
Internal space structure generalization of the quintom cosmological scenario

Luis P. Chimento,1,* Mónica Forte,1,† Ruth Lazkoz,2,‡ and Martı́n G. Richarte1,x
1Departamento de Fı́sica, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

2Fisika Teorikoa, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, 644 Posta Kutxatila, 48080 Bilbao, Spain
(Received 6 December 2008; published 2 February 2009)

We introduce the Lagrangian for a multiscalar-field configuration in an N-dimensional internal space

endowed with a constant metric Qik, and generalize the quintom cosmological scenario. We find the

energy momentum tensor of the model and show that the set of dual transformations, which preserve the

form of the Einstein equations in the Friedmann-Robertson-Walker cosmology, is enlarged. We show that

the stability of the power-law solutions leads to an exponential potential which is invariant under linear

transformations in the internal space. Moreover, we obtain the general exact solution of the Einstein-

Klein-Gordon equations for that potential. There exist solutions that cross the phantom divide and

solutions that blow up at a finite time, exhibiting a superaccelerated behavior and ending in a big rip. We

show that the quintom model with a separable potential can be identified with a mixture of several fluids.

This framework includes the �CDM model, a bouncing model, and a setting sourced by a cosmic string

network plus a cosmological constant. Then we concentrate on the case where the dimension of the

internal quintessence sector Nq exceeds the dimension of the internal phantom sector Nph. For ðNq;NphÞ ¼
ð2; 1Þ the dark energy density derived from the 3-scalar field crosses the phantom divide, and its negative

component plays the role of the negative part of a classical Dirac field.
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I. INTRODUCTION

A large number of recent cosmological data, including
type Ia supernovae [1], large scale structure [2,3], and
cosmic microwave background anisotropies [4], have pro-
vided strong evidences for a spatially flat and accelerated
expanding universe at the present time. In the case of
Friedmann-Robertson-Walker (FRW) cosmologies, such
an accelerated expansion implies the existence of myste-
rious exotic matter with large enough negative pressure,
i.e. dark energy, whose energy density has been dominating
the recent stage of the universe. The astrophysical feature
of dark energy is that it remains unclustered at all scales
where gravitational clustering of baryons and nonbaryonic
cold dark matter can be seen. The combined analysis of the
different cosmological observations suggests that the uni-
verse consists of about 70% dark energy, 30% dust matter
(composed by cold dark matter and baryons), and negli-
gible radiation. Although the nature and the origin of dark
energy are unknown, several candidates have been pro-
posed to describe it. The simplest theoretical candidate is
the cosmological constant � [5,6] whose equation of state
is p ¼ ��. However, this proposal suffers from the well-
known cosmological problem according to which there is a
unexplained extraordinary discrepancy (of about 120 or-
ders of magnitude) between the observed value of � and
the value predicted by quantum field theory [7,8]. For this
reason, alternative routes have been suggested to study the

dark energy and its dynamical evolution [8]. For example,
a wide variety of scalar-field dark energy models have been
studied, including quintessence [9], k-essence [10],
tachyon [11], phantom [12], ghost condensate [13] and
more recently, quintom dark energy [14–16]. In addition,
other possibilities include interacting dark energy [17],
braneworld models [18], Chaplygin gas models [19], holo-
graphic dark energy [20], and many others.
The quintom model is a hybrid with a quintessence

component, usually constructed by a scalar field and a
phantom scalar field minimally coupled to gravity [21].
This model has aroused interest due to a debate about the
possibility that the dark energy equation of state crossed
the phantom divide in the near past [22]. Notice that in the
quintessence models the kinetic energy is always positive
definite for a positive definite potential, whereas one has
exactly the opposite in phantom models. So, there is no
way to use a single phantom field or quintessence field for
crossing the divide line [23].
Many authors have studied the quintom paradigm with

several potentials from the dynamical autonomous system
perspective [15,24]. In this context, some of them have
performed a general analysis by including the contribution
of both a quintom component (dark energy) and a matter
component into the Friedmann equation. For example, in
Ref. [15] it was found that the phantom attractor is not
generic, which means that in a quintom model there may
exist either de Sitter attractors associated with the saddle
points of the potential, or tracking attractors in the asymp-
totic regime where the scalar fields diverge.
Finally, we want to stress that, motivated by string

theory, a quintom scenario has been found by taking into
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account the nonperturbative effects of a generalized Dirac-
Born-Infeld action [16]. Moreover, a ‘‘no-go theorem’’ has
been proven to constrain the building of a quintom scenario
[25]. According to this theorem, in order to achieve the
crossing of the phantom divide, it is necessary to have more
than one degree of freedom. Clearly, this theorem offers a
concrete theoretical justification for the quintom paradigm.

In this paper we present a multiscalar-field model em-
bedded in an N-dimensional internal space structure en-
dowed with a constant internal metric Qik. In Sec. II, we
introduce the Lagrangian for the multiscalar-field model,
calculate the energy momentum tensor, and obtain the
energy density and pressure of the multiscalar field. We
also study how the dual transformation that links contract-
ing and expanding cosmologies is realized when the inter-
nal structure is taken into account, and we then perform the
stability analysis for power-law solutions. In Sec. III, we
report the general exact solution of the Einstein-Klein-
Gordon equations for the exponential potential and illus-
trate the existence of the crossing of the phantom divide,
showing that the model has a smooth transition from the
quintessence to the phantom era. In Sec. IV we study
quintom and three-dimensional scalar-field models driven
by separable potentials. Finally, in Sec. V the conclusions
are stated. Throughout this paper we shall use natural units
(G ¼ c ¼ 1).

II. MULTISCALAR-FIELD COSMOLOGIES

We wish to construct a general class of dark energy
models with late-time phantom behavior motivated by
the fact that this peculiar sort of expansion fits comfortably
within current observational results. Accelerated expan-
sion cannot extend indefinitely back in time because it
would spoil the formation of structures, and well-founded
theoretical arguments support the view that our universe
was dark matter dominated over a long time span before it
entered the current dark energy dominated accelerated
phase. In addition, the cosmological evidences indicate a
superaccelerated regime provided by a dark energy source.
This latter fact means that dark energy is phantomlike.
And, therefore, the dark energy may have crossed the
phantom divide just recently.

The mainstream approach (for simplicity and because
there is no evidence in favor of the contrary) is to consider
that dark energy and dark matter interact only gravitation-
ally, so they ‘‘see’’ each other by their effects in the
expansion. Intuition suggests, then, that the ability for a
dark energy fluid to cross the divide is not ruined by the
presence of dark matter. For that reason, even if one’s goal
is to try and construct cosmological scenarios containing
dark matter and dark energy featuring a crossing of the
phantom divide, it makes sense to start off by considering
the dark energy fluid alone. Put another way, it is very
likely that the construction of a dark energy source with the
desired property leads, when combined with dark matter, to

a cosmological scenario in which the dark energy bit
retains the same feature.
Quite a few scalar-field model configurations with the

ability of crossing the phantom divide can be found in the
literature, and perhaps the most populated class is that of
the generically dubbed quintom models [14–16]. Their
main feature is that the kinetic energy is not a definite
positive quantity. Quintom scenarios have attracted con-
siderable attention because the mentioned property of the
kinetic energy allows one to give a unified treatment of
phantom and conventional scalar fields.
Taking quintom models as an inspiration, we assume an

N-dimensional internal space structure endowed with a
constant metric Qik and propose a new theoretical setup
with multiple fields �iðxÞ where i ¼ 1 . . .N. This compos-
ite field can be thought of as a vector within the internal
space. For any two vectors ui and wk belonging to this
space, their scalar product is u � w � Qikuiwk and we
denote the norm as w � w � w2 ¼ Qikwiwk. In what fol-
lows we use Latin indices for the internal space, and
summation over repeated indices will be assumed.
The Lagrangian for this model is given by

L ¼ 1
2Qik@��iðxÞ@��kðxÞ � Vð�1; �2; . . . ; �NÞ; (1)

where Vð�1; �2; . . . ; �NÞ is a self-interacting scalar poten-
tial depending on the fields �1; �2; . . . ; �N only. The
energy momentum T�� associated with the multiscalar-

field Lagrangian (1) is obtained through the standard equa-
tion T�� ¼ 2�L=�g�� � g��L, so we get

T�� ¼ Qik@��i@
��k � g��½12Qik@��i@

��k � V�: (2)

Our framework is that of spatially flat FRW cosmolo-
gies, and the energy density and pressure of the dark
energy fluid are

� ¼ 1
2Qik

_�i
_�k þ V; p ¼ 1

2Qik
_�i

_�k � V; (3)

where we have assumed homogeneous scalar fields �i ¼
�iðtÞ. The evolution of a universe sourced by that configu-
ration of multiple interacting fields in the fashion above is
governed by the equations

3H2 ¼ 1
2Qik

_�i
_�k þ V; (4)

€� i þ 3H _�i þQ�1
ik

@V

@�k

¼ 0; (5)

and they get combined to give

_H ¼ �1
2Qik

_�i
_�k: (6)

Our proposal is to use this extension which, due to the
presence of an internal space, allows us to consider a richer
structure than in the precursor quintom cosmologies. The
usual quintom model fits in our description for the choice
Qik ¼ diagð1;�1Þ. In the following cases, the internal
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metrics Qik ¼ diagð1; 0Þ and Qik ¼ diagð0;�1Þ reproduce
the quintessence and phantom cosmologies, respectively.

A. Duality

Interestingly, the internal space structure also allows us
to interpret duality transformations linking contracting and
expanding conventional cosmologies in a very intuitive and
elegant fashion. In fact, the a ! 1=a duality transforma-
tion impliesH ! �H, and from the Einstein equations (4)
and (6) it follows that there are two alternative ways to
achieve the transformation that leaves those equations un-
altered:

(i) Case 1,

_� k ! i _�k; V ! Qik
_�i

_�k þ Vð�iÞ: (7)

(ii) Case 2,

Qik ! �Qik; V ! Qik
_�i

_�k þ Vð�iÞ: (8)

A realization of the duality as given by case (1) requires
potentials which remain real under the transformation of

the fields _�k ! i _�k. However, the realization induced by
the internal structure and given by case (2) is of wider
applicability, as the former requirement on the potential is
not necessary. In addition, both the transformed and non-
transformed fields are real. For example, phantom cosmol-
ogies characterized by a future singularity occurring in a
finite time can be obtained by performing the duality trans-
formation a ! 1=a onto cosmologies with a final big
crunch. For case (1), one of them (phantom or big crunch
cosmology) will be associated with imaginary fields.
However, for case (2) both cosmologies are described by
real fields.

B. Stability of power-law solutions

We are now going to investigate the existence of asymp-
totic power-law solutions by means of a structural stability
analysis; in other words, we are going to unveil the asymp-
totic nature of potentials allowing such stable solutions. To
this end, we introduce the barotropic index � ¼
ð�þ pÞ=�, and from the definitions above and the
Einstein equations (4) and (6), one gets the dynamical
equations for � ¼ �2 _H=3H2, namely,

_� ¼ ð�� 2Þ
�
3H�þ _V

V

�
: (9)

Clearly, the solution � ¼ 2 represents an equilibrium
point, but it corresponds to nonaccelerated expansion,

specifically, a / t1=3. Given that practically any other in-
teresting cosmological model one can think of will have
� < 2, let us demand then that Eq. (9) admits another
equilibrium point with � � �0 representing, in conse-

quence, a solution with a / t2=3�0 . In particular, a solution

representing a phantom late-time attractor would be char-
acterized by a constant and negative value of �. Below, we
will show that the requirement of the existence of such an
equilibrium point restricts the functional form of the Vð�iÞ
potential. Then we formulate a structural stability analysis
of the equation governing the evolution of the parameter �.
This is equivalent to imposing the asymptotic condition on
the potential _V þ 3�0HV ¼ 0, which can be integrated to
give V ¼ V0a

�3�0 with V0 a positive integration constant.
By choosing this potential, the asymptotic regime of � is
governed by the equation

_� ¼ 3Hð�� 2Þð�� �0Þ: (10)

Let us now define � ¼ 2� � and recast Eq. (10) in terms
of this new definition. By expanding the right-hand side of
this equation up to order �, for expanding universes (H >
0), the solution � ¼ 2 is a repeller. A similar analysis can
be done for the case � ¼ �0 � 0 (the particular case �0 ¼
0 will be investigated at the end of this section). If one
defines � ¼ �0 � �, it turns out that the � ¼ �0 solution is
an attractor provided �0 < 2, which is, on the other hand,
our working hypothesis. If one then calculates V and H as

functions of t for a ¼ t2=3�0 , it can be inferred from Eqs.
(4) and (6) that

V ¼ V0

t2
; V0 ¼ 2ð2� �0Þ

3�2
0

: (11)

As it has been shown, in spite of having started from a
general formulation, we have been able to calculate the
value of V0 and the asymptotic dependence of the potential
on cosmic time. However, as far as the reconstruction of
the potential is concerned, we need to make contact with
standard formulations in physical cosmology and to spec-
ify the kinetic energy as a function of the fields and their
derivatives.
For the attractor solution (which satisfies a power law) it

can be seen that a satisfactory choice for the asymptotic
behavior of the scalar fields is � ¼ �0 logt with �0 a
constant vector in the internal space. Besides, we are
considering that physical quantities such as the potential
energy depend only on scalar quantities in this internal
space, so for simplicity we will consider that the potential
depends on the scalar fields through a linear form of the
fields. To that end, we introduce a constant vector � in the
internal space. Under these assumptions we build the scalar
quantity � ¼ � ��0 logt, which leads to

V ¼ V0e
����; (12)

where we have fixed � ��0 ¼ 2. One can also find the
following relations:

� 0 ¼ 2�

	2
; 	2 ¼ 3�0: (13)

Finally, in terms of the parameters of our framework the
attractor solution gets recast as
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a ¼ t2=	
2
: (14)

Because of the internal space structure of our model, the
exponent of the latter can take either sign, so both phantom
and nonphantom power-law solutions are available.

Finally, we conclude this section with the investigation
of the stability of the solution �0 ¼ 0. If we impose the
fulfillment of Eq. (9) asymptotically, one obtains _V=V ¼ 0
with V ¼ V0 a constant. Now defining � ¼ �� and using
again (10), it follows that the de Sitter solution (H ¼ H0) is
asymptotically stable.

III. THE EXPONENTIAL POTENTIAL

We have investigated the stability of the power-law
solution with a exponential potential and the possibility
of phantom and no-phantom behavior for the scale factor.
In this section we shall find the general exact solution for
our N-scalar-field model driven by the exponential poten-
tial (12) in the spatially flat FRW spacetime. In this case
Eqs. (4) and (5) represent a nonlinear coupled system of
ðN þ 1Þ differential equations for the scale factor aðtÞ and
the N scalar fields �iðtÞ. For a nonphantom scalar field
driven by an exponential potential and a free scalar field,
the general solution of the system of equations (4) and (5)
was found in Ref. [26]. Using the Einstein equation (6) it is
easy to prove that the geometrical object

_� k ¼ 	kH þ ck
a3

; (15)

with ck a constant vector in the internal space, is a first
integral of Eq. (5). Inserting the latter into Eq. (6) and
expanding, we obtain

� 2 _H ¼ 	2H2 þ 2� � c H

a3
þ c2

a6
: (16)

Making the change of variables

s ¼ a�3=n; 
 ¼ � � ct; n ¼ � 6

	2
(17)

in Eq. (16), it becomes a nonlinear second order differen-
tial equation for sð
Þ:

€sþ sn _sþ 1

4cos2�
s2nþ1 ¼ 0; (18)

where the dot stands for differentiation with respect to the
argument of the function and

cos� ¼ � � c
	c

: (19)

The sign of the parameter n depends exclusively on the
internal metric Qik. In particular, for a Euclidean metric
this parameter becomes negative. After the new variable s
is calculated, we obtain the scale factor a in terms of the
cosmic time t by using Eqs. (17).

Inserting the first integral (15) into the Friedmann equa-
tion (4), we get a quadratic equation in the expansion rate

H, which has real solutions only when its discriminant is
positive definite; this condition can be recast as ð� � cÞ2 þ
ð6� 	2Þðc2 þ 2a6VÞ> 0. It gives a relation among the
integration constants and the exponent of the exponential
potential.
Equation (18) can be linearized and solved using the

form invariance group of this nonlinear differential equa-
tion under a nonlocal change of variable. This technique
relates a class of nonlinear differential equations with the
damped harmonic oscillator one. In fact, Eq. (18) belongs
to the following general class of second order nonlinear
ordinary differential equations:

€sþ�FðsÞ _sþ �FðsÞ
Z

FðsÞdsþ �FðsÞ ¼ 0; (20)

where s ¼ sðtÞ, FðsÞ is a real arbitrary function, and �, �,
� are constant parameters.
By using the new pair of variables ðh;�Þ, defined by the

nonlocal transformation

FðsÞds ¼ GðhÞdh; FðsÞdt ¼ GðhÞd�; (21)

Eq. (20) becomes the nonlinear ordinary differential equa-
tion

h00 þ�GðhÞh0 þ �GðhÞ
Z

GðhÞdhþ �GðhÞ ¼ 0; (22)

where 0 denotes differentiation with respect to �. It is easy
to see that Eqs. (20) and (22) are related by means of the
formal changes F $ G and s $ h. Then, the nonlocal
transformation (21) preserves the form of these equations,
mapping solutions of Eq. (20) into solutions of Eq. (22) for
any function FðsÞ and Gð�Þ, thus linking solutions of two
different physical configurations. Taking into account the
nature of this nonlocal change of variables, it is not always
possible to find explicit solutions. However, we can use the
form invariance to relate solutions of a nonlinear equation
(20) with a linear one. In our case, choosing the specific
parametrization FðsÞ ¼ sn and GðhÞ ¼ 1 in the change of
variables (21)

h ¼
Z

snds; � ¼
Z

sndt (23)

and introducing these new variables in Eqs. (20) and (22),
they become

€sþ�sn _sþ �

nþ 1
s2nþ1 þ �sn ¼ 0; (24)

h00 þ�h0 þ �hþ � ¼ 0: (25)

This shows that the nonlocal change of variable (23) trans-
forms the nonlinear differential equation (24) into the
linear damped harmonic oscillator equation (25).
Comparing our Eq. (18) with Eqs. (24) and (25), for� ¼

1, we have two different cases to analyze according to the n
value,

(i) n � �1 and � ¼ 0 ) FðsÞ ¼ sn, � ¼ ðnþ1Þ
4cos2�

,
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(ii) n ¼ �1 and � ¼ 0 ) FðsÞ ¼ 1
s , � ¼ 1

4cos2�
.

Below, we find the general solution of the Einstein-Klein-
Gordon equations for the exponential potential.

A. Explicit solution for n � �1, �2 and � ¼ ðnþ1Þ
ðnþ2Þ2

In this case explicit 
-dependent solutions can be found,
introducing the function vð
Þ (for more details, see
Ref. [26]) and making the substitution

sn ¼
�
nþ 2

n

�
vn

k1 þ
R
vnd


(26)

into Eq. (18). This reduces it to €v ¼ 0, whose solution is
vð
Þ ¼ k2 þ k3
. After inserting the solution v in Eq. (26),
integrating, and using sðaÞ as given by Eq. (17), we obtain
the scale factor

aðvÞ ¼
�

n

ðnþ 1Þðnþ 2Þ
�
1=3½vþ kjvj�n�1=3; (27)

where the constant k has been expressed in terms of the old
one [27]. Finally, we can get the components �i of the
multiscalar field � by integrating Eq. (15),

d�k

dv
¼ 	k

d lna

dv
þ cka

�3

� � c : (28)

To this end, we rewrite the second term of Eq. (28) using
the definition given in Eq. (17) as

a�3 ¼ nþ 2

n

d

dv

�
ln

�
k1 þ

Z
vnd


��
: (29)

Inserting the latter into Eq. (28), we obtain �iðvÞ,

��i ¼ 	i lnjaj þ ðnþ 2Þci
nð� � cÞ ln

��������nþ 2

n
vna3

��������; (30)

where ��iðvÞ ¼ �iðvÞ ��0i and �0i are N integration
constants [28]. For positive n, when v ! 0, the leading
terms in the scale factor are given by

a / kjvj�n=3: (31)

So, the scale factor blows up near the origin v ¼ 0 and the
components of the multiscalar field have a logarithmic
divergence ��i / lnjvj for all n. We find a resemblance
to the big rip behavior in the phantom universe reported
recently by Wei [29] with an inverse power potential V ¼
V0�

�1.
As we have integrated the second order differential for

the scale factor (6), instead of the original Friedmann
equation (4), we have to constrain the integration con-
stants. By using Eqs. (4) and (6), we obtain 3H2 þ _H ¼
V, which can be rewritten in terms of the variable u ¼ a3

as

d2u

dv2
¼ 3uV

ð� � cÞ2 : (32)

After replacing the solutions uðvÞ and�ðvÞ in Eq. (32), we
obtain the following relation between integration con-
stants:

k ¼ � V0

2c2j�0jcos2�
sign

�
nþ 2

n

�
: (33)

Hence, the scale factor (27) and the multiscalar field (30),
whose integration constants verify the relation (33), are
exact solutions of the Einstein-Klein-Gordon equations (4)
and (5).

B. Explicit solution for n ¼ �1 and � ¼ 0

In the n ¼ �1 case, following the same steps we get

a ¼ ½jvjjb1 þ lnjvjj�1=3; (34)

��i ¼ 	i

3
lnjvjjb1 þ lnjvjj � ci

� � c lnjb1 þ lnjvjj; (35)

where b1 is an integration constant. Inserting Eqs. (34) and
(35) into Eq. (32), we find the relation V0 ¼ 2j�0jc2cos2�,
where 	2 ¼ 6 and the constant �0 has been renamed
properly.

C. Implicit solution

The general implicit solution of Eq. (18) can be found
for arbitrary choices of the parameters by solving Eq. (25)
and using Eqs. (17) and (23). In this case we have two
different sets of solutions according to the value of n. For
n � �1, � ¼ 0, and � ¼ 1, the scale factor is given by

að�Þ ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þp ðb1 exp
��þ b2 exp
þ�Þ��n=3ðnþ1Þ;
(36)

where 
� are the roots of the characteristic polynomial of

Eq. (25), 
� ¼ ð�1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p Þ=2. Also, from Eq. (15)
we calculate the multiscalar field

�ið�Þ ¼ �i0 þ 	i lnað�Þ þ ci
� � c�; (37)

where �i0 are integration constants. Now, inserting Eqs.
(36) and (37) into the Friedmann equation (32), the inte-
gration constants are constrained to

b1b2 ¼ V0

2ð1� 4�Þc2j�0jcos2�
: (38)

Finally, in the n ¼ �1, � ¼ 0 and � ¼ ð4cos2�Þ�1 case,
we have

að�Þ ¼ exp½13ðb2 � ��þ b1e
��Þ�; (39)

�ið�Þ ¼ �i0 þ 	i lnað�Þ þ ci
� � c�; (40)

b1 ¼ V0

2j�0jc2cos2�
: (41)
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By taking � ¼ 0we obtain the standard formula in the case
of two scalar fields driven by an exponential potential (see
Ref. [26]).

IV. TWO- AND THREE-DIMENSIONAL INTERNAL
SPACE

Below we investigate several interesting examples with
different internal metrics.

A. Big rip solution

Let us explore a new class of quintom models associated
with the internal metric

Qik ¼ 0 1
1 0

� �
: (42)

As the sign of the kinetic term is nondefinite, a new feature
arises—the possibility of having a smooth transition be-
tween quintessence and phantom scenarios (see Fig. 1). For
�2 < 0 the scale factor has two branches. In the branch
�
 < 0 the universe expands and has a finite time span; it
begins to evolve from an initial singularity and has a
transient phase to a superaccelerated expanding scenario
ending in a big rip. Initially, the universe is dominated by a
quintessence scenario with kinetic energy Tð�1; �2Þ> 0
and barotropic index � ¼ ðpþ �Þ=� > 0; after that, the
universe evolves toward a dominated phantom stage with
Tð�1; �2Þ< 0 and � < 0 until the big rip occurs when
�
 ! 0� and a ! 1þ. The point where the kinetic term
changes its sign corresponds to the inflexion point of the
scale factor (see Fig. 1). The branch �
 > 0 represents a
bouncing universe with a nonvanishing absolute minimum.

B. Quintom

We consider the standard quintom model with internal
metric Qik ¼ diagð1;�1Þ and assume that the scalar fields
�1 and �2 are coupled through the potential Vð�1; �2Þ.
So, the Friedmann equation reads

3H2 ¼ 1
2ð _�2

1 � _�2
2Þ þ Vð�1; �2Þ; (43)

where�1 represents the quintessence and�2 plays the role
of a phantom field. The system is closed with the Klein-
Gordon equations, one for each field.

€� 1 þ 3H _�1 þ @�1
Vð�1; �2Þ ¼ 0; (44)

€� 2 þ 3H _�2 � @�2
Vð�1; �2Þ ¼ 0: (45)

We propose a potential which can be written as follows,

Vð�1; �2Þ ¼ V0 þ �

2
_�2
1 þ

�

2
_�2
2; (46)

where � and � are constant and V0 > 0. It can mimic a
simple model containing a mixture of dark matter and dark
energy, where the former is the clustering component and
the latter gives rise to the current acceleration. With the
help of Eq. (46) we find that

@�1
V ¼ � €�1; @�2

V ¼ � €�2; (47)

where we have assumed separability of the potential
Vð�1; �2Þ ¼ Vð�1Þ þ Vð�2Þ. Thus, Eqs. (44) and (45)
are easily integrated,

_� 1 ¼ _�01a
�3=ð1þ�Þ; _�2 ¼ _�02a

�3=ð1��Þ; (48)

with _�01 and _�02 integration constants. Combining Eqs.
(43), (46), and (48), the Friedmann equation becomes

3H2 ¼ V0 þ 1

2

ð�þ 1Þ _�2
01

a6=ð1þ�Þ þ 1

2

ð�� 1Þ _�2
02

a6=ð1��Þ : (49)

On the other hand, the effective barotropic index � ¼ ð�þ
pÞ=� of this mixture,

� ¼
_�2
01a

�6=ð1þ�Þ � _�2
02a

�6=ð1��Þ

�
; (50)

shows the occurrence of a smooth transition from the no-
phantom regime to the phantom one. This transition is

achieved when �ðaphÞ ¼ 0, that is, at aph ¼
ð _�02= _�01Þð1��Þð1þ�Þ=3ð�þ�Þ.
In the case � ¼ 1 and � ¼ 3, we associate the second

term of the Friedmann equation (49) with an attractive

component �m ¼ _�2
01=a

3, which includes both baryonic
and nonbaryonic matter, having the equation of state pm �
0, while the remaining two terms constitute the dark energy

component �de ¼ V0 þ _�2
02a

3. Equation (49) with _�2
02 ¼

V0 and _�2
01 ¼ V0=4 is solved by changing the variable to

a ¼ v2=3. It turns into the equation 4 _v ¼ � ffiffiffiffiffiffiffiffi
3V0

p ð1þ
2v2Þ, whose solution gives the scale factor

a ¼
�
1ffiffiffi
2

p tan

ffiffiffiffiffiffiffiffi
6V0

p
�t

4

�
2=3

; (51)

where�t ¼ t� t0. Besides, the scalar fields�1 and�2 are
obtained after integrating Eq. (48),

2 1 0 1 2 3

0

2

4

6

8

τ

a τ

FIG. 1. The two branches of the scale factor for �2 ¼ �1.
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�1 ¼ 2ffiffiffi
3

p ln

�
sin

ffiffiffiffiffiffiffiffi
6V0

p
�t

4

�
; (52)

�2 ¼ � 2ffiffiffi
3

p ln

�
cos

ffiffiffiffiffiffiffiffi
6V0

p
�t

4

�
: (53)

The scale factor given by (51) represents a universe starting

as dust dominated by the scalar field �1 with a � �t2=3.
After that, it expands and ends in a big rip singularity at a
finite time. The big rip is reached where �2 blows up.

Finally, using Eq. (48) we are able to obtain the potential
(46),

Vð�1; �2Þ ¼ V0

4
½e�

ffiffi
3

p
�1 þ 3e

ffiffi
3

p
�2�; (54)

as a sum of two separate potentials, each one depending on
separate fields Vð�1; �2Þ ¼ V1ð�1Þ þ V2ð�2Þ. This is in
agreement with the precursor quintom model proposed in
the literature [21].

Now, we investigate the degenerate case � ¼ �� with
�> 0. It gives rise to singular and bouncing solutions with
a final de Sitter behavior. The Friedmann equation (49)
reads

3H2 ¼ V0 þ �þ 1

2
ð _�2

01 � _�2
02Þa�ð6=1þ�Þ: (55)

Here there is a degeneration because the contributions of

both fields are proportional. When _�2
01 >

_�2
02, we recover

the �CDM cosmological model for � ¼ 1 and the cosmic

string for � ¼ 2. When _�2
01 <

_�2
02, the solution bounces

where the total energy density vanishes. Solving the
Friedmann equation (55), we obtain the solutions

aþ ¼ ½ ffiffiffi
b

p
sinh!�t�ð�þ1Þ=3; b > 0; (56)

a� ¼ ½ ffiffiffiffiffiffiffi�b
p

cosh!�t�ð�þ1Þ=3; b < 0; (57)

where !2 ¼ 3V0=ð1þ �Þ2 and b ¼ ð�þ 1Þ�
ð _�2

01 � _�2
02Þ=2V0. The scale factor (56) evolves like a /

tð�þ1Þ=3 near the singularity, having an inflationary phase
for �> 2 and ending in a de Sitter stage. The bouncing
solution (57) begins and ends with de Sitter phases. From
Eqs. (48), (56), and (57), after integrating, we find the
fields in terms of the cosmic time,

�þ
1 ¼ _�01�

þ; �2 ¼ _�02�
þ; (58)

��
1 ¼ _�01�

�; �2 ¼ _�02�
�; (59)

with

�þ ¼ 1

!
ffiffiffi
b

p lntanh
!�t

2
; �� ¼ 1

!
ffiffiffiffiffiffiffi�b

p tan�1e!�t:

(60)

Hence, coming back to Eq. (46) we get the potential
corresponding to either case, quintessence or phantom

dominated models,

V ¼ V0

�
1þ �

1þ �
sinh2

ffiffiffi
b

p
!�þ

�
; (61)

V ¼ V0

�
1� �

1þ �
sin2

ffiffiffiffiffiffiffi�b
p

!��
�
: (62)

In these models there is no transition from nonphantom to
phantom behavior because the barotropic index has a
definite sign.

C. Three-dimensional internal space

Now, we study the case of a multiscalar-field model
containing three fields with the following internal metric:

Qik ¼
1 0 0
0 1 0
0 0 �1

0
@

1
A: (63)

It represents a scalar-field configuration where the dimen-
sion of the internal space associated with the quintessence
sectorNq exceeds the dimension of the respective phantom

sector Nph, so Nq > Nph. The case where the phantom

dominates over quintessence components Nph >Nq can

be obtained from the latter by changing the sign of the
metric Qik ! �Qik.
We focus on the case where the multiscalar field is

driven by the potential

Vð�1; �2; �3Þ ¼ V0 þ 1
2
_�2
2 � 1

2
_�2
3; (64)

so the Friedmann equation reads

3H2 ¼ V0 þ
_�2
10

a6
þ

_�2
20

a3
�

_�2
30

a3
: (65)

The total energy density [Eq. (65)] can be thought of as a
mixture of two fluids. The corresponding energy densities
(of the two fluids) are defined as positive and are conserved
separately,

�b ¼
_�2
20

a3
; �de ¼ V0 þ

_�2
10

a6
�

_�2
30

a3
; (66)

_� b þ 3H�b ¼ 0; _�de þ 3H�de�de ¼ 0; (67)

�de ¼ 2 _�2
10 � _�2

30a
3

_�2
10 � _�2

30a
3 þ V0a

6
; (68)

and _�4
30 � 4V0

_�2
10. We have identified �b and �de as the

baryonic and dark energy densities. The latter component
comprises vacuum energy density V0, a stiff fluid term

�s ¼ _�2
10=a

6, and a kind of pressureless perfect fluid

with negative energy density, �D ¼ � _�2
30=a

3. The last
term mimics the negative part of the classical Dirac field
[30]. Hence, the internal space permits us to incorporate
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the negative part of the classical Dirac field as a source of
the Einstein equations in a natural way.

The general solution of the Friedmann equation (65)
takes the following form:

a3¼
ffiffiffiffiffiffiffiffi
_�2
10

V0

s
sinh

ffiffiffiffiffiffiffiffi
3V0

p
tþ

_�2
20� _�2

30

2V0

½cosh ffiffiffiffiffiffiffiffi
3V0

p
t�1�; (69)

where the initial singularity was fixed at t ¼ 0. The dark

energy crosses the phantom divide at ac ¼ ð2 _�2
10=

_�2
30Þ1=3

where it reaches its minimum value �dec ¼ V0 �
_�4
30=4

_�2
10.

Basically, the dark energy crosses the phantom divide

due to the term _�2
30 [30]. Concerning the nature of this

parameter, note that the dominant energy condition is
violated in this cosmological scenario thanks to the term
_�2
30. When it is absent the dark energy state parameter wde

always remains in the range ½�1; 1� (see Fig. 2), implying
that the dark energy component satisfies the dominant
energy condition.

V. SUMMARYAND CONCLUSION

We have extended the quintom model by introducing a
multiscalar-field configuration along with an
N-dimensional internal space endowed with a constant
internal metric and given the Lagrangian formulation of
this new model. This formulation enriches the duality
between contracting and expanding cosmologies. We

have shown that power-law solutions are asymptotically
stable when the multiscalar field is driven by the exponen-
tial potential with the same internal symmetry as the
kinetic energy term, generalizing similar results obtained
for the quintessence cosmology.
We have found the general solution of the nonlinear

Einstein-Klein-Gordon equations for the exponential po-
tential V ¼ V0e

����, extending previous works with stan-
dard scalar fields [26] and k-essence [31]. The richness
introduced by the N-dimensional internal space and the
internal metric Qik leads, in a natural way, to new singular
solutions with a future big rip. For instance, in the explicit
solution case, the scale factor blows up at a finite time for
�2 < 0, exhibiting a superaccelerated behavior and ending
in a final big rip. It has a resemblance with the big rip
behavior in the phantom universe reported recently by Wei
[29] for the potential V ¼ V0�

�1.
We have shown that the quintom model with a separable

potential can be interpreted as a system of coupled fluids.
This framework contains the �CDM model, conduces to
bouncing universes, and mimics the cosmic string cosmo-
logical model with a cosmological constant.
To gain insight into the internal space structure, we have

studied a model with a metric Qik, representing a configu-
ration where the dimension of the internal space associated
with the quintessence sector Nq exceeds the dimension of

the respective phantom sector Nph. Choosing ðNq;NphÞ ¼
ð2; 1Þ we have accommodated a 3-scalar field with the
following three components: stiff fluid, dust, and dust
with negative energy density. Furthermore, the dark energy
density, composed of dust with negative energy density,
stiff fluid, and vacuum energy, crosses the phantom divide.
Comparing with Ref. [30] we see that the dust component
with negative energy density plays the same role as the
negative part of a classical Dirac field.
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