorexia nervosa are have poor linear growth that improves with weight gain⁵³². Similar growth patterns are also seen in children with celiac disease before and after treatment⁵³³⁻⁵³⁵, and in other causes of severe malnutrition⁵³⁶ (See Chapter 4.2).

Assessing nutritional status in infancy can be challenging. Weight, weight-for-length, Ponderal index (mass/length³) and body mass index (BMI, (mass/length²) are the proxy measures of adiposity most commonly used in infants. Weight alone is an imprecise measure of adiposity, as it is comprised of all tissue compartments and is dependent on length⁵³⁷. The relationship between length and weight is age-dependent during childhood, and children with similar BMI can have different amounts of FM. Ponderal index⁵³⁸ and skinfold thickness⁵³⁹ are also poor predictors of body fat in early life.

The accurate measurement of FM is possible using noninvasive techniques including dual-energy x-ray absorptiometry (DXA), Air Displacement Plethysmography (ADP) and bioelectric impedance analysis (BIA)⁵⁴⁰. Magnetic resonance imaging (MRI)⁵⁴¹ and DXA can provide localised information on fat distribution. For very young infants, ADP is a preferred technique because it does not involve radiation or require sedation. This technique can also tolerate infant movement, and has been validated in infants against deuterium dilution body composition analysis⁵⁴² and DXA⁵⁴³.

In this, and subsequent chapters, I will describe reference data for body composition in infancy and determine if these measures correlate with serum IGF-I and –II concentrations at birth. I will first describe the measurement of percentage body fat (%BF) at birth, before exploring and describing new indices for FM and FFM in the first three months of life.

4.3.2 AIM

The aim of this study is to describe reference data for %BF in infants born after 36 weeks' gestation within the first 4 days of life, and to determine the effect of infant sex and gestation on this.

4.3.3 METHODS

4.3.3.1 Study Population and Measurements

Infants born during the study peroid of March 2008 to October 2010 at a gestational age between 36 and 41+6 weeks' gestation, enrolled in the Cork BASELINE Birth Cohort Study, were eligible for inclusion. Eligibility and exclusion criteria for this cohort study are outlined in 2.4.3.

Gestational age, sex, birth weight and length were recorded at birth for each infant. Gestational age was determined from a first trimester scan or the last menstrual period (LMP). Gestational age based on LMP was confirmed against dates calculated from a first trimester dating scan. If there was disparity of more

than 7 days between LMP and scan dates, then the scan-based gestational age was used. Body composition was calculated using the ADP within the first four days of life.

Maternal BMI was measured on initial visit at 16 weeks gestation. Maternal cigarette use was self reported. Infant anthropometric measurements were recorded on the same day as PEAPODTM measurement, using standardised operating procedures. Length was measured using a neonatometer to the nearest milimeter. Mid arm circumference was measured once on the left arm at the midpoint between the olecranon and acromion processes. Abdominal circumference was measured once at the level just above the umbilicus, in centimeters to one decimal place.

4.3.3.3 Air Displacement Plethysmography

The PEAPODTM Infant Body Composition System (Life Measurement Inc, Concord, CA) is an air-displacement plethysmograph that allows for the measurement of body composition in infants between 1 and 8 kg body weight. The naked infant is placed in a closed chamber. Air displacement is measured using pressure and volume changes. Calculated body volume and body mass are used to determine body density. Age and gender-specific fat-free mass density values are used to calculate the percentage body fat^{544, 545}. Interobserver variability was reduced by one trained midwife performing almost all measurements as per standard operating procedure.

4.3.3.4 Statistical analysis:

Data were entered prospectively into a secure internet database, and SPSS (version 16, SPSS Inc Chicago, Illinois USA) was used for analysis. Infants were grouped by gestational age (weeks + days) into 3 groups; 36-37⁺⁶, 38-39⁺⁶ and 40-41⁺⁶. Weighted average (Haverage) percentile values were calculated at 2.5, 5, 10, 25, 50, 75, 90, 95 and 97.5.

One way ANOVA analysis was used to compare categorical clinical and demographic variables between groups and independent samples t-tests were used to compare continuous variables. As %BF was normally distributed (Fig 1), independent samples t-tests were used to compare between groups. One way ANOVA testing was used to compare %BF between the three gestational age groups. This was also used to determine if there was a significant difference in %BF between days of PEAPOD measurement. Stepwise linear regression was used to determine the independent effect of gestation on %BF.

4.3.4 RESULTS

Of the 1203 recruited infants delivered during the study period, 743 were born between 36 to 41⁺⁶ weeks and had had ADP performed within the first four days of life. The excluded infants included: 417 born prior to PEAPOD availability; 31 had ADP performed after four days of life; and 12 were born outside the gestational range of 36 to 41⁺⁶ weeks.

Most (553/743, 74.4%) PEAPOD measurements were taken on the second or third day of life; mean (SD) = 1.9(0.9) days. Within the limit of day 0-4, day of measurement did not influence %BF (p=0.08). The demographics of our population are shown in Table 4.3.1. There was no significant difference in ethnicity, mean maternal age, mean maternal BMI and socioeconomic status between gestational age categories.

 Table 4.3.1 Demographic data of study population, categorised by gestational age.

Data presented as mean (SD)

^aNew Zealand Socioeconomic Index (NZSEI-96)^{546, 547}

^bOne-way ANOVA

	36-37 ⁺⁶ wk	38-39 ⁺⁶ wk	40-41 ⁺⁶ wk	Total	p-value ^b
Number	45	243	455	743	
Male, n (%)	23 (51.1)	139 (57.2)	228 (50.1)	390 (52.5)	0.2
Gestational Age, weeks	37.2 (0.6)	39.1 (0.5)	40.8 (0.5)	40.1 (1.2)	< 0.001
Birth weight, g	2955 (313)	3326 (422)	3643 (437)	3498 (470)	< 0.001
Age at Peapod, days	2.1 (1)	1.9 (0.9)	1.8 (0.9)	1.9 (0.9)	0.06
Caucasian Ethnicity, n (%)	44 (97.8)	240 (98.8)	447 (98.2)	731 (98.4)	0.8
Maternal age, years	29.8 (4.9)	29.7 (4.6)	29.7 (4.3)	29.7 (4.5)	0.9
Maternal University Degree	15 (33.3)	102 (42)	222 (48.8)	339 (45.6)	0.05
or Higher, n (%)					
Smoked in Pregnancy, n (%)	14 (31.1)	65 (26.7)	125 (27.5)	204 (27.5)	0.8
Maternal BMI at 16 weeks'	23.6 (4.2)	24.6 (4.1)	24.9 (4.1)	24.7 (4.2)	0.1
Socioeconomic Status ^a (%)					
1	2 (4.4)	10 (4.1)	34 (7.5)	46 (6.2)	0.9
2	7 (15.6)	41 (16.9)	60 (13.2)	108 (14.5)	
3	18 (40)	91 (37.4)	176 (38.7)	285 (38.4)	
4	3 (6.7)	17 (7)	37 (8.1)	57 (7.7)	
5	4 (8.9)	42 (17.3)	69 (15.2)	115 (15.5)	
6	11 (24.4)	42 (17.3)	79 (17.4)	132 (17.8)	

4.3.4.1 Gestational Age Categories

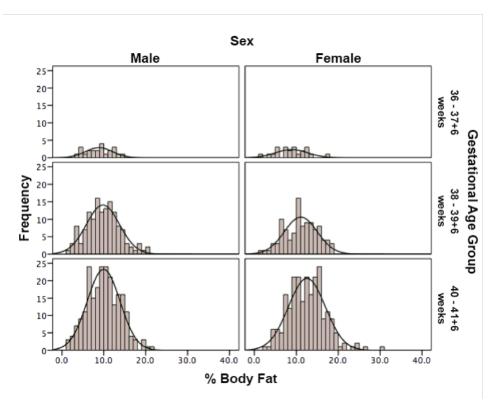
Mean body fat percentage increased with gestational age. At 36 to 37⁺⁶ weeks' gestation, mean (SD) %BF was 8.9% (3.5), which increased to 10.3% (4) at 38 to 39⁺⁶ weeks and 11.2% (4.3) at 40 to 41⁺⁶ weeks (p<0.001) (Table 4.3.2). On stepwise linear regressional analysis, gestational age remained a significant association (R = 0.193, p<0.001) when corrected for maternal BMI at 16 weeks' gestation, socio-economic group, maternal age and cigarette consumption. The other significant and consistent association with %BF on multi-variate analysis was maternal BMI at 16 weeks' gestation (Table 4.3.3). %BF increased linearly with increasing gestation and increasing maternal BMI.

Table 4.3.2: Male and Female measurements at different gestational ages ^aIndependent Sample t-test, ^bANOVA, *Denotes variables measured by PeaPod

independent Sample t-test, ANOVA,	· Denotes variat	nes measured t	`	
	Male	Female	TOTAL	P-value*
36-37 ⁺⁶ weeks gestation	23	22	45	
Birth weight g (SD)	3009 (340)	2898 (277)	2955 (313)	0.24
Fat mass g (SD)*	253 (99)	245 (112)	249 (105)	0.801
Body Fat % (SD)*	8.8 (3.2)	8.9 (3.8)	8.9 (3.5)	0.968
Fat Free Mass g (SD)*	2588 (285)	2485 (227)	2548 (261)	0.188
Fat Free Mass % (SD)*	91.2 (3.2)	91.1 (3.8)	91.1 (3.5)	0.968
Head Circumference cm (SD)	33.5 (1.3)	33.3 (1.1)	33.4 (1.2)	0.453
Ponderel Index (kg/m³)	27 (3.1)	26 (2.5)	26.5 (2.9)	0.241
Length (cm)	48.2 (2.5)	48.2 (1.7)	48.2 (2.1)	0.973
Abdominal Circumference (cm)	32.2 (1.9)	31.3 (1.4)	31.7 (1.7)	0.085
Midarm Circumference (cm)	9.8 (0.7)	9.7 (0.8)	9.7 (0.8)	0.681
38-39 ⁺⁶ weeks gestation	139	104	243	
Birth weight	3362 (436)	3279 (399)	3326 (422)	0.13
Fat mass g (SD)*	322 (159)	351 (148)	334 (155)	0.159
Body Fat % (SD)*	9.8 (3.9)	11.1 (3.9)	10.3 (4)	0.012
Fat Free Mass g (SD)*	2879 (331)	2757 (311)	2827 (328)	0.004
Fat Free Mass % (SD)*	90.2 (3.9)	88.9 (3.9)	89.7 (4)	0.012
Head Circumference cm (SD)	34.8 (1.4)	34.1 (1.3)	34.5 (1.4)	< 0.001
Ponderel Index (kg/m³)	27.2 (2.5)	27.7 (2.3)	27.4 (2.5)	0.132
Length (cm)	49.8 (1.9)	49.1 (1.8)	49.5 (1.9)	0.004
Abdominal Circumference (cm)	33 (2)	32.9 (2)	33 (2)	0.806
Midarm Circumference (cm)	10.4(1)	10.2 (0.9)	10.3 (1)	0.12
40-41 ⁺⁶ weeks gestation	228	227	455	
Birth weight	3687 (431)	3598 (440)	3643 (437)	0.029
Fat mass g (SD)*	358 (171)	437 (188)	397 (184)	< 0.001
Body Fat % (SD)*	10 (3.9)	12.5 (4.4)	11.2 (4.3)	< 0.001
Fat Free Mass g (SD)*	3122 (348)	2962 (345)	3042 (355)	< 0.001
Fat Free Mass % (SD)*	90 (3.9)	87.5 (4.4)	88.8 (4.3)	< 0.001
Head Circumference cm (SD)	35.4 (1.3)	34.9 (1.2)	35.1 (1.3)	< 0.001
Ponderel Index (kg/m³)	27.4 (2.5)	27.9 (2.3)	27.6 (2.4)	0.026
Length (cm)	51.2 (1.8)	50.5 (1.7)	50.9 (1.8)	< 0.001
Abdominal Circumference (cm)	33.9 (1.9)	33.7 (2)	33.8 (2)	0.526
Midarm Circumference (cm)	10.8 (1)	10.8 (1)	10.8 (1)	0.397
Total cohort	390	351	743	
Birth weight	3531 (472)	3460 (466)	3498 (470)	0.04
Fat mass g (SD)*	339 (165)	400 (182)	368 (176)	< 0.001
Body Fat % (SD)*	9.8 (3.9)	11.9 (4.3)	10.8 (4.2)	< 0.001
Fat Free Mass g (SD)*	3003 (372)	2872 (355)	2941 (370)	< 0.001
Fat Free Mass % (SD)*	90.2 (3.9)	88.1 (4.3)	89.2 (4.2)	< 0.001
Head Circumference cm (SD)	35.1 (1.4)	34.6 (1.3)	34.8 (1.4)	< 0.001
Ponderel Index (kg/m³)	27.3 (2.5)	27.7 (2.4)	27.5 (2.5)	0.023
Length (cm)	50.5 (2)	50 (1.9)	50.3 (2)	< 0.001
Abdominal Circumference (cm)	33.4 (2)	33.3 (2.1)	33.4 (2)	0.503
Midarm Circumference (cm)	10.6(1)	10.6 (1)	10.6 (1)	0.911

Table 4.3.3: Stepwise linear regression of factors affecting body fat percentage.

*Maternal BMI at 16 weeks gestation,


** Number of cigarettes smoked per day during pregnancy as measured by maternal report.

Independent	Correlation	p-value	Standardised	t-value				
variables	coefficent							
			Beta coefficient					
Gestational age	0.200	< 0.001	0.192	5.32				
Maternal BMI*	0.114	0.006	0.099	2.71				
Cigarette	-0.011	0.387	-0.011	-0.302				
consumption**								
Socio-economic	0.029	0.450	0.013	0.329				
group								
Maternal age	-0.24	0.263	-0.026	-0.672				
Dependent variable = 0	Dependent variable = %Body fat day 1-4. F =7.815, p<0.001							

4.3.4.2 Effect of gender

The %BF in males and females was normally distributed within each gestational age category (Fig 4.3.1). Males had lower mean %BF than females in each category. The difference became more pronounced with advancing gestational age, and was statistical significance in the 38 to 39^{+6} (p=0.012) and 40 to 41^{+6} (p<0.001) weeks' gestation categories.

While females had a greater %BF than males at each gestational age, males had a greater birth weight. This was not significant at 36-37⁺⁶ weeks (p=0.24) or 38-39⁺⁶ weeks (p=0.13), but was significance at 40-41⁺⁶ weeks; with males weighing 3683g (SD=435g) and females weighing 3593g (SD=447g) (p=0.029). It should be noted that there were increased numbers of subjects at later gestational ages, which may have increased power to detect differences.

Figure 4.3.1 Body fat percentages for males and females at 36-37⁺⁶, 38-39⁺⁶ and 40-41⁺⁶ weeks gestation. Normal curves displayed.

4.3.4.3 Centile Chart

A centile chart was compiled for males, females and all infants at each gestational age category, and is shown in Table 4.3.4.

Table 4.3.4: Centiles for body fat percentage according to gestational age and sex

Centile	36-37+6	weeks		38-39 ⁺⁶ weeks		40-41 ⁺⁶ weeks			
	Male	Female	All	Male	Female	All	Male	Female	All
97.5 th	14.9	17.5	17.1	19	18.2	18.4	18.2	22.1	19.8
95 th	14.5	16.9	14.4	17.1	17.7	17.5	16.2	19.2	18.3
90 th	13	13.1	12.9	14.5	16.3	15.5	15	17.9	16.7
75 th	11.9	12	11.9	12.2	14.1	13	12.7	15.4	14.2
50 th	9.2	8.9	9.2	9.6	11	10.3	9.9	12.5	10.9
25 th	6	5.7	5.9	7.2	7.9	7.5	6.9	9.4	8.1
10 th	4.6	4	4.4	4.7	6.2	5.1	4.9	7.2	5.8
5 th	3.4	1.8	3.3	3.2	4.7	3.4	3.4	5.6	4.4
2.5 th	3.1	1.4	1.7	2.4	2.9	2.6	2.8	4.7	3.2

4.3.5 DISCUSSION

This large observational birth cohort study shows the distribution of %BF in the first 4 days of life amongst first born infants greater than 36 weeks' gestation in a largely Caucasian Irish population. We have shown an upward trend in %BF at increasing gestational age, and demonstrated a significantly higher %BF at birth in females than in males. We have created a centile chart for %BF in male and female infants that will assist physicians and researchers in the interpretation of measured neonatal body fat percentage.

Previous studies of %BF at birth in term infants have shown varying mean values. This has varied from $8.6\pm3.7\%$ (n=87) in Italian infants⁵⁴⁸, to $10.6\pm4.6\%$ (n=87) in cohort of 87 American infants⁵⁴⁹ and $12.9\pm4\%$ in 108 full term Swedish infants in the first 10 days of life⁵⁵⁰. No previously studied cohorts have been large enough to delineate normative data for gestational age categories in term infants. Our mean values varied considerably depending on the gestational age and sex of our studied infants and this may explain the variance seen between previous reports.

In this cohort, we have found that females have a greater %BF than males at birth at each of the studied gestational age categories; a difference that increased with advancing gestational age. While it is known that female children⁵⁵¹ and adults⁵⁵² have higher fat mass and lower lean body mass than males, there is disagreement in the published literature regarding the degree of difference, and whether or not this is present from birth. In 1967, Foman et al first observed this difference using a multicomponent model to determine body fat, based on measurements of total body water, total body potassium and bone mineral content. This finding has been replicated using dual energy x-ray absorptiometry^{553, 554}, and ADP⁵⁵⁵. However, Butte used the multicompartment model in 76 infants and did not find a difference between sexes at 2 weeks of age⁵⁵⁶. Eriksson and Gilchrist in two seperate studies using ADP found that %BF did not differ significantly between sexes at one and two weeks of age⁵⁵⁰. Once again these cohort sizes were much smaller (108 and 80 infants respectively).

As expected we found that male infants were heavier than their female counterparts at each gestational age. Despite this, their %BF was lower, meaning that this increase in weight was due to increased fat free mass. There is evidence that boys grow faster than girls in utero, and are more reliant on placental function and maternal nutrition during pregnancy^{557, 558}. Male infants seem more vulnerable to undernutrition, as evidenced by the greater effect of the Dutch famine on the male risk of later cardiovascular disease⁵⁵⁹, and the greater effect of malnutrition on male infants in animal experiments^{560, 561}.

As our study recruited primiparous volunteers with singleton pregnancies, and took place in a single Irish centre, there is a potential bias that may affect the generalisability of the results. However, our study population closely reflects that of the Irish population as a whole. In the Irish census of 2006, the demographics of women aged 15-44 compared with our study population were as follows: Caucasion 94% vs 98.4%; Completed 3rd level education 33.7% vs 45.6%⁵⁶². A recent study of 1000 pregnant Irish women recorded a mean(SD) first trimester BMI equal to 25.7⁵⁶³. This compares closely with 24.7(4.2) found in our study population. Thus, the babies included in our study are close to a representative sample of Irish first born infants.

4.3.6 CHAPTER CONCLUSION

Neonatal adiposity cannot be evaluated without accurate reference data, and this study was an important first step in characterising this. The observation that males weigh more but have less body fat than females demonstrates that body composition measurement may provide additional nutritional information beyond weight in early life. While %BF is commonly used as a measure of adiposity, it does not correct sufficiently for body size. In the next study, we build on the data generated from this study by developing a measure of fetal adiposity that is independent of infant size and can be used in describing body composition in the first three months of life.

CHAPTER 4.4: DEFINING BODY COMPOSITION IN THE FIRST TWO MONTHS OF LIFE AND CORRELATING WITH GROWTH AT TWO YEARS

Publication

Hawkes CP, Zemel BS, Kiely M, Irvine AD, Kenny LC, O'B Hourihane J, Murray DM. Body composition within the first 3 months: optimized correction for length and correlation with BMI at 2 years. Horm Res Paediatr. 2016;86(3):178-187 (Appendix N).

Presentation

Hawkes CP, Zemel BS, Kiely M, Irvine A, Kenny LC, O'B Hourihane J, Murray DM. Body composition in the first 2 months of life – optimized correction for length, reference data and correlation with obesity at 2 years. American Pediatric Society / Society for Pediatric Research. Baltimore, May 2016 (Poster Presentation) (Appendix O).

4.4.1 Introduction

In the previous study, I described reference data for %BF at birth. However, a confounding effect of body size on total FM and FFM has been described in adults⁵⁶⁴ and children⁵⁶⁵. %BF is also susceptible to this effect, as two individuals with the same %BF could have very different amounts of absolute FM⁵⁶⁶. Thus, the determination of an index of FM and FFM that is independent of size was required in order to investigate the interaction of body composition with IGF-I and –II concentrations (Chapter 4.5).

FM relative to length (L) is often used to correct FM for body size; fat mass index (FM/L²) and fat free mass index (FFM/L²) are commonly used in older children and adults. Whether these represent the optimal indices to correct FM and FFM for length in infancy has not been examined previously.

Rapid weight gain in early infancy increases future cardiometabolic risk⁵⁶⁷⁻⁵⁷⁰ and predicts obesity in later childhood^{571, 572}, adolescence and adulthood^{573, 574}. In addition to being a marker of nutritional status, I hypothesised that changes in body composition in infancy may also identify children who are at risk of future obesity.

4.4.2 AIM

The aims of this study were 1) to determine the optimal index of FM and FFM that is independent of length in the first three months of life, 2) to describe reference data for FM, FFM, %BF, as well as for parameters corrected for length in early infancy and 3) to determine if these measurements in early infancy can be used to identify children who will have an increased BMI at two years of age.

4.4.3 METHODS

Mothers and their children were recruited at 20 weeks' gestation through the SCOPE pregnancy study⁵⁷⁵ and followed up from birth through the Cork BASELINE birth cohort study (ClinicalTrials.gov NCT: 01498965) (additional details in 2.4.3)³⁴⁴. Infants were recruited over the study period from August 2008 to August 2011. Ethical approval was granted by the Clinical Research Ethics Committee of the Cork Teaching Hospitals.

For this study, we included all children born between 37 weeks and 41 weeks, 6 days' gestation. Birth assessments of body composition were defined as measurements obtained up to and including day four of life. Ninety percent of two month visits in this cohort took place between 49 and 86 days of life, and these were included as the "two month" body composition evaluations.

4.4.3.1 Demographics

Details regarding feeding type were recorded at each visit from parental report. Gestational age was determined using the first day of the last menstrual period (LMP). Ultrasound gestational age was used if it was performed before 16 weeks' gestation and a discrepancy of greater than six days between this and LMP was noted, or if the ultrasound scan at 20 weeks' reported a discrepancy of 10 or more days with LMP.⁵⁷⁵

4.4.3.2 Anthropometry

At birth and two months, weight, length, and occipito-frontal circumference (OFC) were measured using standardised protocols and recorded on a secure online database. Supine length was measured to the nearest millimeter at birth using a Harpenden neonatometer (Harlow Healthcare, London, UK), and at two months using a Seca 210 mat (Harlow Healthcare, London, UK). Standing height was measured at 24 months of age using a Seca 206 tape (Harlow Healthcare, London, UK). Infants were weighed unclothed.

4.4.3.3 Body composition assessment

Body composition was measured at birth and two months of age using ADP (PEAPODTM Infant Body Composition System, Life Measurement Inc, Concord, CA)⁵⁷⁶, as described in 4.3.4.2.

4.4.3.4 Statistical Analysis

All data were analyzed using SPSS version 21.0 (IBM, New York, USA). Mean (SD) were reported for normally distributed data, and comparison between independent groups were made using Student's t-test for independent variables. Categorical variables (exclusive breastfeeding status and Caucasian ethnicity) were compared using Chi Squared tests.

Determination of the optimal length-corrected index of fat mass and fat free mass in infancy

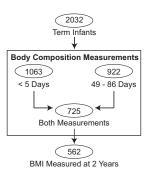
In order to determine the optimal index of FM and FFM corrected for length, we used a method previously described by Wells *et al*⁵⁶⁵, and Cole *et al*⁵⁷⁷. Logarithmic conversion of FM (LogFM), FFM (LogFFM) and Length

(LogLength) at birth and two months were calculated. Linear regressions of LogFM or LogFFM were performed separately with LogLength as the independent variable, similar to the Benn Index used to define the optimal power for weight-for-height indices⁵⁷⁸. This analysis used measurements at birth and aged two months. The slope of the regression line for each analysis delineates the optimal power of length in the FM/L^x or FFM/L^y that is least dependent on length.

We confirmed these results using the closest integer of x or y determined by the previous calculation. Linear regression for length (independent variable) and FM/L^x (dependent variable) were performed. A regression coefficient close to 0 between length and FM/L^x was considered to represent an index of fatness that is independent of length. Pearson's correlation coefficient was also used to determine the contribution of length to the measure of FM/L^x. This analysis was performed separately at birth and at two months. The same approach was used for FFM.

Reference values of body fat percentage, fat mass/length³ and fat free mass/length² at birth and two months

Gender-specific reference curves for %BF, FM/L³ and FFM/L² were generated using LMS Chartmaker Pro (Harlow Printing Ltd., Tyne and Wear, UK). The LMS method used by this software has been described previously³47, 348. A Box-Cox transformation is used to obtain normality, and separate smooth curves are generated for skewness, median and variability. These are constrained to smooth changes over time, and combined in one graph.


Evaluation of body composition at birth and two months, and BMI at two years

Children with ADP performed at birth and two months, and who had BMI available at two years were included in this analysis. Age- and sex-specific z-scores for FM, FFM, FM/L³, FFM/L², and %BF were generated from this population using the reference values described above. Sex-specific BMI z-

scores at two years of age based on the World Health Organization reference²⁷ were calculated using Stata 12.0 (StataCorp, College Station, TX, USA),³⁴⁶. Multiple linear regression analysis was performed using BMI z-score at two years as the dependent variable and age- and sex-specific z-scores for FM/L³, FFM/L² at birth and at two months as the independent variables. Logistic regression was used to determine the odds of having a BMI z-score \geq 2 at two years is based upon FM, FFM, FM/L³, FFM/L² and %BF z-scores at birth and two months.

4.4.4 RESULTS

Of the 2137 infants included in this birth cohort, 2032 were born between 37 weeks and 41 weeks, 6 days' gestation. Body composition was measured using ADP before five days of age in 1063 (526 females) and from 49 to 86 days of life in 922 (445 females). ADP was performed in 725 term children (348 female) both at birth and two months of age. BMI at two years was available in 562 (267 female) of these infants (Figure 4.4.1). Characteristics of the infants who had ADP body composition assessment performed at birth and two months of age are shown in Table 4.4.1.

Figure 4.4.1: The number of subjects recruited and undergoing body composition measurement at birth (<5 days) and two months (49-86 days), and body mass index measurement at two years.

Table 4.4.1: Body Composition Measurements within the first four days of life in term infants. Mean (SD).

P values represent the significance of the difference between males and females in each parameter at each time point measured using t-test (or *Fisher's exact test, 2-sided).

	parameter at their time pents introduced asing t test (or 1 isner 5 times test, 2 sidea).							
		BIRTH (0-4	l days)		TWO MONTHS (49-86 days)			
		Male (n=537)	Female (n=526)	p	Male (n=477)	Female (n=445)	p	
ĺ	Gestation, weeks	40.2 (1.1)	40.2 (1.1)	0.5	40.2 (1.1)	40.2 (1.1)	0.83	

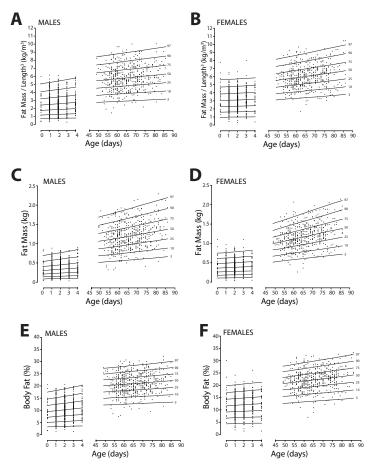
Exclusively Breastfed at time of measurement, n (%)	158 (29.4%)	187 (35.6%)	0.3*	131 (27.5%)	132 (31.9%)	0.47*
Caucasian, n (%)	531 (98.9%)	517 (98.5%)	0.81	531 (98.9%)	517 (98.3%)	0.17
Weight, kg	3.57 (0.45)	3.47 (0.45)	0.001	5.65 (0.69)	5.25 (0.57)	<0.001
Length, cm	50.7 (2)	50.1 (1.9)	< 0.001	59 (2.1)	57.9 (2.2)	< 0.001
Head Circumference, cm	35.1 (1.4)	34.5 (1.3)	<0.001	40.2 (1.3)	39.3 (1.4)	<0.001
Age at PeaPod, days	1.9 (1)	1.78 (1)	0.045	65.5 (8)	65.7 (8.2)	0.7
Total body mass, kg	3.38 (0.44)	3.29 (0.42)	0.001	5.65 (0.68)	5.25 (0.57)	<0.001
Fat Mass, kg	0.36 (0.17)	0.41 (0.17)	<0.001	1.21 (0.34)	1.19 (0.31)	0.18
Fat free mass, kg	3.02 (0.35)	2.88 (0.33)	< 0.001	4.44 (0.45)	4.06 (0.38)	< 0.001
Body fat, %	10.2 (4)	12.04 (4)	< 0.001	21.2 (4.3)	22.3 (4.2)	< 0.001
Fat Free Mass Index, kg/m ²	11.74 (1.01)	11.46 (0.98)	<0.001	12.73 (0.84)	12.1 (0.8)	<0.001
Fat Mass/length ³ , kg/m ³	2.67 (1.18)	3.18 (1.17)	<0.001	5.88 (1.52)	6.07 (1.4)	0.046

Determination of the optimal length-corrected measure of fat mass in infancy

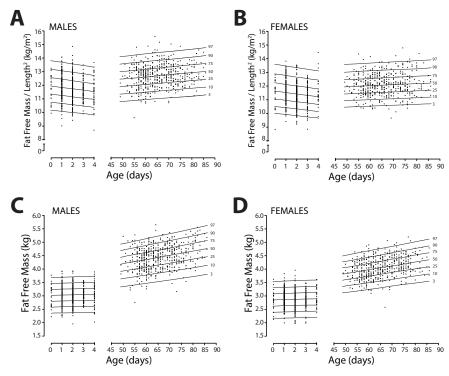
We first determined the optimal index of FM, and FFM least influenced by length. The overall slope of the regression line relating LogFM to LogLength at birth was 5.3 (5.9 males, 5.6 females), and at two months was 3.3 (3.5 males, 3.4 females). This indicates that FM/L⁵ at birth and FM/L³ at two months are optimal indices of fatness corrected for length. The overall slope of the regression line for LogFFM with LogLength was 2 at birth (1.9 males, 2.1 females) and 2.2 at two months (2.2 males, 1.9 females).

Separate regression analyses were performed to confirm that these indices minimised the association of FM and FFM with length. The regression coefficient for FM/L³ with length was 0.12 (SEM 0.02) (R² 0.04) at birth, and -0.005 (SEM 0.03) (R²<0.001) at two months (Table 2). The regression coefficient for FFM/L² was 0.03 (SEM 0.02) (R² 0.003) at birth, and 0.04 (SEM 0.01) (R² 0.01) at two months. These results indicate that FM/L³ minimises the

association of FM and length at birth and two months. While FM/L^5 may be more independent of length at birth, the contribution of length to the FM/L^3 at birth is low ($R^2 = 0.04$), and using the same index as two months allows for comparison between age groups. Using a similar analysis (Table 4.4.2), FFM/L^2 should be used as an index of FFM at birth and two months.


Table 4.4.2: Regression analysis of length on FM and FM/L^x at birth and two months of age.

		ii i ivi aliu	č			
			1 - 2			
R ²		p	R ²		p	
	` '					
	Length			Length		
0.194	0.039	< 0.001	0.18	0.062	< 0.001	
	(0.002)			(0.004)		
0.136	0.061	< 0.001	0.076	0.066	< 0.001	
	(0.005)			(0.008)		
0.083	0.091	< 0.001	0.019	0.055	< 0.001	
	(0.009)			(0.014)		
0.039	0.121	< 0.001	< 0.001	-0.005	0.84	
	(0.018)			(0.025)		
0.011	0.123	0.001	0.024	-0.18	< 0.001	
	(0.036)			(0.042)		
< 0.001	0.01	0.9	< 0.001	0.004	0.8	
	(0.072)			(0.015)		
				,		
0.531	0.124	< 0.001	0.572	0.156	< 0.001	
	(0.004)			(0.004)		
0.214	0.129	< 0.001	0.3		< 0.001	
	(0.007)					
0.003		0.05	0.012		< 0.001	
0.144	-0.401	< 0.001	0.161		< 0.001	
0.437		< 0.001	0.494		< 0.001	
0.644		< 0.001	0.698		< 0.001	
	(0.117)	0.001		(0.063)	0.001	
	0.194 0.194 0.136 0.083 0.039 0.011 <0.001	0-4 days of life (n=1063) R² Regression Coefficient (SEM) for Length 0.194 0.039 (0.002) 0.136 0.061 (0.005) 0.083 0.091 (0.009) 0.039 0.121 (0.018) 0.011 0.123 (0.036) <0.001	0-4 days of life (n=1063) R² Regression Coefficient (SEM) for Length p 0.194 0.039 (0.002) <0.001	0-4 days of life (n=1063) 49 – 86 days of Regression Coefficient (SEM) for Length p 0.194 0.039 (0.002) <0.001 0.18	R² Regression Coefficient (SEM) for Length P R² Regression Coefficient (SEM) for Length 0.194 0.039 (0.002) <0.001 0.18	


Reference values for adjusted fat mass in infancy at birth and two months of age

Reference centile charts for FM/L³, FM and %BF are shown in Figure 4.4.2, and FFM/L² and FFM are shown in Figure 4.4.3. During the first two months of life, mean (SD) FM/L³ increased approximately two-fold (males 2.7 (1.2) to 5.9 (1.5) kg/m³, females 3.2 (1.2) to 6.1 (1.4) kg/m³). A similar increase is noted in %BF

from (males 10.2 (4) to 21.2 (4.3)%, females 12 (4) to 22.3 (4.2)%). FFM/L² remained relatively constant during these two months (males 11.7 (1) to 12.7 (0.8) kg/m², females 11.5 to 12.1 (0.8) kg/m²). Females had increased FM/L³ and %BF at birth (p<0.001, p<0.001) and two months (p=0.046, p<0.001), and lower FFM/L² at birth (p<0.001) and two months (p<0.001) compared to males (Table 4.4.1).

Figure 4.4.2: Sex-specific centile charts for fat mass/length³ (A and B), fat mass (C and D) and body fat percentage (E and F) in term infants. Note that these charts show normative data from days 0 to 4, and 49 to 86 days in this population.

Figure 4.4.3: Sex-specific centile charts for fat free mass (A and B), and fat free mass/length² in term infants (C and D). Note that these charts show normative data from days 0 to 4, and 49 to 86 days in this population.

Body composition and anthropometric determinants of increased BMI at two years of age

Complete data on body composition measurements at birth and two months and BMI at two years were available in 562 (267 female) participants. The mean (SD) BMI at two years was 16.6 (1.5) in males, and 16.4 (1.3) in females. Mean (SD) BMI z-score at two years for males and females was 0.64 (0.9) and 0.67 (0.9) respectively.

FM and FFM at birth explained 0.06 of the variance in BMI z-score at age two years. By two months of age, these measures explained up to 0.18 of this variance (Table 4.4.3). Correcting FM and FFM for length did not improve the overall explained variance in the linear regression model. Changes in body composition z-scores were also not strong predictors of BMI z-score at age two years. Weight and length z-scores at two months were marginally better at predicting BMI z-score at two years than body composition at two months

(R^2 =0.21). Weight z-score at two months was the strongest independent predictor of BMI at two years (R^2 =0.17), and compares favourably with FM/L³ (R^2 =0.02 at birth, 0.14 at two months) or FFM/L² (R^2 =0.06 at birth, 0.11 at two months).

Table 4.4.3: Linear regression models for BMI z-score at two years.

Models were generated using FM and FFM corrected for length, or not corrected for length. The predictive value of standard weight and length measurements were also used in a separate model. Explained variance (R²) of models using single variables at one timepoint ^a, at two variables at one timepoint ^b or two variables at two timepoints ^c are presented separately. z-scores are sexand age-specific.

BMI z-score at	Estimate	SEM	95% CI	P value	\mathbb{R}^2		
2 years							
Corrected for Lei	ngth:						
FM/L ³ and FFM/L	$\frac{1}{2}$ at birth and 2	2 months, fo	or BMI at 2	years			
FFM/L ² z-score	0.107	0.037	0.035,	< 0.001	0.06 a		
at birth			0.18			0.07 b	
FM/L ³ z-score at	0.027	0.034	-0.041,	0.4	0.02 a	0.07	
birth			0.094				0.19 ^c
FFM/L ² z-score	0.179	0.038	0.104,	< 0.001	0.1 a		0.19
at 2 months			0.253			0.17 b	
FM/L ³ z-score at	0.241	0.035	0.172,	< 0.001	0.11 a	0.17	
2 months			0.31				
Not Corrected for	r Length:						
FM and FFM at bi	rth and 2 mon	ths, for BM	I at 2 years				
Fat Free Mass z-	-0.110	0.056	-0.12,	0.845	0.06 a		
score at birth			0.099			0.06 b	
Fat Mass z-score	0.001	0.038	-0.074,	0.981	0.03 ^a	0.00	
at birth			0.076				
Fat Free Mass z-	0.201	0.053	0.096,	< 0.001	0.11 a		0.18 ^c
score at 2			0.306				
months						0.18 ^b	
Fat Mass z-score	0.258	0.039	0.182,	< 0.001	0.14 a		
at 2 months			0.333				
Weight and Leng	th at birth an	d two mon	ths, for BM	I at 2 years			
Weight z-score	0.128	0.059	0.013,	0.03	0.06 a		
at Birth			0.244			0.08 b	
Length z-score	-0.130	0.052	-0.233, -	0.013	0.01 a	0.08	
at Birth			0.028				0.22 ^c
Weight z-score	0.547	0.056	0.436,	< 0.001	0.17 a		0.22
at 2 Months			0.657			0.21 b	
Length z-score	-0.169	0.053	-0.273, -	0.002	0.03 ^a	0.21	
at 2 Months			0.065				

At two years of age, 39 of these children (23 males, 16 females) had BMI z-scores \geq 2. Increasing z-scores for FM and FFM at birth and two months increased the odds of having a BMI \geq 2 at two years of age. Increases in FM,

FM/L³ and weight z-scores at two months of age were associated with the largest increase in the odds of having an increased BMI at two years (Table 4.4.4).

Table 4.4.4: The odds ratio (95% CI) of having BMI z-score ≥ 2 at two years for every unit increase in z-score of body composition measurements at birth and two months of age.

FFM=Fat Free Mass, FM=Fat Mass, L=Length

BMI z-score \geq 2, at 2 years	Odds Ratio	95% CI	P
FFM/L ² z-score at birth	1.36	1.02, 1.82	0.036
FM/L ³ z-score at birth	1.46	1.09, 1.96	0.012
FFM/L ² z-score at 2 months	1.62	1.21, 2.16	0.001
FM/L ³ z-score at 2 months	2.5	1.83, 3.42	< 0.001
Body Fat % z-score at birth	1.38	1.03, 1.85	0.032
Body Fat % z-score at 2 months	2.24	1.64, 3.04	< 0.001
Δ FFM/L ² z-score (birth to 2 months)	1.01	0.74, 1.38	0.95
Δ FM/L ³ z-score (birth to 2 months)	1.3	0.99, 1.7	0.06
Δ Fat Mass z-score (birth to 2 months)	1.36	1.03, 1.8	0.032
Δ Fat Free Mass z-score (birth to 2 months)	1.07	0.66, 1.71	0.79
Δ Body Fat % z-score (birth to 2 months)	1.28	0.98, 1.69	0.075
Δ Body Weight z-score (birth to 2 months)	0.88	0.54, 1.44	0.6
Fat Free Mass z-score at birth	1.58	1.16, 2.15	0.004
Fat Mass z-score at birth	1.52	1.13, 2.04	0.005
Fat Free Mass z-score at 2 months	1.79	1.33, 2.41	< 0.001
Fat Mass z-score at 2 months	2.71	1.97, 3.72	< 0.001
Weight z-score at Birth	1.9	1.38, 2.63	< 0.001
Length z-score at Birth	1.34	1, 1.78	0.048
Weight z-score at 2 Months	2.27	1.64, 3.13	< 0.001
Length z-score at 2 Months	1.31	0.98, 1.75	0.072

4.4.5 DISCUSSION

Here I describe reference data for body composition measured by ADP at birth and two months of age in a large cohort of infants. FM and FFM are influenced by length at birth and two months, and these analyses provide optimal indices for length that minimise this interaction. This study also describes reference charts for these new measures, which allow for the description of FM and FFM independent of length.

Infants undergo a significant change in body composition over the first two months. There is a two-fold increase in mean FM/L³ and %BF, while FFM/L²

remains relatively constant. This demonstrates that, while the absolute FFM increases, it remains fairly constant relative to linear growth. In contrast, there is a disproportionate increase in FM. This increase in FM in the first two months of life has also been shown in other smaller studies^{579, 580} and the rate of increase in FM slows after this first two months⁵⁷⁹. A doubling of adiposity in healthy subjects, as demonstrated by FM/L³ or %BF in this study, has not been reported at any other period in postnatal life⁵⁸¹.

Rapid weight gain in early life may have significant implications for future health, particularly cardiometabolic risk^{568, 582-584}, but it is not known if these associations are related to specific changes in body composition. It is possible that the reference charts provided in this manuscript may be used to determine if an infant's FM/L³ or FFM/L² is within the normal ranges. However, the clinical implications of FM/L³ or FFM/L² outside of the normal range in the first two months of life are currently unknown and subject to further study. These parameters may be of particular relevance for monitoring children born small for gestational age (SGA)⁵⁸⁵, where rapid weight gain in the first two years is associated with increased abdominal fat and adiposity as well as reduced lean mass at four years of age⁵⁸⁶. Infants born SGA have decreased insulin sensitivity within the first two years of life, ^{586, 587} and this decreases over the following years in association with the rate of early weight gain⁵⁸⁷. It is possible that tracking changes in FM/L³ or FFM/L² in these infants may represent an area for future research and intervention to decrease future cardiometabolic risk.

In this study, we have investigated the utility of body composition measurements in the first two months in predicting obesity at two years. There is no accepted definition of obesity at two years of age, and it is possible that BMI at this age is not an ideal indicator of future cardiometabolic risk. We have shown that weight and length measurements at two months confer greater prediction of elevated BMI at two years than body composition measurements at two months, which may reflect a relatively constant pattern in weight and linear growth between two months and two years. The limited utility of BMI in early life is also shown by

studies that demonstrate BMI at one and two years of age being weaker predictors of obesity in adulthood, than BMI in later childhood and adolescence^{573, 588}.

Limitations in the utility of the reference data described in this study are related to the unknown effects of ethnic and societal influences on body composition during the first two months of life. This Irish birth cohort study includes a relatively homogeneous, stable population of infants of European ancestry born in a single hospital in one mixed urban/rural area in Ireland. In this population, the rate of exclusive breastfeeding at two months was low in comparison to many other populations, at approximately 30%. Feeding modality may affect body composition at this early age, and exclusively formula fed infants have been described to have increased FFM, but not necessarily FM, when compared with exclusively breastfed infants at four months⁵⁸⁰. These factors may limit the generalisability of these reference data.

In conclusion, there are significant changes in adiposity in the first two months of life whereas FFM remains relatively constant when corrected for length. Although the clinical implication of this change in body composition is unknown, significant weight gain at this age confers increased future cardiometabolic risk and requires further investigation. The length correction indices, and reference data provided in this study contribute to our understanding of the changes in body composition occurring during this time, but do not increase our prediction of BMI at two years above standard weight and length measurements.

4.4.6 CHAPTER CONCLUSION

In Chapters 4.3 and 4.4, I have explored the use of ADP in describing body composition in infancy. I initially described and published reference data for %BF at birth, but subsequently developed new measures of reporting FM and FFM corrected for infant size. Given the relationship between nutritional status

and the GH / IGF axis (Chapter 4.2), I will investigate the relationship between these body composition indices and IGF-II production in the next chapter.

CHAPTER 4.5: CORRELATION OF INSULIN-LIKE GROWTH FACTOR-I AND –II WITH BODY COMPOSITION

Presentation

Hawkes CP, Zemel BS, Kenny LC, Kiely M, Sikora K, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A, Murray DM. The relationship between IGF-I and –II and body composition at birth and over the first 2 months of life. Pediatric Endocrine Society, September 2017 (Poster Presentation) (Appendix P).

Manuscript under review

Hawkes CP, Zemel BS, Kenny LC, Kiely M, Sikora K, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A, Murray DM. The relationship between IGF-I and –II and body composition at birth and over the first 2 months of life.

4.5.1 Introduction

In this chapter, I will bring together data and concepts from a number of previous chapters. Having reviewed the interaction between the GH / IGF-I axis and nutritional status (Chapter 4.2), described body composition in the first few days of life (Chapter 4.3), and developed a new size-independent index of FM and FFM in the first two months of life (Chapter 4.4), I will now determine if there is a relationship between body composition over the first two months and IGF-I and –II concentrations at birth. I will use the new IGF-I and –II measurements by LCMS described in Chapter 2.4 to explore this relationship.

4.5.2 BACKGROUND

IGF-I and –II play an important role in regulating fetal growth, as demonstrated by infants with IGF-I and –II signaling defects having significant prenatal growth failure ^{152, 329}. Regulation of IGF-I and -II *in utero* appears to be more

dependent on nutrition¹⁹⁶ than GH. Infants with GHD have normal size at birth^{332, 589} whereas IGF-I and –II concentrations are reduced in intrauterine growth restriction⁵⁹⁰, and animal models show that IGF-I and –II expression are reduced in response to intrauterine nutritional deprivation^{591, 592}. In early infancy, nutrition continues to play a major role in IGF-I production where formula feeding and high protein intake are associated with increased IGF-I concentrations^{299, 313, 437}.

Birth weight is often used as a proxy for adiposity, but these do not always correlate^{269, 270} and it is possible that IGF-I and –II concentrations are associated more closely with body composition than birth weight. Infants born SGA have a greater deficit in body fat than lean mass and have lower IGF-I concentrations²⁶⁷, suggesting that IGF-I levels may be more closely associated with body fat than lean mass at birth. Similarly, IGF-I levels at birth are associated with Ponderal index, a marker of adiposity²²¹. At five years, IGF-I concentrations correlate more closely with FFM whereas IGF-II concentrations are associated with FM⁵⁹³. At eight years of age, IGF-I concentrations continue to correlate more closely with FFM^{594, 595}, but may also be associated with adiposity⁵⁹⁴. These associations of IGF-I and –II with body composition parameters diminish during puberty⁵⁹⁵.

IGF-I measurement may also be useful in assessing growth trajectories, but whether this can be used to predict changes in body composition is not known. In children born appropriate for gestational age, higher IGF-I concentrations at three months of age are associated with increased weight gain over the preceding three months²⁹⁹. Higher IGF-I concentrations at three months of age are also associated with increased linear growth over the following nine months, without an associated increase in adiposity³⁰¹. This dynamic relationship between IGF-I concentrations and rate of growth is also seen at five years of age, where higher IGF-I concentrations are seen in children who had more weight gain over the first two years of life regardless of weight at the time of IGF-I measurement⁵⁹⁶.

There are limited data describing the association of IGF-I and -II concentrations with detailed body composition measurements at birth, or studying the predictive value of IGF-I and -II concentrations on subsequent dynamic changes on body composition. The aim of this study is to determine if IGF-I and -II measurements at birth are associated with body composition at birth, and the trajectory of body composition changes in the first two months of postnatal life.

4.5.3 METHODS

Children were enrolled in the Cork BASELINE birth cohort study at birth (ClinicalTrials.gov NCT: 01498965) between August 2008 and August 2011³⁴⁴ (additional details in 2.4.3). Ethical approval was granted by the Clinical Research Ethics Committee of the Cork Teaching Hospitals.

4.5.3.1 Body Composition assessment

ADP (PEAPODTM Infant Body Composition System, Life Measurement Inc, Concord, CA)⁵⁷⁶ was used to measure body composition at birth and two months, as described in 4.3.4.2.

Birth measurements were included if they occurred within the first four days of life and two month measurements if they were taken between 49 and 86 days of life. In order to adjust FM and FFM for body size, FM/length³ (FM/L³) and FFM/L² were calculated and converted to age- and sex-specific z-scores (Chapter 4.4)²⁷⁰.

4.5.3.2 Sample collection and storage

Umbilical cord samples were collected at birth. They were processed to serum within three hours of collection, and stored at -80°C until analysed. Samples were analysed at Quest Laboratories (NJ, USA) by LCMS, as outlined in 2.4.3.5.

4.5.3.3 Statistical Analysis

The LCMS assay cannot detect IGF-I concentrations below 16 ng/ml or IGF-II concentrations below 32 ng/ml. Where samples had concentrations below these values, a concentration of 15 ng/ml for IGF-I or 31 ng/ml for IGF-II was assigned. Z-scores for FM/L³ and FFM/L² were age- and sex-specific at birth and two months. The change in z-score between birth and two months was calculated by subtracting the age- and sex-specific z-score at birth from the two-month z-score.

Data analyses were performed using SPSS 21.0 (IBM, New York, USA). Mean (SD) were reported for normally distributed data and compared using Student's independent sample T-tests. Linear regression analysis was used to evaluate the relationship between continuous variables.

4.5.4 RESULTS

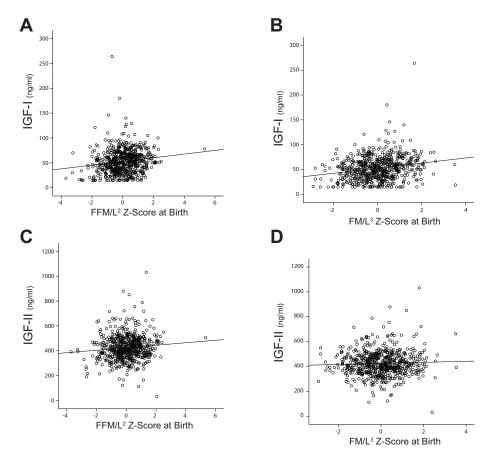

There were 2137 infants enrolled in the Cork BASELINE birth cohort. Of these, 105 were excluded from this study for prematurity, 932 did not have sufficient cord blood available for IGF measurement, and a further 499 did not have body composition measurement performed both at birth and two months. Complete measurements of IGF-I and –II at birth and ADP measurements at birth and two months of age were available in 601 term infants (317 male). Characteristics of these subjects are shown in Table 4.5.1.

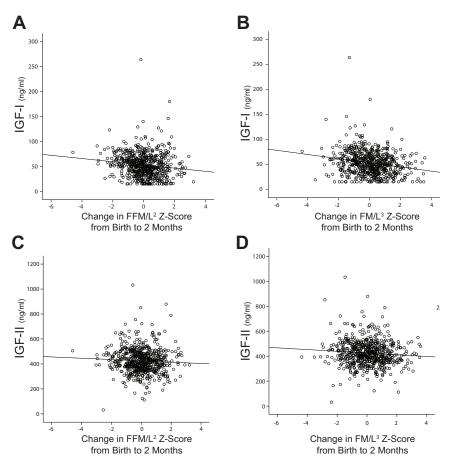
Table 4.5.1: Characteristics of population. Unless otherwise stated, mean(sd) are presented.

	Males	Females	All
Number, n	317	284	601
Gestational Age, weeks	40.2 (1.1)	40.2 (1)	40.2 (1.1)
Birth weight, kg	3.57 (0.45)	3.49 (0.45)	3.53 (0.45)
Weight at 2 months, kg	5.66 (0.68)	5.3 (0.57)	5.49 (0.66)
Length at birth, m	0.51 (0.02)	0.5 (0.02)	0.5 (0.02)
Length at 2 months, m	0.59 (0.02)	0.58 (0.02)	0.59 (0.02)
IGF-I, ng/ml	49.6 (23.9)	56.6 (24.3)	52.9 (24.3)
IGF-II, ng/ml	421.4 (98.1)	428.5 (103.7)	424.8 (100.8)
FM/L ³ at Birth, kg/m ³	2.7 (1.2)	3.2 (1.2)	2.9 (1.2)
FM/L ³ at 2m, kg/m ³	5.9 (1.5)	6.2 (1.4)	6 (1.5)
FFM/L ² at Birth, kg/m ²	11.8 (0.9)	11.5 (0.9)	11.7 (0.9)
FFM/L ² at 2m, kg/m ²	12.8 (0.8)	12.1 (0.8)	12.5 (0.9)
Change in FM/L ³ z-score from	0 (1.2)	0.1 (1.2)	0.05 (1.2)
birth to 2-months			
Change in FFM/L ² z-score from birth to 2-months	0.04(1)	-0.02 (1.1)	0.01 (1)

4.5.4.1. Association of IGF-I and –II levels at birth with body composition at birth

Increased IGF-I concentrations were associated with higher FM/L³ and FFM/L² z-scores at birth (R²=-0.05, P<0.001 and R²=0.02, P=0.016 respectively) (Figure 4.5.1). These associations were also seen separately in both sexes. IGF-II concentrations at birth were associated with FFM/L² z-score at birth (R²=0.01, P=0.014) but not with FM/L³ z-score at birth (R²=0.002, P=0.3). When males and females were analysed separately, IGF-II concentration was only associated with FFM/L² z-scores at birth in females (R²=0.02, P=0.034) and not males (R²=0.005, P=0.2).

Figure 4.5.1: Scatter-plot and linear regression comparing IGF-I (A and B) and -II (C and D) concentrations with age- and sex-corrected FM/L³ and FFM/L² z-scores at birth. The associations between IGF-I concentration and FM/L³ and FFM/L² z-scores and the association between IGF-II concentration and FFM/L² z-score at birth were significant.


4.5.4.2. Association of IGF-I and -II at birth with body composition trajectory over the first 2 months

 FM/L^3 and FFM/L^2 z-scores at two months were not associated with IGF-I (R^2 =0.001, P=0.4 and R^2 <0.01, P=0.8 respectively) or IGF-II (R^2 =0.002, P=0.3 and R^2 <0.002, P=0.3 respectively) concentrations at birth (Figure 4.5.2). This indicates that body composition at two months was not predicted by IGF-I or –II concentrations at birth. Separate analysis in males and females showed that there was also no sex-specific association.

However, the change in FM/L³ and FFM/L² z-score was associated with IGF-I concentrations at birth and the change in FM/L³ was associated with IGF-II concentration at birth. Higher IGF-I and/or IGF-II concentrations were associated with a reduction in FM/L³ z-score between birth and two months,

although the association was stronger for IGF-I than for IGF-II concentrations (R^2 = 0.04, P<0.001, and R^2 =0.007, P=0.04 respectively). When males and females were analysed separately, IGF-II concentrations at birth were predictive of changes in FM/L³ in females (R^2 =0.03, P=0.006) but not males (R^2 <0.001, P=0.8) (Table 4.5.2).

IGF-I concentrations at birth were associated with changes in FFM/ L^2 in males (R^2 <0.036, P=0.001) but not females (R^2 <0.007, P=0.17).

Figure 4.5.2: Scatter-plot and linear regression comparing IGF-I and –II concentrations at birth with age- and sex-corrected FM/L³ and FFM/L² z-scores at 2 months.

Table 4.5.2: The relationship between sex- and gestational age-corrected FM/L 3 and FFM/L 2 z-scores at birth and years, with IGF-I and IGF-II concentrations at birth. For this analysis, IGF-I and –II are the dependent variables and FM/L 3 or FFM/L 2 measures are independent variables.

and if are the depende	IGF-I			measures are independent variables. IGF-II		
	R ²	Regression coefficient (SEM)	p	R ²	Regression coefficient (SEM)	p
Males		1	ı	1	1	T
FM/L ³ z-score at	0.048	5.04 (1.26)	< 0.001	0	0.37 (5.3)	0.95
birth	0.004	0.55(4.55)	0.5=		105 (5.15)	
FM/L ³ z-score at two	0.001	-0.56 (1.32)	0.67	0	-1.06 (5.42)	0.85
months FFM/L ² z-score at	0.025	2.95 (1.25)	0.005	0.005	7.24 (5.59)	0.2
birth	0.023	3.85 (1.35)	0.005	0.005	7.24 (5.58)	0.2
FFM/L ² z-score at	0.001	-0.8 (1.36)	0.56	0	0.07 (5.56)	0.99
two months	0.001	-0.8 (1.30)	0.30	U	0.07 (3.30)	0.99
Change in FM/L ³ z-	0.04	-4.12 (1.09)	< 0.001	0	-1.02 (4.56)	0.82
score from birth to	0.01	1.12 (1.0)	10.001		1.02 (1.50)	0.02
two months						
Change in FFM/L ² z-	0.036	-4.52 (1.32)	0.001	0.005	-6.96 (5.5)	0.21
score from birth to						
two months						
Females	0.047	5.06 (1.40)	.0.001	10000	0.04 (6.10)	0.14
FM/L ³ z-score at	0.047	5.26 (1.42)	< 0.001	0.008	9.04 (6.19)	0.14
birth FM/L ³ z-score at two	0.004	1.52 (1.4)	0.28	0.012	11.1 (6)	0.07
months	0.004	-1.52 (1.4)	0.28	0.012	-11.1 (6)	0.07
FFM/L ² z-score at	0.02	3.35 (1.4)	0.016	0.016	12.67 (5.95)	0.034
birth	0.02	3.33 (1.4)	0.010	0.010	12.07 (3.73)	0.054
FFM/L ² z-score at	0.004	1.53 (1.45)	0.29	0.009	9.71 (6.19)	0.12
two months	0.001	1.33 (1.13)	0.29	0.009).,1 (0.1))	0.12
Change in FM/L ³ z-	0.05	-4.48 (1.1)	< 0.001	0.03	-13.49	0.006
score from birth to					(4.92)	
two months						
Change in FFM/L ² z-	0.007	-1.8 (1.3)	0.17	0.001	-3.46 (5.62)	0.54
score from birth to						
two months						
ATT	<u> </u>	1				1
ALL FM/L ³ z-score at	0.05	5.1 (0.95)	< 0.001	0.002	4.23 (4.03)	0.20
birth	0.03	3.1 (0.33)	~0.001	0.002	7.23 (4.03)	0.29
FM/L^3 z-score at two	0.001	-0.87 (0.97)	0.37	0.003	-5.64 (4.02)	0.16
months	0.001	0.07 (0.57)	0.57	0.003	5.01(1.02)	0.10
FFM/L ² z-score at	0.024	3.7 (0.97)	< 0.001	0.01	10 (4.1)	0.014
birth						
FFM/L ² z-score at	0	0.3 (1)	0.76	0.002	4.62 (4.1)	0.27
two months						
Change in FM/L ³ z-	0.04	-4.17 (0.79)	< 0.001	0.007	-6.9 (3.35)	0.04
score from birth to						
two months	0.01-	20117 - 11	0.001	0.05-	7.7.7.5	0.10
Change in FFM/L ² z-	0.019	-3.21 (0.94)	0.001	0.003	-5.25 (3.9)	0.18
score from birth to						
two months				1	1	1

4.5.5 DISCUSSION

This study has demonstrated the relationships between IGF-I and -II concentrations at birth and neonatal body composition in a large well-defined cohort. Higher IGF-I concentrations at birth are associated with increased adiposity and lean mass, while increased IGF-II concentrations are associated with increased lean mass in females only. IGF-I and –II concentrations at birth are not predictive of body composition parameters at two months, however they are predictive of rates of change in body composition during the first two months of life. Lower IGF-I concentrations at birth are strongly associated with an increase in adiposity in both sexes, but only an increase in lean mass in males. Low IGF-II concentrations at birth are associated with increased adiposity in females only.

The relationship between IGF-I concentration at birth and adiposity is not surprising. There is a strong association between IGF-I concentrations and birth weight^{282, 349}, as well as with nutritional status¹⁹⁶. IGF-II is an important prenatal growth factor. Chorionic villi expression of *IGF2* mRNA is associated with birth weight⁵⁹⁷ and paternally inherited *IGF2* mutations are associated with growth restriction³²⁹. Animal models also support this important role of IGF-II in regulating prenatal growth⁵⁹⁸. It is possible that IGF-II is more critical to growth prior to the third trimester^{352, 353}, and this may explain the absence of association between body composition and IGF-II concentrations at birth.

Although IGF-I and –II concentrations at birth are not directly associated with body composition parameters at two months, there is an association with trajectory of accumulation of adiposity and lean mass. Significant changes occur in body composition during the first three months of life, with a two-fold increase in FM corrected for length. Lean mass remains relatively stable during this time²⁷⁰. The inverse relationship between IGF-I concentration at birth and the change in adiposity may simply reflect the early "catch up" accumulation of body fat in infants with relative intrauterine growth restriction at birth. The same inverse association was seen between lean mass and IGF-I concentration at birth,

indicating that this "catch-up" is not limited to adiposity but also occurs in lean mass.

The consequences of this relationship may extend to the interplay between intrauterine nutritional status, the GH / IGF axis and the postnatal fetal programming of adult disease. Pregnancies complicated by limited access to nutrition are associated with increased IGF-I concentrations in adulthood, and it is hypothesised that chronic IGF suppression *in utero* results in an irreversible "overshoot" of this axis in later life⁵⁹⁹. Although we do not have IGF-I or –II concentrations measured in these infants at two months, it is possible that the rebound effect of chronic intrauterine suppression of these growth factors is demonstrated this early with rapid accumulation of adiposity, and possibly lean mass. Children who have rapid early weight gain have increased BMI and insulin resistance as early as eight years of age⁶⁰⁰, and SGA children with rapid early weight gain have persistent increases in adiposity when compared with similar weight control children who were not born SGA⁶⁰¹. Although the mechanisms for these persistent metabolic complications are unknown, it is possible that low IGF-I concentration at birth is a biomarker for future risk.

We have shown sex-specific associations between IGFs and early trajectories in body composition. Over the first two months of life, increases in adiposity are inversely associated with IGF-II concentrations at birth in females but not males whereas, conversely, increases in lean mass over the first two months were inversely associated with IGF-I concentrations at birth in males and not females. At birth, females have more body fat than males despite lower birth weight²⁶⁹ and there are gender specific differences in visfatin and high molecular weight adiponectin concentrations at birth in SGA infants, reflecting gender differences in body fat distribution²⁶⁷. There are also differences in the GH / IGF axis at birth with females having higher IGF-I concentrations, and GH secretion may also be more sensitive to negative feedback from IGF-I concentrations in females²⁵⁴. Further complicating interpreting our data is the onset of minipuberty within the observed two-month window in many infants^{602,603}, and this

increased exposure to androgens may confound the changes in lean mass that we have described.

Strengths of this study include the large, well-defined, relatively homogenous study population. All children were term, healthy and Irish, making confounding factors unlikely to contribute to these findings. The large number of children with available body composition measurement is also unique for investigating these relationships. IGF-I and –II measurement by standard RIAs can be subject to assay interference by IGF binding proteins. However, LCMS was used in this study and this technique is not subject to this interference from binding proteins^{238, 241}. A weakness of the study is the lack of available IGF-I and –II measurements at two months, to further investigate the hypothesis that IGF-I and -II may be useful biomarkers of metabolic risk during catch-up growth. Also, this study only included term infants and it is not known if the association is similar for preterm infants. Data were not available for the entire birth cohort, and it is not known if this introduced bias to our analysis.

4.5.6 CHAPTER CONCLUSION

IGF-I concentrations at birth are associated with adiposity and lean mass at birth and the trajectory of FM and FFM accumulation over the first two months. IGF measurement may have a role in evaluating body composition at birth and determining risk of rapid early changes in body composition and future metabolic risk. Sex differences in the association of IGF-I and -II concentrations at birth with body composition trajectories over the first two months of life exist and require further investigation.

SECTION 5

CONCLUSION OF THESIS

5.1: OVERVIEW

5.1.1 Main Findings of this Research

In this thesis, I have explored a number of new approaches to improving the diagnostic evaluation of children with short stature, and investigating disorders of the GH/IGF-I axis. I have also described reference data for body composition in infancy and explored how this relates to IGF-I and –II concentrations at birth. Figures 5.1 and 5.2 provide a pictorial overview of the components of the clinical evaluation that I have studied, and demonstrates how my work contributes to the current clinical approach to the child with short stature or poor growth. The main findings of each section of my thesis follow.

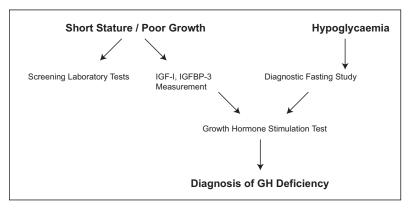
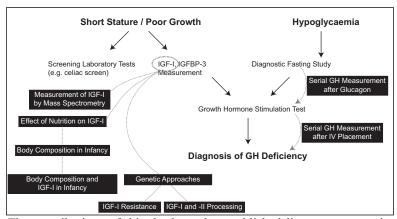



Figure 5.1: The current clinical approach to disorders of the GH/IGF-I axis

Figure 5.2: The contributions of this thesis to the established literature supporting the current clinical approach to disorders of the GH/IGF-I axis

5.1.1.1 Section 1: The Diagnosis of GHD in Childhood

Here, I explored modifications to the GHST in an effort to improve the specificity of the evaluation of children with suspected GHD. In children undergoing GHST, serial GH measurement after IVP and prior to administering a GH secretagogue in the context of a GHST is worthwhile. This will more than double the number of children who are considered GH sufficient based on this test²⁰⁶. Where infants are being evaluated for unexplained hypoglycemia with a diagnostic fasting study, modifying the study to include serial GH measurements after glucagon administration will increase the specificity of the test for GHD from 10% to 65% 604, 605.

5.1.1.2 Section 2: Mass Spectrometry and IGF-I Measurement

In Section 2, I have described that the reported normal concentrations of IGF-I in the first 18 months of life vary considerably in all reported studies that describe this measurement in healthy infants¹²⁴. I considered assay interference as a possible explanation for this discrepancy, and then described reference data for IGF-I and -II concentrations at birth using a new LCMS assay. Using this assay, IGF-I and -II concentrations at birth were associated with weight, length, and OFC at birth. Low IGF-I concentrations at birth were associated with accelerated increases in weight and OFC z-scores over the first two months.

5.1.1.3 Section 3: Genetic Approaches to Disorders of the GH/IGF-I Axis

In Section 3, I have shown that despite GRP94's putative mechanism for affecting IGF-I production and supporting lab-based data, heterozygous mutations that affect protein function do not correlate with reduced IGF-I concentrations or short stature in the normal population⁶⁰⁶. I have also demonstrated that it is possible to use the EHR to identify children with a clinical phenotype consistent with IGF-I resistance, and used this approach to identify one child with a possibly pathogenic mutation of the IGF-IR.

5.1.1.4 Section 4: Nutrition and the GH/IGF-I Axis

In Section 4, I have described normal body composition at birth²⁶⁹ and within the first two months of life²⁷⁰. Despite increased weight at birth, males have less fat than females²⁶⁹. When corrected for length, adiposity doubles while lean mass remains stable during the first two months of life²⁷⁰. Higher IGF-I concentrations at birth are associated with increased adiposity and lean mass. IGF-I and –II concentrations at birth are associated with rates of change in body composition in the first two months of life.

5.1.2 SUMMARY OF IMPACT ON MY CLINICAL CARE

This research has already influenced my clinical practice, and my studies have changed the way in which I interpret the results of many of the diagnostic tests used in children with unexplained short stature.

Clinically, I now frequently request random GH concentrations when measuring IGF-I levels in children with short stature for whom I am considering GHD as a possible diagnosis. While low or undetectable GH concentrations do not necessarily warrant further investigation, phlebotomy can be a stimulus for GH secretion²⁰⁶ and, occasionally, reassuringly high GH concentrations can be seen after phlebotomy in GH sufficient children. Similarly, poor nutrition can cause GH resistance¹⁹⁶ and may be associated with a random GH level being high in a child with a low IGF-I concentrations. Of course, other causes of GH resistance in addition to undernutrition should also be considered in this setting. This approach may help to redirect the diagnostic evaluation away from GHD and prevent unnecessary GHST and/or GH treatment.

In addition to changes to my approach to testing for GH reserve, I also have also generated data to support interpreting IGF-I concentrations in infancy. This research has prompted me to receive a number of "second opinion" clinical referrals. One of these cases, in particular, highlights how this research has influenced my decision-making. I recently received a second-opinion referral of an 11-month old patient. He was born at normal birth weight following an

uncomplicated pregnancy and delivery, and had been well until five months of age. Over the following three months, for unexplained reasons, he did not gain weight and started to show some motor developmental delay with central hypotonia. Following dietetic and physiotherapy support, his nutritional status improved and his weight and development now resembled that of a normal 11-month old.

His pediatric endocrinologist measured IGF-I concentrations as part of his otherwise normal diagnostic laboratory evaluation. His IGF-I concentration was measured by Quest's LCMS assay and was reported as undetectable. His IGFBP-3 concentration was within the normal range. His endocrinologist wanted to perform an MRI of his pituitary to rule out pituitary malformations, and also requested adrenal stimulation testing prior to proceeding to pituitary imaging under general anesthesia.

The work undertaken in this thesis led me to recommend an alternative approach on this occasion. Firstly, the reference data currently used by Quest in reporting IGF-I concentrations is based on samples from 43 children under one year of age and using a chemoluminescent immunoassay rather than LCMS³¹⁸. I have shown wide variability in the reported IGF-I levels in children under one year of age¹²⁴. I also know that many normal infants at birth have undetectable IGF-I by the LCMS assay (Chapter 2.4). Poor nutrition will also increase the likelihood of undetectable IGF-I concentrations even further¹⁹⁶. This child's linear growth was now reassuring, developmental delay had resolved, and nutritional status was improving. Thus, the only indication for imaging was now an undetectable IGF-I concentration. He did not have hypoglycemia⁶⁰⁵ or micropenis. I repeated the IGF-I measurement following a further two months of improved nutrition. He remained well during this time, continued to have normal growth, and his IGF-I measurement was improved at 29 ng/ml (Z-Score -1). He did not undergo general anaesthesia and MRI pituitary.

5.1.3 SUMMARY OF CONTRIBUTION TO THE MEDICAL LITERATURE AND POSSIBLE FUTURE DIRECTIONS

The studies included in this thesis have already led to ten peer-reviewed publications (Appendices A, B, D, F, G, H, J, K, L, N)^{62, 124, 196, 206, 211, 269, 270, 604, 606}, one book chapter (Appendix C)⁶⁰⁷ and five presentations at international meetings (Appendices E, I, M, O, and P). An additional two manuscripts were submitted for publication at the time of thesis completion (Chapters 2.4 and 4.5).

5.1.3.1 Section 1

The limitations of GHST in diagnosing GHD are well established, and the recent guidelines for GH treatment in GHD strongly recommend against using the GHST as the sole diagnostic criterion of GHD⁷². These guidelines also refer to the difficulty in differentiating children with partial GHD from children with normal GH secretion, and recommend sex-steroid priming in select patients to improve the diagnostic yield. In Section 1 of this thesis, I have described two studies that may further improve the diagnostic yield of the GHST. IVP may be utilised as an additional stimulus to further improve the diagnostic utility of this test.

Prior to my study of serial GH measurement after glucagon administration in the context of a fasting study, the two most helpful studies in this area confirmed that GH concentrations during spontaneous hypoglycaemia is poorly specific for GHD¹² and spontaneous hypoglycaemia is associated with a blunted GH response when compared to insulin induced hypoglycaemia¹⁸⁵. I have developed and studied a way to integrate a GH test into the diagnostic evaluation of children with unexplained hypoglycaemia. This can improve the specificity of the fasting study test for GHD. This approach has been adopted as routine care at CHOP, the largest referral centre for children with hypoglycaemia in North America. Potential future modifications for this approach might include using intramuscular, rather than intravenous, glucagon.

5.1.3.2 Sections 2 and 4

In Section 2, I have described assay variability in IGF measurement and explored the utility of a new LCMS assay for IGF-I and –II. Variation between commonly used immunoassays is a significant issue²⁶⁰. Although this LCMS assay has already been shown to be unaffected by IGFBP interference^{238, 241}, we have not demonstrated that LCMS provides a clinically relevant improvement in the diagnostic utility of the test. Future studies in this area will need to directly compare IGF measurement between this assay and commonly available immunoassays.

The observation that low IGF-I concentrations at birth are associated with weight gain (Chapter 2.4) and increases in length adjusted-FM and –FFM over the subsequent two months is potentially significant. Rapid weight gain in early infancy can be associated with cardiovascular morbidity^{586, 608-610}, premature adrenarche^{611, 612}, polycystic ovarian syndrome⁶¹³, visceral fat excess⁶⁰⁹ and obesity⁶⁰¹. This appears to be particularly concerning in children with prenatal growth restriction. Although the mechanisms for these associations are not clear, it is possible that the future management of children at risk of developing these complications may include monitoring the rates of change in body composition.

My reference data may provide a guide in determining whether an infant's FM/L³ or FFM/L² is within the normal range and this may be a parameter to follow. Similarly, low IGF-I concentration at birth may identify children at risk of excessive 'catch-up' growth and identify infants for closer observation. IGF-I levels have been suggested as a marker of the nutritional state, so it is also possible that serial IGF-I measurement in infancy may have a role in monitoring weight gain and evolving metabolic risk in infancy. In order to investigate this further, there may be utility in studying serial IGF-I and –II concentrations during the first year of life, and determining if these are useful markers for changes in body composition during infancy.

The gender-specific relationships between IGF-I and –II and body composition trajectories add to the data on differences between metabolic parameters in males and females at birth²⁶⁷, and may be a source of further study. We did not find a strong association for IGF-II concentrations at birth with body composition or growth, and the role of IGF-II in infancy warrants further study.

5.1.3.3 Section 3

As the cost of genetic testing reduces and this diagnostic modality becomes more accessible, genetic studies may be performed earlier in the evaluation of children with short stature in the future. There are known monogenic causes of short stature³⁵⁸, but previously undescribed variants provide a diagnostic dilemma when found. A mutation in *GRP94*, for example, had a possible mechanism for causing short stature, and supporting laboratory data, but did not impact upon adult height when studied on a population level. Future studies into the P300L variant may explore effects on glucose homeostasis or immune function. Our research in novel mechanisms for IGF-I resistance will continue through *in vitro* studies of the mutation that we have identified. We have also developed a mechanism for collaboration in genetic studies of growth between three of the largest children's hospitals in the US, and may explore other rare growth phenotypes in the future.

5.1.4 My Future Directions

This thesis has laid the groundwork for current research studies of mine that are in various stages of development. I currently have a "Junior Investigator Pilot Grant" award to study the potential role of body composition, muscle strength, bone density and cardiovascular parameters in predicting the clinical response to GH treatment in paediatric patients (5.1.4.1). Furthermore, I am a member of active research collaboration between CHOP and CCHMC looking to identify novel genetic aetiologies of short stature in children (5.1.4.2).

The hypercalcaemia and vitamin D intoxication study mentioned in Chapter 2.3 also opened up another avenue of research for me (5.1.4.3). Specifically, I am now investigating a potential role for rifampicin in the management of hypercalcaemia in children and adults with biallelic inactivating *CYP24A1* mutations⁶¹⁴. I have also described a novel clinical phenotype of hypercalcaemia in children on a ketogenic diet⁶¹⁵.

5.1.4.1 Growth hormone sensitive short stature in childhood; A novel multisystem approach to diagnosis and characterising the effects of treatment

GH mediates many non-growth related effects that guide treatment in adult GHD, but these are largely ignored in the diagnosis of pediatric GHD and in the monitoring of treatment efficacy⁶¹⁶. The multisystem phenotype of adult GHD is well described. This includes reductions in lean body mass, exercise tolerance, fractional shortening of cardiac myocytes and high-density lipoprotein (HDL) as well as increases in fat mass, central adiposity, intima media wall thickness, triglycerides and low-density lipoprotein⁶¹⁷. The effects of GH treatment on each of these systems may be dose-dependent⁶¹⁸, but whether or not adverse effects of partial deficiency on each of these systems correlates with severity of deficiency in children is not known. Given the poor sensitivity and specificity of the GHST for GHD (Section 1), these may represent additional tools for the diagnosis of GHD.

The primary objective of this funded study is to utilise many of the known physiological effects of GH to determine if these could be used in combination to improve the identification of children who would respond to GH treatment with a significant increase in linear growth. Secondary objectives are to determine if 1) early changes in these parameters will predict growth response in the first year of treatment and 2) GH treatment results in favorable effects on cardiometabolic risk, bone density, body composition, cardiac function and vascular endothelial function in pediatric patients. This successful grant application is shown in

Appendix Q. At the time of thesis submission, three subjects have been recruited to this study.

5.1.4.2 Identifying and studying the novel variants in the GH/IGF-I axis

We plan to build on our established genetics of growth collaboration between CHOP, BCH and CCHMC. We have developed processes for identifying children with rare growth phenotypes at CHOP through automated searches of the EHR. Similar processes are now in place at CCHMC and BCH, and a mechanism for sharing data has been established through a research collaborative agreement and parallel IRB approved research protocols. The development of this infrastructure has overcome a significant barrier to prior collaborative growth research.

We have now applied to the National Institute for Health for funding to continue this work. This R01 grant application was under review at the time of submission of this thesis (Primary Investigator: Dr Andrew Dauber).

5.1.4.3 Rifampicin in patients with homozygous CYP24A1 mutations

My study of unexplained elevated 1,25(OH)₂D concentrations in vitamin D intoxication (Chapter 2.3)²¹¹ was the start of my research path in calcium metabolism under the mentorship of Professor Michael Levine.

We have published a case series describing a novel hypercalcemia phenotype in patients on the ketogenic diet⁶¹⁵, which was the first study to describe this association. We have also published a novel approach to a rare but untreatable form of hypercalcaemia, namely homogenous inactivating mutations of *CYP24A1*. Incidentally, our collaborator, Dr Andrew Dauber was one of the first to describe this rare condition⁶¹⁹.

Dr Levine and I have described the potential of rifampicin to treat hypercalcaemia in these patients⁶¹⁴. The National Institute for Health has funded

an R01 grant to prospectively study this therapeutic approach (Principal Investigator: Michael Levine) and this began in July 2017.

5.1.5 Personal Reflection

This has been a journey of personal growth, failures and successes. All of the preceding chapters and studies describe completed projects, most of which have made it all of the way to peer-reviewed publication. However, each success has been built on a foundation of numerous failures. I will summarise the most significant of these disappointments before reflecting on my personal growth.

5.1.5.1 Genetic markers of Growth Response to GH treatment

In the early stages of this thesis, an opportunity arose to collaborate with Dr Andrew Dauber, the Director of the Growth Center at CCHMC. He had performed whole exome sequencing on a large number of patients who had GHD and were treated with GH. The Center for Applied Genomics at CHOP has processed over 100,000 genomes in pediatric patients with detailed clinical phenotypes. My aim was to identify children from this database who had been treated with GH, and to combine our data with Dr Dauber's cohort. This may have been an important step towards identifying genetic markers of GH responsiveness.

However, after months of searching this database, it became apparent that there were not enough subjects recruited to the CHOP genetics study who had been treated with GH. Furthermore the clinical data available on the small number of patients were not sufficiently detailed to contribute to Dr Dauber's well-characterised cohort. This collaboration was abandoned, but this led to further work with Dr Dauber (Chapter 3.3 and 5.1.4.2).

5.1.5.2 Growth response to GH treatment in type 1 diabetes

Poor glycemic control in children with type 1 diabetes mellitus (T1D) attenuates peak height velocity and may delay the onset of puberty⁶²⁰. Height at onset of

diabetes, glycemic control and duration of diabetes influence final adult height^{621, 622}. Thus, children with T1D are at an increased risk of impaired growth and this may lead to an evaluation for possible GHD. When compared with controls, children with T1D have lower IGF-I concentrations^{623, 624}. This is most prominent in children without residual beta cell function and with poor glycaemic control⁶²⁴. In this context, it is possible that loss of negative feedback of IGF-I on the anterior pituitary results in increased GH production, which may contribute to increased insulin resistance and the cycle may continue with increased hyperglycemia.⁶²⁵

In children with T1D, there is the additional complication of the effect of GH treatment on glycaemic control. In a German study including 2-year follow up of 21 children with T1D treated with GH, there was an increase in median haemoglobin A1c (7.3 to 8.1%) and total daily insulin dose (0.7 to 1.1 u/kg/day). Height SDS did not change significantly during those two years of treatment (-2.3 to -2).

With this in mind, I hypothesised that a large number of children with T1D were being misdiagnosed as having GHD and receiving GH treatment. I also thought that a) it is likely that the growth response to treatment was poor as most of these children don't have GHD but do have GH resistance and b) GH treatment has additional complications in these patients due to the negative effect on glycaemic control. In order to test this hypothesis, I received funding from the Diabetes Center at CHOP to perform a retrospective review of the EHR to identify children with T1D treated with GH. The aim of the study was to determine if children with T1D who meet clinical criteria of GHD have a growth response to GH treatment that is similar to children without GHD.

Preliminary search of the EHR indicated that there were more than 100 children with diabetes who were treated with GH and this fuelled my enthusiasm for this project. However, once all of the data were extracted from the EHR, it became apparent that the EHR had miscoded many children with diabetes insipidus as

having T1D. Only nine children with T1D were treated with GH and, of those, only four had complete data available for review. I decided that this was not sufficient to test the hypothesis, and the study was abandoned.

5.1.5.3 GRP94

The original title for this thesis was "Altered function in Glucose Regulated Protein 94: A novel mechanism of intra-uterine growth restriction and primary IGF-I deficiency". However, when I started to learn the laboratory skills to investigate this further, Dr Marzec had already completed many studies describing the pathogenicity of the most common polymorphism (P300L, Chapter 3.2). I had begun to work on describing the clinical phenotype, and noted that the laboratory findings did not result in a significant effect on growth or IGF-I production. There were a number of rarer genetic mutations identified in the *grp94* gene in these populations that could have been investigated further with *in vitro* and population studies. However, I considered it likely that further research on this particular gene would not result in significant clinically relevant data. I turned my attention to clinical research, which is my main research interest and redirected my PhD under the supervision of my mentorship team.

5.1.6 Personal Growth

Over the past three years, I have developed a number of important research skills and attained many of the necessary tools for a career in clinical research. For this, I am grateful to my mentorship team for their guidance, support and advice.

In order to gain the necessary research skills, I have attended courses at the University of Pennsylvania in biostatistics, data management and in reviewing medical literature. I have also attended courses at CHOP in good clinical practice for research trials and responsible conduct of research, as well as seminars hosted by the IRB to gain insight into the process of ethical review at CHOP.

Through direct mentorship, I have been guided in hypothesis development, data management, data analysis and manuscript preparation. My biggest challenge has been performing studies with clear aims and ensuring that the data were directly focused on the central aim of my study. I am especially grateful to Prof Grimberg and Dr Murray for helping me to improve in this area. The guidance that I have received in attaining the necessary research skills for success has been invaluable to me. I have already started to use these skills in mentoring more junior trainees as the senior author on their research 626, 627. In addition to the generic research skills that I have learned from my mentors, I hope to have absorbed some of their patience, willingness to teach and accessibility.

I have also learned the importance of carving out my own research path and to follow directions that I believe to be both interesting and important. The most difficult part of this PhD was the decision to redirect my studies away from the research laboratory and towards clinical studies. Professor Argon had provided me with a lot of support in developing laboratory skills and writing grant applications. I am extremely grateful to him, both for providing me with this opportunity and, more importantly, for supporting my decision to redirect my research away from the laboratory. I believe that this decision has been responsible for the success that my research has brought and ensured that I continued to enjoy this experience.

The most important lesson learned in the past few years, however, is the value of strong and diverse mentorship and collaboration. Without the selfless support of all of the mentors listed in the acknowledgements section of this thesis, I would not have had the opportunity to undergo this personal development or to contribute to the field of growth research. The friendships that I have built in the course of completing this thesis will be invaluable as I progress through my career.

I also recognise that the sacrifices required for me to complete this thesis were not just made by me. My wife and children have also been important members of my team, and this work would not have been possible without their support.

REFERENCES

- 1. Juul A, Kastrup KW, Pedersen SA, Skakkebaek NE. Growth hormone (GH) provocative retesting of 108 young adults with childhood-onset GH deficiency and the diagnostic value of insulin-like growth factor I (IGF-I) and IGF-binding protein-3. *J Clin Endocrinol Metab*. 1997;82(4):1195-1201.
- 2. Juul A, Skakkebaek NE. Prediction of the outcome of growth hormone provocative testing in short children by measurement of serum levels of insulin-like growth factor I and insulin-like growth factor binding protein 3. *J Pediatr*. 1997;130(2):197-204.
- 3. Grote FK, Oostdijk W, De Muinck Keizer-Schrama SM, et al. The diagnostic work up of growth failure in secondary health care; an evaluation of consensus guidelines. *BMC Pediatr*. 2008;8:21.
- 4. Voss LD. Evaluation of a district growth screening programme: the Oxford growth study. *Arch Dis Child*. 1994;70(4):354.
- 5. Voss LD, Mulligan J, Betts PR, Wilkin TJ. Poor growth in school entrants as an index of organic disease: the Wessex growth study. *BMJ*. 1992;305(6866):1400-1402.
- 6. Delemarre-van de Waal HA. Environmental factors influencing growth and pubertal development. *Environ Health Perspect*. 1993;101 Suppl 2:39-44.
- 7. Blizzard RM. History of growth hormone therapy. *Indian J Pediatr*. 2012;79(1):87-91.
- 8. Growth Hormone Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. GH Research Society. *J Clin Endocrinol Metab.* 2000;85(11):3990-3993.
- 9. Wilson TA, Rose SR, Cohen P, et al. Update of guidelines for the use of growth hormone in children: the Lawson Wilkins Pediatric Endocrinology Society Drug and Therapeutics Committee. *J Pediatr*. 2003;143(4):415-421.
- 10. Rosenfeld RG. Ten Axioms in the Evaluation of Growth Failure. *Endocrinologist.* 1997;7(3):148-152.

- 11. Rothermel J, Lass N, Toschke C, Reinehr T. Progressive Decline in Height Standard Deviation Scores in the First 5 Years of Life Distinguished Idiopathic Growth Hormone Deficiency from Familial Short Stature and Constitutional Delay of Growth. *Horm Res Paediatr*. 2016;86(2):117-125.
- 12. Kelly A, Tang R, Becker S, Stanley CA. Poor specificity of low growth hormone and cortisol levels during fasting hypoglycemia for the diagnoses of growth hormone deficiency and adrenal insufficiency. *Pediatrics*. 2008;122(3):e522-528.
- 13. Bell JJ, August GP, Blethen SL, Baptista J. Neonatal hypoglycemia in a growth hormone registry: incidence and pathogenesis. *J Pediatr Endocrinol Metab*. 2004;17(4):629-635.
- 14. Martin L, Collin J. An introduction to growth and atypical growth in childhood and adolescence. *Nurs Child Young People*. 2015;27(6):29-37; quiz 38.
- 15. Sisley S, Trujillo MV, Khoury J, Backeljauw P. Low incidence of pathology detection and high cost of screening in the evaluation of asymptomatic short children. *J Pediatr*. 2013;163(4):1045-1051.
- 16. Marshall WA. Evaluation of growth rate in height over periods of less than one year. *Arch Dis Child.* 1971;46(248):414-420.
- 17. Gelander L, Karlberg J, Albertsson-Wikland K. Seasonality in lower leg length velocity in prepubertal children. *Acta Paediatr*. 1994;83(12):1249-1254.
- 18. Lampl M, Johnson ML, Frongillo EA, Jr. Mixed distribution analysis identifies saltation and stasis growth. *Ann Hum Biol.* 2001;28(4):403-411.
- 19. Lampl M, Veldhuis JD, Johnson ML. Saltation and stasis: a model of human growth. *Science*. 1992;258(5083):801-803.
- 20. Lipman TH, Hench K, Logan JD, DiFazio DA, Hale PM, Singer-Granick C. Assessment of growth by primary health care providers. *J Pediatr Health Care*. 2000;14(4):166-171.
- 21. Lipman TH, Hench KD, Benyi T, et al. A multicentre randomised controlled trial of an intervention to improve the accuracy of linear growth measurement. *Arch Dis Child*. 2004;89(4):342-346.
- 22. Voss LD, Bailey BJ. Diurnal variation in stature: is stretching the answer? *Arch Dis Child*. 1997;77(4):319-322.

- 23. Whitehouse RH, Tanner JM, Healy MJ. Diurnal variation in stature and sitting height in 12-14-year-old boys. *Ann Hum Biol*. 1974;1(1):103-106.
- 24. Scammon RE. The first seriatim study of human growth. *American Journal of Physical Anthropology*. 1927;10(3):329-336.
- 25. Galton F. Statistics by intercomparison, with remarks on the law of frequency of error. *Philosophical Magazine*. 1875;49:33-46.
- 26. Bowditch HP. *The growth of children, studied by Galton's method of percentile grades*1891.
- 27. World Health Organization. *WHO Child Growth Standards*. Geneva, Switzerland: World Health Organization; 2007.
- 28. Karlberg J. A biologically-oriented mathematical model (ICP) for human growth. *Acta Paediatr Scand Suppl.* 1989;350:70-94.
- 29. Granados A, Gebremariam A, Lee JM. Relationship Between Timing of Peak Height Velocity and Pubertal Staging in Boys and Girls. *J Clin Res Pediatr Endocrinol*. 2015;7(3):235-237.
- 30. Buffon G. Histoire Naturelle. Fourth Supplement. Paris 1777.
- 31. Thalange NK, Foster PJ, Gill MS, Price DA, Clayton PE. Model of normal prepubertal growth. *Arch Dis Child*. 1996;75(5):427-431.
- 32. Davenport CB, Steggerda M, Drager W. Critical Examination of Physical Anthropometry on the Living. *Proceedings of the American Academy of Arts and Sciences*. 1934;69(6):265-284.
- 33. Karlberg J, Gelander L, Albertsson-Wikland K. Distinctions between short- and long-term human growth studies. *Acta Paediatr*. 1993;82(8):631-634.
- 34. Strickland AL, Shearin RB. Diurnal height variation in children. *J Pediatr*. 1972;80(6):1023-1025.
- 35. Lampl M. Further observations on diurnal variation in standing height. *Ann Hum Biol.* 1992;19(1):87-90.
- 36. Krogman WM. A Handbook of the Measurement and Interpretation of Height and Weight in the Growing Child. *Monographs of the Society for Research in Child Development*. 1948;13(3):i-68.
- 37. World Health Organization. Training Course on Child Growth Assessment Measuring a Child's Growth. p. 19-20.

- 38. Center for Disease Control and Prevention. 2 to 20 years: Boys. Stature-for-age and Weight-for-age percentiles. http://www.cdc.gov/growthcharts/data/set1clinical/cj41c021.pdf. Updated 11/21/00.
- 39. Center for Disease Control and Prevention. 2 to 20 years: Girls. Stature-for-age and Weight-for-age percentiles. http://www.cdc.gov/growthcharts/data/set2clinical/cj41c072.pdf. Updated 11/21/00.
- 40. Center for Disease Control and Prevention. Birth to 36 months: Boys. Length-for-age and Weight-for-age percentiles. http://www.cdc.gov/growthcharts/data/set1clinical/cj41c017.pdf. Updated 11/21/00.
- 41. Center for Disease Control and Prevention. Birth to 36 months: Girls. Length-for-age and Weight-for-age percentiles. http://www.cdc.gov/growthcharts/data/set1clinical/cj41c018.pdf. Updated 11/21/00.
- 42. Rogol AD, Hayden GF. Etiologies and early diagnosis of short stature and growth failure in children and adolescents. *J Pediatr*. 2014;164(5 Suppl):S1-14 e16.
- 43. Voss LD, Bailey BJ, Cumming K, Wilkin TJ, Betts PR. The reliability of height measurement (the Wessex Growth Study). *Arch Dis Child*. 1990;65(12):1340-1344.
- 44. Voss LD, Bailey BJ. Equipping the community to measure children's height: the reliability of portable instruments. *Arch Dis Child*. 1994;70(6):469-471.
- 45. Cohen P, Rogol AD, Deal CL, et al. Consensus statement on the diagnosis and treatment of children with idiopathic short stature: a summary of the Growth Hormone Research Society, the Lawson Wilkins Pediatric Endocrine Society, and the European Society for Paediatric Endocrinology Workshop. *J Clin Endocrinol Metab*. 2008;93(11):4210-4217.
- 46. Herber SM, Milner RD. Growth hormone deficiency presenting under age 2 years. *Arch Dis Child*. 1984;59(6):557-560.
- 47. Ghigo E, Bellone J, Aimaretti G, et al. Reliability of provocative tests to assess growth hormone secretory status. Study in 472 normally growing children. *J Clin Endocrinol Metab*. 1996;81(9):3323-3327.
- 48. Marin G, Domene HM, Barnes KM, Blackwell BJ, Cassorla FG, Cutler GB, Jr. The effects of estrogen priming and puberty on the growth

- hormone response to standardized treadmill exercise and arginine-insulin in normal girls and boys. *J Clin Endocrinol Metab*. 1994;79(2):537-541.
- 49. Zadik Z, Chalew SA, Kowarski A. Assessment of growth hormone secretion in normal stature children using 24-hour integrated concentration of GH and pharmacological stimulation. *J Clin Endocrinol Metab.* 1990;71(4):932-936.
- 50. Shalet SM, Price DA, Beardwell CG, Morris Jones PH, Pearson D. Normal growth despite abnormalities of growth hormone secretion in children treated for acute leukemia. *The Journal of Pediatrics*. 1979;94(5):719-722.
- 51. Spiliotis BE, August GP, Hung W, Sonis W, Mendelson W, Bercu BB. Growth hormone neurosecretory dysfunction. A treatable cause of short stature. *JAMA*. 1984;251(17):2223-2230.
- 52. Bang P, Bjerknes R, Dahlgren J, et al. A comparison of different definitions of growth response in short prepubertal children treated with growth hormone. *Horm Res Paediatr*. 2011;75(5):335-345.
- 53. Parkin JM. Incidence of growth hormone deficiency. *Arch Dis Child*. 1974;49(11):904-905.
- 54. de Mel T, Warnasooriya N, Fonseka C. Growth hormone deficiency in Sri Lanka: a preliminary study. *Ceylon Med J.* 1991;36(3):95-97.
- 55. Lindsay R, Feldkamp M, Harris D, Robertson J, Rallison M. Utah Growth Study: growth standards and the prevalence of growth hormone deficiency. *J Pediatr*. 1994;125(1):29-35.
- 56. Cohen P, Weng W, Rogol AD, Rosenfeld RG, Kappelgaard AM, Germak J. Dose-sparing and safety-enhancing effects of an IGF-I-based dosing regimen in short children treated with growth hormone in a 2-year randomized controlled trial: therapeutic and pharmacoeconomic considerations. *Clin Endocrinol (Oxf)*. 2014;81(1):71-76.
- 57. Ranke MB, Traunecker R, Martin DD, et al. IGF-I and IGF binding protein-3 levels during initial GH dosage step-up are indicators of GH sensitivity in GH-deficient children and short children born small for gestational age. *Horm Res.* 2005;64(2):68-76.
- 58. Allen DB, Fost N. hGH for short stature: ethical issues raised by expanded access. *J Pediatr*. 2004;144(5):648-652.

- 59. Lee JM, Davis MM, Clark SJ, Hofer TP, Kemper AR. Estimated cost-effectiveness of growth hormone therapy for idiopathic short stature. *Arch Pediatr Adolesc Med.* 2006;160(3):263-269.
- 60. Kelly CJ, Mir FA. Economics of biological therapies. *BMJ*. 2009;339:b3276.
- 61. Wales JK. GH in idiopathic short stature. Is growth hormone treatment ethical or cost effective? *BMJ*. 2011;342:d2142.
- 62. Hawkes CP, O'Connell SM. A National Survey on the Diagnosis and Treatment of Paediatric Growth Hormone Deficiency. *Ir Med J.* 2016;109(2):356.
- 63. Verrips GH, Hirasing RA, Fekkes M, Vogels T, Verloove-Vanhorick SP, Delemarre-Van de Waal HA. Psychological responses to the needle-free Medi-Jector or the multidose Disetronic injection pen in human growth hormone therapy. *Acta Paediatr*. 1998;87(2):154-158.
- 64. Carel JC, Ecosse E, Landier F, et al. Long-term mortality after recombinant growth hormone treatment for isolated growth hormone deficiency or childhood short stature: preliminary report of the French SAGhE study. *J Clin Endocrinol Metab.* 2012;97(2):416-425.
- 65. Savendahl L, Maes M, Albertsson-Wikland K, et al. Long-term mortality and causes of death in isolated GHD, ISS, and SGA patients treated with recombinant growth hormone during childhood in Belgium, The Netherlands, and Sweden: preliminary report of 3 countries participating in the EU SAGhE study. *J Clin Endocrinol Metab*. 2012;97(2):E213-217.
- 66. Poidvin A, Touze E, Ecosse E, et al. Growth hormone treatment for childhood short stature and risk of stroke in early adulthood. *Neurology*. 2014;83(9):780-786.
- 67. Geffner ME, Santen R, Kopchick J. Growth hormone treatment for childhood short stature and risk of stroke in early adulthood. *Neurology*. 2015;84(10):1062-1063.
- 68. Linglart A, Tauber M, Bougneres P, Lebouc Y, Chatelain P. Growth hormone treatment for childhood short stature and risk of stroke in early adulthood. *Neurology*. 2015;84(10):1062-1063.
- 69. Stagnaro S. Growth hormone treatment for childhood short stature and risk of stroke in early adulthood; adult stroke risk after growth hormone treatment in childhood: first do no harm. *Neurology*. 2015;84(15):1613-1614.

- 70. Mostoufi-Moab S, Isaacoff EJ, Spiegel D, et al. Childhood cancer survivors exposed to total body irradiation are at significant risk for slipped capital femoral epiphysis during recombinant growth hormone therapy. *Pediatr Blood Cancer*. 2013;60(11):1766-1771.
- 71. Allen DB, Backeljauw P, Bidlingmaier M, et al. GH safety workshop position paper: a critical appraisal of recombinant human GH therapy in children and adults. *Eur J Endocrinol*. 2015;174(2):P1-9.
- 72. Grimberg A, DiVall SA, Polychronakos C, et al. Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency. *Horm Res Paediatr*. 2016;86(6):361-397.
- 73. Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. *J Biol Chem.* 1978;253(8):2769-2776.
- 74. Werner H, Weinstein D, Bentov I. Similarities and differences between insulin and IGF-I: structures, receptors, and signalling pathways. *Arch Physiol Biochem.* 2008;114(1):17-22.
- 75. Salmon WD, Jr., Daughaday WH. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. *J Lab Clin Med.* 1957;49(6):825-836.
- 76. Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. The somatomedin hypothesis: 2001. *Endocr Rev.* 2001;22(1):53-74.
- 77. Yakar S, Liu JL, Stannard B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. *Proc Natl Acad Sci U S A*. 1999;96(13):7324-7329.
- 78. Furlanetto RW, Underwood LE, Van Wyk JJ, D'Ercole AJ. Estimation of somatomedin-C levels in normals and patients with pituitary disease by radioimmunoassay. *J Clin Invest*. 1977;60(3):648-657.
- 79. Copeland KC, Underwood LE, Van Wyk JJ. Induction of immunoreactive somatomedin C human serum by growth hormone: dose-response relationships and effect on chromatographic profiles. *J Clin Endocrinol Metab.* 1980;50(4):690-697.
- 80. Blum WF, Albertsson-Wikland K, Rosberg S, Ranke MB. Serum levels of insulin-like growth factor I (IGF-I) and IGF binding protein 3 reflect spontaneous growth hormone secretion. *J Clin Endocrinol Metab.* 1993;76(6):1610-1616.

- 81. Nunez SB, Municchi G, Barnes KM, Rose SR. Insulin-like growth factor I (IGF-I) and IGF-binding protein-3 concentrations compared to stimulated and night growth hormone in the evaluation of short children--a clinical research center study. *J Clin Endocrinol Metab*. 1996;81(5):1927-1932.
- 82. Rosenfeld RG, Hwa V, Wilson E, Plymate SR, Oh Y. The insulin-like growth factor-binding protein superfamily. *Growth Horm IGF Res.* 2000;10 Suppl A:S16-17.
- 83. Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. *Endocr Rev.* 2002;23(6):824-854.
- 84. Baxter RC. Circulating levels and molecular distribution of the acidlabile (alpha) subunit of the high molecular weight insulin-like growth factor-binding protein complex. *J Clin Endocrinol Metab.* 1990;70(5):1347-1353.
- 85. Jenkins PJ, Khalaf S, Ogunkolade W, et al. Differential expression of IGF-binding protein-3 in normal and malignant colon and its influence on apoptosis. *Endocr Relat Cancer*. 2005;12(4):891-901.
- 86. Ye P, Qu CF, Hu XL. Impact of IGF-1, IGF-1R, and IGFBP-3 promoter methylation on the risk and prognosis of esophageal carcinoma. *Tumour Biol.* 2015.
- 87. Luo LL, Zhao L, Wang YX, et al. Insulin-like growth factor binding protein-3 is a new predictor of radiosensitivity on esophageal squamous cell carcinoma. *Sci Rep.* 2015;5:17336.
- 88. Rainato G, Fabricio AS, Zancan M, et al. Evaluating serum insulin-like growth factor 1 and insulin-like growth factor binding protein 3 as markers in prostate cancer diagnosis. *Int J Biol Markers*. 2016:0.
- 89. Zhang G, Zhu Y, Liu F, et al. Genetic variants in insulin-like growth factor binding protein-3 are associated with prostate cancer susceptibility in Eastern Chinese Han men. *Onco Targets Ther*. 2016;9:61-66.
- 90. McCarthy K, Laban C, McVittie CJ, et al. The expression and function of IGFBP-3 in normal and malignant breast tissue. *Anticancer Res.* 2009;29(10):3785-3790.
- 91. Grinspoon S, Clemmons D, Swearingen B, Klibanski A. Serum insulinlike growth factor-binding protein-3 levels in the diagnosis of acromegaly. *J Clin Endocrinol Metab.* 1995;80(3):927-932.

- 92. Gargosky SE, Wilson KF, Fielder PJ, et al. The composition and distribution of insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs) in the serum of growth hormone receptor-deficient patients: effects of IGF-I therapy on IGFBP-3. *J Clin Endocrinol Metab*. 1993;77(6):1683-1689.
- 93. Boyle BJ, Zhao XY, Cohen P, Feldman D. Insulin-like growth factor binding protein-3 mediates 1 alpha,25-dihydroxyvitamin d(3) growth inhibition in the LNCaP prostate cancer cell line through p21/WAF1. *J Urol*. 2001;165(4):1319-1324.
- 94. Phillips LS, Pao CI, Villafuerte BC. Molecular regulation of insulin-like growth factor-I and its principal binding protein, IGFBP-3. *Prog Nucleic Acid Res Mol Biol.* 1998;60:195-265.
- 95. Wang D, Nagpal ML, Shimasaki S, Ling N, Lin T. Interleukin-1 induces insulin-like growth factor binding protein-3 gene expression and protein production by Leydig cells. *Endocrinology*. 1995;136(9):4049-4055.
- 96. Anwar A, Zahid AA, Scheidegger KJ, Brink M, Delafontaine P. Tumor necrosis factor-alpha regulates insulin-like growth factor-1 and insulin-like growth factor binding protein-3 expression in vascular smooth muscle. *Circulation*. 2002;105(10):1220-1225.
- 97. Goossens K, Esquenet M, Swinnen JV, Manin M, Rombauts W, Verhoeven G. Androgens decrease and retinoids increase the expression of insulin-like growth factor-binding protein-3 in LNcaP prostatic adenocarcinoma cells. *Mol Cell Endocrinol*. 1999;155(1-2):9-18.
- 98. Huynh H, Yang X, Pollak M. Estradiol and antiestrogens regulate a growth inhibitory insulin-like growth factor binding protein 3 autocrine loop in human breast cancer cells. *J Biol Chem*. 1996;271(2):1016-1021.
- 99. Villafuerte BC, Koop BL, Pao CI, Phillips LS. Glucocorticoid regulation of insulin-like growth factor-binding protein-3. *Endocrinology*. 1995;136(5):1928-1933.
- 100. Cianfarani S, Liguori A, Germani D. IGF-I and IGFBP-3 assessment in the management of childhood onset growth hormone deficiency. *Endocr Dev.* 2005;9:66-75.
- 101. Hindmarsh PC, Matthews DR, Brook CG. Growth hormone secretion in children determined by time series analysis. *Clin Endocrinol (Oxf)*. 1988;29(1):35-44.

- 102. Radetti G, di Iorgi N, Paganini C, et al. The advantage of measuring spontaneous growth hormone (GH) secretion compared with the insulin tolerance test in the diagnosis of GH deficiency in young adults. *Clin Endocrinol (Oxf)*. 2007;67(1):78-84.
- 103. Blatt J, Bercu BB, Gillin JC, Mendelson WB, Poplack DG. Reduced pulsatile growth hormone secretion in children after therapy for acute lymphoblastic leukemia. *J Pediatr*. 1984;104(2):182-186.
- 104. Moell C, Garwicz S, Westgren U, Wiebe T, Albertsson-Wikland K. Suppressed spontaneous secretion of growth hormone in girls after treatment for acute lymphoblastic leukaemia. *Arch Dis Child*. 1989;64(2):252-258.
- 105. Blethen SL, Breen TJ, Attie KM. Overview of the National Cooperative Growth Study substudy of serial growth hormone measurements. *J Pediatr.* 1996;128(5 Pt 2):S38-41.
- 106. Rose SR, Ross JL, Uriarte M, Barnes KM, Cassorla FG, Cutler GB, Jr. The advantage of measuring stimulated as compared with spontaneous growth hormone levels in the diagnosis of growth hormone deficiency. *N Engl J Med.* 1988;319(4):201-207.
- 107. Blum WF, Ranke MB, Kietzmann K, Gauggel E, Zeisel HJ, Bierich JR. A specific radioimmunoassay for the growth hormone (GH)-dependent somatomedin-binding protein: its use for diagnosis of GH deficiency. *J Clin Endocrinol Metab.* 1990;70(5):1292-1298.
- 108. Hasegawa Y, Hasegawa T, Aso T, et al. Clinical utility of insulin-like growth factor binding protein-3 in the evaluation and treatment of short children with suspected growth hormone deficiency. *Eur J Endocrinol*. 1994;131(1):27-32.
- 109. Bussieres L, Souberbielle JC, Pinto G, Adan L, Noel M, Brauner R. The use of insulin-like growth factor 1 reference values for the diagnosis of growth hormone deficiency in prepubertal children. *Clin Endocrinol (Oxf)*. 2000;52(6):735-739.
- 110. Boquete HR, Sobrado PG, Fideleff HL, et al. Evaluation of diagnostic accuracy of insulin-like growth factor (IGF)-I and IGF-binding protein-3 in growth hormone-deficient children and adults using ROC plot analysis. *J Clin Endocrinol Metab.* 2003;88(10):4702-4708.
- 111. Cianfarani S, Tondinelli T, Spadoni GL, Scire G, Boemi S, Boscherini B. Height velocity and IGF-I assessment in the diagnosis of childhood onset GH insufficiency: do we still need a second GH stimulation test? *Clin Endocrinol (Oxf)*. 2002;57(2):161-167.

- 112. Mitchell H, Dattani MT, Nanduri V, Hindmarsh PC, Preece MA, Brook CG. Failure of IGF-I and IGFBP-3 to diagnose growth hormone insufficiency. *Arch Dis Child*. 1999;80(5):443-447.
- 113. Das U, Whatmore AJ, Khosravi J, et al. IGF-I and IGF-binding protein-3 measurements on filter paper blood spots in children and adolescents on GH treatment: use in monitoring and as markers of growth performance. *Eur J Endocrinol*. 2003;149(3):179-185.
- 114. Lissett CA, Jonsson P, Monson JP, Shalet SM, Board KI. Determinants of IGF-I status in a large cohort of growth hormone-deficient (GHD) subjects: the role of timing of onset of GHD. *Clin Endocrinol (Oxf)*. 2003;59(6):773-778.
- 115. Rikken B, van Doorn J, Ringeling A, Van den Brande JL, Massa G, Wit JM. Plasma levels of insulin-like growth factor (IGF)-I, IGF-II and IGF-binding protein-3 in the evaluation of childhood growth hormone deficiency. *Horm Res.* 1998;50(3):166-176.
- 116. Tillmann V, Buckler JM, Kibirige MS, et al. Biochemical tests in the diagnosis of childhood growth hormone deficiency. *J Clin Endocrinol Metab.* 1997;82(2):531-535.
- 117. Weinzimer SA, Homan SA, Ferry RJ, Moshang T. Serum IGF-I and IGFBP-3 concentrations do not accurately predict growth hormone deficiency in children with brain tumours. *Clin Endocrinol (Oxf)*. 1999;51(3):339-345.
- 118. Cook DM, Yuen KC, Biller BM, Kemp SF, Vance ML, American Association of Clinical Endocrinologists. American Association of Clinical Endocrinologists medical guidelines for clinical practice for growth hormone use in growth hormone-deficient adults and transition patients 2009 update: executive summary of recommendations. *Endocr Pract.* 2009;15(6):580-586.
- 119. Lifshitz F. Hormonal dynamic tests and genetic tests used in pediatric endocrinology. *Pediatric Endocrinology*. 5 ed: Informa Healthcare; 2007. p. 737 767.
- 120. Brook CGD, Clayton P, Brown R. *Brook's Clinical Pediatric Endocrinology*: Wiley; 2005.
- 121. Radovick S, MacGillivray MH. *Pediatric Endocrinology: A Practical Clinical Guide, Second Edition*: Humana Press; 2013.
- 122. Levy RA, Connelly K. Diagnostic growth hormone deficiency testing practices among patients in the NCGS/NCSS databases. *J Pediatr Endocrinol Metab*. 2003;16 Suppl 3:619-624.

- 123. Levin PA, Chalew SA, Martin L, Kowarski AA. Comparison of assays for growth hormone using monoclonal or polyclonal antibodies for diagnosis of growth disorders. *J Lab Clin Med.* 1987;109(1):85-88.
- 124. Hawkes CP, Grimberg A. Measuring growth hormone and insulin-like growth factor-I in infants: what is normal? *Pediatr Endocrinol Rev.* 2013;11(2):126-146.
- 125. Bright GM, Veldhuis JD, Iranmanesh A, Baumann G, Maheshwari H, Lima J. Appraisal of growth hormone (GH) secretion: evaluation of a composite pharmacokinetic model that discriminates multiple components of GH input. *J Clin Endocrinol Metab.* 1999;84(9):3301-3308.
- 126. Bright GM, Julius JR, Lima J, Blethen SL. Growth hormone stimulation test results as predictors of recombinant human growth hormone treatment outcomes: preliminary analysis of the National Cooperative Growth Study database. *Pediatrics*. 1999;104(4 Pt 2):1028-1031.
- 127. Greco M, Cappa M, Perruzza I, Rizzoni G. Can provocative growth hormone testing predict the response to recombinant human growth hormone (rhGH) treatment? *Br J Clin Pract Suppl.* 1996;85:38-40.
- 128. Van den Broeck J, Arends N, Hokken-Koelega A. Growth response to recombinant human growth hormone (GH) in children with idiopathic growth retardation by level of maximum GH peak during GH stimulation tests. *Horm Res.* 2000;53(6):267-273.
- 129. Shah A, Stanhope R, Matthew D. Hazards of pharmacological tests of growth hormone secretion in childhood. *BMJ*. 1992;304(6820):173-174.
- 130. Cacciari E, Tassoni P, Cicognani A, et al. Value and limits of pharmacological and physiological tests to diagnose growth hormone (GH) deficiency and predict therapy response: first and second retesting during replacement therapy of patients defined as GH deficient. *J Clin Endocrinol Metab.* 1994;79(6):1663-1669.
- 131. Tassoni P, Cacciari E, Cau M, et al. Variability of growth hormone response to pharmacological and sleep tests performed twice in short children. *J Clin Endocrinol Metab.* 1990;71(1):230-234.
- 132. Molina S, Paoli M, Camacho N, Arata-Bellabarba G, Lanes R. Is testosterone and estrogen priming prior to clonidine useful in the evaluation of the growth hormone status of short peripubertal children? *J Pediatr Endocrinol Metab*. 2008;21(3):257-266.

- 133. Wyatt DT, Mark D, Slyper A. Survey of growth hormone treatment practices by 251 pediatric endocrinologists. *J Clin Endocrinol Metab*. 1995;80(11):3292-3297.
- 134. Hardin DS, Woo J, Butsch R, Huett B. Current prescribing practices and opinions about growth hormone therapy: results of a nationwide survey of paediatric endocrinologists. *Clin Endocrinol (Oxf)*. 2007;66(1):85-94.
- 135. Miller BS, Shulman DI, Shillington A, et al. Consensus and discordance in the management of growth hormone-treated patients: results of a knowledge, attitudes, beliefs, and practices survey. *Int J Pediatr Endocrinol*. 2010;2010:891571.
- 136. Juul A, Bernasconi S, Clayton PE, et al. European audit of current practice in diagnosis and treatment of childhood growth hormone deficiency. *Horm Res.* 2002;58(5):233-241.
- 137. Evans C, Gregory JW, All Wales Clinical Biochemistry Audit G. The investigation of short stature: a survey of practice in Wales and suggested practical guidelines. *J Clin Pathol*. 2004;57(2):126-130.
- 138. Kaplan SL, Abrams CA, Bell JJ, Conte FA, Grumbach MM. Growth and growth hormone. I. Changes in serum level of growth hormone following hypoglycemia in 134 children with growth retardation. *Pediatr Res.* 1968;2(1):43-63.
- 139. Greulich WW, Pyle SI. *Radiographic Atlas of Skeletal Development of the Hand and Wrist*: Stanford University Press; 1959.
- 140. Ho KK, Participants GHDCW. Consensus guidelines for the diagnosis and treatment of adults with GH deficiency II: a statement of the GH Research Society in association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. *Eur J Endocrinol*. 2007;157(6):695-700.
- 141. W. H. O. Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. *Acta Paediatr Suppl.* 2006;450:76-85.
- 142. Jezova D, Radikova Z, Vigas M. Growth hormone response to different consecutive stress stimuli in healthy men: is there any difference? *Stress*. 2007;10(2):205-211.
- 143. Ranke MB. Growth hormone deficiency: Diagnostic principles and practice. In: Ranke MB, Mullis PE, editors. *Diagnostics of Endocrine*

- *Function in Children and Adolescents.* 4 ed. Switzerland: Karger; 2011. p. 102 137.
- 144. Sartorio A, Agosti F, Marinone PG, Proietti M, Lafortuna CL. Growth hormone responses to repeated bouts of aerobic exercise with different recovery intervals in cyclists. *J Endocrinol Invest*. 2005;28(5):RC11-14.
- 145. Veldhuis JD, Bidlingmaier M, Anderson SM, Wu Z, Strasburger CJ. Lowering total plasma insulin-like growth factor I concentrations by way of a novel, potent, and selective growth hormone (GH) receptor antagonist, pegvisomant (B2036-peg), augments the amplitude of GH secretory bursts and elevates basal/nonpulsatile GH release in healthy women and men. *J Clin Endocrinol Metab.* 2001;86(7):3304-3310.
- 146. Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. *Endocr Rev.* 1998;19(6):717-797.
- 147. O'Grady MJ, Hensey C, Fallon M, et al. Requirement for age-specific peak cortisol responses to insulin-induced hypoglycaemia in children. *Eur J Endocrinol*. 2013;169(2):139-145.
- 148. Martinez AS, Domene HM, Ropelato MG, et al. Estrogen priming effect on growth hormone (GH) provocative test: a useful tool for the diagnosis of GH deficiency. *J Clin Endocrinol Metab.* 2000;85(11):4168-4172.
- 149. Wilson DM, Frane J. A brief review of the use and utility of growth hormone stimulation testing in the National Cooperative Growth Study: do we need to do provocative GH testing? *Growth Horm IGF Res.* 2005;15 Suppl A:S21-25.
- 150. Bercu BB, Shulman D, Root AW, Spiliotis BE. Growth hormone (GH) provocative testing frequently does not reflect endogenous GH secretion. *J Clin Endocrinol Metab*. 1986;63(3):709-716.
- 151. Badaru A, Wilson DM. Alternatives to growth hormone stimulation testing in children. *Trends Endocrinol Metab*. 2004;15(6):252-258.
- 152. Abuzzahab MJ, Schneider A, Goddard A, et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. *N Engl J Med*. 2003;349(23):2211-2222.
- 153. Woods KA, Camacho-Hubner C, Savage MO, Clark AJ. Intrauterine growth retardation and postnatal growth failure associated with

- deletion of the insulin-like growth factor I gene. *N Engl J Med*. 1996;335(18):1363-1367.
- 154. Jaquet D, Touati G, Rigal O, Czernichow P. Exploration of glucose homeostasis during fasting in growth hormone-deficient children. *Acta Paediatr*. 1998;87(5):505-510.
- 155. Meissner T, Wendel U, Burgard P, Schaetzle S, Mayatepek E. Longterm follow-up of 114 patients with congenital hyperinsulinism. *European journal of endocrinology / European Federation of Endocrine Societies*. 2003;149(1):43-51.
- 156. Menni F, de Lonlay P, Sevin C, et al. Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia. *Pediatrics*. 2001;107(3):476-479.
- 157. Steinkrauss L, Lipman TH, Hendell CD, Gerdes M, Thornton PS, Stanley CA. Effects of hypoglycemia on developmental outcome in children with congenital hyperinsulinism. *J Pediatr Nurs*. 2005;20(2):109-118.
- 158. Cryer PE, Gerich JE. Glucose counterregulation, hypoglycemia, and intensive insulin therapy in diabetes mellitus. *N Engl J Med*. 1985;313(4):232-241.
- 159. De Feo P, Perriello G, Torlone E, et al. Contribution of cortisol to glucose counterregulation in humans. *Am J Physiol*. 1989;257(1 Pt 1):E35-42.
- 160. De Feo P, Perriello G, Torlone E, et al. Demonstration of a role for growth hormone in glucose counterregulation. *Am J Physiol*. 1989;256(6 Pt 1):E835-843.
- 161. Jensen MD, Haymond MW, Gerich JE, Cryer PE, Miles JM. Lipolysis during fasting. Decreased suppression by insulin and increased stimulation by epinephrine. *The Journal of clinical investigation*. 1987;79(1):207-213.
- 162. Rizza RA, Haymond MW, Verdonk CA, et al. Pathogenesis of hypoglycemia in insulinoma patients: suppression of hepatic glucose production by insulin. *Diabetes*. 1981;30(5):377-381.
- 163. Amiel SA, Simonson DC, Sherwin RS, Lauritano AA, Tamborlane WV. Exaggerated epinephrine responses to hypoglycemia in normal and insulin-dependent diabetic children. *The Journal of pediatrics*. 1987;110(6):832-837.

- 164. Sperling MA, DeLamater PV, Phelps D, Fiser RH, Oh W, Fisher DA. Spontaneous and amino acid-stimulated glucagon secretion in the immediate postnatal period. Relation to glucose and insulin. *The Journal of clinical investigation*. 1974;53(4):1159-1166.
- 165. Jones TW, Boulware SD, Kraemer DT, Caprio S, Sherwin RS, Tamborlane WV. Independent effects of youth and poor diabetes control on responses to hypoglycemia in children. *Diabetes*. 1991;40(3):358-363.
- 166. Towler DA, Havlin CE, Craft S, Cryer P. Mechanism of awareness of hypoglycemia. Perception of neurogenic (predominantly cholinergic) rather than neuroglycopenic symptoms. *Diabetes*. 1993;42(12):1791-1798.
- 167. Stanley CA, Mills JL, Baker L. Intragastric feeding in type I glycogen storage disease: factors affecting the control of lactic acidemia. *Pediatric research*. 1981;15(12):1504-1508.
- 168. Heller SR, Cryer PE. Reduced neuroendocrine and symptomatic responses to subsequent hypoglycemia after 1 episode of hypoglycemia in nondiabetic humans. *Diabetes*. 1991;40(2):223-226.
- 169. Schwartz NS, Clutter WE, Shah SD, Cryer PE. Glycemic thresholds for activation of glucose counterregulatory systems are higher than the threshold for symptoms. *J Clin Invest*. 1987;79(3):777-781.
- 170. Kaiser JR, Bai S, Gibson N, et al. Association Between Transient Newborn Hypoglycemia and Fourth-Grade Achievement Test Proficiency: A Population-Based Study. *JAMA Pediatr.* 2015.
- 171. Koivisto M, Blanco-Sequeiros M, Krause U. Neonatal symptomatic and asymptomatic hypoglycaemia: a follow-up study of 151 children. *Developmental medicine and child neurology*. 1972;14(5):603-614.
- 172. Hartman ML, Veldhuis JD, Johnson ML, et al. Augmented growth hormone (GH) secretory burst frequency and amplitude mediate enhanced GH secretion during a two-day fast in normal men. *J Clin Endocrinol Metab.* 1992;74(4):757-765.
- 173. Amiel SA, Simonson DC, Sherwin RS, Lauritano AA, Tamborlane WV. Exaggerated epinephrine responses to hypoglycemia in normal and insulin-dependent diabetic children. *J Pediatr*. 1987;110(6):832-837.
- 174. Sperling MA, DeLamater PV, Phelps D, Fiser RH, Oh W, Fisher DA. Spontaneous and amino acid-stimulated glucagon secretion in the immediate postnatal period. Relation to glucose and insulin. *J Clin Invest.* 1974;53(4):1159-1166.

- 175. Copeland KC, Nair KS. Acute growth hormone effects on amino acid and lipid metabolism. *J Clin Endocrinol Metab*. 1994;78(5):1040-1047.
- 176. Moller N, Vendelbo MH, Kampmann U, et al. Growth hormone and protein metabolism. *Clin Nutr.* 2009;28(6):597-603.
- 177. Norrelund H, Nair KS, Jorgensen JO, Christiansen JS, Moller N. The protein-retaining effects of growth hormone during fasting involve inhibition of muscle-protein breakdown. *Diabetes*. 2001;50(1):96-104.
- 178. Haymond MW, Karl I, Weldon VV, Pagliara AS. The role of growth hormone and cortisone on glucose and gluconeogenic substrate regulation in fasted hypopituitary children. *J Clin Endocrinol Metab*. 1976;42(5):846-856.
- 179. Moller N, Jorgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. *Endocr Rev.* 2009;30(2):152-177.
- 180. Takano A, Haruta T, Iwata M, et al. Growth hormone induces cellular insulin resistance by uncoupling phosphatidylinositol 3-kinase and its downstream signals in 3T3-L1 adipocytes. *Diabetes*. 2001;50(8):1891-1900.
- 181. Campbell PJ, Bolli GB, Cryer PE, Gerich JE. Pathogenesis of the dawn phenomenon in patients with insulin-dependent diabetes mellitus. Accelerated glucose production and impaired glucose utilization due to nocturnal surges in growth hormone secretion. *N Engl J Med*. 1985;312(23):1473-1479.
- 182. Wolfsdorf JI, Sadeghi-Nejad A, Senior B. Hypoketonemia and agerelated fasting hypoglycemia in growth hormone deficiency. *Metabolism.* 1983;32(5):457-462.
- 183. Palladino AA, Bennett MJ, Stanley CA. Hyperinsulinism in infancy and childhood: when an insulin level is not always enough. *Clin Chem*. 2008;54(2):256-263.
- 184. Katz LE, Satin-Smith MS, Collett-Solberg P, Baker L, Stanley CA, Cohen P. Dual regulation of insulin-like growth factor binding protein-1 levels by insulin and cortisol during fasting. *J Clin Endocrinol Metab*. 1998;83(12):4426-4430.
- 185. Hussain K, Hindmarsh P, Aynsley-Green A. Spontaneous hypoglycemia in childhood is accompanied by paradoxically low

- serum growth hormone and appropriate cortisol counterregulatory hormonal responses. *J Clin Endocrinol Metab.* 2003;88(8):3715-3723.
- 186. Morris AA, Thekekara A, Wilks Z, Clayton PT, Leonard JV, Aynsley-Green A. Evaluation of fasts for investigating hypoglycaemia or suspected metabolic disease. *Arch Dis Child.* 1996;75(2):115-119.
- 187. Crofton PM, Midgley PC. Cortisol and growth hormone responses to spontaneous hypoglycaemia in infants and children. *Arch Dis Child*. 2004;89(5):472-478.
- 188. Finegold DN, Stanley CA, Baker L. Glycemic response to glucagon during fasting hypoglycemia: an aid in the diagnosis of hyperinsulinism. *J Pediatr.* 1980;96(2):257-259.
- 189. Lovinger RD, Kaplan SL, Grumbach MM. Congenital hypopituitarism associated with neonatal hypoglycemia and microphallus: four cases secondary to hypothalamic hormone deficiencies. *J Pediatr*. 1975;87(6 Pt 2):1171-1181.
- 190. Johnstone HC, Cheetham TD. GH and cortisol response to glucagon administration in short children. *Horm Res.* 2004;62(1):27-32.
- 191. Bottner A, Kratzsch J, Liebermann S, et al. Comparison of adrenal function tests in children--the glucagon stimulation test allows the simultaneous assessment of adrenal function and growth hormone response in children. *J Pediatr Endocrinol Metab.* 2005;18(5):433-442.
- 192. Chanoine JP, Rebuffat E, Kahn A, Bergmann P, Van Vliet G. Glucose, growth hormone, cortisol, and insulin responses to glucagon injection in normal infants, aged 0.5-12 months. *J Clin Endocrinol Metab.* 1995;80(10):3032-3035.
- 193. Chaussain JL. Glycemic response to 24 hour fast in normal children and children with ketotic hypoglycemia. *J Pediatr*. 1973;82(3):438-443.
- 194. Palladino AA, Stanley CA. A specialized team approach to diagnosis and medical versus surgical treatment of infants with congenital hyperinsulinism. *Semin Pediatr Surg.* 2011;20(1):32-37.
- 195. Sizonenko PC, Clayton PE, Cohen P, Hintz RL, Tanaka T, Laron Z. Diagnosis and management of growth hormone deficiency in childhood and adolescence. Part 1: diagnosis of growth hormone deficiency. *Growth Horm IGF Res.* 2001;11(3):137-165.

- 196. Hawkes CP, Grimberg A. Insulin-like growth factor-I is a marker for the nutritional state. *Pediatr Endocrinol Rev.* 2015;13(2):465-477.
- 197. Binder G, Hettmann S, Weber K, Kohlmuller D, Schweizer R. Analysis of the GH content within archived dried blood spots of newborn screening cards from children diagnosed with growth hormone deficiency after the neonatal period. *Growth Horm IGF Res.* 2011;21(6):314-317.
- 198. Lim SH, Vasanwala R, Lek N, Yap F. Quantifying the risk of hypoglycaemia in children undergoing the glucagon stimulation test. *Clin Endocrinol (Oxf)*. 2011;75(4):489-494.
- 199. Strich D, Terespolsky N, Gillis D. Glucagon stimulation test for childhood growth hormone deficiency: timing of the peak is important. *J Pediatr*. 2009;154(3):415-419.
- 200. Giuffrida FM, Berger K, Monte L, et al. Relationship between GH response and glycemic fluctuations in the glucagon stimulation test. *Growth Horm IGF Res.* 2009;19(1):77-81.
- 201. Goodwin PM, Capildeo R, Harrop JS, Marks V, Rose FC. The metabolic and hormonal response to glucagon. Part 1. Normal subjects. *J Neurol Sci.* 1976;27(3):373-380.
- 202. Tanaka T, Suwa S. The effect of alpha adrenergic receptor blockade on the glucagon-induced growth hormone response. *Clin Endocrinol* (*Oxf*). 1978;9(3):267-272.
- 203. Maghnie M, Valtorta A, Moretta A, et al. Diagnosing growth hormone deficiency: the value of short-term hypocaloric diet. *J Clin Endocrinol Metab.* 1993;77(5):1372-1378.
- 204. Ho KY, Veldhuis JD, Johnson ML, et al. Fasting enhances growth hormone secretion and amplifies the complex rhythms of growth hormone secretion in man. *J Clin Invest*. 1988;81(4):968-975.
- 205. Cain JP, Williams GH, Dluhy RG. Glucagon stimulation of human growth hormone. *J Clin Endocrinol Metab.* 1970;31(2):222-224.
- 206. Hawkes CP, Mavinkurve M, Fallon M, Grimberg A, Cody DC. Serial GH Measurement After Intravenous Catheter Placement Alone Can Detect Levels Above Stimulation Test Thresholds in Children. *J Clin Endocrinol Metab.* 2015;100(11):4357-4363.
- 207. Eddy RL, Jones AL, Hirsch RM. Effect of exogenous glucagon on pituitary polypeptide hormone release. *Metabolism*. 1970;19(10):904-912.

- 208. Ghigo E, Bartolotta E, Imperiale E, et al. Glucagon stimulates GH secretion after intramuscular but not intravenous administration. Evidence against the assumption that glucagon per se has a GH-releasing activity. *J Endocrinol Invest*. 1994;17(11):849-854.
- 209. Cohen P, Rogol AD, Howard CP, et al. Insulin growth factor-based dosing of growth hormone therapy in children: a randomized, controlled study. *J Clin Endocrinol Metab.* 2007;92(7):2480-2486.
- 210. Cohen P, Rogol AD, Weng W, et al. Efficacy of IGF-based growth hormone (GH) dosing in nonGH-deficient (nonGHD) short stature children with low IGF-I is not related to basal IGF-I levels. *Clin Endocrinol (Oxf)*. 2013;78(3):405-414.
- 211. Hawkes CP, Schnellbacher S, Singh RJ, Levine MA. 25-Hydroxyvitamin D Can Interfere With a Common Assay for 1,25-Dihydroxyvitamin D in Vitamin D Intoxication. *J Clin Endocrinol Metab*. 2015;100(8):2883-2889.
- 212. Ogilvy-Stuart AL. Growth hormone deficiency (GHD) from birth to 2 years of age: diagnostic specifics of GHD during the early phase of life. *Horm Res.* 2003;60(Suppl 1):2-9.
- 213. Miller JD, Esparza A, Wright NM, et al. Spontaneous growth hormone release in term infants: changes during the first four days of life. *J Clin Endocrinol Metab.* 1993;76(4):1058-1062.
- 214. Wright NM, Northington FJ, Miller JD, Veldhuis JD, Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. *Pediatr Res.* 1992;32(3):286-290.
- 215. Vigneri R, D'Agata R. Growth hormone release during the first year of life in relation to sleep-wake periods. *J Clin Endocrinol Metab*. 1971;33(3):561-563.
- 216. Recio J, Miguez JM, Buxton OM, Challet E. Synchronizing circadian rhythms in early infancy. *Med Hypotheses*. 1997;49(3):229-234.
- 217. Ogilvy-Stuart AL, Hands SJ, Adcock CJ, et al. Insulin, insulin-like growth factor I (IGF-I), IGF-binding protein-1, growth hormone, and feeding in the newborn. *J Clin Endocrinol Metab.* 1998;83(10):3550-3557.
- 218. Kaplan SL, Grumbach MM, Shepard TH. The ontogenesis of human fetal hormones. I. Growth hormone and insulin. *J Clin Invest*. 1972;51(12):3080-3093.

- 219. Mehta A, Hindmarsh PC, Stanhope RG, et al. The role of growth hormone in determining birth size and early postnatal growth, using congenital growth hormone deficiency (GHD) as a model. *Clin Endocrinol (Oxf)*. 2005;63(2):223-231.
- 220. Gohlke BC, Fahnenstich H, Dame C, Albers N. Longitudinal data for intrauterine levels of fetal IGF-I and IGF-II. *Horm Res.* 2004;61(4):200-204.
- 221. Ong K, Kratzsch J, Kiess W, Costello M, Scott C, Dunger D. Size at birth and cord blood levels of insulin, insulin-like growth factor I (IGF-I), IGF-II, IGF-II, IGF-binding protein-1 (IGFBP-1), IGFBP-3, and the soluble IGF-II/mannose-6-phosphate receptor in term human infants. The ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. *J Clin Endocrinol Metab*. 2000;85(11):4266-4269.
- 222. Hansen-Pupp I, Lofqvist C, Polberger S, et al. Influence of insulin-like growth factor I and nutrition during phases of postnatal growth in very preterm infants. *Pediatr Res.* 2011;69(5 Pt 1):448-453.
- 223. Kajantie E. Insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3, phosphoisoforms of IGFBP-1 and postnatal growth in very-low-birth-weight infants. *Horm Res.* 2003;60 Suppl 3:124-130.
- 224. Pagani S, Chaler EA, Radetti G, et al. Variations in biological and immunological activity of growth hormone during the neonatal period. *Horm Res.* 2007;68(3):145-149.
- 225. Binder G, Weidenkeller M, Blumenstock G, Langkamp M, Weber K, Franz AR. Rational approach to the diagnosis of severe growth hormone deficiency in the newborn. *J Clin Endocrinol Metab.* 2010;95(5):2219-2226.
- 226. Jensen RB, Jeppesen KA, Vielwerth S, et al. Insulin-like growth factor I (IGF-I) and IGF-binding protein 3 as diagnostic markers of growth hormone deficiency in infancy. *Horm Res.* 2005;63(1):15-21.
- 227. Popii V, Baumann G. Laboratory measurement of growth hormone. *Clin Chim Acta*. 2004;350(1-2):1-16.
- 228. Baumann G, Stolar MW, Buchanan TA. The metabolic clearance, distribution, and degradation of dimeric and monomeric growth hormone (GH): implications for the pattern of circulating GH forms. *Endocrinology*. 1986;119(4):1497-1501.
- 229. Baumann G, Shaw M, Amburn K, et al. Heterogeneity of circulating growth hormone. *Nucl Med Biol.* 1994;21(3):369-379.

- 230. Baumann G. Growth hormone heterogeneity in human pituitary and plasma. *Horm Res.* 1999;51 Suppl 1:2-6.
- 231. Amed S, Delvin E, Hamilton J. Variation in growth hormone immunoassays in clinical practice in Canada. *Horm Res.* 2008;69(5):290-294.
- 232. Tanaka T, Tachibana K, Shimatsu A, et al. A nationwide attempt to standardize growth hormone assays. *Horm Res.* 2005;64 Suppl 2:6-11.
- 233. Bidlingmaier M, Freda PU. Measurement of human growth hormone by immunoassays: current status, unsolved problems and clinical consequences. *Growth Horm IGF Res.* 2010;20(1):19-25.
- 234. Laron Z, Bidlingmaier M, Strasburger CJ. Indications, limitations and pitfalls in the determination of human growth hormone, IGF-I and their binding proteins. *Pediatr Endocrinol Rev.* 2007;5 Suppl 1:555-569.
- 235. Clemmons DR. Commercial assays available for insulin-like growth factor I and their use in diagnosing growth hormone deficiency. *Horm Res.* 2001;55 Suppl 2:73-79.
- 236. Blum WF, Breier BH. Radioimmunoassays for IGFs and IGFBPs. *Growth Regul*. 1994;4 Suppl 1:11-19.
- 237. Chestnut RE, Quarmby V. Evaluation of total IGF-I assay methods using samples from Type I and Type II diabetic patients. *J Immunol Methods*. 2002;259(1-2):11-24.
- 238. Bystrom C, Sheng S, Zhang K, Caulfield M, Clarke NJ, Reitz R. Clinical utility of insulin-like growth factor 1 and 2; determination by high resolution mass spectrometry. *PLoS One*. 2012;7(9):e43457.
- 239. Such-Sanmartin G, Bache N, Callesen AK, Rogowska-Wrzesinska A, Jensen ON. Targeted mass spectrometry analysis of the proteins IGF1, IGF2, IBP2, IBP3 and A2GL by blood protein precipitation. *J Proteomics*. 2015;113:29-37.
- 240. Ketha H, Singh RJ. Clinical assays for quantitation of insulin-like-growth-factor-1 (IGF1). *Methods*. 2015;81:93-98.
- 241. Bystrom CE, Sheng S, Clarke NJ. Narrow mass extraction of time-of-flight data for quantitative analysis of proteins: determination of insulin-like growth factor-1. *Anal Chem.* 2011;83(23):9005-9010.

- 242. Chanoine JP, Yeung LP, Wong AC. Umbilical cord ghrelin concentrations in Asian and Caucasian neonates. *Horm Res.* 2003;60(3):116-120.
- 243. Chanoine JP, Yeung LP, Wong AC, Birmingham CL. Immunoreactive ghrelin in human cord blood: relation to anthropometry, leptin, and growth hormone. *J Pediatr Gastroenterol Nutr.* 2002;35(3):282-286.
- 244. Laron Z, Mannheimer S, Nitzan M, Goldman J. Growth hormone, glucose, and free fatty acid levels in mother and infant in normal, diabetic and toxaemic pregnancies. *Arch Dis Child*. 1967;42(221):24-28.
- 245. Laron Z, Mannheimer S, Pertzelan A, Nitzan M. Serum growth hormone concentration in full term infants. *Isr J Med Sci.* 1966;2(6):770-773.
- 246. Cornblath M, Parker ML, Reisner SH, Forbes AE, Daughaday WH. SECRETION AND METABOLISM OF GROWTH HORMONE IN PREMATURE AND FULL-TERM INFANTS. *J Clin Endocrinol Metab.* 1965;25:209-218.
- 247. Cance-Rouzaud A, Laborie S, Bieth E, et al. Growth hormone, insulinlike growth factor-I and insulin-like growth factor binding protein-3 are regulated differently in small-for-gestational-age and appropriate-for-gestational-age neonates. *Biol Neonate*. 1998;73(6):347-355.
- 248. Cassio A, Cacciari E, Balsamo A, et al. Low growth hormone-binding protein in infants with congenital hypothyroidism. *J Clin Endocrinol Metab.* 1998;83(10):3643-3646.
- 249. de Zegher F, Devlieger H, Veldhuis JD. Properties of growth hormone and prolactin hypersecretion by the human infant on the day of birth. *J Clin Endocrinol Metab.* 1993;76(5):1177-1181.
- 250. Shaywitz BA, Finkelstein J, Hellman L, Weitzman ED. Growth hormone in newborn infants during sleep-wake periods. *Pediatrics*. 1971;48(1):103-109.
- 251. Leger J, Noel M, Limal JM, Czernichow P. Growth factors and intrauterine growth retardation. II. Serum growth hormone, insulinlike growth factor (IGF) I, and IGF-binding protein 3 levels in children with intrauterine growth retardation compared with normal control subjects: prospective study from birth to two years of age. Study Group of IUGR. *Pediatr Res.* 1996;40(1):101-107.

- 252. Setia S, Sridhar MG, Bhat V, Chaturvedula L. Growth hormone in intra-uterine growth retarded newborns. *Indian J Pediatr*. 2007;74(11):991-994.
- 253. Desgranges MF, Moutquin JM, Peloquin A. Effects of maternal oral salbutamol therapy on neonatal endocrine status at birth. *Obstet Gynecol*. 1987;69(4):582-584.
- 254. Geary MP, Pringle PJ, Rodeck CH, Kingdom JC, Hindmarsh PC. Sexual dimorphism in the growth hormone and insulin-like growth factor axis at birth. *J Clin Endocrinol Metab*. 2003;88(8):3708-3714.
- 255. Kitamura S, Yokota I, Hosoda H, et al. Ghrelin concentration in cord and neonatal blood: relation to fetal growth and energy balance. *J Clin Endocrinol Metab.* 2003;88(11):5473-5477.
- 256. Chiesa C, Osborn JF, Haass C, et al. Ghrelin, leptin, IGF-1, IGFBP-3, and insulin concentrations at birth: is there a relationship with fetal growth and neonatal anthropometry? *Clin Chem.* 2008;54(3):550-558.
- 257. Gesteiro E, Bastida S, Sanchez-Muniz FJ. Insulin resistance markers in term, normoweight neonates. The Merida cohort. *Eur J Pediatr*. 2009;168(3):281-288.
- 258. Osmanagaoglu MA, Osmanagaoglu S, Bozkaya H. The association of birthweight with maternal and cord serum and amniotic fluid growth hormone and insulin levels, and with neonatal and maternal factors in pregnant women who delivered at term. *J Perinat Med.* 2005;33(2):149-155.
- 259. Minuto F, Underwood LE, Grimaldi P, Furlanetto RW, Van Wyk JJ, Giordano G. Decreased serum somatomedin C concentrations during sleep: temporal relationship to the nocturnal surges of growth hormone and prolactin. *J Clin Endocrinol Metab.* 1981;52(3):399-403.
- 260. Chanson P, Arnoux A, Mavromati M, et al. Reference Values for IGF-I Serum Concentrations: Comparison of Six Immunoassays. *J Clin Endocrinol Metab.* 2016;101(9):3450-3458.
- 261. Troisi R, Lagiou P, Trichopoulos D, et al. Cord serum estrogens, androgens, insulin-like growth factor-I, and insulin-like growth factor binding protein-3 in Chinese and U.S. Caucasian neonates. *Cancer Epidemiol Biomarkers Prev.* 2008;17(1):224-231.
- 262. Rohrmann S, Sutcliffe CG, Bienstock JL, et al. Racial variation in sex steroid hormones and the insulin-like growth factor axis in umbilical

- cord blood of male neonates. *Cancer Epidemiol Biomarkers Prev.* 2009;18(5):1484-1491.
- 263. Ingvarsson RF, Bjarnason AO, Dagbjartsson A, Hardardottir H, Haraldsson A, Thorkelsson T. The effects of smoking in pregnancy on factors influencing fetal growth. *Acta Paediatr*. 2007;96(3):383-386.
- 264. Davidson S, Prokonov D, Taler M, et al. Effect of exposure to selective serotonin reuptake inhibitors in utero on fetal growth: potential role for the IGF-I and HPA axes. *Pediatr Res.* 2009;65(2):236-241.
- 265. Yuksel B, Ozbek MN, Mungan NO, et al. Serum IGF-1 and IGFBP-3 levels in healthy children between 0 and 6 years of age. *J Clin Res Pediatr Endocrinol*. 2011;3(2):84-88.
- 266. Wang SL, Su PH, Jong SB, Guo YL, Chou WL, Papke O. In utero exposure to dioxins and polychlorinated biphenyls and its relations to thyroid function and growth hormone in newborns. *Environ Health Perspect*. 2005;113(11):1645-1650.
- 267. Ibanez L, Sebastiani G, Lopez-Bermejo A, Diaz M, Gomez-Roig MD, de Zegher F. Gender specificity of body adiposity and circulating adiponectin, visfatin, insulin, and insulin growth factor-I at term birth: relation to prenatal growth. *J Clin Endocrinol Metab*. 2008;93(7):2774-2778.
- 268. Hyun SE, Lee BC, Suh BK, et al. Reference values for serum levels of insulin-like growth factor-I and insulin-like growth factor binding protein-3 in Korean children and adolescents. *Clin Biochem*. 2012;45(1-2):16-21.
- 269. Hawkes CP, Hourihane JO, Kenny LC, Irvine AD, Kiely M, Murray DM. Gender- and Gestational Age-Specific Body Fat Percentage at Birth. *Pediatrics*. 2011;128(3):E645-E651.
- 270. Hawkes CP, Zemel BS, Kiely M, et al. Body Composition within the First 3 Months: Optimized Correction for Length and Correlation with BMI at 2 Years. *Horm Res Paediatr*. 2016;86(3):178-187.
- 271. Akram SK, Carlsson-Skwirut C, Bhutta ZA, Soder O. Placental IGF-I, IGFBP-1, zinc, and iron, and maternal and infant anthropometry at birth. *Acta Paediatr*. 2011;100(11):1504-1509.
- 272. Jayanthiny P, Tennekoon KH, Karunanayake EH, Kumarasiri JM, Wijesundera AP. Di-nucleotide repeat polymorphisms of the insulinlike growth factor-1 gene and their association with IGF-1, insulinlike growth factor-binding protein-1 and birth size in a Sri-Lankan cohort. *Neonatology*. 2011;100(1):37-43.

- 273. Bankowski E, Palka J, Jaworski S. Pre-eclampsia-induced alterations in IGF-I of human umbilical cord. *Eur J Clin Invest.* 2000;30(5):389-396.
- 274. Beltrand J, Verkauskiene R, Nicolescu R, et al. Adaptive changes in neonatal hormonal and metabolic profiles induced by fetal growth restriction. *J Clin Endocrinol Metab.* 2008;93(10):4027-4032.
- 275. Bennett A, Wilson DM, Liu F, Nagashima R, Rosenfeld RG, Hintz RL. Levels of insulin-like growth factors I and II in human cord blood. *J Clin Endocrinol Metab.* 1983;57(3):609-612.
- 276. Halhali A, Tovar AR, Torres N, Bourges H, Garabedian M, Larrea F. Preeclampsia is associated with low circulating levels of insulin-like growth factor I and 1,25-dihydroxyvitamin D in maternal and umbilical cord compartments. *J Clin Endocrinol Metab*. 2000;85(5):1828-1833.
- 277. Klauwer D, Blum WF, Hanitsch S, Rascher W, Lee PD, Kiess W. IGF-I, IGF-II, free IGF-I and IGFBP-1, -2 and -3 levels in venous cord blood: relationship to birthweight, length and gestational age in healthy newborns. *Acta Paediatr*. 1997;86(8):826-833.
- 278. Simmons D. Interrelation between umbilical cord serum sex hormones, sex hormone-binding globulin, insulin-like growth factor I, and insulin in neonates from normal pregnancies and pregnancies complicated by diabetes. *J Clin Endocrinol Metab*. 1995;80(7):2217-2221.
- 279. Vatten LJ, Odegard RA, Nilsen ST, Salvesen KA, Austgulen R. Relationship of insulin-like growth factor-I and insulin-like growth factor binding proteins in umbilical cord plasma to preeclampsia and infant birth weight. *Obstet Gynecol*. 2002;99(1):85-90.
- 280. Wiznitzer A, Reece EA, Homko C, Furman B, Mazor M, Levy J. Insulinlike growth factors, their binding proteins, and fetal macrosomia in offspring of nondiabetic pregnant women. *Am J Perinatol*. 1998;15(1):23-28.
- 281. Baik I, Liu Q, Sturgeon S, Stanek EJ, 3rd, Okulicz W, Hsieh CC. Reproducibility of assays for steroid hormones, prolactin and insulinlike growth factor-1 in umbilical cord blood. *Paediatr Perinat Epidemiol.* 2006;20(1):79-86.
- 282. Christou H, Connors JM, Ziotopoulou M, et al. Cord blood leptin and insulin-like growth factor levels are independent predictors of fetal growth. *J Clin Endocrinol Metab*. 2001;86(2):935-938.

- 283. Cooley SM, Donnelly JC, Geary MP, Rodeck CH, Hindmarsh PC. Maternal and fetal insulin-like growth factors 1 and 2 (IGF-1, IGF-2) and IGF BP-3, and their relationship to fetal acidosis at delivery. *J Perinat Med*. 2004;32(5):418-421.
- 284. Lagiou P, Hsieh CC, Lipworth L, et al. Insulin-like growth factor levels in cord blood, birth weight and breast cancer risk. *Br J Cancer*. 2009;100(11):1794-1798.
- 285. Lo HC, Tsao LY, Hsu WY, Chen HN, Yu WK, Chi CY. Relation of cord serum levels of growth hormone, insulin-like growth factors, insulin-like growth factor binding proteins, leptin, and interleukin-6 with birth weight, birth length, and head circumference in term and preterm neonates. *Nutrition*. 2002;18(7-8):604-608.
- 286. Maffeis C, Moghetti P, Vettor R, Lombardi AM, Vecchini S, Tato L. Leptin concentration in newborns' cord blood: relationship to gender and growth-regulating hormones. *Int J Obes Relat Metab Disord*. 1999;23(9):943-947.
- 287. Martinez-Cordero C, Amador-Licona N, Guizar-Mendoza JM, Hernandez-Mendez J, Ruelas-Orozco G. Body fat at birth and cord blood levels of insulin, adiponectin, leptin, and insulin-like growth factor-I in small-for-gestational-age infants. *Arch Med Res*. 2006;37(4):490-494.
- 288. Pringle PJ, Geary MP, Rodeck CH, Kingdom JC, Kayamba-Kay's S, Hindmarsh PC. The influence of cigarette smoking on antenatal growth, birth size, and the insulin-like growth factor axis. *J Clin Endocrinol Metab*. 2005;90(5):2556-2562.
- 289. Gesteiro E, Bastida S, Sanchez Muniz FJ. Effects of maternal glucose tolerance, pregnancy diet quality and neonatal insulinemia upon insulin resistance/sensitivity biomarkers in normoweight neonates. *Nutr Hosp.* 2011;26(6):1447-1455.
- 290. Kyriakakou M, Malamitsi-Puchner A, Mastorakos G, et al. The role of IGF-1 and ghrelin in the compensation of intrauterine growth restriction. *Reprod Sci.* 2009;16(12):1193-1200.
- 291. Luo ZC, Nuyt AM, Delvin E, et al. Maternal and fetal IGF-I and IGF-II levels, fetal growth, and gestational diabetes. *J Clin Endocrinol Metab*. 2012;97(5):1720-1728.
- 292. Gunes T, Koklu E, Yikilmaz A, et al. Influence of maternal smoking on neonatal aortic intima-media thickness, serum IGF-I and IGFBP-3 levels. *Eur J Pediatr*. 2007;166(10):1039-1044.

- 293. Koklu E, Kurtoglu S, Akcakus M, Yikilmaz A, Gunes T. Serum insulinlike growth factor-I (IGF-I) IGF binding protein-3 (IGFBP-3) and leptin levels are related to abdominal aortic intima-media thickness in macrosomic newborns. *Growth Horm IGF Res.* 2007;17(1):26-32.
- 294. Koklu E, Ozturk MA, Kurtoglu S, Akcakus M, Yikilmaz A, Gunes T. Aortic intima-media thickness, serum IGF-I, IGFBP-3, and leptin levels in intrauterine growth-restricted newborns of healthy mothers. *Pediatr Res.* 2007;62(6):704-709.
- 295. Rajaram S, Carlson SE, Koo WW, Rangachari A, Kelly DP. Insulin-like growth factor (IGF)-I and IGF-binding protein 3 during the first year in term and preterm infants. *Pediatr Res.* 1995;37(5):581-585.
- 296. Iniguez G, Ong K, Bazaes R, et al. Longitudinal changes in insulin-like growth factor-I, insulin sensitivity, and secretion from birth to age three years in small-for-gestational-age children. *J Clin Endocrinol Metab.* 2006;91(11):4645-4649.
- 297. Cassio A, Capelli M, Cacciari E, et al. Somatomedin-C levels related to gestational age, birth weight and day of life. *Eur J Pediatr*. 1986;145(3):187-189.
- 298. Mitchell ML, Hermos RJ, Feingold M, Moses AC. The relationship of insulin-like growth factor-I to total thyroxine in normal and low birth weight infants. *Pediatr Res.* 1989;25(4):336-338.
- 299. Chellakooty M, Juul A, Boisen KA, et al. A prospective study of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-3 in 942 healthy infants: associations with birth weight, gender, growth velocity, and breastfeeding. *J Clin Endocrinol Metab.* 2006;91(3):820-826.
- 300. Kai CM, Main KM, Andersen AN, et al. Serum insulin-like growth factor-I (IGF-I) and growth in children born after assisted reproduction. *J Clin Endocrinol Metab*. 2006;91(11):4352-4360.
- 301. Ong KK, Langkamp M, Ranke MB, et al. Insulin-like growth factor I concentrations in infancy predict differential gains in body length and adiposity: the Cambridge Baby Growth Study. *Am J Clin Nutr.* 2009;90(1):156-161.
- 302. Hasegawa Y, Hasegawa T, Fujii K, et al. High ratios of free to total insulin-like growth factor-I in early infancy. *J Clin Endocrinol Metab*. 1997;82(1):156-158.

- 303. Baker Meio MD, Lopes Moreira ME, Sichieri R, Moura AS. Reduction of IGF-binding protein-3 as a potential marker of intra-uterine growth restriction. *J Perinat Med.* 2009;37(6):689-693.
- 304. Low LC, Tam SY, Kwan EY, Tsang AM, Karlberg J. Onset of significant GH dependence of serum IGF-I and IGF-binding protein 3 concentrations in early life. *Pediatr Res.* 2001;50(6):737-742.
- 305. Satar M, Ozcan K, Yapicioglu H, Narli N. Serum insulin-like growth factor 1 and growth hormone levels of hypoxic-ischemic newborns. *Biol Neonate*. 2004;85(1):15-20.
- 306. Thieriot-Prevost G, Boccara JF, Francoual C, Badoual J, Job JC. Serum insulin-like growth factor 1 and serum growth-promoting activity during the first postnatal year in infants with intrauterine growth retardation. *Pediatr Res.* 1988;24(3):380-383.
- 307. Bozzola M, Ntodou-Thome A, Bona G, et al. Possible role of plasma neurotensin on growth hormone regulation in neonates. *J Pediatr Endocrinol Metab.* 1998;11(5):607-613.
- 308. Bozzola M, Tettoni K, Locatelli F, et al. Postnatal variations of growth hormone bioactivity and of growth hormone-dependent factors. *Arch Pediatr Adolesc Med.* 1996;150(10):1068-1071.
- 309. Ermis B, Altinkaynak K, Yildirim A, Ozkan B. Influence of smoking on serum and milk of mothers, and their infants' serum insulin-like growth factor-I and insulin-like growth factor binding protein-3 levels. *Horm Res.* 2004;62(6):288-292.
- 310. Skalkidou A, Petridou E, Papathoma E, et al. Determinants and consequences of major insulin-like growth factor components among full-term healthy neonates. *Cancer Epidemiol Biomarkers Prev.* 2003;12(9):860-865.
- 311. Skalkidou A, Petridou E, Papathoma E, Salvanos H, Trichopoulos D. Growth velocity during the first postnatal week of life is linked to a spurt of IGF-I effect. *Paediatr Perinat Epidemiol.* 2003;17(3):281-286.
- 312. Elmlinger MW, Kuhnel W, Weber MM, Ranke MB. Reference ranges for two automated chemiluminescent assays for serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3). *Clin Chem Lab Med*. 2004;42(6):654-664.
- 313. de Zegher F, Sebastiani G, Diaz M, Sanchez-Infantes D, Lopez-Bermejo A, Ibanez L. Body composition and circulating high-molecular-weight adiponectin and IGF-I in infants born small for gestational age: breast-versus formula-feeding. *Diabetes*. 2012;61(8):1969-1973.

- 314. Barton JS, Hindmarsh PC, Preece MA. Serum insulin-like growth factor 1 in congenital heart disease. *Arch Dis Child*. 1996;75(2):162-163.
- 315. Mamabolo RL, Alberts M, Levitt NS, Delemarre-van de Waal HA, Steyn NP. Association between insulin-like growth factor-1, insulin-like growth factor-binding protein-1 and leptin levels with nutritional status in 1-3-year-old children, residing in the central region of Limpopo Province, South Africa. *Br J Nutr.* 2007;98(4):762-769.
- 316. Juul A, Bang P, Hertel NT, et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. *J Clin Endocrinol Metab.* 1994;78(3):744-752.
- 317. Larnkjaer A, Hoppe C, Molgaard C, Michaelsen KF. The effects of whole milk and infant formula on growth and IGF-I in late infancy. *Eur J Clin Nutr.* 2009;63(8):956-963.
- 318. Brabant G, von zur Muhlen A, Wuster C, et al. Serum insulin-like growth factor I reference values for an automated chemiluminescence immunoassay system: results from a multicenter study. *Horm Res.* 2003;60(2):53-60.
- 319. Federico G, Street ME, Maghnie M, et al. Assessment of serum IGF-I concentrations in the diagnosis of isolated childhood-onset GH deficiency: a proposal of the Italian Society for Pediatric Endocrinology and Diabetes (SIEDP/ISPED). *J Endocrinol Invest*. 2006;29(8):732-737.
- 320. Daughaday WH, Parker KA, Borowsky S, Trivedi B, Kapadia M. Measurement of somatomedin-related peptides in fetal, neonatal, and maternal rat serum by insulin-like growth factor (IGF) I radioimmunoassay, IGF-II radioreceptor assay (RRA), and multiplication-stimulating activity RRA after acid-ethanol extraction. *Endocrinology*. 1982;110(2):575-581.
- 321. Frystyk J. Utility of free IGF-I measurements. *Pituitary*. 2007;10(2):181-187.
- 322. Frystyk J. Free insulin-like growth factors -- measurements and relationships to growth hormone secretion and glucose homeostasis. *Growth Horm IGF Res.* 2004;14(5):337-375.
- 323. Frystyk J, Freda P, Clemmons DR. The current status of IGF-I assays-a 2009 update. *Growth Horm IGF Res.* 2010;20(1):8-18.

- 324. Krebs A, Wallaschofski H, Spilcke-Liss E, et al. Five commercially available insulin-like growth factor I (IGF-I) assays in comparison to the former Nichols Advantage IGF-I in a growth hormone treated population. *Clin Chem Lab Med.* 2008;46(12):1776-1783.
- 325. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. *Proc Natl Acad Sci U S A*. 2004;101(20):7711-7715.
- 326. Levine MA. Normal mineral homeostasis. Interplay of parathyroid hormone and vitamin D. *Endocr Dev.* 2003;6:14-33.
- 327. Klammt J, Kiess W, Pfäffle R. IGF1R mutations as cause of SGA. Best Practice & Research Clinical Endocrinology & Metabolism. 2011;25(1):191-206.
- 328. St-Pierre J, Hivert MF, Perron P, et al. IGF2 DNA methylation is a modulator of newborn's fetal growth and development. *Epigenetics*. 2012;7(10):1125-1132.
- 329. Begemann M, Zirn B, Santen G, et al. Paternally Inherited IGF2 Mutation and Growth Restriction. *N Engl J Med.* 2015;373(4):349-356.
- 330. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. *Cell*. 1993;75(1):73-82.
- 331. DeChiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. *Cell*. 1991;64(4):849-859.
- 332. Savage MO, Blum WF, Ranke MB, et al. Clinical features and endocrine status in patients with growth hormone insensitivity (Laron syndrome). *J Clin Endocrinol Metab*. 1993;77(6):1465-1471.
- 333. Hawkes CP, Levitt Katz LE. Growth factor regulation of fetal growth. In: Polin RA, Fox WW, Abman SH, editors. *Fetal and Neonatal Physiology: Expert Consult Online and Print*. 5 ed: Elsevier/Saunders; 2016. p. 1461-1470.
- 334. Aguiar-Oliveira MH, Gill MS, de ABES, et al. Effect of severe growth hormone (GH) deficiency due to a mutation in the GH-releasing hormone receptor on insulin-like growth factors (IGFs), IGF-binding proteins, and ternary complex formation throughout life. *J Clin Endocrinol Metab.* 1999;84(11):4118-4126.

- 335. Vatten LJ, Nilsen ST, Odegard RA, Romundstad PR, Austgulen R. Insulin-like growth factor I and leptin in umbilical cord plasma and infant birth size at term. *Pediatrics*. 2002;109(6):1131-1135.
- 336. Clifton VL, Hodyl NA, Murphy VE, Giles WB, Baxter RC, Smith R. Effect of maternal asthma, inhaled glucocorticoids and cigarette use during pregnancy on the newborn insulin-like growth factor axis. *Growth Hormone & IGF Research*. 2010;20(1):39-48.
- 337. Vidal AC, Murtha AP, Murphy SK, et al. Maternal BMI, IGF-I Levels, and Birth Weight in African American and White Infants. *Int J Pediatr*. 2013;2013:191472.
- 338. Christians JK, Gruslin A. Altered levels of insulin-like growth factor binding protein proteases in preeclampsia and intrauterine growth restriction. *Prenat Diagn*. 2010;30(9):815-820.
- 339. Shibata A, Harris DT, Billings PR. Concentrations of estrogens and IGFs in umbilical cord blood plasma: a comparison among Caucasian, Hispanic, and Asian-American females. *J Clin Endocrinol Metab*. 2002;87(2):810-815.
- 340. Wang HS, Lee JD, Soong YK. Effects of labor on serum levels of insulin and insulin-like growth factor-binding proteins at the time of delivery. *Acta Obstet Gynecol Scand*. 1995;74(3):186-193.
- 341. Hills FA, Crawford R, Harding S, Farkas A, Chard T. The effects of labor on maternal and fetal levels of insulin-like growth factor binding protein-1. *Am J Obstet Gynecol*. 1994;171(5):1292-1295.
- 342. Bredehoft M, Schanzer W, Thevis M. Quantification of human insulinlike growth factor-1 and qualitative detection of its analogues in plasma using liquid chromatography/electrospray ionisation tandem mass spectrometry. *Rapid Commun Mass Spectrom*. 2008;22(4):477-485.
- 343. Groom KM, North RA, Stone PR, et al. Patterns of change in uterine artery Doppler studies between 20 and 24 weeks of gestation and pregnancy outcomes. *Obstet Gynecol*. 2009;113(2 Pt 1):332-338.
- 344. O'Donovan SM, Murray DM, Hourihane JO, Kenny LC, Irvine AD, Kiely M. Cohort profile: The Cork BASELINE Birth Cohort Study: Babies after SCOPE: Evaluating the Longitudinal Impact on Neurological and Nutritional Endpoints. *Int J Epidemiol*. 2014;44(3):764-775.
- 345. Cole TJ, Freeman JV, Preece MA. British 1990 growth reference centiles for weight, height, body mass index and head circumference

- fitted by maximum penalized likelihood. *Stat Med.* 1998;17(4):407-429.
- 346. Vidmar SI, Cole TJ, Pan H. Standardizing anthropometric measures in children and adolescents with functions for egen: Update. *Stata Journal*. 2013;13(2):366-378.
- 347. Cole TJ. The LMS method for constructing normalized growth standards. *Eur J Clin Nutr*. 1990;44(1):45-60.
- 348. Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. *Stat Med.* 1992;11(10):1305-1319.
- 349. Osorio M, Torres J, Moya F, et al. Insulin-like growth factors (IGFs) and IGF binding proteins-1, -2, and -3 in newborn serum: relationships to fetoplacental growth at term. *Early Hum Dev.* 1996;46(1-2):15-26.
- 350. Lassarre C, Hardouin S, Daffos F, Forestier F, Frankenne F, Binoux M. Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. *Pediatr Res.* 1991;29(3):219-225.
- 351. Samaan NA, Schultz PN, Pham FK. Insulin-like growth factor II and nonsuppressible insulin-like activity levels in newborns. *Am J Obstet Gynecol*. 1990;163(6 Pt 1):1836-1839.
- 352. Langford K, Nicolaides K, Miell JP. Maternal and fetal insulin-like growth factors and their binding proteins in the second and third trimesters of human pregnancy. *Hum Reprod.* 1998;13(5):1389-1393.
- 353. Langford K, Blum W, Nicolaides K, Jones J, McGregor A, Miell J. The pathophysiology of the insulin-like growth factor axis in fetal growth failure: a basis for programming by undernutrition? *Eur J Clin Invest*. 1994;24(12):851-856.
- 354. Chaoimh CN, Murray DM, Kenny LC, Irvine AD, Hourihane JO, Kiely M. Cord blood leptin and gains in body weight and fat mass during infancy. *Eur J Endocrinol*. 2016;175(5):403-410.
- 355. Larsen LG, Clausen HV, Jonsson L. Stereologic examination of placentas from mothers who smoke during pregnancy. *Am J Obstet Gynecol*. 2002;186(3):531-537.
- 356. Iniguez G, Gonzalez CA, Argandona F, Kakarieka E, Johnson MC, Cassorla F. Expression and protein content of IGF-I and IGF-I

- receptor in placentas from small, adequate and large for gestational age newborns. *Horm Res Paediatr*. 2010;73(5):320-327.
- 357. World Health Organization. Tobacco: Data and Statistics. http://www.euro.who.int/en/health-topics/disease-prevention/tobacco/data-and-statistics. Accessed 2/13/17.
- 358. Dauber A, Rosenfeld RG, Hirschhorn JN. Genetic Evaluation of Short Stature. *J Clin Endocrinol Metab*. 2014:jc20141506.
- 359. Brown RJ, Adams JJ, Pelekanos RA, et al. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. *Nat Struct Mol Biol.* 2005;12(9):814-821.
- 360. Brooks AJ, Wooh JW, Tunny KA, Waters MJ. Growth hormone receptor; mechanism of action. *Int J Biochem Cell Biol*. 2008;40(10):1984-1989.
- 361. Derr MA, Fang P, Sinha SK, Ten S, Hwa V, Rosenfeld RG. A novel Y332C missense mutation in the intracellular domain of the human growth hormone receptor does not alter STAT5b signaling: redundancy of GHR intracellular tyrosines involved in STAT5b signaling. *Horm Res Paediatr*. 2011;75(3):187-199.
- 362. He K, Loesch K, Cowan JW, et al. Janus kinase 2 enhances the stability of the mature growth hormone receptor. *Endocrinology*. 2005;146(11):4755-4765.
- 363. Smit LS, Meyer DJ, Billestrup N, Norstedt G, Schwartz J, Carter-Su C. The role of the growth hormone (GH) receptor and JAK1 and JAK2 kinases in the activation of Stats 1, 3, and 5 by GH. *Mol Endocrinol*. 1996;10(5):519-533.
- 364. Johnston JA, Kawamura M, Kirken RA, et al. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. *Nature*. 1994;370(6485):151-153.
- 365. Sehgal PB. Paradigm shifts in the cell biology of STAT signaling. *Semin Cell Dev Biol.* 2008;19(4):329-340.
- 366. Milward A, Metherell L, Maamra M, et al. Growth hormone (GH) insensitivity syndrome due to a GH receptor truncated after Box1, resulting in isolated failure of STAT 5 signal transduction. *J Clin Endocrinol Metab*. 2004;89(3):1259-1266.
- 367. Chapgier A, Wynn RF, Jouanguy E, et al. Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in

- vitro but immunity to some low virulence viruses in vivo. *J Immunol*. 2006;176(8):5078-5083.
- 368. Dupuis S, Dargemont C, Fieschi C, et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. *Science*. 2001;293(5528):300-303.
- 369. Minegishi Y, Saito M, Tsuchiya S, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. *Nature*. 2007;448(7157):1058-1062.
- 370. VanderKuur J, Allevato G, Billestrup N, Norstedt G, Carter-Su C. Growth hormone-promoted tyrosyl phosphorylation of SHC proteins and SHC association with Grb2. *J Biol Chem.* 1995;270(13):7587-7593.
- 371. Smit LS, Meyer DJ, Argetsinger LS, Schwartz J, Carter-Su C. Molecular Events in Growth Hormone–Receptor Interaction and Signaling. *Comprehensive Physiology*: John Wiley & Sons, Inc.; 2010.
- 372. Piwien-Pilipuk G, MacDougald O, Schwartz J. Dual regulation of phosphorylation and dephosphorylation of C/EBPbeta modulate its transcriptional activation and DNA binding in response to growth hormone. *J Biol Chem.* 2002;277(46):44557-44565.
- 373. Piwien Pilipuk G, Galigniana MD, Schwartz J. Subnuclear localization of C/EBP beta is regulated by growth hormone and dependent on MAPK. *J Biol Chem.* 2003;278(37):35668-35677.
- 374. Roskoski R, Jr. ERK1/2 MAP kinases: structure, function, and regulation. *Pharmacol Res.* 2012;66(2):105-143.
- 375. Zhu T, Ling L, Lobie PE. Identification of a JAK2-independent pathway regulating growth hormone (GH)-stimulated p44/42 mitogen-activated protein kinase activity. GH activation of Ral and phospholipase D is Src-dependent. *J Biol Chem.* 2002;277(47):45592-45603.
- 376. Feigerlova E, Hwa V, Derr MA, Rosenfeld RG. Current issues on molecular diagnosis of GH signaling defects. *Endocr Dev.* 2013;24:118-127.
- 377. Cesena TI, Cui TX, Piwien-Pilipuk G, et al. Multiple mechanisms of growth hormone-regulated gene transcription. *Mol Genet Metab*. 2007;90(2):126-133.

- 378. Philippou A, Maridaki M, Pneumaticos S, Koutsilieris M. The complexity of the IGF1 gene splicing, posttranslational modification and bioactivity. *Mol Med.* 2014;20:202-214.
- 379. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. *Endocr Rev.* 1995;16(1):3-34.
- 380. Marzec M, Eletto D, Argon Y. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. *Biochim Biophys Acta*. 2012;1823(3):774-787.
- 381. Barton ER, Park S, James JK, et al. Deletion of muscle GRP94 impairs both muscle and body growth by inhibiting local IGF production. *FASEB J*. 2012;26(9):3691-3702.
- 382. Czech MP. Signal transmission by the insulin-like growth factors. *Cell*. 1989;59(2):235-238.
- 383. Moxham CP, Duronio V, Jacobs S. Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. *J Biol Chem.* 1989;264(22):13238-13244.
- 384. Braulke T. Type-2 IGF receptor: a multi-ligand binding protein. *Horm Metab Res.* 1999;31(2-3):242-246.
- 385. Dupont J, LeRoith D. Insulin and insulin-like growth factor I receptors: similarities and differences in signal transduction. *Horm Res.* 2001;55 Suppl 2:22-26.
- 386. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT, Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. *Endocr Rev.* 1995;16(2):143-163.
- 387. Ostrovsky O, Ahmed NT, Argon Y. The chaperone activity of GRP94 toward insulin-like growth factor II is necessary for the stress response to serum deprivation. *Mol Biol Cell*. 2009;20(6):1855-1864.
- 388. Wanderling S, Simen BB, Ostrovsky O, et al. GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. *Mol Biol Cell*. 2007;18(10):3764-3775.
- 389. Ostrovsky O, Eletto D, Makarewich C, Barton ER, Argon Y. Glucose regulated protein 94 is required for muscle differentiation through its control of the autocrine production of insulin-like growth factors. *Biochim Biophys Acta*. 2010;1803(2):333-341.

- 390. Melnick J, Dul JL, Argon Y. Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. *Nature*. 1994;370(6488):373-375.
- 391. Reddy RK, Lu J, Lee AS. The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca(2+)-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. *J Biol Chem.* 1999;274(40):28476-28483.
- 392. Staron M, Wu S, Hong F, et al. Heat-shock protein gp96/grp94 is an essential chaperone for the platelet glycoprotein Ib-IX-V complex. *Blood*. 2011;117(26):7136-7144.
- 393. Yang Y, Liu B, Dai J, et al. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. *Immunity*. 2007;26(2):215-226.
- 394. Frey S, Leskovar A, Reinstein J, Buchner J. The ATPase cycle of the endoplasmic chaperone Grp94. *J Biol Chem.* 2007;282(49):35612-35620.
- 395. Wassenberg JJ, Reed RC, Nicchitta CV. Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94. II. Ligand-mediated activation of GRP94 molecular chaperone and peptide binding activity. *J Biol Chem.* 2000;275(30):22806-22814.
- 396. Lee AS. The accumulation of three specific proteins related to glucose-regulated proteins in a temperature-sensitive hamster mutant cell line K12. *J Cell Physiol.* 1981;106(1):119-125.
- 397. Christianson JC, Shaler TA, Tyler RE, Kopito RR. OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. *Nat Cell Biol*. 2008;10(3):272-282.
- 398. Wit JM, van Duyvenvoorde HA, Scheltinga SA, et al. Genetic analysis of short children with apparent growth hormone insensitivity. *Horm Res Paediatr*. 2012;77(5):320-333.
- 399. Norman PE, Flicker L, Almeida OP, Hankey GJ, Hyde Z, Jamrozik K. Cohort Profile: The Health In Men Study (HIMS). *Int J Epidemiol*. 2009;38(1):48-52.
- 400. Norman PE, Jamrozik K, Lawrence-Brown MM, et al. Population based randomised controlled trial on impact of screening on mortality from abdominal aortic aneurysm. *BMJ*. 2004;329(7477):1259.

- 401. Le MT, Jamrozik K, Davis TM, Norman PE. Negative association between infra-renal aortic diameter and glycaemia: the Health in Men Study. *Eur J Vasc Endovasc Surg*. 2007;33(5):599-604.
- 402. Flicker L, Almeida OP, Acres J, et al. Predictors of impaired cognitive function in men over the age of 80 years: results from the Health in Men Study. *Age Ageing*. 2005;34(1):77-80.
- 403. Smallwood L, Allcock R, van Bockxmeer F, et al. Polymorphisms of the interleukin-6 gene promoter and abdominal aortic aneurysm. *Eur J Vasc Endovasc Surg.* 2008;35(1):31-36.
- 404. Atzmon G, Schechter C, Greiner W, Davidson D, Rennert G, Barzilai N. Clinical phenotype of families with longevity. *J Am Geriatr Soc.* 2004;52(2):274-277.
- 405. Barzilai N, Atzmon G, Schechter C, et al. Unique lipoprotein phenotype and genotype associated with exceptional longevity. *JAMA*. 2003;290(15):2030-2040.
- 406. Lai JY, Atzmon G, Melamed ML, et al. Family history of exceptional longevity is associated with lower serum uric acid levels in Ashkenazi Jews. *J Am Geriatr Soc.* 2012;60(4):745-750.
- 407. Milman S, Atzmon G, Huffman DM, et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. *Aging Cell*. 2014.
- 408. Albrechtsen A, Grarup N, Li Y, et al. Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. *Diabetologia*. 2013;56(2):298-310.
- 409. Varela-Nieto I, Murillo-Cuesta S, Rodriguez-de la Rosa L, Lassatetta L, Contreras J. IGF-I deficiency and hearing loss: molecular clues and clinical implications. *Pediatr Endocrinol Rev.* 2013;10(4):460-472.
- 410. Ester WA, van Duyvenvoorde HA, de Wit CC, et al. Two short children born small for gestational age with insulin-like growth factor 1 receptor haploinsufficiency illustrate the heterogeneity of its phenotype. *J Clin Endocrinol Metab.* 2009;94(12):4717-4727.
- 411. Poot M, Eleveld MJ, van 't Slot R, et al. Proportional growth failure and oculocutaneous albinism in a girl with a 6.87 Mb deletion of region 15q26.2-->qter. *Eur J Med Genet*. 2007;50(6):432-440.
- 412. Pinson L, Perrin A, Plouzennec C, et al. Detection of an unexpected subtelomeric 15q26.2 --> qter deletion in a little girl: clinical and cytogenetic studies. *Am J Med Genet A*. 2005;138A(2):160-165.

- 413. Dauber A, Munoz-Calvo MT, Barrios V, et al. Mutations in pregnancy-associated plasma protein A2 cause short stature due to low IGF-I availability. *EMBO Mol Med.* 2016;8(4):363-374.
- 414. Munoz-Calvo MT, Barrios V, Pozo J, et al. Treatment With Recombinant Human Insulin-Like Growth Factor-1 Improves Growth in Patients With PAPP-A2 Deficiency. *J Clin Endocrinol Metab*. 2016;101(11):3879-3883.
- 415. Kuczmarski RJ, Ogden CL, Guo SS, et al. 2000 CDC Growth Charts for the United States: methods and development. *Vital Health Stat 11*. 2002(246):1-190.
- 416. Albertsson-Wikland K, Rosberg S, Karlberg J, Groth T. Analysis of 24-hour growth hormone profiles in healthy boys and girls of normal stature: relation to puberty. *J Clin Endocrinol Metab*. 1994;78(5):1195-1201.
- 417. Janeckova R. The role of leptin in human physiology and pathophysiology. *Physiol Res.* 2001;50(5):443-459.
- 418. Carro E, Senaris R, Considine RV, Casanueva FF, Dieguez C. Regulation of in vivo growth hormone secretion by leptin. *Endocrinology*. 1997;138(5):2203-2206.
- 419. Okada K, Sugihara H, Minami S, Wakabayashi I. Effect of parenteral administration of selected nutrients and central injection of gamma-globulin from antiserum to neuropeptide Y on growth hormone secretory pattern in food-deprived rats. *Neuroendocrinology*. 1993;57(4):678-686.
- 420. Rettori V, Milenkovic L, Aguila MC, McCann SM. Physiologically significant effect of neuropeptide Y to suppress growth hormone release by stimulating somatostatin discharge. *Endocrinology*. 1990;126(5):2296-2301.
- 421. Muller TD, Nogueiras R, Andermann ML, et al. Ghrelin. *Mol Metab*. 2015;4(6):437-460.
- 422. Miljic D, Pekic S, Djurovic M, et al. Ghrelin has partial or no effect on appetite, growth hormone, prolactin, and cortisol release in patients with anorexia nervosa. *J Clin Endocrinol Metab.* 2006;91(4):1491-1495.
- 423. Straus DS, Takemoto CD. Effect of fasting on insulin-like growth factor-I (IGF-I) and growth hormone receptor mRNA levels and IGF-I gene transcription in rat liver. *Mol Endocrinol*. 1990;4(1):91-100.

- 424. Maes M, Amand Y, Underwood LE, Maiter D, Ketelslegers JM. Decreased serum insulin-like growth factor I response to growth hormone in hypophysectomized rats fed a low protein diet: evidence for a postreceptor defect. *Acta Endocrinol (Copenh)*. 1988;117(3):320-326.
- 425. Leung KC, Doyle N, Ballesteros M, Waters MJ, Ho KK. Insulin regulation of human hepatic growth hormone receptors: divergent effects on biosynthesis and surface translocation. *J Clin Endocrinol Metab.* 2000;85(12):4712-4720.
- 426. Fazeli PK, Misra M, Goldstein M, Miller KK, Klibanski A. Fibroblast growth factor-21 may mediate growth hormone resistance in anorexia nervosa. *J Clin Endocrinol Metab.* 2010;95(1):369-374.
- 427. Guasti L, Silvennoinen S, Bulstrode NW, Ferretti P, Sankilampi U, Dunkel L. Elevated FGF21 leads to attenuated postnatal linear growth in preterm infants through GH resistance in chondrocytes. *J Clin Endocrinol Metab*. 2014;99(11):E2198-2206.
- 428. Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. *Cell Metab*. 2008;8(1):77-83.
- 429. Gillum MP, Erion DM, Shulman GI. Sirtuin-1 regulation of mammalian metabolism. *Trends Mol Med.* 2011;17(1):8-13.
- 430. Yamamoto M, Iguchi G, Fukuoka H, et al. SIRT1 regulates adaptive response of the growth hormone--insulin-like growth factor-I axis under fasting conditions in liver. *Proc Natl Acad Sci U S A*. 2013;110(37):14948-14953.
- 431. Cesur Y, Yordaman N, Dogan M. Serum insulin-like growth factor-I and insulin-like growth factor binding protein-3 levels in children with zinc deficiency and the effect of zinc supplementation on these parameters. *J Pediatr Endocrinol Metab.* 2009;22(12):1137-1143.
- 432. Dorup I, Flyvbjerg A, Everts ME, Clausen T. Role of insulin-like growth factor-1 and growth hormone in growth inhibition induced by magnesium and zinc deficiencies. *Br J Nutr*. 1991;66(3):505-521.
- 433. Rao KS, Mohan PS. Plasma somatomedin activity, growth-hormone and insulin levels in vitamin B6 deficient rats. *Horm Metab Res*. 1982;14(11):580-582.
- 434. Engstrom E, Niklasson A, Wikland KA, Ewald U, Hellstrom A. The role of maternal factors, postnatal nutrition, weight gain, and gender in

- regulation of serum IGF-I among preterm infants. *Pediatr Res.* 2005;57(4):605-610.
- 435. Kashyap S, Forsyth M, Zucker C, Ramakrishnan R, Dell RB, Heird WC. Effects of varying protein and energy intakes on growth and metabolic response in low birth weight infants. *J Pediatr*. 1986;108(6):955-963.
- 436. Smith WJ, Underwood LE, Keyes L, Clemmons DR. Use of insulin-like growth factor I (IGF-I) and IGF-binding protein measurements to monitor feeding of premature infants. *J Clin Endocrinol Metab*. 1997;82(12):3982-3988.
- 437. de Zegher F, Sebastiani G, Diaz M, Gomez-Roig MD, Lopez-Bermejo A, Ibanez L. Breast-feeding vs formula-feeding for infants born small-for-gestational-age: divergent effects on fat mass and on circulating IGF-I and high-molecular-weight adiponectin in late infancy. *J Clin Endocrinol Metab.* 2013;98(3):1242-1247.
- 438. Madsen AL, Larnkjaer A, Molgaard C, Michaelsen KF. IGF-I and IGFBP-3 in healthy 9 month old infants from the SKOT cohort: breastfeeding, diet, and later obesity. *Growth Horm IGF Res.* 2011;21(4):199-204.
- 439. Hoppe C, Molgaard C, Dalum C, Vaag A, Michaelsen KF. Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3: results from a randomized 7-day supplementation study in prepubertal boys. *Eur J Clin Nutr.* 2009;63(9):1076-1083.
- 440. Hoppe C, Molgaard C, Juul A, Michaelsen KF. High intakes of skimmed milk, but not meat, increase serum IGF-I and IGFBP-3 in eight-year-old boys. *Eur J Clin Nutr*. 2004;58(9):1211-1216.
- 441. Hoppe C, Molgaard C, Vaag A, Barkholt V, Michaelsen KF. High intakes of milk, but not meat, increase s-insulin and insulin resistance in 8-year-old boys. *Eur J Clin Nutr.* 2005;59(3):393-398.
- 442. Sen TA, Aycicek A. Do children with adenotonsillar hypertrophy have lower IGF-1 and ghrelin levels than the normal children? *Int J Pediatr Otorhinolaryngol*. 2010;74(6):665-668.
- 443. Imamoglu S, Bereket A, Turan S, Taga Y, Haklar G. Effect of zinc supplementation on growth hormone secretion, IGF-I, IGFBP-3, somatomedin generation, alkaline phosphatase, osteocalcin and growth in prepubertal children with idiopathic short stature. *J Pediatr Endocrinol Metab.* 2005;18(1):69-74.

- 444. Ozon A, Alikasifoglu A, Yordam N. Influence of iodine supplementation on serum insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 (IGFBP-3) levels in severe iodine deficiency. *Turk J Pediatr*. 2004;46(4):303-308.
- 445. Angervo M, Toivonen J, Leinonen P, Valimaki M, Seppala M. Thyroxine withdrawal is accompanied by decreased circulating levels of insulin-like growth factor-binding protein-1 in thyroidectomized patients. *J Clin Endocrinol Metab.* 1993;76(5):1199-1201.
- 446. Miell JP, Zini M, Quin JD, Jones J, Portioli I, Valcavi R. Reversible effects of cessation and recommencement of thyroxine treatment on insulin-like growth factors (IGFs) and IGF-binding proteins in patients with total thyroidectomy. *J Clin Endocrinol Metab*. 1994;79(5):1507-1512.
- 447. Institute of Medicine. *Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients)*. Washington, DC: The National Academies Press; 2005.
- 448. Soliman A, De Sanctis V, Elalaily R. Nutrition and pubertal development. *Indian J Endocrinol Metab*. 2014;18(Suppl 1):S39-47.
- 449. Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility. *Cell Mol Life Sci.* 2013;70(5):841-862.
- 450. Mann DR, Plant TM. Leptin and pubertal development. *Semin Reprod Med*. 2002;20(2):93-102.
- 451. Food and Agriculture Organization of the United Nations, International Fund for Agriculture Development, World Food Programme. *The state of food insecurity in the world*. Rome2014.
- 452. Gundersen C. Food insecurity is an ongoing national concern. *Adv Nutr.* 2013;4(1):36-41.
- 453. Stephens LD, McNaughton SA, Crawford D, MacFarlane A, Ball K. Correlates of dietary resilience among socioeconomically disadvantaged adolescents. *Eur J Clin Nutr*. 2011;65(11):1219-1232.
- 454. Cook JT, Black M, Chilton M, et al. Are food insecurity's health impacts underestimated in the U.S. population? Marginal food security also predicts adverse health outcomes in young U.S. children and mothers. *Adv Nutr.* 2013;4(1):51-61.

- 455. Smith WJ, Underwood LE, Clemmons DR. Effects of caloric or protein restriction on insulin-like growth factor-I (IGF-I) and IGF-binding proteins in children and adults. *J Clin Endocrinol Metab*. 1995;80(2):443-449.
- 456. Moses N, Banilivy MM, Lifshitz F. Fear of obesity among adolescent girls. *Pediatrics*. 1989;83(3):393-398.
- 457. Pugliese MT, Lifshitz F, Grad G, Fort P, Marks-Katz M. Fear of obesity. A cause of short stature and delayed puberty. *N Engl J Med*. 1983;309(9):513-518.
- 458. Lifshitz F, Moses N. Nutritional dwarfing: growth, dieting, and fear of obesity. *J Am Coll Nutr.* 1988;7(5):367-376.
- 459. Romano C, Hartman C, Privitera C, Cardile S, Shamir R. Current topics in the diagnosis and management of the pediatric non organic feeding disorders (NOFEDs). *Clin Nutr.* 2015;34(2):195-200.
- 460. Thomas R, Sanders S, Doust J, Beller E, Glasziou P. Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. *Pediatrics*. 2015;135(4):e994-1001.
- 461. Davis C, Fattore L, Kaplan AS, Carter JC, Levitan RD, Kennedy JL. The suppression of appetite and food consumption by methylphenidate: the moderating effects of gender and weight status in healthy adults. *Int J Neuropsychopharmacol*. 2012;15(2):181-187.
- 462. Bereket A, Turan S, Karaman MG, Haklar G, Ozbay F, Yazgan MY. Height, weight, IGF-I, IGFBP-3 and thyroid functions in prepubertal children with attention deficit hyperactivity disorder: effect of methylphenidate treatment. *Horm Res.* 2005;63(4):159-164.
- 463. Lopez-Varela S, Montero A, Chandra RK, Marcos A. Nutritional status of young female elite gymnasts. *Int J Vitam Nutr Res.* 2000;70(4):185-190.
- 464. Iglesias-Gutierrez E, Garcia-Roves PM, Rodriguez C, Braga S, Garcia-Zapico P, Patterson AM. Food habits and nutritional status assessment of adolescent soccer players. A necessary and accurate approach. *Can J Appl Physiol*. 2005;30(1):18-32.
- 465. Weimann E, Witzel C, Schwidergall S, Bohles HJ. Peripubertal perturbations in elite gymnasts caused by sport specific training regimes and inadequate nutritional intake. *Int J Sports Med.* 2000;21(3):210-215.

- 466. Gibson JC, Stuart-Hill L, Martin S, Gaul C. Nutrition status of junior elite Canadian female soccer athletes. *Int J Sport Nutr Exerc Metab.* 2011;21(6):507-514.
- 467. Deimel JF, Dunlap BJ. The female athlete triad. *Clin Sports Med.* 2012;31(2):247-254.
- 468. Nichols JF, Rauh MJ, Lawson MJ, Ji M, Barkai HS. Prevalence of the female athlete triad syndrome among high school athletes. *Arch Pediatr Adolesc Med.* 2006;160(2):137-142.
- 469. De Souza MJ, Williams NI. Beyond hypoestrogenism in amenorrheic athletes: energy deficiency as a contributing factor for bone loss. *Curr Sports Med Rep.* 2005;4(1):38-44.
- 470. Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). *Br J Sports Med*. 2014;48(7):491-497.
- 471. Adiyaman P, Ocal G, Berberoglu M, et al. Alterations in serum growth hormone (GH)/GH dependent ternary complex components (IGF-I, IGFBP-3, ALS, IGF-I/IGFBP-3 molar ratio) and the influence of these alterations on growth pattern in female rhythmic gymnasts. *J Pediatr Endocrinol Metab*. 2004;17(6):895-903.
- 472. Bonamico M, Scire G, Mariani P, et al. Short stature as the primary manifestation of monosymptomatic celiac disease. *J Pediatr Gastroenterol Nutr.* 1992;14(1):12-16.
- 473. Gasparetto M, Guariso G. Crohn's disease and growth deficiency in children and adolescents. *World J Gastroenterol*. 2014;20(37):13219-13233.
- 474. Jansson UH, Kristiansson B, Magnusson P, Larsson L, Albertsson-Wikland K, Bjarnason R. The decrease of IGF-I, IGF-binding protein-3 and bone alkaline phosphatase isoforms during gluten challenge correlates with small intestinal inflammation in children with coeliac disease. *Eur J Endocrinol*. 2001;144(4):417-423.
- 475. Locuratolo N, Pugliese G, Pricci F, et al. The circulating insulin-like growth factor system in children with coeliac disease: an additional marker for disease activity. *Diabetes Metab Res Rev.* 1999;15(4):254-260.
- 476. Street ME, Volta C, Ziveri MA, et al. Changes and relationships of IGFS and IGFBPS and cytokines in coeliac disease at diagnosis and on gluten-free diet. *Clin Endocrinol (Oxf)*. 2008;68(1):22-28.

- 477. Valdimarsson T, Arnqvist HJ, Toss G, Jarnerot G, Nystrom F, Strom M. Low circulating insulin-like growth factor I in coeliac disease and its relation to bone mineral density. *Scand J Gastroenterol*. 1999;34(9):904-908.
- 478. Ferrante E, Giavoli C, Elli L, et al. Evaluation of GH-IGF-I axis in adult patients with coeliac disease. *Horm Metab Res.* 2010;42(1):45-49.
- 479. Soliman AT, Hassan AE, Aref MK, Hintz RL, Rosenfeld RG, Rogol AD. Serum insulin-like growth factors I and II concentrations and growth hormone and insulin responses to arginine infusion in children with protein-energy malnutrition before and after nutritional rehabilitation. *Pediatr Res.* 1986;20(11):1122-1130.
- 480. Giovenale D, Meazza C, Cardinale GM, et al. The prevalence of growth hormone deficiency and celiac disease in short children. *Clin Med Res.* 2006;4(3):180-183.
- 481. Giovenale D, Meazza C, Cardinale GM, et al. Growth hormone treatment in prepubertal children with celiac disease and growth hormone deficiency. *J Pediatr Gastroenterol Nutr.* 2007;45(4):433-437.
- 482. Vasseur F, Gower-Rousseau C, Vernier-Massouille G, et al. Nutritional status and growth in pediatric Crohn's disease: a population-based study. *Am J Gastroenterol*. 2010;105(8):1893-1900.
- 483. Corkins MR, Gohil AD, Fitzgerald JF. The insulin-like growth factor axis in children with inflammatory bowel disease. *J Pediatr Gastroenterol Nutr.* 2003;36(2):228-234.
- 484. Merimee TJ, Zapf J, Froesch ER. Insulin-like growth factors in the fed and fasted states. *J Clin Endocrinol Metab*. 1982;55(5):999-1002.
- 485. Grinspoon SK, Baum HB, Peterson S, Klibanski A. Effects of rhIGF-I administration on bone turnover during short-term fasting. *J Clin Invest*. 1995;96(2):900-906.
- 486. Gat-Yablonski G, Shtaif B, Abraham E, Phillip M. Nutrition-induced catch-up growth at the growth plate. *J Pediatr Endocrinol Metab.* 2008;21(9):879-893.
- 487. McLaren DS, Pellett PL, Read WW. A simple scoring system for classifying the severe forms of protein-calorie malnutrition of early childhood. *Lancet*. 1967;1(7489):533-535.

- 488. Hintz RL, Suskind R, Amatayakul K, Thanangkul O, Olson R. Plasma somatomedin and growth hormone values in children with protein-calorie malnutrition. *J Pediatr*. 1978;92(1):153-156.
- 489. Kouanda S, Doulougou B, De Coninck V, et al. Insulin Growth Factor-I in Protein-Energy Malnutrition during Rehabilitation in Two Nutritional Rehabilitation Centres in Burkina Faso. *J Trop Med.* 2009;2009:832589.
- 490. Caregaro L, Favaro A, Santonastaso P, et al. Insulin-like growth factor 1 (IGF-1), a nutritional marker in patients with eating disorders. *Clin Nutr.* 2001;20(3):251-257.
- 491. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet*. 2014;384(9945):766-781.
- 492. Singh GK, Kogan MD, van Dyck PC. Changes in state-specific childhood obesity and overweight prevalence in the United States from 2003 to 2007. *Arch Pediatr Adolesc Med.* 2010;164(7):598-607.
- 493. Aksglaede L, Juul A, Olsen LW, Sorensen TI. Age at puberty and the emerging obesity epidemic. *PLoS One*. 2009;4(12):e8450.
- 494. Vignolo M, Naselli A, Di Battista E, Mostert M, Aicardi G. Growth and development in simple obesity. *Eur J Pediatr.* 1988;147(3):242-244.
- 495. He Q, Karlberg J. Bmi in childhood and its association with height gain, timing of puberty, and final height. *Pediatr Res.* 2001;49(2):244-251.
- 496. Denzer C, Weibel A, Muche R, Karges B, Sorgo W, Wabitsch M. Pubertal development in obese children and adolescents. *Int J Obes (Lond)*. 2007;31(10):1509-1519.
- 497. Papadimitriou A, Gousi T, Giannouli O, Nicolaidou P. The growth of children in relation to the timing of obesity development. *Obesity* (*Silver Spring*). 2006;14(12):2173-2176.
- 498. Iranmanesh A, Lizarralde G, Veldhuis JD. Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth hormone (GH) secretory bursts and the half-life of endogenous GH in healthy men. *J Clin Endocrinol Metab*. 1991;73(5):1081-1088.
- 499. Veldhuis JD, Iranmanesh A, Ho KK, Waters MJ, Johnson ML, Lizarralde G. Dual defects in pulsatile growth hormone secretion and clearance

- subserve the hyposomatotropism of obesity in man. *J Clin Endocrinol Metab.* 1991;72(1):51-59.
- 500. Loche S, Cappa M, Borrelli P, et al. Reduced growth hormone response to growth hormone-releasing hormone in children with simple obesity: evidence for somatomedin-C mediated inhibition. *Clin Endocrinol (Oxf)*. 1987;27(2):145-153.
- 501. Patel L, Skinner AM, Price DA, Clayton PE. The influence of body mass index on growth hormone secretion in normal and short statured children. *Growth Regul.* 1994;4(1):29-34.
- 502. Stanley TL, Levitsky LL, Grinspoon SK, Misra M. Effect of body mass index on peak growth hormone response to provocative testing in children with short stature. *J Clin Endocrinol Metab*. 2009;94(12):4875-4881.
- 503. Williams T, Berelowitz M, Joffe SN, et al. Impaired growth hormone responses to growth hormone-releasing factor in obesity. A pituitary defect reversed with weight reduction. *N Engl J Med*. 1984;311(22):1403-1407.
- 504. Nam SY, Lee EJ, Kim KR, et al. Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone. *Int J Obes Relat Metab Disord*. 1997;21(5):355-359.
- 505. Radetti G, Bozzola M, Pasquino B, et al. Growth hormone bioactivity, insulin-like growth factors (IGFs), and IGF binding proteins in obese children. *Metabolism*. 1998;47(12):1490-1493.
- 506. Schneider HJ, Saller B, Klotsche J, et al. Opposite associations of agedependent insulin-like growth factor-I standard deviation scores with nutritional state in normal weight and obese subjects. *Eur J Endocrinol*. 2006;154(5):699-706.
- 507. Argente J, Caballo N, Barrios V, et al. Multiple endocrine abnormalities of the growth hormone and insulin-like growth factor axis in prepubertal children with exogenous obesity: effect of shortand long-term weight reduction. *J Clin Endocrinol Metab*. 1997;82(7):2076-2083.
- 508. Roman R, Iniguez G, Lammoglia JJ, Avila A, Salazar T, Cassorla F. The IGF-I response to growth hormone is related to body mass index in short children with normal weight. *Horm Res.* 2009;72(1):10-14.

- 509. Mohammadzadeh G, Zarghami N. Serum leptin level is reduced in non-obese subjects with type 2 diabetes. *Int J Endocrinol Metab*. 2013;11(1):3-10.
- 510. Ostadrahimi A, Moradi T, Zarghami N, Shoja MM. Correlates of serum leptin and insulin-like growth factor-I concentrations in normal weight and overweight/obese Iranian women. *J Womens Health (Larchmt)*. 2008;17(8):1389-1397.
- 511. Haspolat K, Ece A, Gurkan F, Atamer Y, Tutanc M, Yolbas I. Relationships between leptin, insulin, IGF-1 and IGFBP-3 in children with energy malnutrition. *Clin Biochem.* 2007;40(3-4):201-205.
- 512. Ajuwon KM, Kuske JL, Ragland D, et al. The regulation of IGF-1 by leptin in the pig is tissue specific and independent of changes in growth hormone. *J Nutr Biochem.* 2003;14(9):522-530.
- 513. Houseknecht KL, Portocarrero CP, Ji S, Lemenager R, Spurlock ME. Growth hormone regulates leptin gene expression in bovine adipose tissue: correlation with adipose IGF-1 expression. *J Endocrinol*. 2000;164(1):51-57.
- 514. Kishida Y, Hirao M, Tamai N, et al. Leptin regulates chondrocyte differentiation and matrix maturation during endochondral ossification. *Bone*. 2005;37(5):607-621.
- 515. Wang L, Shao YY, Ballock RT. Leptin synergizes with thyroid hormone signaling in promoting growth plate chondrocyte proliferation and terminal differentiation in vitro. *Bone*. 2011;48(5):1022-1027.
- 516. Blethen SL, Weldon VV. Outcome in children with normal growth following removal of a craniopharyngioma. *Am J Med Sci.* 1986;292(1):21-24.
- 517. Geffner ME, Lippe BM, Bersch N, et al. Growth without growth hormone: evidence for a potent circulating human growth factor. *Lancet.* 1986;1(8477):343-347.
- 518. Reinehr T, Panteliadou A, de Sousa G, Andler W. Insulin-like growth factor-I, insulin-like growth factor binding protein-3 and growth in obese children before and after reduction of overweight. *J Pediatr Endocrinol Metab.* 2009;22(3):225-233.
- 519. Hosick PA, McMurray RG, Hackney AC, Battaglini CL, Combs TP, Harrell JS. Differences in the GH-IGF-I axis in children of different weight and fitness status. *Growth Horm IGF Res.* 2012;22(2):87-91.

- 520. Frystyk J, Vestbo E, Skjaerbaek C, Mogensen CE, Orskov H. Free insulin-like growth factors in human obesity. *Metabolism*. 1995;44(10 Suppl 4):37-44.
- 521. Katz LE, DeLeon DD, Zhao H, Jawad AF. Free and total insulin-like growth factor (IGF)-I levels decline during fasting: relationships with insulin and IGF-binding protein-1. *J Clin Endocrinol Metab.* 2002;87(6):2978-2983.
- 522. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. *N Engl J Med*. 2003;348(17):1625-1638.
- 523. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. *Lancet*. 2008;371(9612):569-578.
- 524. Demark-Wahnefried W, Platz EA, Ligibel JA, et al. The role of obesity in cancer survival and recurrence. *Cancer Epidemiol Biomarkers Prev.* 2012;21(8):1244-1259.
- 525. Aleman JO, Eusebi LH, Ricciardiello L, Patidar K, Sanyal AJ, Holt PR. Mechanisms of obesity-induced gastrointestinal neoplasia. *Gastroenterology*. 2014;146(2):357-373.
- 526. Orme SM, McNally RJ, Cartwright RA, Belchetz PE. Mortality and cancer incidence in acromegaly: a retrospective cohort study. United Kingdom Acromegaly Study Group. *J Clin Endocrinol Metab*. 1998;83(8):2730-2734.
- 527. Steuerman R, Shevah O, Laron Z. Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. *Eur J Endocrinol*. 2011;164(4):485-489.
- 528. Shevah O, Laron Z. Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. *Growth Horm IGF Res.* 2007;17(1):54-57.
- 529. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. *Endocr Rev.* 2007;28(1):20-47.
- 530. Shalet SM. Extensive expertise in endocrinology: UK stance on adult GH replacement: the economist vs the endocrinologist. *Eur J Endocrinol.* 2013;169(4):R81-87.

- 531. Livingstone C. The insulin-like growth factor system and nutritional assessment. *Scientifica (Cairo)*. 2012;2012:768731.
- 532. Modan-Moses D, Yaroslavsky A, Novikov I, et al. Stunting of growth as a major feature of anorexia nervosa in male adolescents. *Pediatrics*. 2003;111(2):270-276.
- 533. Barr DG, Shmerling DH, Prader A. Catch-up growth in malnutrition, studied in celiac disease after institution of gluten-free diet. *Pediatr Res.* 1972;6(5):521-527.
- 534. Fagundes-Neto U, Stump MV, Wehba J. Catch-up growth after the introduction of a gluten-free diet in children with celiac disease. *Arq Gastroenterol*. 1981;18(1):30-34.
- 535. Patwari AK, Kapur G, Satyanarayana L, et al. Catch-up growth in children with late-diagnosed coeliac disease. *Br J Nutr*. 2005;94(3):437-442.
- 536. Olivan G. Catch-up growth assessment in long-term physically neglected and emotionally abused preschool age male children. *Child Abuse Negl.* 2003;27(1):103-108.
- 537. Sorva R, Tolppanen EM, Perheentupa J. Variation of growth in length and weight of children. I. Years 1 and 2. *Acta Paediatr Scand*. 1990;79(5):490-497.
- 538. De Cunto A, Paviotti G, Ronfani L, et al. Can body mass index accurately predict adiposity in newborns? *Arch Dis Child Fetal Neonatal Ed.* 2014;99(3):F238-239.
- 539. Liu HN, Hourihane JO, Kenny L, Kiely M, Irvine AD, Murray DM. 404 Comparison of Body Fat Estimation Using Skin Fold Thickness Measurement and Simultaneous Air- Displacement Plethysmography at 8 Weeks. *Pediatr Res.* 2010;68(S1):208-208.
- 540. Weber DR, Leonard MB, Zemel BS. Body composition analysis in the pediatric population. *Pediatr Endocrinol Rev.* 2012;10(1):130-139.
- 541. Modi N, Thomas EL, Harrington TA, Uthaya S, Dore CJ, Bell JD. Determinants of adiposity during preweaning postnatal growth in appropriately grown and growth-restricted term infants. *Pediatr Res.* 2006;60(3):345-348.
- 542. Ma G, Yao M, Liu Y, et al. Validation of a new pediatric air-displacement plethysmograph for assessing body composition in infants. *Am J Clin Nutr.* 2004;79(4):653-660.

- 543. Ellis KJ, Yao M, Shypailo RJ, Urlando A, Wong WW, Heird WC. Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model. *Am J Clin Nutr.* 2007;85(1):90-95.
- 544. Brozek J, Grande F, Anderson JT, Keys A. DENSITOMETRIC ANALYSIS OF BODY COMPOSITION: REVISION OF SOME QUANTITATIVE ASSUMPTIONS. *Ann N Y Acad Sci.* 1963;110:113-140.
- 545. ud Din Z, Emmett P, Steer C, Emond A. Growth outcomes of weight faltering in infancy in ALSPAC. *Pediatrics*. 2013;131(3):e843-849.
- 546. Davis P, Jenkin G, Coope P, Blakely T, Sporle A, Kiro C. The New Zealand Socio-economic Index of Occupational Status: methodological revision and imputation for missing data. *Aust N Z J Public Health*. 2004;28(2):113-119.
- 547. Davis P, McLeod K, Ransom M, Ongley P, Pearce N, Howden-Chapman P. The New Zealand Socioeconomic Index: developing and validating an occupationally-derived indicator of socio-economic status. *Aust N Z J Public Health*. 1999;23(1):27-33.
- 548. Roggero P, Gianni ML, Amato O, et al. Is term newborn body composition being achieved postnatally in preterm infants? *Early Hum Dev.* 2009;85(6):349-352.
- 549. Lee W, Balasubramaniam M, Deter RL, et al. Fetal growth parameters and birth weight: their relationship to neonatal body composition. *Ultrasound Obstet Gynecol*. 2009;33(4):441-446.
- 550. Eriksson B, Lof M, Forsum E. Body composition in full-term healthy infants measured with air displacement plethysmography at 1 and 12 weeks of age. *Acta Paediatr*. 2010;99(4):563-568.
- 551. Taylor RW, Gold E, Manning P, Goulding A. Gender differences in body fat content are present well before puberty. *Int J Obes Relat Metab Disord*. 1997;21(11):1082-1084.
- 552. Abernathy RP, Black DR. Healthy body weights: an alternative perspective. *Am J Clin Nutr*. 1996;63(3 Suppl):448S-451S.
- 553. Schmelzle HR, Quang DN, Fusch G, Fusch C. Birth weight categorization according to gestational age does not reflect percentage body fat in term and preterm newborns. *Eur J Pediatr*. 2007;166(2):161-167.
- 554. Koo WW, Walters JC, Hockman EM. Body composition in human infants at birth and postnatally. *J Nutr.* 2000;130(9):2188-2194.

- 555. Fields DA, Krishnan S, Wisniewski AB. Sex differences in body composition early in life. *Gend Med*. 2009;6(2):369-375.
- 556. Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ. Body composition during the first 2 years of life: an updated reference. *Pediatr Res.* 2000;47(5):578-585.
- 557. Barker DJ, Thornburg KL, Osmond C, Kajantie E, Eriksson JG. Beyond birthweight: the maternal and placental origins of chronic disease. *J Dev Orig Health Dis.* 2010;1(6):360-364.
- 558. de Zegher F, Devlieger H, Eeckels R. Fetal growth: boys before girls. *Horm Res.* 1999;51(5):258-259.
- 559. Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 y in men and women exposed to famine prenatally. *Am J Clin Nutr.* 1999;70(5):811-816.
- 560. Ozaki T, Nishina H, Hanson MA, Poston L. Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. *J Physiol.* 2001;530(Pt 1):141-152.
- 561. Woods LL, Ingelfinger JR, Rasch R. Modest maternal protein restriction fails to program adult hypertension in female rats. *Am J Physiol Regul Integr Comp Physiol*. 2005;289(4):R1131-1136.
- 562. Bay B, Mortensen EL, Kesmodel US. Is subfertility or fertility treatment associated with long-term growth in the offspring? A cohort study. *Fertil Steril*. 2014;102(4):1117-1123.
- 563. Fattah C, Farah N, Barry SC, O'Connor N, Stuart B, Turner MJ. Maternal weight and body composition in the first trimester of pregnancy. *Acta Obstet Gynecol Scand*. 2010;89(7):952-955.
- 564. VanItallie TB, Yang MU, Heymsfield SB, Funk RC, Boileau RA. Heightnormalized indices of the body's fat-free mass and fat mass: potentially useful indicators of nutritional status. *Am J Clin Nutr*. 1990;52(6):953-959.
- 565. Wells JC, Cole TJ, steam As. Adjustment of fat-free mass and fat mass for height in children aged 8 y. *Int J Obes Relat Metab Disord*. 2002;26(7):947-952.
- 566. Freedman DS, Ogden CL, Berenson GS, Horlick M. Body mass index and body fatness in childhood. *Curr Opin Clin Nutr Metab Care*. 2005;8(6):618-623.

- 567. Ong KK, Loos RJ. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. *Acta Paediatr*. 2006;95(8):904-908.
- 568. Perng W, Rifas-Shiman SL, Kramer MS, et al. Early Weight Gain, Linear Growth, and Mid-Childhood Blood Pressure: A Prospective Study in Project Viva. *Hypertension*. 2016;67(2):301-308.
- 569. Leunissen RW, Kerkhof GF, Stijnen T, Hokken-Koelega A. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. *JAMA*. 2009;301(21):2234-2242.
- 570. Sepulveda C, Urquidi C, Pittaluga E, et al. Differences in body composition and resting energy expenditure in childhood in preterm children born with very low birth weight. *Horm Res Paediatr*. 2013;79(6):347-355.
- 571. Taveras EM, Rifas-Shiman SL, Sherry B, et al. Crossing growth percentiles in infancy and risk of obesity in childhood. *Arch Pediatr Adolesc Med.* 2011;165(11):993-998.
- 572. Stettler N, Zemel BS, Kumanyika S, Stallings VA. Infant weight gain and childhood overweight status in a multicenter, cohort study. *Pediatrics*. 2002;109(2):194-199.
- 573. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. *N Engl J Med.* 1997;337(13):869-873.
- 574. Wright CM, Emmett PM, Ness AR, Reilly JJ, Sherriff A. Tracking of obesity and body fatness through mid-childhood. *Arch Dis Child*. 2010;95(8):612-617.
- 575. North RA, McCowan LM, Dekker GA, et al. Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort. *BMJ*. 2011;342:d1875.
- 576. Roggero P, Gianni ML, Amato O, Agosti M, Fumagalli M, Mosca F. Measuring the body composition of preterm and term neonates: from research to clinical applications. *J Pediatr Gastroenterol Nutr.* 2007;45 Suppl 3:159-162.
- 577. Cole TJ. Weight/heightp compared to weight/height2 for assessing adiposity in childhood: influence of age and bone age on p during puberty. *Ann Hum Biol.* 1986;13(5):433-451.

- 578. Benn RT. Some mathematical properties of weight-for-height indices used as measures of adiposity. *Br J Prev Soc Med.* 1971;25(1):42-50.
- 579. Carberry AE, Colditz PB, Lingwood BE. Body composition from birth to 4.5 months in infants born to non-obese women. *Pediatr Res.* 2010;68(1):84-88.
- 580. Gianni ML, Roggero P, Morlacchi L, Garavaglia E, Piemontese P, Mosca F. Formula-fed infants have significantly higher fat-free mass content in their bodies than breastfed babies. *Acta Paediatr*. 2014;103(7):e277-281.
- 581. Wohlfahrt-Veje C, Tinggaard J, Winther K, et al. Body fat throughout childhood in 2647 healthy Danish children: agreement of BMI, waist circumference, skinfolds with dual X-ray absorptiometry. *Eur J Clin Nutr.* 2014;68(6):664-670.
- 582. Barker DJ, Osmond C, Law CM. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. *J Epidemiol Community Health*. 1989;43(3):237-240.
- 583. Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ. Early growth and coronary heart disease in later life: longitudinal study. *BMJ*. 2001;322(7292):949-953.
- 584. Eriksson JG, Forsen T, Tuomilehto J, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. *BMJ*. 1999;318(7181):427-431.
- 585. Ong KK. Catch-up growth in small for gestational age babies: good or bad? *Curr Opin Endocrinol Diabetes Obes*. 2007;14(1):30-34.
- 586. Ibanez L, Ong K, Dunger DB, de Zegher F. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. *J Clin Endocrinol Metab.* 2006;91(6):2153-2158.
- 587. Mericq V, Ong KK, Bazaes R, et al. Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. *Diabetologia*. 2005;48(12):2609-2614.
- 588. Guo SS, Chumlea WC. Tracking of body mass index in children in relation to overweight in adulthood. *Am J Clin Nutr.* 1999;70(1):145S-148S.
- 589. Wit JM, van Unen H. Growth of infants with neonatal growth hormone deficiency. *Arch Dis Child*. 1992;67(7):920-924.

- 590. Giudice LC, de Zegher F, Gargosky SE, et al. Insulin-like growth factors and their binding proteins in the term and preterm human fetus and neonate with normal and extremes of intrauterine growth. *J Clin Endocrinol Metab.* 1995;80(5):1548-1555.
- 591. Woodall SM, Bassett NS, Gluckman PD, Breier BH. Consequences of maternal undernutrition for fetal and postnatal hepatic insulin-like growth factor-I, growth hormone receptor and growth hormone binding protein gene regulation in the rat. *J Mol Endocrinol*. 1998;20(3):313-326.
- 592. Green LR, Kawagoe Y, Hill DJ, Richardson BS, Han VK. The effect of intermittent umbilical cord occlusion on insulin-like growth factors and their binding proteins in preterm and near-term ovine fetuses. *J Endocrinol.* 2000;166(3):565-577.
- 593. Ong K, Kratzsch J, Kiess W, Dunger D, Team AS. Circulating IGF-I levels in childhood are related to both current body composition and early postnatal growth rate. *J Clin Endocrinol Metab*. 2002;87(3):1041-1044.
- 594. Garnett S, Cowell CT, Bradford D, et al. Effects of gender, body composition and birth size on IGF-I in 7- and 8-year-old children. *Horm Res.* 1999;52(5):221-229.
- 595. Beckett PR, Wong WW, Copeland KC. Developmental changes in the relationship between IGF-I and body composition during puberty. *Growth Horm IGF Res.* 1998;8(4):283-288.
- 596. Ong K, Kratzsch J, Kiess W, Dunger D. Circulating IGF-I levels in childhood are related to both current body composition and early postnatal growth rate. *J Clin Endocrinol Metab.* 2002;87(3):1041-1044.
- 597. Demetriou C, Abu-Amero S, Thomas AC, et al. Paternally expressed, imprinted insulin-like growth factor-2 in chorionic villi correlates significantly with birth weight. *PLoS One*. 2014;9(1):e85454.
- 598. DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. *Nature*. 1990;345(6270):78-80.
- 599. Elias SG, Keinan-Boker L, Peeters PH, et al. Long term consequences of the 1944-1945 Dutch famine on the insulin-like growth factor axis. *Int J Cancer*. 2004;108(4):628-630.
- 600. Ong KK, Petry CJ, Emmett PM, et al. Insulin sensitivity and secretion in normal children related to size at birth, postnatal growth, and

- plasma insulin-like growth factor-I levels. *Diabetologia*. 2004;47(6):1064-1070.
- 601. Ibanez L, Lopez-Bermejo A, Diaz M, de Zegher F. Catch-up growth in girls born small for gestational age precedes childhood progression to high adiposity. *Fertil Steril*. 2011;96(1):220-223.
- 602. Contreras M, Raisingani M, Chandler DW, et al. Salivary Testosterone during the Minipuberty of Infancy. *Horm Res Paediatr*. 2017;87(2):111-115.
- 603. Kuiri-Hanninen T, Sankilampi U, Dunkel L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. *Horm Res Paediatr*. 2014;82(2):73-80.
- 604. Hawkes CP, Grimberg A, Dzata VE, De Leon DD. Adding Glucagon-Stimulated GH Testing to the Diagnostic Fast Increases the Detection of GH-Sufficient Children. *Horm Res Paediatr*. 2016;85(4):265-272.
- 605. Hawkes CP, Dzata VE, Grimberg A, DeLeon DD. Integrating growth hormone testing with hypoglycaemia investigation. Pediatric Academic Society; 2014; Vancouver.
- 606. Marzec M, Hawkes CP, Eletto D, et al. A human variant of Glucose-regulated protein 94 that inefficiently supports IGF production. *Endocrinology*. 2016:en20152058.
- 607. Hawkes CP, Stanley CA. Pathophysiology of Neonatal Hypoglycemia. In: Polin RA, Fox WW, Abman SH, editors. *Fetal and Neonatal Physiology: Expert Consult Online and Print (In Press).* 5 ed: Elsevier/Saunders; 2016. p. 1550-1560.
- 608. Ekelund U, Ong KK, Linne Y, et al. Association of weight gain in infancy and early childhood with metabolic risk in young adults. *J Clin Endocrinol Metab*. 2007;92(1):98-103.
- 609. Ibanez L, Suarez L, Lopez-Bermejo A, Diaz M, Valls C, de Zegher F. Early development of visceral fat excess after spontaneous catch-up growth in children with low birth weight. *J Clin Endocrinol Metab*. 2008;93(3):925-928.
- 610. Ong KK, Potau N, Petry CJ, et al. Opposing influences of prenatal and postnatal weight gain on adrenarche in normal boys and girls. *J Clin Endocrinol Metab*. 2004;89(6):2647-2651.
- 611. Ibanez L, Potau N, de Zegher F. Recognition of a new association: reduced fetal growth, precocious pubarche, hyperinsulinism and ovarian dysfunction. *Ann Endocrinol (Paris)*. 2000;61(2):141-142.

- 612. Francois I, de Zegher F. Adrenarche and fetal growth. *Pediatr Res.* 1997;41(3):440-442.
- 613. de Zegher F, Reinehr T, Malpique R, Darendeliler F, Lopez-Bermejo A, Ibanez L. Reduced Prenatal Weight Gain and/or Augmented Postnatal Weight Gain Precedes Polycystic Ovary Syndrome in Adolescent Girls. *Obesity (Silver Spring)*. 2017;25(9):1486-1489.
- 614. Hawkes CP, Li D, Hakonarson H, Meyers KE, Thummel K, Levine MA. CYP3A4 induction by Rifampin: An Alternative Pathway for Vitamin D Inactivation in Patients with CYP24A1 Mutations. *J Clin Endocrinol Metab.* 2017.
- 615. Hawkes CP, Levine MA. Ketotic hypercalcemia: a case series and description of a novel entity. *J Clin Endocrinol Metab*. 2014;99(5):1531-1536.
- 616. Ross J, Czernichow P, Biller BM, et al. Growth hormone: health considerations beyond height gain. *Pediatrics*. 2010;125(4):e906-918.
- 617. Reed ML, Merriam GR, Kargi AY. Adult growth hormone deficiency benefits, side effects, and risks of growth hormone replacement. *Front Endocrinol (Lausanne)*. 2013;4:64.
- 618. Decker R, Nygren A, Kristrom B, et al. Different thresholds of tissue-specific dose-responses to growth hormone in short prepubertal children. *BMC Endocr Disord*. 2012;12:26.
- 619. Dauber A, Nguyen TT, Sochett E, et al. Genetic defect in CYP24A1, the vitamin D 24-hydroxylase gene, in a patient with severe infantile hypercalcemia. *J Clin Endocrinol Metab.* 2012;97(2):E268-274.
- 620. Elamin A, Hussein O, Tuvemo T. Growth, puberty, and final height in children with Type 1 diabetes. *J Diabetes Complications*. 2006;20(4):252-256.
- 621. Lebl J, Schober E, Zidek T, et al. Growth data in large series of 587 children and adolescents with type 1 diabetes mellitus. *Endocr Regul*. 2003;37(3):153-161.
- 622. Kanumakala S, Dabadghao P, Carlin JB, Vidmar S, Cameron FJ. Linear growth and height outcomes in children with early onset type 1 diabetes mellitus--a 10-yr longitudinal study. *Pediatr Diabetes*. 2002;3(4):189-193.
- 623. Sorensen JS, Birkebaek NH, Bjerre M, et al. Residual beta-cell function and the insulin-like growth factor system in Danish children and

- adolescents with type 1 diabetes. *J Clin Endocrinol Metab*. 2014:jc20143521.
- 624. Kim MS, Lee DY. Serum insulin-like growth factor-binding protein-3 level correlated with glycemic control and lipid profiles in children and adolescents with type 1 diabetes. *J Pediatr Endocrinol Metab*. 2014;27(9-10):857-861.
- 625. Bereket A, Lang CH, Wilson TA. Alterations in the growth hormone-insulin-like growth factor axis in insulin dependent diabetes mellitus. *Horm Metab Res.* 1999;31(2-3):172-181.
- 626. Harrison VS, Rustico S, Palladino AA, Ferrara C, Hawkes CP. Glargine co-administration with intravenous insulin in pediatric diabetic ketoacidosis is safe and facilitates transition to a subcutaneous regimen. *Pediatr Diabetes*. 2016.
- 627. Mavinkurve M, McGrath N, Johnston N, Moloney S, Murphy NP, Hawkes CP. Oral administration of diluted nasal desmopressin in managing neonatal central diabetes insipidus. *J Pediatr Endocrinol Metab.* 2017.

APPENDICES

Appendix A: Hawkes CP, O'Connell SM. Growth hormone use in Ireland – A national survey of practice. Irish Medical Journal. 2016:109

Appendix B: Hawkes CP, Mavinkurve M, Fallon M, Grimberg A, Cody DC. Serial GH measurement after intravenous catheter placement alone can detect levels above stimulation test thresholds in children. J Clin Endocrinol Metab. 2015;100(11):4357-63

Appendix C: Hawkes CP, Stanley CA. Pathophysiology of neonatal hypoglycemia. In: Polin RA, Fox WW, Abman SH, editors. Fetal and Neonatal Physiology: Expert Consult - Online and Print. 5 ed: Elsevier/Saunders; 2016. p. 1550-60

Appendix D: Hawkes CP, Grimberg A, Dzata VE, De Leon DD. Adding glucagon-stimulated GH testing to the diagnostic fast increases the detection of GH-sufficient children. Horm Res Paediatr. 2016;85(4):265-72

Appendix E: Hawkes CP, Grimberg A, Dzata VE, De Leon DD. Integrating growth hormone testing with hypoglycaemia investigation. American Pediatric Society / Society for Pediatric Research, May 2014. (Poster Presentation)

Appendix F: Hawkes CP, Grimberg A. Measuring growth hormone and insulin-like growth factor-I in infants: what is normal? Pediatr Endocrinol Rev. 2013;11(2):126-46

Appendix G: Hawkes CP, Schnellbacher S, Singh RJ, Levine MA. 25-hydroxyvitamin D can interfere with a common assay for 1,25-dihydroxyvitamin D in vitamin D intoxication. J Clin Endocrinol Metab. 2015;100(8):2883-9

Appendix H: Hawkes CP, Murray DM, Kenny LC, Kiely M, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A. Correlation of insulin-like growth factor-I and –II concentrations at birth measured by mass spectrometry and growth from birth to two months. Horm Res Paediatr. 2018 Jan. doi 10.1159/000486035 [Epub ahead of print].

Appendix I: Hawkes CP, Murray DM, Kenny LC, Kiely M, Sikora K, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A. Measurement of IGF-I and –II concentrations at birth by mass spectrometry in a large birth cohort: correlation with anthropometry. Pediatric Endocrine Society, Washington DC. September 2017 (Poster Presentation)

Appendix J: Marzec M, Hawkes CP, Eletto D, Boyle S, Rosenfeld R, Hwa V, et al. A human variant of glucose-regulated protein 94 that inefficiently supports IGF production. Endocrinology. 2016;157(5):1914-28

Appendix K: Hawkes CP, Grimberg A. Insulin-like growth factor-I is a marker for the nutritional state. Pediatr Endocrinol Rev. 2015;13(2):465-77

Appendix L: Hawkes CP, O'B Hourihane J, Kenny LC, Irvine AD, Kiely M, Murray DM. Gender- and gestational age-specific body fat percentage at birth. Pediatrics. 2011;128(3):E645-E51

Appendix M: Hawkes CP, O'B Hourihane J, Kenny LC, Irvine AD, Kiely M, Murray DM. Body Composition at birth; normative values. American Pediatric Society / Society for Pediatric Research. Denver, May 2011. European Society for Paediatric Research, Newcastle, Sept 2011

Appendix N: Hawkes CP, Zemel BS, Kiely M, Irvine AD, Kenny LC, O'B Hourihane J, Murray DM. Body composition within the first 3 months: optimized correction for length and correlation with BMI at 2 years. Horm Res Paediatr. 2016;86(3):178-187

Appendix O: Hawkes CP, Zemel BS, Kiely M, Irvine A, Kenny LC, O'B Hourihane J, Murray DM. Body composition in the first 2 months of life – optimized correction for length, reference data and correlation with obesity at 2 years. American Pediatric Society / Society for Pediatric Research. Baltimore, May 2016

Appendix P: Hawkes CP, Zemel BS, Kenny LC, Kiely M, Sikora K, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A, Murray DM. The relationship between IGF-I and –II and body composition at birth and over the first 2 months of life. Pediatric Endocrine Society, September 2017 (Poster Presentation)

Appendix Q: Junior Investigator Pilot Grant Application

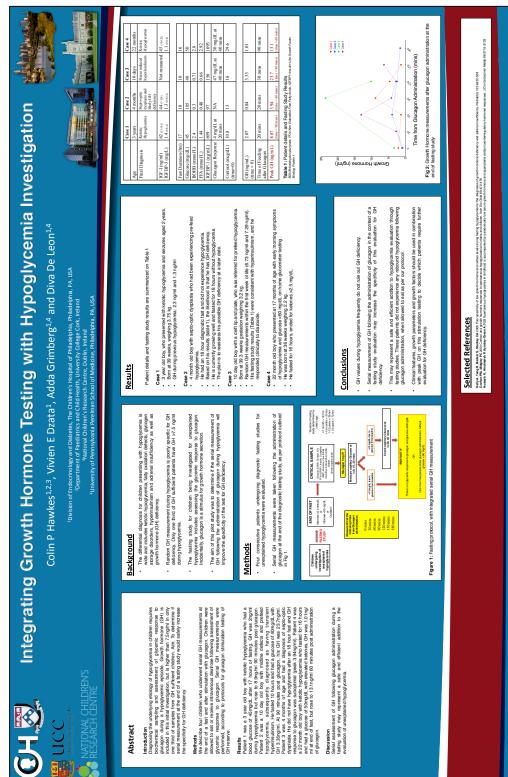
Appendix A:

Hawkes CP, O'Connell SM. Growth hormone use in Ireland – A national Survey of practice. Irish Medical Journal. 2016:109

Appendix B:

Hawkes CP, Mavinkurve M, Fallon M, Grimberg A, Cody DC. Serial GH Measurement After Intravenous Catheter Placement Alone Can Detect Levels Above Stimulation Test Thresholds in Children. J Clin Endocrinol Metab. 2015;100(11):4357-63.

Appendix C:


Hawkes CP, Stanley CA. Pathophysiology of Neonatal Hypoglycemia. In: Polin RA, Fox WW, Abman SH, editors. Fetal and Neonatal Physiology: Expert Consult - Online and Print. 5 ed: Elsevier/Saunders; 2016. p. 1550-60.

Appendix D:

Hawkes CP, Grimberg A, Dzata VE, De Leon DD. Adding Glucagon-Stimulated GH Testing to the Diagnostic Fast Increases the Detection of GH-Sufficient Children. Horm Res Paediatr. 2016;85(4):265-72.

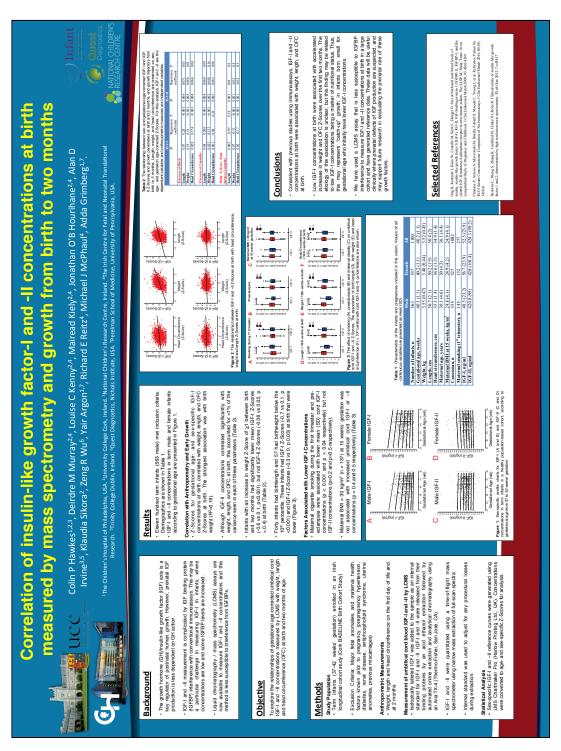
Appendix E:

Hawkes CP, Grimberg A, Dzata VE, De Leon DD. Integrating growth hormone testing with hypoglycaemia investigation. American Pediatric Society / Society for Pediatric Research, May 2014. (Poster Presentation)

Appendix F:

Hawkes CP, Grimberg A. Measuring growth hormone and insulin-like growth factor-I in infants: what is normal? Pediatr Endocrinol Rev. 2013;11(2):126-46.

Appendix G:


Hawkes CP, Schnellbacher S, Singh RJ, Levine MA. 25-Hydroxyvitamin D Can Interfere With a Common Assay for 1,25-Dihydroxyvitamin D in Vitamin D Intoxication. J Clin Endocrinol Metab. 2015;100(8):2883-9.

Appendix H:

Hawkes CP, Murray DM, Kenny LC, Kiely M, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A. Correlation of insulin-like growth factor-I and —II concentrations at birth measured by mass spectrometry and growth from birth to two months. Horm Res Paediatr. 2018 Jan. doi 10.1159/000486035 [Epub ahead of print].

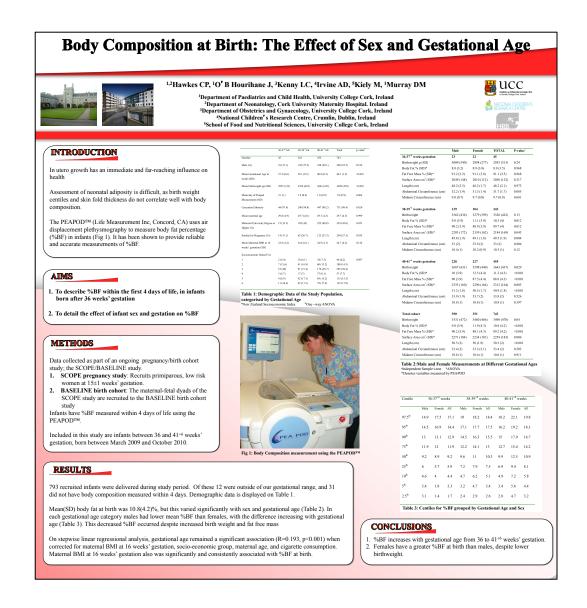
Appendix I:

Hawkes CP, Murray DM, Kenny LC, Kiely M, Sikora K, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A. Measurement of IGF-I and —II concentrations at birth by mass spectrometry in a large birth cohort: correlation with anthropometry. Pediatric Endocrine Society, Washington DC. September 2017 (Poster Presentation)

Appendix J:

Marzec M, Hawkes CP, Eletto D, Boyle S, Rosenfeld R, Hwa V, et al. A Human Variant of Glucose-Regulated Protein 94 That Inefficiently Supports IGF Production. Endocrinology. 2016;157(5):1914-28.

Appendix K:

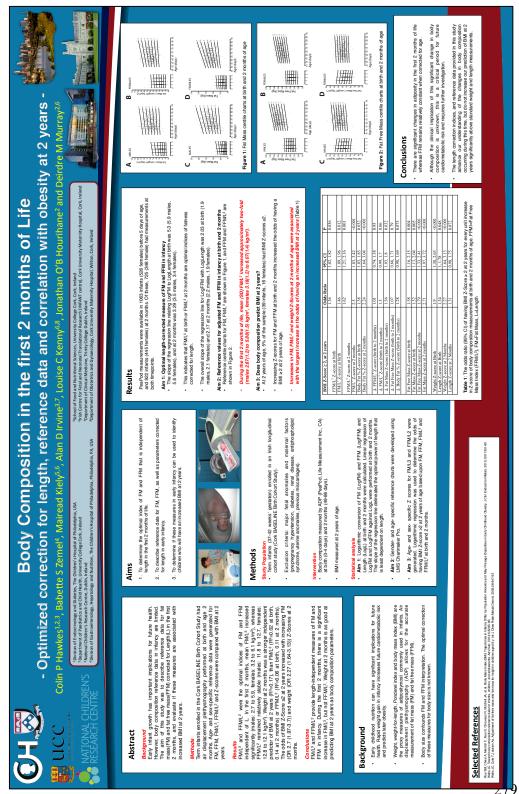

Hawkes CP, Grimberg A. Insulin-like growth factor-I is a marker for the nutritional state. Pediatr Endocrinol Rev. 2015;13(2):465-77.

Appendix L:

Hawkes CP, O'B Hourihane J, Kenny LC, Irvine AD, Kiely M, Murray DM. Gender- and Gestational Age-Specific Body Fat Percentage at Birth. Pediatrics. 2011;128(3):E645-E51.

Appendix M:

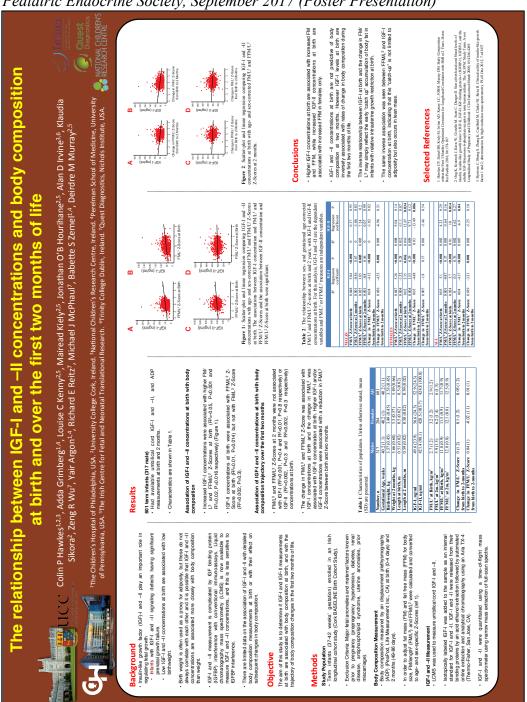
Hawkes CP, O'B Hourihane, J, Kenny LC, Irvine AD, Kiely M, Murray DM. Body Composition at birth; normative values. American Pediatric Society / Society for Pediatric Research. Denver, May 2011. European Society for Paediatric Research, Newcastle, Sept 2011.



Appendix N:

Hawkes CP, Zemel BS, Kiely M, Irvine AD, Kenny LC, O'B Hourihane J, Murray DM. Body Composition within the First 3 Months: Optimized Correction for Length and Correlation with BMI at 2 Years. Horm Res Paediatr. 2016;86(3):178-187.

Appendix O:


Hawkes CP, Zemel BS, Kiely M, Irvine A, Kenny LC, O'B Hourihane J, Murray DM. Body composition in the first 2 months of life — optimized correction for length, reference data and correlation with obesity at 2 years. American Pediatric Society / Society for Pediatric Research. Baltimore, May 2016

Appendix P:

Hawkes CP, Zemel BS, Kenny LC, Kiely M, Sikora K, Caulfield MP, Argon Y, Reitz RE, McPhaul MJ, Grimberg A, Murray DM. The relationship between *IGF-I* and –*II* and body composition at birth and over the first 2 months of life.

Pediatric Endocrine Society, September 2017 (Poster Presentation)

UNIVERSITY OF PENNSYLVANIA

CHILDREN'S HOSPITAL OF PHILADELPHIA CLINICAL & TRANSLATIONAL SCIENCE AWARD CLINICAL TRANSLATIONAL RESEARCH CENTER (CTRC)

Junior Investigator Pilot Grant Program (JIPGP) - FY 2015

APPLICATION COVER PAGE					
Project Title: Growth hormone sensitive s	short stature in childhood; A novel multisy	stem			
approach to diagnosis and characterizing	g the effects of treatment				
Principal Investigator: Colin Hawkes	Dept./Div. Pediatrics / Endocrinology				
Co-Investigator: Adda Grimberg	Dept./Div. Pediatrics / Endocrinology				
Co-Investigator: Babette Zemel	Dept./Div. Pediatrics / Gastroenterology, Hepatology and Nutrition				
Amount Requested: \$19,998					
Please check application type: ☐ Project Grant ☐ New Investigator Grant ☐ Innovation Grant					
APPROVAL					
	Michael Levine	02/26/15			
Department Chair (or designee*/ title) * Usually division or section chief or department	(Print name) artment head	Date			

Junior Investigator Pilot Grant Program - FY 2015

PROJECT DESCRIPTION

ABSTRACT:

Current guidelines for evaluating children with possible growth hormone deficiency (GHD) include monitoring growth, measuring growth factors and performing growth hormone (GH) stimulation testing. This approach has poor specificity for disease and only half of children subsequently treated with GH respond to treatment. GH treatment costs approximately \$30,000 to 50,000 per patient per year. GH affects many physiological parameters other than growth, and these effects are the indications for treatment of adult GHD. Muscle mass, strength, body fat, echocardiographic features, vascular endothelial function and lipid profiles are affected by GHD and improved with GH treatment. The aim of this pilot study is to generate preliminary data for a larger study to determine if children who will respond to GH treatment have 1) baseline characteristics that predict response, 2) changes in these characteristics within 3 months of treatment that also predict response, and 3) characteristics after one year of treatment that more closely resemble untreated non-GHD controls. This pilot study will include 30 patients followed prospectively for one year.

Background

Most patients referred for evaluation of short stature have either constitutional delay of growth and puberty (CD) or idiopathic short stature (ISS). Distinguishing these two diagnoses from isolated growth hormone deficiency (GHD) is difficult, as tests have poor sensitivity and specificity. Current recommendations include consideration of growth, bone age, and levels of insulin-like growth factor I (IGF-I), and IGF protein-3 (IGFBP-3) to screen for GHD, followed by a confirmatory growth hormone stimulation test (GHST).2

Growth response to growth hormone (GH) treatment is extremely variable,⁴ and 30-50% of currently treated patients do not respond.⁴ GH generates almost \$2 billion in annual sales revenue,⁵ and costs up to \$50,000 per patient per year.⁶ The GHST has a central role in the decision to prescribe GH. However, up to 50% of normally growing children will be misclassified by these tests as having GHD, depending on the threshold and stimulus used. Furthermore, peak stimulated GH concentration on these tests does not correlate with growth response to GH treatment, 8-10 and most children will pass a GHST if repeated when they reach adult height. 11

GH mediates many non-growth related effects that guide treatment in adult GHD, but are largely ignored in the evaluation of pediatric GHD or monitoring of treatment. 12 The multisystem phenotype of adult GHD is well described. This includes reductions in lean body mass, exercise tolerance, fractional shortening of cardiac myocytes and high-density lipoprotein (HDL) as well as increases in fat mass, central adiposity, intima media wall thickness, triglycerides and low-density lipoprotein (LDL). ¹³ The effects of GH treatment on each of these systems may be dosedependent, 14 but whether or not adverse effects of partial deficiency on each of these systems correlates with severity of deficiency in children is not known.

The interaction between GH and body composition, cardiac function and bone mineral density in pediatrics warrants further investigation. These may have significant implications for children with undiagnosed GHD, both for diagnosis and for monitoring response to therapy. Fluid retention, a known complication of GH treatment even in normal children, 15 complicates measurement of muscle mass using indirect measures such as dual-energy x-ray absorptiometry (DXA), or air displacement plethysmograpy. Pairing these methods with a reliable measure of total body water, such as deuterium oxide, would allow more detailed characterization of changes in muscle mass with GH therapy.

Specific Aims

This pilot study will generate the preliminary data necessary to conduct a more definitive study aimed at improving the identification of children who will have a positive growth response to GH treatment, and will provide information on the detailed physiological responses to GH treatment both in children who have a growth response to treatment, and those who do not. We will conduct a 1-year prospective, longitudinal study of children with short stature treated with GH, and untreated controls with similar stature. Four groups will be identified based on treatment and growth in the first year: Responders, Non-responders, Constitutional Delay (CD) and Idiopathic Short Stature (ISS) (Figure 1).

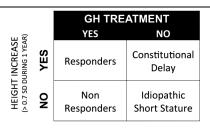


Figure 1: Diagram showing the categorization of patients based on GH treatment status and growth during one year of observation. After 1 year of treatment, responders grow >0.7 SD, nonresponders do not. After 1 year of observation, children with constitutional delay (CD) grow >0.7 SD, but idiopathic short stature (ISS) do not.

Physiological characteristics measured in this study

are listed in Table 1, and these will be measured at baseline, 3 months and 1 year.

Hypothesis 1: Responders, compared with non-responders, ISS and CD, will have physiological characteristics (e.g. increased body fat, altered lipid profile, reduced brachial artery reactivity) at baseline that are predictive of a significant response to GH therapy.

Hypothesis 2: Responders, compared with non-responders, ISS and CD, have changes in physiological characteristics within 3 months of treatment that predict their response to therapy.

<u>Hypothesis</u> 3: Following one year of GH treatment, responders, compared to non-responders, ISS and CD, have physiological characteristics that resemble untreated GH sufficient controls.

Preliminary Data

Over the past six years, there have been 1301 GHSTs performed at CHOP, and 600 (46%) of these patients were subsequently treated with GH. Many physiological parameters have been shown to respond to GH treatment, but most studies do not include a positive growth response to treatment and utilize poorly specific stimulation testing to categorize patients as having GHD.

- Body composition: Children with GHD have reduced lean body mass and increased fat mass at diagnosis, with a change in body water within 6 weeks of treatment possibly correlating with growth response to treatment. 16-21 No study has used multiple modalities of assessing body composition²² to differentiate changes in body water from muscle mass or concurrently evaluated muscle function (i.e. strength). Adults with untreated childhood-onset GHD have reduced knee extensor muscle strength, and this improves with treatment. 23
- Bone Mineral Density: Height Z-adjusted areal bone mineral density and volumetric lumbar spine bone density is lower in children with ISS and GHD than age and sex-matched reference ranges, ¹⁸ but the response of these parameters within one year of treatment is variable. ^{18, 24}
- Cardiac and Vascular Endothelial Function: Children with GHD have lower left ventricular (LV) mass, and functional changes in myocardial contractility. LV mass changes are seen within 3 months of GH treatment. Left-27 Carotid intima media thickness may also be increased in children with GHD. Endothelial function is impaired in adult GHD and responds to treatment.
- Other Markers: Lipid profile, ^{30, 31} leptin, ³² fasting insulin, ^{16, 33} IGF-I, ^{34, 35} IGFBP-3, ³⁶ IGFBP-2, ³⁷ Homocysteine, Tumor Necrosis Factor Alpha, ³⁸ and fibrinogen ³⁸ may be altered in children with GHD.
- *Genetic Markers:* Next generation sequencing has been used to identify variants associated with short stature. The correlation of these loci with GH responsiveness is not known. ³⁹⁻⁴¹
- Dermal Thickness: Skin thickness and elasticity are reduced in children with GHD, and these may improve with treatment. 42 This effect is also seen in adults. 43

Subjects and Recruitment

Eligibility criteria: Height-for-age <2 SDS, IGF-I <-1SD, Tanner stage 1 or 2, GHST performed. Exclusion criteria: Comorbidities or medications that may affect growth. Families will be invited to participate in the study on the day of GHST. Children subsequently not treated with GH will also be eligible as controls.

Methods

Children meeting inclusion criteria will be followed for one year. They will be evaluated at the CTRC Nutrition Core Lab at baseline, three months and at one year. The components of each visit are listed on Table 1. Additional samples will be collected at each visit for additional analysis supported by future grant applications.

Analysis

Patients will be divided into four groups, based on their GH treatment status and their growth response to the first year of GH treatment (Figure 1). The goal of this

Table 1: Study Protocol. All measured at baseline, 3 months and 1 year (except *baseline only or **baseline and 1 year only)

Laboratory Studies

Lipid profile, Bone markers (calcium, phosphorus, parathyroid hormone, urinary calcium:creatinine), Growth Factors (IGF-I and IGF-II).

*DNA Banking (Center for Applied Genomics), Zinc

**Ultrasensitive LH

Detailed Anthropometry

Muscle Strength: Hand grip dynamometry, knee kick, jump (force plate).

Body Composition

Dual-energy x-ray absorptiometry

Air displacement plethysmography

Bioimpedence absorptiometry

Peripheral quantitative CT

Deuterium dilution (GH untreated at baseline only, GH treated at baseline, 3 months and 1 year)

Cardiac Echo

Endothelial Function: Carotid intima media thickness, Brachial Artery Reactivity Testing, Pulse Wave Velocity.

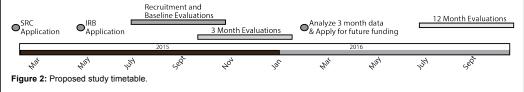
pilot study is to estimate effect sizes that will be used to power a larger prospective study. This will involve estimating group means and standard deviations, mean analyses to assess group differences and identify potential interactions that might be assessed in our future prospective study.

For the analyses listed below, each characteristic will be included as the dependent variable in a logistic regression model that includes an indicator for variable of treatment and response. We do not anticipate achieving statistical significance in this pilot study, so our primary assessment will be of the fitted group means and estimated standard deviation.

Comparisons performed in multisystem parameters will be as follows:

- H1: Baseline parameters between responders and a) non-responders, b) CD and c) ISS.
- $\underline{\text{H2}}$: Change from baseline to 3 months in multisystem parameters between responders and a) non-responders, b) CD and c) ISS.
- <u>H3</u>: Multisystem parameters of responders at 1 year will be compared with a) non-responders, b) CD and c) ISS at one year.

Study Feasibility and CTRC Resources Requested


Approximately 18 children undergo GH stimulation testing each month, over half of whom are expected to meet eligibility criteria. The evaluations included in the study protocol are estimated to require 2.5 hours in total, and the majority of patients will be aged 7-12 years. CTRC resources requested are: **Nursing** (phlebotomy), **Nutrition** (anthropometry, body composition), **Cardiology** (echocardiography, brachial artery reactivity testing), **Biostatistics**, **Laboratory**, **Informatics** (database and CRF development).

Significance and the need for Junior Investigator Pilot Grant Program funds

This project will be the most comprehensive longitudinal evaluation of children with presumed GHD performed, and has potential to improve clinical care of children with short stature. The integration of multiple methods of body composition analysis, bone health, echocardiography, and metabolic outcomes will generate pilot data for accurate calculation of sample sizes and power analyses in support of a larger study to test the hypotheses listed above. Improving our understanding of the non-growth related effects of GH in pediatric patients could have significant implications for patients, society and future research. We anticipate that this work will improve identification of GH responders, and reduce exposure of non-responders to unnecessary risk, and society to the cost.

Additional avenues of future study have been planned. DNA will be bio banked for future analysis in collaboration with the CHOP Center for Applied Genomics, using genomic data collected by this center on >45,000 children as controls. We anticipate that this collaboration will potentially identify genetic markers of GH responsiveness, either in this pilot cohort or in the larger subsequent study. Serum samples will be stored on each patient for future analysis of markers of GH responsiveness and the effect of treatment. These are exciting and novel future areas of research that will be supported by data and specimens collected, as well as experience gained, in completing this pilot study.

Timetable

Literature Cited

- Sisley S, Trujillo MV, Khoury J, Backeljauw P. Low incidence of pathology detection and high cost of screening in the evaluation of asymptomatic short children. *J Pediatr*. 2013;163(4):1045-1051.
- Wilson TA, Rose SR, Cohen P, Rogol AD, Backeljauw P, Brown R, et al. Update of guidelines for the use of growth hormone in children: the Lawson Wilkins Pediatric Endocrinology Society Drug and Therapeutics Committee. *J Pediatr*. 2003;143(4):415-421.
- Growth Hormone Research S. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. GH Research Society. J Clin Endocrinol Metab. 2000;85(11):3990-3993.
- 4. Bang P, Bjerknes R, Dahlgren J, Dunkel L, Gustafsson J, Juul A, et al. A comparison of different definitions of growth response in short prepubertal children treated with growth hormone. *Horm Res Paediatr*. 2011;75(5):335-345.
- 5. Kelly CJ, Mir FA. Economics of biological therapies. *Bmj.* 2009;339:b3276.
- Allen DB, Fost N. hGH for short stature: ethical issues raised by expanded access. J Pediatr. 2004;144(5):648-652.
- 7. Ghigo E, Bellone J, Aimaretti G, Bellone S, Loche S, Cappa M, et al. Reliability of provocative tests to assess growth hormone secretory status. Study in 472 normally growing children. *J Clin Endocrinol Metab.* 1996;81(9):3323-3327.
- Hoos MB, Westerterp KR, Gerver WJ. Short-term effects of growth hormone on body composition as a predictor of growth. J Clin Endocrinol Metab. 2003;88(6):2569-2572.
- Bright GM, Julius JR, Lima J, Blethen SL. Growth hormone stimulation test results as predictors of recombinant human growth hormone treatment outcomes: preliminary analysis of the national cooperative growth study database. *Pediatrics*. 1999;104(4 Pt 2):1028-1031.
- Ranke MB, Lindberg A, Chatelain P, Wilton P, Cutfield W, Albertsson-Wikland K, et al. Derivation and validation of a mathematical model for predicting the response to exogenous recombinant human growth hormone (GH) in prepubertal children with idiopathic GH deficiency. KIGS International Board. Kabi Pharmacia International Growth Study. J Clin Endocrinol Metab. 1999;84(4):1174-1183.
- 11. Van den Broeck J, Arends N, Hokken-Koelega A. Growth response to recombinant human growth hormone (GH) in children with idiopathic growth retardation by level of maximum GH peak during GH stimulation tests. *Horm Res.* 2000;53(6):267-273.
- 12. Ross J, Czernichow P, Biller BM, Colao A, Reiter E, Kiess W, et al. Growth hormone: health considerations beyond height gain. *Pediatrics*. 2010;125(4):e906-918.
- Reed ML, Merriam GR, Kargi AY. Adult growth hormone deficiency benefits, side effects, and risks of growth hormone replacement. Frontiers in endocrinology. 2013;4:64.
- Decker R, Nygren A, Kristrom B, Nierop AF, Gustafsson J, Albertsson-Wikland K, et al. Different thresholds of tissue-specific dose-responses to growth hormone in short prepubertal children. *BMC endocrine disorders*. 2012;12:26.
- 15. Moller J, Nielsen S, Hansen TK. Growth hormone and fluid retention. *Horm Res.* 1999;51 Suppl 3:116-120.
- Decker R, Albertsson-Wikland K, Kristrom B, Nierop AF, Gustafsson J, Bosaeus I, et al. Metabolic outcome of GH treatment in prepubertal short children with and without classical GH deficiency. *Clin Endocrinol (Oxf)*. 2010;73(3):346-354.
- 17. Boot AM. Body composition and bone mineral density in adolescents with partial growth hormone deficiency. *J Clin Endocrinol Metab*. 2003;88(11):5099-5100.

- 18. Hogler W, Briody J, Moore B, Lu PW, Cowell CT. Effect of growth hormone therapy and puberty on bone and body composition in children with idiopathic short stature and growth hormone deficiency. *Bone*. 2005;37(5):642-650.
- 19. Ernst MA, Simons MY, Gerver AJ, Zandwijken GR, Zimmermann LJ, Gerver WJ. Change in total body water as a predictive tool for growth hormone treatment response. *Horm Res Paediatr*. 2012;78(1):18-23.
- 20. Esen I, Demirel F, Tepe D, Kara O, Koc N. The association between growth response to growth hormone and baseline body composition of children with growth hormone deficiency. *Growth Horm IGF Res.* 2013;23(5):196-199.
- Leger J, Carel C, Legrand I, Paulsen A, Hassan M, Czernichow P. Magnetic resonance imaging evaluation of adipose tissue and muscle tissue mass in children with growth hormone (GH) deficiency, Turner's syndrome, and intrauterine growth retardation during the first year of treatment with GH. J Clin Endocrinol Metab. 1994;78(4):904-909.
- 22. Zemel BS, Barden E. Body composition during growth and development. In: Cameron N, Bogin B, editors. *Human Growth and Development*: Academic Press; 2012.
- Koranyi J, Svensson J, Gotherstrom G, Sunnerhagen KS, Bengtsson B, Johannsson G. Baseline characteristics and the effects of five years of GH replacement therapy in adults with GH deficiency of childhood or adulthood onset: a comparative, prospective study. J Clin Endocrinol Metab. 2001;86(10):4693-4699.
- Boot AM, Engels MA, Boerma GJ, Krenning EP, De Muinck Keizer-Schrama SM. Changes in bone mineral density, body composition, and lipid metabolism during growth hormone (GH) treatment in children with GH deficiency. *J Clin Endocrinol Metab*. 1997;82(8):2423-2428.
- Capalbo D, Lo Vecchio A, Farina V, Spinelli L, Palladino A, Tiano C, et al. Subtle alterations of cardiac performance in children with growth hormone deficiency: results of a two-year prospective, case-control study. *J Clin Endocrinol Metab*. 2009;94(9):3347-3355
- 26. Nygren A, Sunnegardh J, Teien D, Jonzon A, Bjorkhem G, Lindell S, et al. Rapid cardiovascular effects of growth hormone treatment in short prepubertal children: impact of treatment duration. *Clin Endocrinol (Oxf)*. 2012;77(6):877-884.
- 27. Ozdemir O, Abaci A, Hizli S, Razi CH, Akelma AZ, Kocak M, et al. Cardiac functions in children with growth hormone deficiency before and during growth hormone-replacement therapy. *Pediatric cardiology*. 2011;32(6):766-771.
- 28. Szczepaniska Kostro J, Tolwinska J, Urban M, Gardziejczyk M, Glowinska B. Cardiac mass and function, carotid artery intima media thickness, homocysteine and lipoprotein levels in children and adolescents with growth hormone deficiency. *J Pediatr Endocrinol Metab.* 2004;17(10):1405-1413.
- 29. Hana V, Prazny M, Marek J, Skrha J, Justova V. Reduced microvascular perfusion and reactivity in adult GH deficient patients is restored by GH replacement. *Eur J Endocrinol*. 2002;147(3):333-337.
- Kuromaru R, Kohno H, Hara T. Changes in adiposity and excess body weight correlate with growth responses but not with decreases in low-density lipoprotein cholesterol levels during GH treatment in GH-deficient children. Clin Endocrinol (Oxf). 2002;56(6):799-803.
- 31. van der Sluis IM, Boot AM, Hop WC, De Rijke YB, Krenning EP, de Muinck Keizer-Schrama SM. Long-term effects of growth hormone therapy on bone mineral density, body composition, and serum lipid levels in growth hormone deficient children: a 6-year follow-up study. *Horm Res.* 2002;58(5):207-214.
- 32. Elimam A, Norgren S, Marcus C. Effects of growth hormone treatment on the leptin system and body composition in obese prepubertal boys. *Acta Paediatr*. 2001;90(5):520-525.

- Martin DD, Schweizer R, Schonau E, Binder G, Ranke MB. Growth hormone-induced increases in skeletal muscle mass alleviates the associated insulin resistance in short children born small for gestational age, but not with growth hormone deficiency. *Horm* Res. 2009;72(1):38-45.
- 34. Juul A, Skakkebaek NE. Prediction of the outcome of growth hormone provocative testing in short children by measurement of serum levels of insulin-like growth factor I and insulin-like growth factor binding protein 3. *J Pediatr*. 1997;130(2):197-204.
- Kristrom B, Jansson C, Rosberg S, Albertsson-Wikland K. Growth response to growth hormone (GH) treatment relates to serum insulin-like growth factor I (IGF-I) and IGFbinding protein-3 in short children with various GH secretion capacities. Swedish Study Group for Growth Hormone Treatment. J Clin Endocrinol Metab. 1997;82(9):2889-2898.
- Jensen RB, Jeppesen KA, Vielwerth S, Michaelsen KF, Main KM, Skakkebaek NE, et al. Insulin-like growth factor I (IGF-I) and IGF-binding protein 3 as diagnostic markers of growth hormone deficiency in infancy. Horm Res. 2005;63(1):15-21.
- 37. van Doorn J, Ringeling AM, Rikken B, van Buul-Offers SC. Plasma levels of insulin-like binding protein-2 in prepubertal short children and its diagnostic value in the evaluation of growth hormone deficiency. *Horm Res.* 2001;55(3):147-154.
- 38. Lanes R, Paoli M, Carrillo E, Villaroel O, Palacios A. Peripheral inflammatory and fibrinolytic markers in adolescents with growth hormone deficiency: relation to postprandial dyslipidemia. *J Pediatr*. 2004;145(5):657-661.
- Dauber A, Rosenfeld RG, Hirschhorn JN. Genetic Evaluation of Short Stature. J Clin Endocrinol Metab. 2014;jc20141506.
- Wang SR, Carmichael H, Andrew SF, Miller TC, Moon JE, Derr MA, et al. Large-scale pooled next-generation sequencing of 1077 genes to identify genetic causes of short stature. J Clin Endocrinol Metab. 2013;98(8):E1428-1437.
- 41. Clayton P, Chatelain P, Tato L, Yoo HW, Ambler GR, Belgorosky A, et al. A pharmacogenomic approach to the treatment of children with GH deficiency or Turner syndrome. *Eur J Endocrinol*. 2013;169(3):277-289.
- 42. Conte F, Diridollou S, Jouret B, Turlier V, Charveron M, Gall Y, et al. Evaluation of cutaneous modifications in seventy-seven growth hormone-deficient children. *Horm Res.* 2000;54(2):92-97.
- 43. Kann P, Piepkorn B, Schehler B, Lotz J, Prellwitz W, Beyer J. Growth hormone substitution in growth hormone-deficient adults: effects on collagen type I synthesis and skin thickness. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association. 1996;104(4):327-333.
- 44. Divall SA, Radovick S. Growth Hormone and Treatment Controversy; Long Term Safety of rGH. *Current pediatrics reports*. 2013;1(2):128-132.
- Bell J, Parker KL, Swinford RD, Hoffman AR, Maneatis T, Lippe B. Long-term safety of recombinant human growth hormone in children. J Clin Endocrinol Metab. 2010;95(1):167-177.
- 46. Allen DB, Rundle AC, Graves DA, Blethen SL. Risk of leukemia in children treated with human growth hormone: review and reanalysis. *J Pediatr*. 1997;131(1 Pt 2):S32-36.
- 47. Savendahl L, Maes M, Albertsson-Wikland K, Borgstrom B, Carel JC, Henrard S, et al. Long-term mortality and causes of death in isolated GHD, ISS, and SGA patients treated with recombinant growth hormone during childhood in Belgium, The Netherlands, and Sweden: preliminary report of 3 countries participating in the EU SAGhE study. *J Clin Endocrinol Metab*. 2012;97(2):E213-217.
- 48. Carel JC, Ecosse E, Landier F, Meguellati-Hakkas D, Kaguelidou F, Rey G, et al. Long-term mortality after recombinant growth hormone treatment for isolated growth hormone

deficiency or child Clin Endocrinol M	dhood short statur <i>letab</i> . 2012;97(2):	e: preliminary re 416-425.	port of the Frenc	h SAGhE study.