PRL 102, 066402 (2009)

PHYSICAL REVIEW LETTERS

week ending
13 FEBRUARY 2009

Dynamical Mean Field Theory of an Effective Three-Band Model for Na,CoO,

A. Bourgeois,1 A A. Aligia,2 and M. J. Rozenberg1

"Laboratoire de Physique des Solides, Université Paris-Sud, CNRS UMR-8502, 91405 Orsay cedex, France
2Centro Atémico Bariloche and Instituto Balseiro, Comisién Nacional de Energia Atomica, 8400 Bariloche, Argentina
(Received 22 October 2008; published 12 February 2009)

We derive an effective Hamiltonian for highly correlated 1, states centered at the Co sites of Na,CoO,.
The essential ingredients of the model are an O mediated hopping, a trigonal crystal-field splitting, and on-
site effective interactions derived from the exact solution of a multiorbital model in a CoQOq cluster, with
parameters determined previously. The effective model is solved by dynamical mean field theory. We
obtain a Fermi surface and electronic dispersion that agrees well with angle-resolved photoemission
spectra. Our results also elucidate the origin of the ‘““sinking pockets” in different doping regimes.
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The construction of the appropriate low-energy Hamil-
tonian to describe a highly correlated system is a crucial
task for an advance in its physical understanding. A clear
example is the case of the superconducting cuprates. The
starting point for the description of those materials is a
three-band model containing the most relevant Cu and O
orbitals. The parameters of that model were determined by
constrained-density-functional theory [1]. On the basis of
the exact solution of the multiband model in a CuO, cluster
(containing one Cu atom and its four nearest neighbors),
Zhang and Rice suggested that the essential low-energy
physics of the model is captured by a one-band model con-
taining only effective Cu orbitals [2]. This has been con-
firmed by systematic derivations of the ensuing one-band
Hubbard and 7-J models [3,4]. These models have led to
considerable progress in the understanding of the high-T.
cuprates. Similar low-energy effective models were de-
rived and used successfully to explain the properties of
nickelates [5,6] and other transition metal oxides [7].

In the cobaltates Na,CoO, a consensus has not yet
been reached on the appropriate low-energy effective
Hamiltonian, as different approaches have provided con-
flicting results. The cobaltates present a clear-cut example
of strong correlation effects, not only by its rich phase
diagram that includes a charge ordered insulator and a
superconducting state, but also by the complete failure of
the ab initio band-structure calculations to describe the
shape of the Fermi surface (FS) measured in angle-
resolved photoemission spectra (ARPES) experiments
[8,9]. First-principles calculations done in the local-density
approximation (LDA) [10] predicted a FS with six promi-
nent hole pockets along the I'-K direction, which were
never detected in photoemission. In addition, the ARPES
experiments have revealed the presence of dispersive fea-
tures at the momenta positions where those pockets were
expected, but they were observed at about 0.2 eV beneath
the FS. Thus, they were termed “‘sinking pockets’” and are
still awaiting a clear physical interpretation.

Initial theoretical progress was seemingly achieved by
Zhou et al. [11] who included correlation effects on top of a
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tight-binding model fit to the band structure from first-
principles calculations in the LDA [10]. They showed
that correlation effects may in fact wipe out the pockets
by reducing the bandwidth of the bands crossing the Fermi
energy. However, the approach of Zhou et al. relied on a
simplified static Gutzwiller approximation where the
rather unrealistic assumption of an infinite strength for
the local effective #,, Coulomb repulsion U is made. In a
different approach to the problem, Ishida et al. [12] used
the more elaborate dynamical mean field theory (DMFT)
methodology to treat the correlation effects, on top of a
similar LDA-derived tight-binding Hamiltonian. The main
finding of that work was the prediction that the effect of
finite U is, in marked contrast to the Gutzwiller approxi-
mation, to actually increase the size of the LDA pockets
that get stabilized by e, — a,, charge transfer.

Marianetti et al. [13], using a DMFT calculation similar
to Ishida et al., found that the pockets can be made to
disappear for sufficiently large values of U (above 6 eV),
which explained their absence in the infinite U calculation.
Although for realistic values of U the pockets still re-
mained, those authors also pointed out that using the e}, —
a, crystal-field splitting as a free fitting parameter they
could eventually be made to disappear. More recently,
Liebsch and Ishida [14] critically discussed the various
previous approaches that were based on the LDA band
structure as the starting point for the calculation of corre-
lation effects. They concluded that, at values U ~ 3 eV
which they considered realistic, the presence of pockets in
the Fermi surface is always predicted. They argued that this
feature, which is in conflict with ARPES data, is robust
with respect to the details of the LDA fits and to the form of
the interaction term.

A simple-minded identification of the LDA conduction
bands as the relevant manifold where correlations are to be
included (as in LDA + DMFT) may not be fully justified
when systems have a strong covalent character, as is the
case of the cobaltates. In particular, it was shown that the
above procedure fails in NiO, and agreement with experi-
ments in LDA + DMFT calculations is only achieved once
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the O bands are explicitly included in the model [15].
Interestingly, the results of that approach also agree with
results from effective models where the O atoms have been
integrated out using low-energy reduction procedures that
take into account correlations from the beginning [5,15].

We propose to address the problem of the low-energy
description of the band structure of the cobaltates by taking
a different approach and altogether leave the LDA as the
starting point of our calculation. Thus, in this Letter we
perform a low-energy reduction to derive an effective
Hamiltonian Hg that includes the determination of effec-
tive local interactions, and then study its physical behavior
using DMFT. The derivation of H.y follows the ideas of
previous research in the cuprates which used the cell-
perturbation method [3] and nonorthogonal Zhang-Rice
singlets [2,4] constructions. Basically, the procedure is to
divide the system in different cells that are solved exactly,
and retain their lowest energy states. Then, one includes
the intercell terms along with the effect of the other states
as perturbations to this low-energy subspace. The resulting
effective Hamiltonian differs substantially from those pre-
viously adopted. In particular, our calculated value of U is
significantly smaller, again raising questions on the justi-
fication of the assumption of an infinite value for the
Coulomb interaction made in Gutzwiller-type approaches.
This observation also applies to a recent Gutzwiller
density-functional calculation that reports good agreement
with ARPES data, in which U = 3-5 eV was assumed
[16].

We start from the exact solution of a CoOg cluster model
containing all 3d orbitals of a Co atom and all 2p orbitals
of its six nearest-neighbor O atoms, assuming cubic (O;,)
symmetry and neglecting spin-orbit coupling. All interac-
tions inside the 3d shell are included [17]. The parameters
were determined fitting x-ray-absorption spectroscopy ex-
periments and its polarization dependence [17]. The results
show a large Co-O covalency and an intraorbital repulsion
U, = 4.5 eV, larger than the Co-O charge-transfer energy.
The subscript m refers to the original multiband model, to
distinguish U,, from the corresponding repulsion U of the
effective model, which, as shown below, is strongly re-
duced due to Co-O covalency. We recall that in the cup-
rates, U,, ~ 10 eV [1], while in their effective low-energy
one-band Hubbard model U ~ 3 eV [3].

The effective model H. is obtained mapping the ground
state of the CoOg cluster with four holes onto the on-site
vacuum of Hg (no t,, holes at a Co site, i.e., Co’™), and
the sixfold degenerate (spin doublet and orbital triplet)
ground state for five holes onto the corresponding states
with one #,, hole of H,g. Details of the mapping are given
in Ref. [18]. We remark that Co’" and Co*' in H.y
actually represent highly correlated states with a Co va-
lence near 2.04 and 2.56, respectively [17]. The “‘noninter-
acting” part of H. = Hy + H; can be written as

Ho=3 3 (7, + 18,40 + Doe8:)dlyydirer (1)

Lj a0

where d:rw creates a hole in the 7,, orbital a (xy, yz, or zx)

with spin o at site i. However, physically this operator
represents a nontrivial excitation of the same symmetry,
which also involves 3d e, orbitals of Co and 2p orbitals of
nearest-neighbor O sites. ¢ and ¢ correspond to the direct
Co-Co hopping and to that mediated by O 2p,. orbitals,
respectively. The latter is the most important one and has
been calculated before using many-body eigenstates of the
CoOg cluster [18]. Finally, D accounts for the trigonal
crystal-field splitting A = 3D between e}, and a,, orbitals.
We take it from quantum-chemistry configuration-
interaction calculations [19]. These are the most reliable
methods to determine crystal-field excitations. Inciden-
tally, it is known that while the LDA may provide a good
description of the ground-state, it does not get the energy
of excited states right. Therefore it is not expected to
provide accurate values for D in a highly correlated sys-
tem. Note that although H|, has the form of a noninteracting
Hamiltonian, the derivation of its parameters already in-
volves many-body calculations [18,19]. In fact, similarly
as in the studies of cuprates, most of the original Co on-site
interaction is already included in the derivation of H g
through the diagonalization of the CoOg cluster.
The interacting part of H is

Hj = Hi;
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where the interaction parameters were calculated from the
comparison between the energy of adding two holes in the
same CoQOg cluster with given symmetry and spin, or in
different clusters. The eigenvalues of Hi with two holes
should coincide with the corresponding lowest energy
levels for six holes in the cluster. The resulting parameters
of the model become ¢t = 0.10 eV, D = 0.105 eV, U =
1.86 eV, U' =127¢eV,J =0.35¢V, and J' = 0.17 eV.
To our knowledge, this the first time that a calculation of
the interaction terms is reported in this system. Note that
the values of the U parameters are smaller than those used
in previous calculations [11-13], but are still much larger
than the bandwidth. We took # = 0.02 eV, which provides
the best agreement with experiment; however, our main
results are not affected by the specific chosen value.

Here we solve H; using the DMFT [20]. The associated
quantum impurity problem is a three-orbital Anderson
impurity that is solved using the Hirsch-Fye quantum
Monte Carlo (QMC) algorithm [21]. Because of the sym-
metry of the band structure of H,, the DMFT quantum
impurity problem, its corresponding self-consistency con-
straint (Dyson equation), and local self-energies 0T are
diagonal in orbital and spin indexes. In order to obtain the
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FIG. 1 (color online). (a) Calculated FS for dopings x = 0.3
and x = 0.7 [inner (hole) edge of larger and smaller hexagon,
respectively]. (b) ARPES measurements from [8].

momentum and energy resolved Green’s functions, the
local self-energies have to be analytically continued to
the real frequency domain. Thus, we obtained high quality
QMC data using over 10° sweeps to reliably perform the
continuation by means of a standard maximum entropy
method [22]. In the calculations presented here, J' and the
spin flip terms in Eq. (2) were neglected. This simplifica-
tion introduces tiny modifications in the results [ 14]. Thus,
we adopt the interaction parameters U, , = U = 1.86 eV
for the intraorbital repulsion, and U7, 7 = U’ = 1.27 eV
and U7, = U' —J = 0.92 eV for the interorbital repul-
sions with opposite or the same spin, respectively.

The predicted band structure is then obtained from the
imaginary part of the lattice Green’s functions given by
Gok, 0) = [0 — €, — ZPMT(w)]™1, and the Fermi
surface is mapped out from the w = 0 crossings of the
interacting bands.

For reasons of space, the data displayed in the figures are
for doping x = 0.3 and 0.7, ranging from stronger to
weaker correlations. Because of their high computational

cost, the lowest temperature that we study is 7 = 360 K.
Comparison with calculations at higher temperatures
(~720 K) indicates that we have indeed achieved the low
T limit. In addition, as will be shown later, the width of the
quasiparticle band at the Fermi energy, which is the small-
est energy scale in the electronic structure, is much larger
than the temperature of the calculation.

In Fig. 1 we show our results for the evolution of the FS
as a function of increasing doping along with the respective
experimental ARPES data. We observe good agreement in
the shape and size of the FS. Significantly, the hole pockets
are absent in our results. The experimental FS for x = 0.3
is somewhat more rounded than the theoretical one. This
may partially be due to the relatively large thermal broad-
ening in the calculation, but may also be due to lack of
hopping terms at longer distances, beyond those included
in H, 0-

The details of the band structure are shown in Fig. 2. We
observe that the data reveal several contributions that can
be associated with either coherent (i.e., quasiparticlelike)
or incoherent (i.e., Hubbard) bands. The incoherent bands
are characterized by dispersive structures similar to those
of the ‘“‘noninteracting”” Hamiltonian H, (though usually
less defined due to shorter lifetimes) that appear far from
the Fermi energy. These large energy shifts are of course
due to the local interactions of H.g [Eq. (2)]. In the top left-
hand panel of Fig. 2 we show the full band structure for the
strongly correlated case x = 0.3. There, one can observe
several incoherent bands that appear shifted down in en-
ergy, at ~— 1, —1.75, and —3 eV, with the first one
carrying a large part of the spectral intensity. Their shapes
reveal their dominant orbital content, and their energy
shifts can be understood from the values of the interorbital
and intraorbital Coulomb repulsions. At higher dopings,
the correlation effects decrease and these incoherent bands
rapidly lose spectral intensity. On the other hand, the

FIG. 2 (color online). (a) Full band
structure for x = 0.3. The x = 0.3 and

x = 0.7 cases are detailed in (b) and
(d), respectively, where the structures in
the dispersion corresponding to the sink-
ing pockets are highlighted by a box.

(c) Sinking pockets for various dopings,
with comparison to LDA [8].

@
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coherent bands are near the Fermi energy and their band
structure is somewhat narrowed with respect to that of H
[Eq. (1)] due to the effect of H; [Eq. (2)], indicating the
enhancement of the effective mass.

The top right-hand panel of the figure shows details of
the band structure at x = 0.3 and, for comparison with the
less correlated case, the lower right-hand panel shows
similar data for x = 0.7. Interestingly, these results reveal
a novel insight on the nature of the “sinking pockets,”
whose experimental data we reproduced in the lower left-
hand panel. We find that while the sinking pockets are
present at both low and high dopings (they are indicated
by boxes in the respective panels), their physical origin is
qualitatively different. At higher x, correlations are low and
the band structure does not differ much from the noninter-
acting case. Thus, the sinking pocket in this case can be
simply associated to the top of the band with mostly e}
character. In contrast, at x = 0.3 (the strong correlation
case), the band structure is dramatically modified and that
interpretation is no longer possible. In fact, the strongest
contribution to the e}, band is shifted down in energy by
about 1 eV. This shift is due to the interorbital Hubbard
repulsion, and can be more easily understood in a hole
picture. As there is about one hole in the a;, band, putting a
second hole costs U, 4, ~ 0.92-1.27 €V if the hole goes
into the e’g band [or U441, ~ 1.86 €V into the a;, band
[see Fig. 2(a)]. However, in the ground state there is also a
non-negligible amplitude for a configuration with no holes
in the a;, band; thus, one may create a hole in the original
e, band with no extra Coulomb energy cost. Such a state
would have a reduced spectral intensity but a similar
dispersion as that of the noninteracting e, band, thus
accounting for the sinking pocket. This is confirmed by
our calculations on the weight of the states with different
symmetries in the coherent bands (not shown). A clear
signature of this sinking pocket state is indicated by a
box in our numerical data Fig. 2(b). We note that our
results show a lower energy edge at ~ — 0.2 eV in good
agreement with all available ARPES data [8,9]. Never-
theless, the experimental situation is less clear for the de-
termination of the dispersive shape of the sinking pockets
at higher binding energies. With regard to the influence of
possible Na ordering, recent ARPES experiments [9] con-
clude that that feature does not affect significantly the po-
sition of the sinking pockets in the unfolded Brillouin zone.

In conclusion, motivated by the apparent failure of LDA
band structure to provide a sound starting point for the
calculation of strong correlation effects in the cobaltates,
we derive an effective low-energy Hamiltonian that in-
cludes the strength of the local Coulomb repulsive inter-
actions. The effective model is obtained from finite cluster
and quantum-chemistry calculations, with essentially no
adjustable parameters. The effective Hamiltonian is treated
with DMFT to compute the effects of correlations. We find
that the evolution of the FS is in good agreement with the

experimental data. Importantly, the LDA-predicted hole
pockets, that are not seen in the ARPES data, are also
not present in our results. One difference with respect to
LDA calculations is how the effect of correlations sepa-
rates the bands as discussed above. However, for realistic
U this feature alone is not enough to destroy the pockets,
and the value of D, usually underestimated by LDA, was
also shown to play a key role. We obtained the detailed
interacting electronic structure that reveals sinking pockets
at all dopings. Significantly, their origin is qualitatively
different in the high and low doping cases.
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