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We illustrate how the group of symmetry transformations, which preserve the form of the n—
dimensional flat Friedmann-Robertson-Walker cosmologies satisfying Einstein equations, acts in
any dimension. This group relates the energy density and the isotropic pressure of the cosmic fluid
to the expansion rate. The freedom associated with the dimension of the space time yields assisted
inflation even when the energy density of the fluid is a dimensional invariant and enriches the set

of duality transformations leading to phantom cosmologies.

PACS numbers: 04.20.Jb
I. INTRODUCTION

Over the past several years there has been much inter-
est in examining cosmology in higher dimensions to see
if the standard four—dimensional Friedmann—Robertson—
Walker (FRW) cosmology can be recovered. The idea
that our physical four-dimensional Universe is embed-
ded in a higher—dimensional spacetime has also also at-
tracted the attention of particle physicists and astro-
physicists. Theoretical motivation for such attempts can
be found within the framework of many theories of uni-
fication, among them string, superstring and M the-
ory, require extra spatial dimensions to be consistent.
Until today a number of important solutions of Ein-
stein equations in higher dimensions have been obtained
and studied, and they have led to important generaliza-
tions and wider understanding of gravitational fields. In
this respect, of interest are the works on n-dimensional
black holes[l], Kaluza—Klein inflationary cosmologies [2],
circularly symmetric perfect fluids [3], black holes on
branes ], and recently, contributions on braneworld sce-
narios [3, ld, [4].

It is interesting to note that some authors have also
considered phenomenological analysis in higher dimen-
sional cosmology. For example, the phenomenological
analysis of five-dimensional cosmology was stimulated by
the work of Binetruy, Deffayet, and Langlois [§], and sub-
sequently by the Randall-Sundrum model [6].

On the other hand, scalar fields play a crucial role in
describing cosmological models. In the standard big-
bang theory such fields are included for solving most
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of the problems found at very early times in the evolu-
tion of the universe, and are called the “inflaton” scalar
field [9, 10, [11]. This scalar field is characterized by its
scalar potential.

At the same time, measurements of the luminosity—
redshift relations observed for the discovered type Ia su-
pernovae with redshift z > 0.35 [12, [13], indicate that
at present the universe is expanding with an acceler-
ated fashion suggesting a net negative pressure for the
universe. One plausible explanation of this astronomi-
cal observation is based on the introduction of a scalar
field, which is called the “quintessence” or “dark energy”
scalar field.

Although these scalar fields are quite different in na-
ture, there are authors who think that the “inflaton” and
the “quintessence” fields might be of the same nature, in
which a very specific scalar potential form is used [14].

In Ref. [11] it was shown that in several physical prob-
lems the Einstein field equations for flat FRW cosmolog-
ical models and Bianchi I-type metric containing a scalar
field can be linearized and solved by writing them in in-
variant form. In all these cases explicit use has been made
of the non-local transformation group. The symmetry
transformations that preserve the form of the Einstein
equations introduce an alternative concept of equivalence
between different physical problems [16]. Cosmological
models are equivalent when the corresponding dynami-
cal equations are form invariant under the action of that
group. Hence, it will be interesting to investigate the
consequences of this group when the dimension of the
space time is taken to be a free parameter of the the-
ory. Notice that the multidimensional point of view has
been used in general relativity to extract information or
to endow with properties fields and/or physical systems
belonging to spaces of different dimensions.

In this sense, the purpose of the present work is to il-
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lustrate how a group of symmetry transformations acts
on n— and m- dimensional flat FRW cosmologies which
satisfy Einstein equations. This group relates the en-
ergy density and the isotropic pressure of the cosmic
fluid (source variables) to the expansion rate (geomet-
rical variable) linking two different cosmologies, one of
which could be accelerated. Hence, even when the energy
density is a dimensional invariant we can get assisted in-
flation [16]-[14] driven by the freedom associated with the
dimension of the space time. In the case of requiring the
condition (10) of Ref. [18] the linked cosmologies become
identical, they share the same scale factor, or there is
a duality between contracting and superaccelerated ex-
panding scenarios associated with phantom cosmologies
[19)-[20], i.e. the scale factor of one of them is the in-
verse of that of the other. The above formulation also
can be applied to a self-interacting scalar field using its
conventional perfect fluid description.

The outline of the present paper is as follows: In Sec. 11
we review the well known Einstein equations for the FRW
metrics in n— and m— dimensional gravities coupled to a
perfect fluid. The case for constant bariotropic indices is
discussed in detail. In Sec. III we briefly review the field
equations for the FRW metrics coupled to a scalar field.
In Sec IV some conclusions are given.

II. DIMENSIONAL FORM INVARIANCE
SYMMETRY IN FLAT FRW SPACETIMES

We shall assume the spherically symmetric flat FRW
metric of an n—dimensional spacetime given by

ds* = —dt* + a, (t)? (dr® + r?dQ._,), (1)

where the spherical sector, related to n — 2 angular
variables 6;, with ¢ running from 1 to (n — 2), is de-
termined to be dQ, ,> = df,* + sin%0,d6,% + ... +
sin?0,...sin?9__.d@ %, for n > 3. The Einstein equa-

tions for an n—dimensional spacetime are given by

R
Gaﬁ = Raﬁ - Egaﬁ = F;/nTaﬁ7
where Greek indices run from 1 to n, and , stands for
the multidimensional gravitational constant.
The independent FEinstein equations for the n-—
dimensional FRW metric ([{) filled with a perfect fluid

(n—1)(n—2)a

—G =S 2)

i,  (n-2)(n-3)a;
R e
where x_, a_, p, and p_ are the gravitational constant,

scale factor, energy density and the pressure in an n—
dimensional spacetime respectively. Dots denote differ-
entiation with respect to ¢t. The dependent Einstein equa-
tions are related as G9n,2 Oz = . = Gglel =G,".

We can replace Eq. (@) by the conservation equation:

pot (-1 (p +p) =0, (4)

n

]

which, as is well known, is derivable from the equa-
tion 7%? = 0. Thus the Einstein equations for an n-
dimensional flat FRW cosmology are given by Eq (@) and
Eq (@), which we shall rewrite in the form:

p+BH(p+p)=0, (5)

where o = (n —1)(n—2)/2, H = a/a, f = (n—1) and
we have omitted the subindex n.

For a different m—dimensional flat FRW cosmology the
Einstein equations are given by

p+BH(p+p) =0, (6)

where & = (m—1)(m—2)/2, H = a/a, 3 = (m—1), and a,
R, p and p are the scale factor, gravitational constant, en-
ergy density and the pressure in an m—dimensional space-
time respectively.

By “invariant form” we shall mean that the system of
equations (H) transform into Egs. (@) under the symmetry
transformations:

aH? =kp,

aH?=k&p,

p=pp), (7)
A—+0./2H
+ il (8)
., -_ B [pdp
p+p—i59 pdp(erp), 9)

where § = (a&/ar)/? and p = p(p) is an invertible func-

tion. Notice that always 62 = ak/ak > 0since n > 3 and
m > 3, and that these form invariant transformations are
defined without imposing any restriction on the cosmic
fluid. When the dimension of both cosmologies coincides,
then we have a« = @, 8 = 3, 6 = 1, and these transfor-
mations reduce to that of Ref. [16] and are independent
of the dimension where the cosmic fluid “lives”.

The invariant quantities associated with the set of
transformations ([@)-(@) are

=— (10)
dp B dp

BH(p+p) BH(p+p)

The first invariant expresses that the expansion of the
universe is proportional to the multidimensional gravita-
tional constant and to the energy density contained in
the universe. However, the expansion dims with the di-
mension of the space time because it is proportional to
the factor 1/a. The second invariant expresses the fact
that the transformations do not modify the cosmic time.
In the case of considering perfect fluids with equations
of state p = (y—1)p and p = (§ — 1)p in n and m—
dimensional spacetimes respectively, we conclude that

(11)



the bariotropic indices v and % transform as

_ 3/2 -
__pHtD B (p) dp

¥y = =+=—| = — 12

p B dp (12)

under the symmetry transformations ([[@)—@). In what

follows, the upper and the lower signs will be referred to
as the (4) and (—) branches respectively.

These general form-invariant transformations relate
cosmologies in two different dimensions. For instance,
they can be used for generating a new m-—dimensional
FRW cosmology from a given cosmology in (341)-
dimensions (with n = 4), or in (2+1)-dimensions (with
n = 3), where a lot of them are known.

In this direction we investigate the consequences of a
simple example generated by the following transforma-
tion between energy densities:

5=, (13)

with b a positive constant. Inserting the latter in (&)
and ([[2) we find that a and @ are related to each other
by

By

- +b6
a=a ", b = + =—
By’
where without loss of generality the constant of propor-
tionality has been set equal to unity. Hence, the deceler-
ation parameter q(t) = —H ~2i/a transforms as

(14)

L —(qg+1). (15)

g=—-1+—
b0

When the energy density is a dimensional invariant,
i.e. for the condition p = p or b = 1, we get the relation
6 = +3v/(47) which may be interpreted as a constraint
for the bariotropic indices 4 and +, since the pressures
are not the same in both dimensions [21|]. In this case an
expanding universe with a positive deceleration param-
eter, (+) branch, transforms into an accelerated one if
0 is taken to be large enough. This means that by ade-
quately selecting the dimension of the space time we can
get assisted inflation. For instance, for constant v and %,
the Einstein equations lead to power law solutions:

= tz/ny _ 4E20/8y _ a:l:é)’

after using Eq. () for b = 1. Then, for the (4) branch
and 20 > (v we obtain an accelerated expansion.

It is interesting to investigate the choice b8 = 1, be-
cause from (@) we have @ = a*'. Now we pay atten-
tion to the (—) branch since in this case the symmetry
transformation a — a~! (duality) maps the initial singu-
larity at ¢ = 0, a(0) = 0, into other kind of singularity
a(0) = oo, i.e, the scale factor a and the scalar curva-
ture R diverge at a finite time. In particular, for v > 0
the (=) branch of the power law solution a = (—t)~%/#7
defined for ¢t < 0 diverges in the future at ¢ = 0. This
kind of singularity dubbed “big rip” is a characteristic of

phantom or ghost cosmologies. Hence, using the condi-
tion By = —fF%, we obtain the relation between the n—
and m— dimensional flat FRW cosmologies:

YR VK
= — 16
m—2 n—2’ (16)

defining the phantom sector of our model.

The case of considering structural invariance of the
scale factors a(t) in n— and m-—dimensional FRW cos-
mologies, i.e. dimensional invariance of the scale factor
as it was assumed in Ref. |L&], corresponds to selecting
the (4) branch of the transformations [@)—([@) generated
by Eq. (@) with b0 = 1. Thus, the energy densities cor-
responding to n— and m—dimensional FRW cosmologies
are related by p = p/6? and bariotropic indexes trans-
form as

(n=1)y =m-1)7, (17)

where we have used the notation of Ref. [18]. Note that
the results we have obtained by applying the transfor-
mations ([[)—@) enlarge those of Ref. [18] and add the
duality between contracting and expanding cosmologies
through the (—) branch of the transformations which was
not considered in the previous paper.

Finally, when the dimension of both cosmologies coin-
cides we have a =@, 8 = 3, = 1, and Eqgs. (@ @) (or
Eqgs. (6)—(8) of Ref. [16]) are independent of the dimen-
sion where the cosmic fluid “lives”.

III. THE SCALAR FIELD CASE

Let us consider a self-interacting scalar field ¢ driven
by a potential V(¢) having an associated perfect fluid
energy tensor with energy density and pressure given by

p=5F 4V, p=3 -V, ()
ﬁ:;$+v@, =—& V), (19

in n—and m—dimensional FRW space respectively. Now,

Egs. (X{)-J) along with Eqs. [@-@) give the rules of
transformation for ¢ and V'

: B

PP =p+p= 55 ¢>2 (20)

i

. 1 p 2
Vv :F259 gb. (21)

e

To illustrate an application of the latter we assume the
transformation ([[3)-(Id), then we obtain

B

72
¢° ==+ 7

¢, (22)
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V—2 {b:F Be]qﬁ + bV (). (23)
In addition, the scale factor transforms according to Eq.
([I@). Notice that the (+) branch gives the m—dimensional
analog of the n—dimensional original cosmological model,
while the (—) branch leads us, as in the previous section,
to phantom cosmologies. The transformed scalar fields
are related to the original one by a dimensional general-
ization of the transformation considered in Ref. [19]. It
represents a generalization of the Wick rotation.

There is an interesting case to be investigated, for in-
stance, let us consider the restricted group of transfor-
mations defined by the condition V « V. Then, from
Eq. @) we get V o ¢? and p x ¢2. In this case Eq. @)
can be solved by assuming a power law scale factor with
a scalar field of the form ¢ o Int. The final solution is

a=t", (24)

_ 2
v (22% e 20/% ¢ — 4oInt, (25)

where ¢g = (2/8)(a/ky)'/2. These equations represent
the dimensional generalization of the ordinary exponen-
tial potential and its associated power law solutions. The
respective solution in the m-dimensional flat FRW space
time is obtained by inserting the above n-dimensional so-
lution Z3) into the transformations ([22) and 3)); so a
straightforward calculation gives
2— b0 2375
V= (_& e 2/ 4 — golnt, (26)
2y
where we have used Eq. ([@) and ¢o = boo(7/7)'/2. The
scale factor is given by Eqs. () and Z4):

G — $2/B7 — p£260/By _ b0 (27)

This example shows that the form invariant transforma-
tions can be used to generate new cosmological solutions
in an m-dimensional gravity from a seed one in an n-
dimensional gravity.

IV. CONCLUSIONS

The main goal of the present work is to illustrate how
a group of symmetry transformations acts on n— and m—
dimensional flat FRW cosmologies which satisfy Einstein
equations. Cosmological models are equivalent since the
corresponding dynamical equations become form invari-
ant under the action of this group. For two different
cosmologies, i.e. n— and m- dimensional flat FRW met-
rics, this group relates their energy densities, isotropic
pressures and the scale factors to generic dimensional
parameters «, (3, @ and §. If the dimension of both
cosmologies coincides, i.e. n = m, then the group of
symmetry transformations relates their energy densities,
isotropic pressures and the scale factors only. In addi-
tion, a form invariant symmetry transformation which
violates the dominant energy condition induces a duality
between contracting and superaccelerated expanding sce-
narios generating phantom cosmologies. All these mul-
tidimensional considerations can also be formulated for
the scalar field associating a perfect fluid description with
the stress energy tensor.

Finally, these general form—invariance transformations
can be considered as an algorithm for generating a
new m-dimensional FRW cosmology from a known n-
dimensional cosmology. For instance, we can use as
a seed solution one given known cosmology in (34+1)—
dimensional gravity, where there exist a lot of solutions.
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