
J
H
E
P
0
3
(
2
0
1
6
)
0
3
3

Published for SISSA by Springer

Received: November 19, 2015

Revised: February 10, 2016

Accepted: February 25, 2016

Published: March 7, 2016

Holographic RG flows, entanglement entropy and the

sum rule

Horacio Casini, Eduardo Testé and Gonzalo Torroba
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1 Introduction

In order to understand nonperturbative aspects of quantum field theories (QFT), it is of

considerable interest to study renormalization group (RG) flows between pairs of conformal

field theories CFTUV and CFTIR. These RG flows are generically1 triggered by turning on

relevant operators Oi in the UV fixed point,

S = SUV +

∫
ddx giOi(x) . (1.1)

For flows that preserve Poincaré invariance (as will be the case in this work), the Oi are

scalar operators with scaling dimension ∆i < d at the UV fixed point.

These RG flows can be (partially) characterized by the correlators of the stress-tensor

trace Θ(x) = Tµµ (x). One reason for this is that Θ(x) is not an independent operator of

the theory, but rather is determined in terms of Oi and the β functions of the couplings gi
in (1.1) via the operatorial relation Θ(x) = βiOi(x) (up to a conformal anomaly function).

1Certain supersymmetric CFTs have moduli spaces of vacua, and it is then possible to have RG flows

with spontaneous breaking of scale invariance.
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The best understood case corresponds to flows between two-dimensional CFTs. Here uni-

tarity of Θ(x) implies Zamolodchikov’s c-theorem, and its two-point function yields the

sum rule [1, 2]

CUV − CIR = 3π

∫
d2x x2 〈0|Θ(x)Θ(0)|0〉 , (1.2)

where CUV and CIR are the central charges of the UV and IR fixed points.

The situation in higher dimensions is more complicated and interesting. Early efforts

were oriented at studying the stress-tensor two point function in d > 2 [2–6]; however, in

general there is no clear connection of this quantity to global aspects of the RG. Instead,

the generalization of (1.2) to d = 4 involves the 4-point function of Θ(x), and it has been

shown that unitarity implies the a-theorem aUV > aIR [7]. Nevertheless, the question

remains whether (and how) 〈Θ(x)Θ(0)〉 encodes some nontrivial properties of the RG flow.

In fact, it turns out that this two-point function is related to two very different objects:

the entanglement entropy (EE) for a planar surface, and the renormalization of Newton’s

constant for a background metric. Let us review how this connection comes about.

For a planar entangling surface, rotational symmetry implies that the structure of the

density matrix is surprisingly simple and universal. It is given by a thermal state with

respect to boost “time” evolution, at a fixed dimensionless temperature (2π)−1. Though

this is an old result of axiomatic QFT [8], only recently this fact has been used to provide

general results for the EE of a planar surface in terms of correlation functions. Rosenhaus

and Smolkin [9–12] proposed a simple way to compute the planar EE perturbing with

relevant operators. In [13] it was shown that following this route one arrives at a result

that matches the Adler-Zee formula [14, 15] for the renormalization of Newton’s constant.

More concretely, for a large planar entangling surface of area A‖, the entropy has the form

S = k
A‖

εd−2
+ µA‖ , (1.3)

where k is a non universal constant, ε is a short distance cutoff and µ is a constant of

dimension d − 2 that depends on the mass scales of the theory and may contain also non

universal contributions. The result of [13] is the identification

µ = − π

d(d− 1)(d− 2)

∫
|x|>δ

ddx x2 〈0|Θ(0)Θ(x)|0〉 . (1.4)

Here 〈0|Θ(0)Θ(x)|0〉 is the connected correlator evaluated in Euclidean space and the in-

finitesimal cutoff δ has just the purpose of eliminating contact terms.

Eq. (1.4) is essentially the Adler-Zee formula [14, 15] for the renormalization of New-

ton’s constant when quantum fields on a weakly curved background are integrated out.

That is, we have2

µ = ∆

(
1

4GN

)
. (1.5)

2There are however exceptions to this identification between entanglement entropy and Newton’s con-

stant renormalization for theories with non unique stress tensors such as free scalars [13]. In that case (1.4)

holds for a special (canonical) choice of stress tensor, and ∆(4GN )−1 may contain additional terms due to

couplings with the curvature.
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In fact µ in (1.3) can be interpreted as a dressing of the area term in the EE as we scale a

region from small to large sizes. The same dressing occurs for black hole entropies as the

black hole radius crosses the mass scales of the quantum fields, and (1.5) is the statement

that the Bekenstein-Hawking entropy formula holds for large black holes independently of

the matter content of the model.

The identification of black hole entropy with entanglement entropy has a long history,

starting with [16]. Susskind and Uglum proposed that entanglement entropy should renor-

malize in the same way as (4GN )−1 [17]. The subject was revisited several times in the

past [18–25].

In this paper we will not be concerned with Newton’s constant renormalization, but

rather focus on the formula (1.4) for the area term in entanglement entropy in terms of

stress tensor correlators. One problem with this relation is that both sides are very hard

to evaluate in interacting theories. For this reason, we focus on CFTs and RG flows that

admit a dual gravity description. We will show that (1.4) is satisfied holographically by

explicitly computing both sides of the equation for any spacetime dimension d. Our main

technical result is the computation of the two point correlator 〈0|Θ(0)Θ(x)|0〉 for a general

deformation of the ultraviolet (UV) CFT by a relevant perturbation. Then we will match

the sum rule (1.4) with the EE calculation in terms of minimal surfaces [26–28]. Previous

holographic studies include [29–32].

Another problem with (1.4) is that in general both sides of the equation contain diver-

gences. In particular, if the UV fixed point is perturbed with a relevant operator of dimen-

sion ∆ ≥ (d+2)/2, the area term coefficient µ in EE calculated holographically diverges [29].

The same counting follows from the right hand side of (1.4) since 〈0|Θ(0)Θ(x)|0〉 ∼ |x|−2∆

for short distances. When divergences are present, matching of both sides of (1.4) for the

divergent terms cannot be expected on general grounds. The universal part is the finite

term or the logarithmic term in the case logarithmic terms are present; (1.4) should then be

understood as matching the universal parts. Notice the change in Newton’s constant (1.4),

if finite, is negative, corresponding to antiscreening of gravity. If divergences appear the

universal part can have positive sign.

We will show that the standard holographic regularization given by a radial cutoff

from the AdS boundary can be used to compute both sides of the equation giving a perfect

match for the universal terms. They also coincide with the constant (or logarithmic) term

in the mutual information between two parallel planes, as was argued in [13] (see also [33]).

Moreover, our holographic sum rule will provide a unified description of the d = 2 result,

where the renormalization of the area term in EE is [34]

µ = −CUV − CIR

6
log(mε) , (1.6)

(here m is a mass scale for the RG flow) and the case d > 2.

Finally, let us remark that the calculation of correlation functions for Θ(x) in holo-

graphic RG flows is formally very similar to the evaluation of scalar perturbations during

cosmological inflation [35]. This cosmological approach was recently applied to AdS/CFT

in [36], who reproduced the sum rule for d = 2. Our method in general dimension was moti-
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vated by this work, but differs significantly in the calculation of the stress tensor two-point

function, as we explain below.

The paper is structured as follows. First, in section 2 we introduce the holographic

setup and review some properties of holographic renormalization and the Hamiltonian

approach that will be used in the paper. In section 3 we calculate the two-point function

of Θ(x) for holographic RG flows between CFTs, and establish the sum rule (1.4). Some

consequences and applications are discussed in section 4, including the relation to mutual

information, properties of the stress-tensor spectral function, and a holographic proof of

reflection positivity. Finally, section 5 contains our conclusions and various future directions

motivated by the present results.

2 The setup

We consider a renormalization group flow between a d-dimensional conformal field theory

in the UV and a different CFT in the IR, triggered by turning on a relevant deformation,

S = SCFT +

∫
ddx gO(x) . (2.1)

Here O is a scalar operator of CFTUV with conformal dimension ∆UV < d and g is a

relevant, constant, coupling. At the endpoint of the flow, O becomes irrelevant, with

dimension ∆IR > d with respect to the infrared CFT.

The trace Θ(x) = Tµµ (x) of the energy-momentum tensor vanishes in the CFT, but be-

comes nontrivial due to the flow. Our goal is to calculate its two point function 〈Θ(x)Θ(0)〉.
In particular, we want to evaluate ∫

ddxx2〈Θ(x)Θ(0)〉 (2.2)

and show that this gives the change in the central charge CUV − CIR in d = 2, eq. (1.2).

For d > 2, this should be proportional to the area term in the entanglement entropy of a

large region [13].

It is very hard to perform this explicit calculation in an interacting QFT. The compu-

tation of 〈Θ(x)Θ(0)〉 has been done for nearly free fields or in weakly coupled flows. Here

we will use holography to obtain 〈Θ(x)Θ(0)〉 in strongly interacting RG flows that admit

a gravity dual.

2.1 Gravity description

A model for the gravity dual of the RG flow that we just described corresponds to a radial

domain wall in d+ 1 dimensions that interpolates between an AdS space with radius LUV

when r → ∞ and another AdS with radius LIR when r → −∞. These endpoints of

the domain wall are dual to CFTUV and CFTIR above. On the other hand, the relevant

deformation of CFTUV by a scalar operator O means that the d + 1-dimensional bulk

solution is sourced by a scalar field that rolls on a nontrivial potential V (φ).
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This holographic RG flow may be described by an euclidean action for Einstein-Hilbert

gravity coupled to a scalar field,3

S =

∫
dd+1x

√
g

(
− 1

2κ2
R(d+1) +

1

2
gMN∂Mφ∂Nφ+ V (φ)

)
. (2.3)

The action has some additional boundary terms that will be discussed in section 2.2. It is

possible to add higher derivative corrections or multiple fields but we restrict the analysis

to this action for simplicity. We will comment on more general matter sectors in section 4.4.

We consider a potential that has a maximum at φ = 0 and admits an expansion

V = VUV +
1

2
m2

UVφ
2 + . . . (2.4)

There is also a minimum at φ = φ0,

V = VIR +
1

2
m2

IR(φ− φ0)2 + . . . (2.5)

The domain-wall solution is described by

ds2 = dr2 + e2A(r)δµνdx
µdxν , φ = φ(r) . (2.6)

The warp factor A(r) and the scalar profile φ(r) satisfy Einstein’s equations

1

2κ2
d(d− 1)Ȧ2 =

1

2
φ̇2 − V (φ) ,

1

κ2
(d− 1)Ä = −φ̇2 , (2.7)

and the scalar field equation (which follows from the above)

φ̈+ d Ȧ φ̇− ∂φV = 0 . (2.8)

Dots denote derivatives with respect to r.

For r → ∞ the domain wall starts near φ = 0 which, from these equations, gives an

AdS solution with radius LUV

A(r) ∼ r

LUV
, −VUV =

d(d− 1)

2κ2L2
UV

. (2.9)

The endpoint of the wall occurs as φ reaches the minimum φ0, which corresponds in our

coordinates to r → −∞ with

A(r) ∼ r

LIR
, −VIR =

d(d− 1)

2κ2L2
IR

. (2.10)

According to the AdS/CFT dictionary, the relation to the dimension ∆UV of the dual

operator O is

m2
UVL

2
UV = ∆UV(∆UV − d) . (2.11)

3We work in euclidean signature, and κ2 = 8πG(d+1), where G(d+1) is Newton’s constant in d + 1

dimensions.
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Note that m2
UV < 0 since O is relevant. At the infrared we have analogously

m2
IRL

2
IR = ∆IR(∆IR − d) , (2.12)

with ∆IR > d and m2
IR > 0.

We will not need the explicit domain wall profile for our calculation, but we can give

more details about the behavior of φ(r) in the two asymptotic AdS regions. First we recall

the solution for a massive scalar in AdS,

φ(r) = φ0 e
−(d−∆) r

L + φ∆ e
−∆ r

L . (2.13)

We will restrict to a relevant perturbation in the range

∆UV > d/2 , (2.14)

corresponding to the standard quantization.4 In this case, the first term dominates at large

r and is dual to turning on a source g in (2.1). The second term is dual to the expectation

value 〈O〉. Since we are studying RG flows due to relevant deformations, φ0 6= 0 in the UV

region of the domain wall. The domain wall is then described by an expansion of the form

φ(r) = e
−(d−∆UV) r

LUV

(
φ0

UV + φ∆e
−(2∆UV−d) r

LUV + φ2 e
−2 r

LUV + . . .
)

(2.15)

at large r. On the other hand, in the IR region r → −∞ regularity requires that there is

no term proportional to e
−∆IR

r
LIR , and the profile is then of the form

φ(r) ≈ φ0
IR e
−(d−∆IR) r

LIR . (2.16)

2.2 Holographic correlation functions

Before proceeding to the explicit calculation in the next section, it will be useful to review

a few aspects of the holographic dictionary that we will need below. We will also recall the

Hamiltonian form of the gravitational action, which will be useful in the computation.

In the semiclassical, large N approximation, the AdS/CFT correspondence identifies

the partition function of the QFT side with the on-shell action in the bulk, log ZQFT =

−Son-shell. Correlation functions with n points are obtained by turning on source terms

for the dual bulk fields, computing the on-shell action and then taking n derivatives with

respect to the sources [37]. The stress-tensor trace couples to the trace of the boundary

metric; this source is obtained by varying the warp factor of the domain wall (2.6). For

the connected two-point function of the trace of the stress tensor, this gives

〈Θ(x)Θ(y)〉 = − 1√
h

δ

δ(δA0(x))

1√
h

δSon-shell

δ(δA0(y))
. (2.17)

In more detail, the bulk metric gets perturbed with a boundary value δA0,

hµν(x, r) = e2A(r)+2δA(x,r)δµν , lim
r→∞

δA(x, r) = δA0(x) . (2.18)

4For ∆UV < d/2, the alternate quantization has to be used. To our knowledge, holographic RG flows in

this range are not fully understood yet.
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At this order, we then need to solve the linearized bulk equations of motion allowing for a

perturbation δA0(x).

There are three issues that complicate this calculation. First, unlike the graviton tensor

mode — which is dual to the traceless part of the stress tensor, of protected dimension d

— the scalar metric mode mixes with fluctuations of the scalar field. Both are related by

the constraint parts of Einstein’s equation, resulting in a rather involved set of equations.

From the perspective of the dual, this encodes the fact, noted above, that Θ is not an

independent operator, but rather satisfies Θ(x) = βgO(x). A similar problem arises in

inflationary perturbations, and we will find it useful to adapt some of the methods from

cosmology to our situation.

The second problem regards how to solve the linearized equations in the bulk. These

admit two arbitrary constants near the UV, as in (2.13). The constant multiplying the

subleading series (e.g. the ‘VEV’ term φ∆ in (2.13)) is then fixed by requiring regularity

as r → −∞. This is easy to implement in a pure AdS background, but this nonlocal

differential problem becomes quite nontrivial in the presence of a domain wall. Indeed, we

want to impose this regularity condition for any domain wall solution, so that we can make

general statements regarding 〈Θ(x)Θ(0)〉. We will address this problem in section 3, where

we will find an analytic result for arbitrary flows in the limit of small momentum, as well

as a series expansion for larger p.

Finally, the action (2.3) diverges when evaluated on-shell, due to contributions from

the UV AdS region. Fortunately, the solution to this issue is by now well understood using

holographic renormalization [38, 39]. The method consists of making the on-shell action

finite by adding terms that are covariant on the geometric quantities of the boundary. In

our case, the action including the Gibbons-Hawking boundary term and the counterterms is

S =

∫
dd+1x

√
g

(
− 1

2κ2
R(d+1) +

1

2
gMN∂Mφ∂Nφ+ V (φ)

)
− 1

κ2

∫
ddx
√
hK+Sct . (2.19)

Here K is the trace of the extrinsic curvature of the boundary metric (discussed in more

detail below), and

Sct =
d− 1

κ2

∫
ddx
√
h

(
1

LUV
+

LUV

2(d− 1)(d− 2)
R(d) +

κ2

2

d−∆

d− 1
φ2 + . . .

)
, (2.20)

where all quantities are evaluated at the boundary. The first two counterterms were found

in [40] by requiring a finite energy-momentum tensor; the one proportional to φ2 cancels

the boundary term generated when integrating by parts to evaluate the scalar field action

on-shell.

2.3 Hamiltonian formulation

In order to compute the action to quadratic order, it will be convenient to use the Hamil-

tonian form of the Einstein-Hilbert action [41]. The reason is that various aspects of

the holographic RG simplify in the Hamiltonian approach, as found in [42–44], and more

recently in [45–47].5

5Here we follow the conventions in [48].
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One begins from the ADM decomposition along the radial direction

ds2 = N(x, r)2dr2 + hµν(x, r)(dxµ +Nµ(x, r)dr)(dxν +Nν(x, r)dr) , (2.21)

and the extrinsic curvature of an r = const surface is given by

Kµν =
1

2N
(ḣµν −∇µNν −∇νNµ) . (2.22)

Dots denote radial derivatives, ∇µ is the covariant derivative with respect to hµν , and

K = hµνKµν .

The action S = Sgrav + Smatter + Sct in terms of the ADM variables becomes

Sgrav = − 1

2κ2

∫
drddx

√
hN

(
R(d) +K2 −KµνK

µν
)
, (2.23)

Smatter =

∫
drddx

√
hN

(
1

2N2
(φ̇−Nµ∂µφ)2 +

1

2
hµν∂µφ∂νφ+ V (φ)

)
.

The Gibbons-Hawking boundary term cancels when writing the d+1-dimensional curvature

scalar in terms of d-dimensional quantities (see e.g. [49]). In first order form, where both

the variable and its canonical momentum are treated as independent, the action reads

S =

∫
drddx

√
h

(
1

2κ2
Πµν ḣµν + Πφφ̇+NH+NµP

µ

)
+ Sct , (2.24)

with

H =
1

2κ2

(
1

d− 1
(Πµ

µ)2 −Π2
µν

)
− 1

2
Π2
φ + V (φ)− 1

2κ2
R(d) +

1

2
hµν∂µφ∂νφ ,

Pµ =
1

κ2
∇νΠµν −Πφ∇µφ . (2.25)

The fields N and Nµ are Lagrange multipliers, imposing the constraints

1√
h

δS

δN
= H = 0 ,

1√
h

δS

δNµ
= Pµ = 0 . (2.26)

Furthermore, the equations of motion for Πµν and Πφ give the relations

Πµν = Kµν − hµνK , Πφ =
1

N

(
φ̇−Nµ∂µφ

)
, (2.27)

which reproduce the momenta computed from (2.23).

3 The stress-tensor two-point function

This section presents the main technical result of the paper: the calculation of 〈Θ(x)Θ(0)〉.
We proceed in three steps. First we determine in section 3.1 the action for the scalar metric

fluctuation to second order. Next, in section 3.2 we show how to solve the corresponding

equation of motion imposing the regularity condition in the IR through a matching proce-

dure. Finally, we compute the two-point function in a perturbative expansion around large

distances in section 3.3. We end the section by establishing the holographic sum rule in

section 3.4.
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3.1 Quadratic action for the Weyl mode

In order to compute 〈Θ(x)Θ(0)〉, we have to turn on a space-time dependent fluctuation of

the metric, hµν(x, r) = e2A(r)+2δA(x,r)δµν , and then we need to evaluate the action on-shell

to quadratic order in the fluctuation δA.

Without a convenient gauge choice, Einstein’s equations lead to a complicated differ-

ential system that mixes δA and δφ. This is in part due to the constraints δGµr = δTµr
and δG00 = δT00 that relate both modes. One possibility would be to work in terms of

gauge invariant variables; however, we find it more convenient to work in the gauge

hµν(x, r) = e2A(r)+2δA(x,r)δµν , φ(x, r) = φ(r) (3.1)

so that all the fluctuations of the scalar field vanish. As shown in the similar problem

of scalar perturbations during inflation, the equations simplify considerably with this

choice [35]. Note that in this gauge, N and Nµ in (2.21) will become nontrivial. This

gauge was also recently used in a related holographic setup in [36], which inspired our

approach. As we note below, however, we differ from this work in important aspects of the

analysis.

The quadratic action for δA only requires N and Nµ to first order in δA, because

the second order terms appear multiplying the constraints H and Pµ evaluated on the

background, which vanish since we work on a solution. At first order, we work with the

ansatz

N = 1 + δN , Nµ = e2A(r)∂µδψ , (3.2)

which we will see solves the constraints. In this case,

Kµν =
1

N

(
(Ȧ+ ˙δA)hµν − e2A(r)∂µ∂νδψ

)
,

K =
1

N

(
d(Ȧ+ ˙δA)−�δψ

)
, (3.3)

where �f ≡ δµν∂µ∂νf .

Consider first the momentum constraint, ∇µΠµν = 0. From (2.27) and (3.3), we obtain

δN =
˙δA

Ȧ
. (3.4)

The solution for the Hamiltonian constraint H = 0 is more involved. First we evaluate the

scalar curvature for hµν :

R(d) = −(d− 1)e−2(A+δA) (2�δA+ (d− 2)δµν∂µδA∂νδA) , (3.5)

which is valid to all orders in δ. Plugging then this result and (3.3) into (2.25) obtains

H =
d− 1

2κ2

1

N2

(
d(Ȧ+ ˙δA)2 − 2(Ȧ+ ˙δA)�δψ

)
+
d− 1

2κ2
e−2(A+δA)

(
2�δA+ (d− 2)(∂µδA)2

)
− 1

2N2
φ̇2 + V (φ) . (3.6)
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As a check, the zeroth order in the fluctuation,

H(0) =
1

2κ2
d(d− 1)Ȧ2 − 1

2
φ̇2 + V (φ) (3.7)

reproduces the classical equation of motion (2.7). Expanding next to first order in fluctu-

ations obtains an equation that determines �δψ,

�δψ = −Ä
Ȧ

˙δA+ e−2A�δA

Ȧ
+O(δ2) , (3.8)

where we used the value of δN in (3.4), and eliminated φ̇2 in favor of Ä using (2.7).

We now plug (3.4) and (3.8) into (2.24) and expand to quadratic order in δA. Notice

that, to this order, NµP
µ = 0, and NH = H(2). After integration by parts, the terms

Sgrav + Smatter of the action expanded to quadratic order can be brought to the form

S(2) =−d−1

2κ2

∫
drddx

[
edA

Ä

Ȧ2

(
˙δA

2
+e−2A(∂µδA)2

)
+
d

dr

(
e(d−2)A

Ȧ
(∂µδA)2+d2edAȦ(δA)2

)]
.

(3.9)

We also need to include the counterterms (2.20) from holographic renormalization.

Expanding Sct to quadratic order gives a contribution that cancels the boundary terms

in (3.9),6 so the final result for the quadratic action is

S =
d− 1

2κ2

∫
drddx edA ε(r)

(
˙δA

2
+ e−2A(∂µδA)2

)
, (3.10)

where we have defined

ε(r) ≡ − Ä

Ȧ2
. (3.11)

Therefore, transforming to Fourier modes, we need to solve the equation of motion

d

dr

(
edAε(r)

dδA

dr

)
− e(d−2)Aε(r) p2 δA = 0 (3.12)

with the boundary condition

δA(p, rUV) = δA0(p) (3.13)

and then compute the second derivative of the on-shell action with respect to δA0. Evalu-

ated on the equation of motion, only the term from integrating by parts in (3.10) survives,

and thus

Son-shell =
d− 1

2κ2

∫
ddx edA ε(r) δA∂rδA

∣∣∣
r→∞

. (3.14)

6In particular, the first two terms of the Ȧ expansion near the boundary cancel the first and third terms

in the counterterm action. This continues to higher orders.
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3.2 Matching and solution

It is now convenient to work with the conformal radial coordinate z ∈ (0,∞),

dr = −a(z)dz , eA(r) = a(z) , (3.15)

in terms of which

S =
d− 1

2κ2

∫
ddx dz ad−1(z)ε(z)((∂zδA)2 + (∂µδA)2) , (3.16)

and
d

dz

(
ad−1(z)ε(z)

dδA

dz

)
− ad−1(z)ε(z)p2δA(z) = 0 . (3.17)

The radial flow starts in the UV due to a source for a relevant operator or, in gravity,

language,

lim
z→0

φ(z) ≈ φ0
UVz

d−∆UV , (3.18)

with ∆UV < d. We also take ∆UV > d/2 to avoid subtleties with the alternate quantization.

In the IR this flows to an irrelevant operator of dimension ∆IR > d, and

lim
z→∞

φ(z) ≈ φ0
IRz
−(∆IR−d) . (3.19)

Regularity in the IR requires that there is no mode proportional to z∆IR . We take the UV

approximation to be valid for z . zUV, and the IR approximation good for z & zIR. We

will also treat zUV as a UV regulator, sending zUV → 0 after appropriate subtraction of

divergences. On the other hand, it is important that zIR, although much larger than the

mass scale of the dual RG flow, is finite.

We need to obtain ε(z) near the UV and IR regions. Close to the AdS regions, the

background equations of motion (2.7) give

ε(z) ≈ − d

2V
φ̇2 . (3.20)

Using

φ̇ ≈ −d−∆

L
φ0z

d−∆ , (3.21)

and recalling the relation (2.9) between V and the AdS radius, obtains

ε(z) ≈ ηz2(d−∆) , η ≡ (κφ0)2 (d−∆)2

d− 1
. (3.22)

For the warp factor, it is enough to retain the leading AdS behavior, a(z) ≈ L/z.

We note here one of the main differences with [36]. That work approximated ε ≈ ε0

in the UV and IR regions, taking ε0 → 0 at the end. From (3.22), this corresponds to

the limit ∆UV,IR → d. Therefore, that approach only applies to a flow triggered by an

almost marginal operator. Here we do not wish to impose this restriction, and hence we

will use (3.22) instead. In fact, we will find that the z dependence in (3.22) has important

consequences for establishing the holographic sum rule.
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We can now solve (3.17) in the asymptotic regions. In the UV and IR AdS regions,

(z1−2αδA′)′ − p2z1−2αδA = 0 , (3.23)

where primes denote derivatives with respect to z, and we have defined

α ≡ ∆− d

2
. (3.24)

The general solution is of the form

δA = (pz)α (c1Iα(pz) + c2Kα(pz)) . (3.25)

Note that α > 0 in the UV region due to (2.14); α is also positive in the IR, because the

operator becomes irrelevant as the flow approaches the fixed point. In the IR only Kα is

regular. We then have

δAUV(z) = (pz)αUV

(
21−αUV

Γ(αUV)
h0(p)KαUV(pz) + 2αUVΓ(1 + αUV)h1(p)IαUV(pz)

)
,

δAIR(z) = D1(p) (pz)αIR KαIR(pz) , (3.26)

with arbitrary momentum-dependent factors h0, h1 and D1. Here h0 is the boundary

source for Θ, and the goal is to determine h1/h0. We note for future use the expansions

for small pz in both limits,

δAUV(z) = h0(p) +

(
Γ(−αUV)

4αUVΓ(αUV)
h0(p) + h1(p)

)
(pz)2αUV + . . .

δAIR(z) =
Γ(αIR)

21−αIR
D1(p) +

Γ(−αIR)

21+αIR
D1(p) (pz)2αIR + . . . (3.27)

It is in general not possible to find an analytic solution for general momentum p.7

However, note that in order to evaluate (1.4) we only require the correlator for small

momentum up to order p2. This will imply a great simplification in what follows, and it

motivates looking for a solution in a perturbative expansion around p = 0.

For p = 0 we have the exact solution

δAp=0(z) = A2 +A1

∫ z dz′

ad−1(z′)ε(z′)
, (3.28)

which we use to construct a solution in powers of p2,

δApert(z) = A2(1 + p2g1(z) + . . .) +A1(f0(z) + p2f1(z) + . . .) . (3.29)

We have defined

f0(z) =

∫ z

zIR

dy

ad−1(y)ε(y)
, f1(z) =

∫ z

zIR

dy1

ad−1(y1)ε(y1)

∫ y1

zIR

dy2a
d−1(y2)ε(y2)f0(y2) (3.30)

7For some exact solutions in specific microscopic models see for instance [50, 51].
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and

g1(z) =

∫ z

zIR

dy1

ad−1(y1)ε(y1)

∫ y1

zIR

dy2a
d−1(y2)ε(y2) . (3.31)

Higher powers in p2 can be obtained recursively,(
fn(z)

gn(z)

)
=

∫ z

zIR

dy1

ad−1(y1)ε(y1)

∫ y1

zIR

dy2a
d−1(y2)ε(y2)

(
fn−1(y2)

gn−1(y2)

)
. (3.32)

The solution over all z can be found when the above expansions overlap. This happens

at small enough momentum, p zUV � 1 and p zIR � 1.8 In this regime we match (3.29)

with (3.26) and then obtain the consequence of the IR regularity condition on the UV

expansion. This matching procedure was introduced in [52]; see also [53, 54]. We start

from the IR. Note that we have defined all the integrals fi and gi in (3.29) to vanish at

z = zIR. Therefore, matching the two solutions and their derivatives,

δApert(zIR) = A2 = δAIR(zIR) ,

δA′pert(zIR) = f ′0(zIR)A1 = δA′IR(zIR) , (3.33)

and hence
A1

A2
=

1

f ′0(zIR)

δA′IR(zIR)

δAIR(zIR)
. (3.34)

Repeating the same procedure in the UV obtains

(f ′0 + p2f ′1 + . . .)A1 + (p2g′1 + . . .)A2 = δA′UV , (3.35)

(f0 + p2f1 + . . .)A1 + (1 + p2g1 + . . .)A2 = δAUV ,

and all functions are evaluated at z = zUV. Therefore,

δA′UV

δAUV

∣∣∣
z=zUV

=
(f ′0 + p2f ′1 + . . .)(A1/A2) + (p2g′1 + . . .)

(f0 + p2f1 + . . .)(A1/A2) + (1 + p2g1 + . . .)

∣∣∣
z=zUV

. (3.36)

with A1/A2 given by (3.34).

In summary, for a given boundary value h0, we find a unique solution in a series

expansion at small momenta, and this solution is regular in the IR. The ratio h1/h0 is

determined from (3.36).

3.3 Calculation of the stress tensor correlator

We are now ready to compute 〈Θ(x)Θ(0)〉. For the connected correlator9 we need the

quadratic term in the source h0:

Son-shell = −d− 1

2κ2

∫
ddp

(2π)d
ad−1(zUV)ε(zUV)

δA′UV(zUV)

δAUV(zUV)
h0(p)h0(−p)

∣∣∣
zUV→0

. (3.37)

8At the end of the calculation zUV → 0, so pzUV � 1 is straightforward. On the other hand, zIR is a

finite radial scale; for a given fixed zIR we have to choose momenta pzIR � 1.
9If O has an expectation value, there is an additional disconnected contribution that appears as a term

linear in h0.
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Then,10

〈Θ(p)Θ(−p)〉 =
d− 1

κ2
ad−1(zUV)ε(zUV)

δA′UV

δAUV

∣∣∣
zUV→0

(3.38)

and this is the quantity that we obtain from the matching solution (3.36). Noting that

ad−1(z)ε(z) = 1/f ′0(z), we arrive to

〈Θ(p)Θ(−p)〉 =
d− 1

κ2

(1 + p2f ′1/f
′
0 + . . .)(A1/A2) + (p2g′1/f

′
0 + . . .)

(f0 + p2f1 + . . .)(A1/A2) + (1 + p2g1 + . . .)

∣∣∣
z=zUV

. (3.39)

This is our final expression for the correlator of Θ(p) at small momentum, and is the main

technical result of the paper.

In order to understand the momentum dependence of this correlator, we expand (3.34)

for small p zIR, finding
A1

A2
∝ p2∆IR−d . (3.40)

Therefore, (3.39) contains terms that are nonanalytic in momentum (for generic ∆IR) of

the form p2∆IR−d(1 + p2 + . . .), together with terms that are analytic in p2. Let us focus

on the nonanalytic piece first,

〈Θ(p)Θ(−p)〉 = − 1

22αIR

Γ(1− αIR)

Γ(αIR)

(
(d−∆IR)L

d−1
2

IR φ0
IR

)2

p2∆IR−d + . . . (3.41)

Here φ0
IR is given in terms of the domain wall scalar φ(z) ≈ φ0

IRz
−(∆IR−d) at large z.

This behavior matches the prediction from the operatorial relation Θ(x) = βgO(x) for a

perturbation of the fixed point by a term in the action
∫
ddx gO(x), where ∆(O) = ∆IR.

Indeed, identifying the coupling with the holographic source, g = L
d−1
2

IR φ0
IR, the classical β

function is βg ≈ (∆IR − d)g, and hence

〈Θ(p)Θ(−p)〉 = β2
g 〈O(p)O(−p)〉 . (3.42)

So our result is in agreement with the dual CFT answer. In the opposite limit of large

momentum pzIR � 1, the perturbative problem is determined purely in terms of UV data:

the solution is dominated by the h0 term and no matching is needed up to exponentially

small corrections from h1. In this case we find (3.41) with the replacement αIR → αUV, in

agreement again with the operator relation Θ(x) = βgO(x) near the UV fixed point.

Let us now focus on the analytic terms. At the UV fixed point the contributions

analytic in p2 are contact terms and hence depend on the regularization scheme; in our

calculation we have chosen a specific regularization in terms of the holographic RG pre-

scription described before. However, having fixed the scheme at the UV, the analytic

terms become physical in the IR, and depend on global properties of the RG, which we

now explore.

At small momenta, the nonanalytic contributions from A1/A2 are subleading compared

to p2, because ∆IR > d. At leading order in p2 we then obtain

ad−1(zUV)ε(zUV)
δA′UV

δAUV
≈ p2 g

′
1(zUV)

f ′0(zUV)
= p2

∫ zUV

zIR

dz ad−1(z)ε(z) . (3.43)

10We are using the standard notation 〈Θ(p)Θ(−p)〉 =
∫
ddx eipx〈Θ(0)Θ(x)〉.
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From the point of view of the matching procedure, the p2 term is then dominated by

the first perturbative correction given by g1(z) in (3.29). This is another point where we

differ from [36], who focused on the p0 term.11 Taking this into account and using the

mathematcial identity ∫
ddxx2〈Θ(x)Θ(0)〉 = −∇2

p〈Θ(p)Θ(−p)〉
∣∣∣
p=0

(3.44)

obtains ∫
ddxx2〈Θ(x)Θ(0)〉 =

2d(d− 1)

κ2

∫ ∞
0

dz ad−1(z)ε(z) , (3.45)

where the factor of 2d comes from −∇2
p, the Fourier transform of x2, applied to p2. In

terms of the r variable introduced before,∫
ddxx2〈Θ(x)Θ(0)〉 =

2d(d− 1)

κ2

∫
dr e(d−2)A(r)

(
− Ä(r)

Ȧ(r)2

)
. (3.46)

Integrating by parts, we arrive to∫
ddxx2〈Θ(x)Θ(0)〉 =

2d(d− 1)

κ2

e(d−2)A(r)

Ȧ(r)

∣∣∣rUV

rIR
−2d(d− 1)(d− 2)

κ2

∫
dr e(d−2)A(r) . (3.47)

3.4 The holographic sum rule

Finally we are ready to establish the holographic sum rule. For d = 2, (3.47) gives the

c-theorem,∫
d2xx2〈Θ(x)Θ(0)〉 =

4

κ2

1

Ȧ(r)

∣∣∣rUV

rIR
=

4

κ2
(LUV − LIR) =

1

3π
(CUV − CIR) , (3.48)

where in the last step we used the standard d = 2 holographic relation C = (3/2)(L/G).

For d > 2, the first term in (3.47) is a UV divergence, while the second term is

proportional to the holographic entanglement entropy for a planar entangling surface. This

entropy is given by Abulk/(4G
(d+1)), with Abulk the area of a bulk (d − 1)-dimensional

minimal surface anchored in the (d − 2)-dimensional entangling surface in the boundary.

For a planar entangling surface the bulk minimal surface extends right in the r direction,

and the entropy is

S =
A‖

4G(d+1)

∫
dr e(d−2)A(r) . (3.49)

Using κ2 = 8πG(d+1) in (3.47) we have

− π

d(d− 1)(d− 2)

∫
ddxx2〈Θ(x)Θ(0)〉 =

S
A‖
− 1

4G(d+1)(d− 2)

e(d−2)A(r)

Ȧ(r)

∣∣∣
r=rUV

, (3.50)

giving a holographic realization of (1.4).

The second term on the right hand side gives a divergent boundary piece which exactly

cancels the leading divergent term in the area. This is necessary for consistency, since for

11Similar issues were identified in other contexts by [53, 54].
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∆ < (d+ 2)/2 the left hand side of (3.50) is finite, while the area is finite in this case once

the leading divergence is subtracted. The universal constant term does not get corrected

from this boundary term which only contains fractional powers of z for generic ∆. Powers

of z in the boundary term do not correct a logarithmic term when this is present in the

entropy. In this case the constant term does get corrected, but is not universal.

It is interesting to note that in this particular holographic cutoff given by zUV even the

divergent terms match between both sides of (3.50), and the match of divergent terms in

the entropy and the ones in the correlation function get corrected in a unique way by the

boundary term. Furthermore, the holographic formula (3.45) provides a unified answer for

the d = 2 c-theorem and the area theorem in d > 2.

4 Applications

In this section we explore some of the physical consequences and applications of the holo-

graphic sum rule (3.47), (3.50). In order to understand better the role of the holographic

regulator, in section 4.1 we compare the result from holographic regularization to the an-

swer in terms of the mutual information, which introduces a point-splitting regularization.

We next focus in section 4.2 on how unitarity — or its euclidean version, reflection pos-

itivity — of the boundary theory is encoded in the bulk. We will show that in the large

N limit reflection positivity is equivalent to stability of the gravitational action. We apply

this to the spectral density for Θ(x), and show how the NEC and regularity of the solution

give a unitary result. Motivated by possible relations to anomalies, section 4.3 explores the

structure of the pd term in the holographic stress tensor correlator, which is scale invariant.

We end in section 4.4 with some comments on more general matter sources.

4.1 Mutual information regularization

As discussed in section 1, a difficulty in implementing the sum rule (1.4) in QFT is that in

general both sides are divergent. On the other hand, we just found that holographic regu-

larization in terms of a cutoff at z = zUV makes the entanglement entropy and 〈Θ(x)Θ(0)〉
simultaneously well-defined, and provides a perfect match between such quantities in the

holographic sum rule. In order to understand better this ‘nice’ regulator, we now com-

pare it with the result in terms of the mutual information, which gives a point-splitting

regularization for the entanglement entropy.

Mutual information is a combination of entropies of three regions

I(A,B) = S(A) + S(B)− S(A ∪B) , (4.1)

for non intersecting A and B. Because the divergent terms are local and extensive on

the entangling surface, they cancel in this combination, and mutual information is regu-

larization independent in the continuum limit for any regions A and B. It can be used

as a regularization of entropy taking the limit when the entangling surfaces of A and B

are close to each other. This is analogous to framing regularization for Wilson loops. In

the present context we take as A and B two parallel planar entangling surfaces separated
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by a distance l. S(A ∪ B) corresponds to the entropy of a thin strip of width l. In the

holographic framework we then have

I =
1

4G(d+1)
(2Aplane −As) , (4.2)

where Aplane is the area of the minimal surface corresponding to a plane and As the one

corresponding to a thin strip.

We argue that the constant term in the entropy is the same as half the constant term

(or logarithmic term) for the mutual information, showing that these terms are universal

despite the possible presence of non analytic divergences. Essentially, the strip term does

not correct these universal terms. The general argument is simple. For sufficiently small

l, the strip minimal surface only tests the UV part of the bulk, where the metric can be

expanded as the AdS metric plus corrections which are given by a series of powers in the

coordinate z, starting with z2(d−∆). The calculation of the minimal surface and the area

of the strip is perturbative in these corrections of the metric, and as a result the area

is also given as a power series in the UV cutoff δ and the strip width l. The divergent

terms in powers of δ must exactly cancel those of 2Aplane in (4.2) producing a finite mutual

information. The rest of the strip contribution can be organized as a power series in l.

For generic values of ∆ the powers of l are either smaller than zero, contributing to the

divergent terms in the mutual information as a function of l, or positive powers, which

can be neglected in the small l limit. Then the constant term does not get modified from

the one provided by Aplane. This, in contrast to the strip term, contains information on

the whole RG running and the metric deep in the bulk. For some special values of ∆

we could in principle get a z0 term in the area of the strip. However, the area is some

integral over z, and a zero power comes as a result of
∫
dz/z, giving a logarithmic term

instead. In this particular case, the logarithmic term must come in a combination log(l/δ)

because the integral in z runs from a UV cutoff δ to some maximal reach of the minimal

surface in the bulk which is proportional to l. Again, the log(δ) must be cancelled by the

logarithmic term in 2Aplane. As a result, the logarithmic log(δ) term in the entropy has

exactly the same coefficient as the log(l) term in the mutual information. In the presence

of a logarithmic term, this coefficient is universal, while the constant term is not.

Let us make a simple calculation to illustrate this idea, expanding the metric near the

boundary to the first subleading power and computing the strip entropy up to this order.

Depending on the spacetime dimension and the particular powers appearing in the metric

expansion one should carry on the expansion to higher order terms. However, our point

is that no corrections to the constant term appear in the strip term for generic values of

the powers, and our calculation will be enough to illustrate this. A similar calculation was

carried out in [33].

The dependence of As on the width l of the strip is obtained by solving

As = 2Ld−1
UV A‖

1

z̃∗(d−2)

∫ 1

δ/z̃∗
dv

1

vd−1

1√
f(z̃∗v)

√
1− v2(d−1)

, (4.3)

l = 2z̃∗
∫ 1

0
dv

vd−1√
f(z̃∗v)

√
1− v2(d−1)

. (4.4)
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Figure 1. Strip geometric set-up: the strip s is the region between the two planes represented by

two discontinuous lines. The planes extend along the {x2, x3, . . .} coordinates and are separated

along the x1 coordinate a distance l, the strip width. z̃ is the bulk radial coordinate and z̃∗ is the

maximum reached by As, the bulk minimal-area-surface that is homologous to s. δ is a UV-cut-off

and A‖ is the area of the planes.

Here δ is an UV-cut-off, A‖ is the area of the planes defining the strip, and z̃∗ is the

maximum in the z̃ bulk radial coordinate reached by As, see figure 1. f(z̃) defines the

generic bulk metric12

ds2 =
L2

z̃2

(
dx2 +

dz̃2

f(z̃)

)
,

and describes the behavior of the d-dimensional boundary theory under the RG flow.

We solve for As(l) in the limit ml� 1, were m is the scale characterizing the leading

relevant perturbation of the UV fixed point. In the bulk geometry, this corresponds to the

limit where As only probes the near AdS geometry given by

f(z) = 1 + (mz̃)2ν + . . . , (4.5)

with ∆ = d − ν < d, the conformal dimension of the operator carrying the leading UV

deformation. Specifically, we solve (4.3)–(4.4) at order (mz̃∗)2ν ∼ (ml)2ν � 1. From (4.4)

and (4.5) we have

z̃∗ =
l

2a

(
1 +

b

4νa2ν+1
(ml)2ν + . . .

)
, (4.6)

with

a =

∫ 1

0
dv

vd−1√
1− v2(d−1)

=
√
π

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

) ,
b =

1

2

∫ 1

0
dv

vd−1+2ν√
1− v2(d−1)

=

√
π

2(1 + 2ν)

Γ
(
d+2ν

2(d−1)

)
Γ
(

1+2ν
2(d−1)

) .

12For convenience we have changed coordinates dz̃√
f(z̃)

= dz with respect to the z coordinate used in

previous sections.
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At the same order, we get from (4.3)

As/(2L
d−1A‖) =

= − a

d− 2

1

z̃∗(d−2)
− 1 + 2ν

2− d+ 2ν
b
(mz̃∗)2ν

z̃∗(d−2)
+

1

d− 2

1

δd−2
− 1

2

(mδ)2ν

(d− 2− 2ν)δd−2
+ . . . (4.7)

= −2d−2

d−2

ad−1

ld−2
+

d− 1

d− 2− 2ν
(2a)d−2−2νb

(ml)2ν

ld−2
+

1

d−2

1

δd−2
− 1

2

(mδ)2ν

(d− 2− 2ν)δd−2
+ . . . ,

where we used (4.6) in the last line. When forming the mutual information Is the last two

terms in (4.7) exactly cancel the UV-divergent terms contained in Aplane, which is 4G(d+1)

times the entanglement entropy of the half space. We then have

4G(d+1)Is =
2d−2

d− 2

ad−1

ld−2
− d− 1

d− 2− 2ν
(2a)d−2−2νb

(ml)2ν

ld−2
+ . . . (4.8)

We see that the strip entanglement entropy has a power series expansion determined

by the powers appearing in the metric expansion. For generic powers it will not contain a

constant term in limit l→ 0. Then, any constant term appearing in the mutual information

of the strip comes entirely from the entanglement entropy of the half space.

4.2 Holographic analysis of reflection positivity

The holographic formula (3.38) gives the two-point function for the stress-tensor trace in

terms of the ratio δA′/δA near z = 0. This is in turn fixed by imposing regularity in the

IR. From the field theory side, the two-point function has to be consistent with unitarity,

and we would like to understand how this appears in the gravity side. We will first prove

in general that unitarity of the large N QFT requires stability of the classical gravitational

action under bulk perturbations. We will then focus on the stress tensor correlator derived

before, verifying that the NEC together with regularity of the solution give a unitary result.

Consider a local operator O(x) in QFT. The Euclidean correlation function in a unitary

theory satisfies reflection positivity (RP)∫
ddx ddy α∗(x̄)〈O(x)O(y)〉α(y) ≥ 0 , (4.9)

where α(x) is any smooth test function with support in the upper half of Euclidean space

x0 > 0, and x̄ = (−x0, x1, . . . , xd−1). Then α∗(x̄) has support on the lower plane. When

the QFT has a holographic dual, the on shell Euclidean action in presence of a source φ0

at the AdS boundary reads

S(φ0) = −1

2

∫
ddx ddy φ0(x)〈O(x)O(y)〉φ0(y) + . . . . (4.10)

where we have omitted divergent terms that make this action positive. Note that (4.10)

involves the correlators at coincident points while (4.9) does not.

We want to find the conditions that ensure the RP property in holographic models.

In order to see this let us choose φ0
1 and φ0

2 to have support for x0 > 0, and let φ0
11̄

(x) =

– 19 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
3

φ0
1(x)+φ0

1(x̄), φ0
22̄

(x) = φ0
2(x)+φ0

2(x̄), φ0
12̄

(x) = φ0
1(x)+φ0

2(x̄), and φ0
21̄

(x) = φ0
2(x)+φ0

1(x̄).

We have

S(φ0
12̄) + S(φ0

21̄)− S(φ0
11̄)− S(φ0

22̄)

=

∫
ddx ddy (φ0

1(x̄)− φ0
2(x̄))〈O(x)O(y)〉(φ0

1(y)− φ0
2(y)) ≥ 0 (4.11)

by reflection positivity. Then RP requires this particular inequality for the action as a

function of the boundary conditions.

In order to prove this relation consider the action S(φ0
12̄

). This is the bulk action of

a bulk field φ12̄(x, z) which has boundary condition limz→0 φ12̄(x, z) = φ0
12̄

(x). The bulk

action is local, and we can write it as a sum of two terms, S+
12̄

and S−
12̄

, corresponding to

the actions for x0 > 0 and x0 < 0,

S(φ0
12̄) = S(φ12̄) = S+

12̄
+ S−

12̄
. (4.12)

Analogously, we have

S(φ0
21̄) = S(φ21̄) = S+

21̄
+ S−

21̄
. (4.13)

By symmetry under Euclidean time reflection the time reflected solutions φ12̄ and

φ21̄ coincide at x0 = 0, i.e., φ12̄(x0 = 0, ~x, z) = φ21̄(x0 = 0, ~x, z). Hence we can take a

continuous bulk field given by ψ11̄ = θ(x0)φ12̄ + θ(−x0)φ21̄ that has boundary condition

φ0
11̄

. This is not a solution of the equations of motion for these boundary conditions, and

we expect that the action is minimized by the solution of the equations of motion φ11̄ with

these same boundary conditions. Then we have

S(ψ11̄) = S+
12̄

+ S−
21̄
≥ S(φ0

11̄) . (4.14)

Analogously, defining ψ22̄ = θ(x0)φ21̄ + θ(−x0)φ12̄ we have

S(ψ22̄) = S+
21̄

+ S−
12̄
≥ S(φ22̄) . (4.15)

Combining (4.12)–(4.15) we get RP, equation (4.11). This argument may fail for higher

derivative Lagrangians, reflecting potential violations of unitarity in these theories.

It is interesting that RP is warranted by the stability of the bulk solution, or in other

words, the fact that the bulk solution for a given boundary condition should be an absolute

minimum of the action. This stability is expected to hold in physically motivated models,

while fully proving it in detail for a specific case may be challenging.

This proof of RP is similar to the proof of strong subadditivity of holographic en-

tropy [55], though details differ, i.e., the role of Euclidean time reflection symmetry (anal-

ogous to CPT symmetry in Minkowski space) in the present proof. For the case of Wilson

loop operators whose holographic dual is given by minimal surfaces, or fields with large

dimension such that the bulk solution for point like insertions at the boundary is given

by geodesics, reflection positivity follows, in a completely analogous way, from the triangle

inequality for the minimal area (or length) of the bulk geometric object [56].
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Let us now turn to a more detailed discussion of unitarity for the stress tensor correla-

tor. In momentum representation, RP is equivalent to the positivity of the spectral density

ρ(m2) in the spectral representation of the correlator of stress tensors [2]

〈Θ(p)Θ(−p)〉 =

∫ ∞
0

dmρ(m2)
p4

p2 +m2
. (4.16)

To make contact with (3.38) this expression is subject to subtraction of a polynomial

expansion around p2 =∞ to eliminate UV contact terms.

The spectral density can be extracted from this expression as the imaginary part

ρ(m2) =
1

πm3
=〈Θ(p)Θ(−p)〉|p2=−m2−iε . (4.17)

This is insensitive to analytic terms, in particular to contact terms.13 According to (3.17)

we have to consider now the equation for negative −p2

d

dz

(
ad−1(z)ε(z)

dδÃ

dz

)
+ ad−1(z)ε(z)p2δÃ(z) = 0 , (4.18)

and compute [see (3.38)]

ρ(p2) =
d− 1

πp3κ2
ad−1(z)ε(z)= ∂zδÃ

δÃ

∣∣∣
z→0

. (4.19)

Let us assume the NEC, such that ad−1(z)ε(z) > 0 everywhere except possibly at z = 0.

This implies that radial evolution for δÃ(z) is regular.

Since the fluctuation δÃ(x) is real, its Fourier components obey δÃ∗p = δÃ−p. The

spectral density may then be rewritten as

ρ(p2) =
d− 1

πp3κ2

1

|δÃp|

{
1

2i
ad−1(z)ε(z)

(
δÃ∗p∂zδÃp − δÃp∂zδÃ∗p

)} ∣∣∣
z→0

. (4.20)

Let us normalize the solution such that |δÃp| → 1 as z → 0. The spectral density is thus

the flux of probability for δÃ (interpreting the radial direction as time evolution). This

flux is conserved by the equation of motion,

∂z

[
ad−1(z)ε(z)

(
δÃ∗p∂zδÃp − δÃp∂zδÃ∗p

)]
= 0 . (4.21)

As a result, the spectral density may be evaluated at any z.

Calculating the flux for sufficiently large z, where the expansion for δÃIR in (3.26)

holds,14 obtains

=(δÃ∗p∂zδÃp) =
2

π
|D1(p)|2p2αIRz2αIR−1 . (4.22)

Here D1(p) is the constant factor in the IR solution (3.26) that is determined through the

matching procedure in terms of the boundary source h0(p). Adding the dependence from

13This is equivalent to computing the Wightman correlator in Minkowski space in momentum space.
14The analytic continuation from the euclidean solution gives δÃp(z) ∝ i(pz)αH(1)

α (pz).
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the warp factor and ε(z) in the far IR limit, we arrive to our final result for the spectral

density

ρ(p2) =
2

π2
((∆IR − d)L

(d−1)/2
IR φ0

IR)2 |D1(p)|2p2∆IR−d−3 . (4.23)

Here φ0
IR determines the approach to the IR AdS solution in (3.19); in QFT language,

(∆IR − d)L
(d−1)/2
IR φ0

IR is the β function for the leading irrelevant operator that dominates

the flow towards the IR fixed point.

The spectral density (4.23) is positive definite, so this establishes the RP property of

the stress tensor correlator in the holographic model. Therefore, the NEC together with

regularity in the IR ensure that the two-point function of Θ(x) is unitary. Of course, a

further assumption is that ρ(p2) exists and is finite as the limit z → 0 is taken in (4.20).

Given this, it is interesting to ask how the unitarity bound ∆UV > (d− 2)/2 could be

seen in the stress tensor correlator. In this work we have restricted to ∆UV > d/2, namely

the standard quantization; this is stronger than the unitarity bound, which hence does not

appear as a further restriction on the gravity solution. We could naively (and, as it turns

out, incorrectly) extrapolate our formulas to ∆UV < d/2, finding a divergent answer for the

spectral density from the limit z → 0. However, this is not correct because the alternate

quantization ∆UV < d/2 requires a different boundary value problem in terms of Neumann

boundary conditions [57]. It will be interesting to extend our analysis to RG flows with

∆UV < d/2, something that we hope to address in the future.

4.3 Structure of the pd term

Using (3.39) we may also investigate the next terms in the expansion for low momentum

of the correlation function of Θ. The first non integer power of p comes from the term
A1
A2
∝ p2∆IR−d in (3.39). Since ∆IR > d the expansion is in terms of integer powers of p2

up to pd. In particular in even dimensions the interesting dimensionless quantity∫
ddxxd〈Θ(x)Θ(0)〉 = (−1)d/2(∇2

p)
d/2〈Θ(p)Θ(−p)〉|p=0 (4.24)

is given by purely geometric integrals in holographic theories. This quantity has been

analyzed in the past in connection to RG irreversibility [3–6].

The term proportional to pd is determined by expanding

〈Θ(p)Θ(−p)〉 ≈ d− 1

κ2

1

f ′0

p2g′1 + p4g′2 + . . .

1 + p2g1 + p4g2 + . . .

∣∣∣
z=zUV

. (4.25)

For instance in d = 4 the coefficient of p4 is

3

κ2

1

f ′0
(g′2 − g1g

′
1) =

3

κ2

∫ zIR

zUV

dy1
1

a3(y1)ε(y1)

(∫ y1

zIR

dy2 a
3(y2)ε(y2)

)2

. (4.26)

This is positive and UV and IR finite for generic flows. However, this dimensionless quantity

is not a boundary term. Hence it depends on the details of the flow and does not reduces

to a difference of anomalies between fixed points in general. In [3–6] it is claimed that this

is proportional to the change of the a anomaly between fixed points for marginally relevant
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flows. A similar statement is made in [36] in the limit of “slow roll” solution for the domain

wall. We were not able to find evidence in support of these claims from (4.26), although

it would be interesting to understand, in our framework, the simplifications entailed by

nearly marginal flows.

4.4 Comments on more general matter sectors

So far we have studied RG flows that are described holographically in terms of a single

scalar field with canonical kinetic term and a potential V (φ) with two AdS critical points.

Nevertheless, the result for the stress tensor two-point function should hold more generally,

for instance in the presence of multiple scalars or with small higher derivative terms — as

long as unitarity is maintained. Here we will comment briefly on some of the new issues

that arise for more general matter sectors, and suggest a possible method of analysis which

we hope to apply in future work.

Let us focus for simplicity on the case of multiple scalar fields, corresponding to turning

on many relevant deformations of the UV fixed point. The perturbative expansion around

CFTUV will be dominated by the most relevant deformation, but as the flow proceeds

we expect a rather complicated dynamics involving the other deformations as well. The

approach to CFTIR will be dominated by the leading irrelevant operator. Holographically,

we have a domain wall describing a trajectory in field space that interpolates between a

local maximum and a minimum of V (φ). The goal is to compute the 〈Θ(x)Θ(0)〉 in this

background.

Einstein’s equations are similar to (2.7), after including the total kinetic and potential

energy contributions of all the scalars. On the other hand, the scalar field equations of

motion are now independent from the gravitational equations (except for one). Let us then

analyze these new equations at the linearized level, as needed for the stress-tensor two

point function. The starting point is the scalar equation in the presence of the lapse and

shift functions N and Nµ:

∂r

(√
hNN−2(φ̇i −Nµ∂µφi)

)
+ ∂µ

(√
hN [−N−2Nµ(φ̇i −Nν∂νφi) + ∂µφ]

)
=
√
hN

∂V

∂φi
.

(4.27)

Linearizing this equation for N(x, r) = 1 + δN(x, r), Nµ(x, r) = δNµ(x, r), φi(x, r) =

φi(r) + δφi(x, r) obtains

δφ̈i + (d ˙δA− ˙δN)φ̇i + dȦ δφ̇i − φ̇i∂µδNµ +�δφi − 2
∂V

∂φi
δN − ∂2V

∂φi∂φj
δφj = 0 . (4.28)

The main issue with extending our approach of section 3 to this case is that it is no

longer possible to choose a gauge where all scalar fluctuations vanish. To see this, proceed

by contradiction and assume that δφi = 0; δN and δNµ are the same as before, and

then (4.28) evaluated on δφi = 0 gives(
φ̈i − φ̇i

∑
j φ̇jφ̈j∑
j φ̇

2
j

)
˙δA = 0 . (4.29)
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This is trivial for a single scalar field — showing that the gauge δφ = 0 is consistent — but

the equation cannot be satisfied for multiple fields. We conclude that with many scalar

fields a metric fluctuation δA will source fluctuations δφi, and these will contribute to the

stress-tensor two-point function.

In order to incorporate these and other more general effects, it seems useful to think

in terms of an arbitrary matter energy-momentum tensor TMN in the bulk. The linearized

Einstein’s equations will then include density, pressure, momentum and stress fluctuations

from TMN . A natural extension of section 3 to these general ‘fluids’ is to choose the

uniform density gauge δρ = 0. In fact, a similar situation arises in cosmology with multiple

inflatons; see e.g. [58] for a recent review. We expect that by imposing the NEC on TMN ,

together with the positivity constraint of section 4.2, the holographic sum rule will hold.

We hope to return to this point in the future.

5 Conclusions and future directions

In this work we have calculated the stress tensor two-point function 〈Θ(x)Θ(0)〉 for holo-

graphic renormalization group flows between pairs of conformal field theories. Imposing

regularity in the bulk interior and matching onto the UV fluctuation, we obtained the

two-point function in a series expansion at small momenta, eq. (3.39). This result is valid

for general scalar potentials, with the coefficients of the series determined in terms of the

background warp factor and its derivatives. We showed that the leading p2 term gives

the change in the central charge for d = 2, while in d > 2 it reproduces the entanglement

entropy for a planar surface. This provides a holographic realization for the result in [13].

Finally, we showed in general that reflection positivity of the boundary QFT requires stabil-

ity of the gravitational action under bulk perturbations. For the class of models considered

here, this is implied by the NEC and regularity of the solution.

Let us end by summarizing some future directions of research motivated by these

results. First, it would be very interesting to extend holographic RG flows and the calcu-

lation of the stress tensor two-point function to more general matter sectors. As discussed

briefly in section 4.4, it may prove useful to formulate the problem directly in terms of

perturbations of the energy momentum tensor, as done in cosmology. Even at the level

of a single two-derivative scalar field, there remains the question of flows with the alter-

nate quantization, and how the transition to the standard quantization occurs due to the

domain wall.

Another direction involves studying cases with spontaneous conformal symmetry

breaking. This may be related to a different issue worth studying: the role of improvement

terms in the bulk and how they modify the stress tensor correlator and the entanglement

entropy. The holographic sum rule may also have implications for inflationary models con-

necting de Sitter solutions. Finally, it would be interesting to incorporate corrections to

both sides of the sum rule, both from 1/N and gs effects.
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