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Current of interacting particles inside a channel of exponential cavities:
Application of a modified Fick—Jacobs equation
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The Fick—Jacobs equation has been widely studied, because of its applications in the diffusion and
transport of non-interacting particles in narrow channels. It is also known that a modified version
of this equation can be used to describe the same system with particles interacting through a hard-
core potential. In this work we present a system that can be exactly solved using the Fick—-Jacobs
equation. The exact results of the particle concentration profile along the channel n, the current, J,
and the mobility, u, of particles as a function of an external force are contrasted with Monte Carlo
simulations results of non-interacting particles. For interacting particles the behavior of n, J and
1, obtained from the modified Fick—Jacobs equation are in agreement with numerical simulations,

where the hard-core interaction is taken into account.

Even more, for interacting particles the

modified Fick—Jacobs equation gives comparatively more accurate results of the current difference
(when a force is applied in opposite directions) than the exact result for the non-interacting ones.

PACS numbers: 05.10.Gg, 05.40.-a, 05.60.-k, 66.10.Cg

I. INTRODUCTION

In the last two decades the diffusion of particles in
narrow channels has been the focus of much research [1-
32]. Analytically, this problem has been tackled from
different angles, however the most accepted description
is through the Fick—Jacobs equation, see [33—40].

Then, the Fick—Jacobs equation is strictly valid in the
regime of very low concentration of diffusing particles in a
narrow channel of varying cross section, when the interac-
tions are negligible. When the concentration is not small
the interaction plays a crucial role and the behavior of the
system can be strongly modified. This has been shown
for the case of the hard—core interaction, in [41]. Very re-
cently, a generalization of the Fick—Jacobs equation that
takes into account this interaction has been introduced.
Due to the hard-core interaction this new equation is non-
linear when the particles are dragged along the channel
by an external force.

It has been verified that this modified Fick—Jacobs
equation successfully reproduces the concentration of
particles along the channel, in the stationary state, when
contrasted with simulation results [42]. The aim of the
paper is to check the validity of the recently introduced
nonlinear Fick-Jacobs equation computing the current
and the mobility of particles as a function of the external
force. For the sake of completeness the particle concen-
tration profile along the channel used in the present work
will be also analysed. These results are contrasted with
numerical simulations of the system.

The transport along channels composed by asymmet-
rical cavities has recently attracted a great deal of inter-
est due to its possible application to the separation of
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particles of similar size (see, for example [21]). We use
an asymmetrical cavity where the cross section is deter-
mined by the combination of two exponential functions.
The purpose of using a cavity with exponential cross sec-
tion is that for this cavity the original Fick—Jacobs equa-
tion for non-interacting particles can be exactly solved.
One of the objectives is to compare the accuracy of the
modified Fick-Jacobs equation for interacting particles
with the accuracy of the original Fick—Jacobs equation,
contrasting their results with the corresponding Monte
Carlo (MC) simulations.

This article is organized as follows. The details of the
theoretical description are given in Section II for non—
interacting particles, and in Section III for interacting
ones. In Section IV, we explain the method used to ob-
tain the numerical simulations. All the results and the
main analysis of the present work is presented in Sec-
tion V. Some final remarks are exposed in Section VI.

II. EXACT SOLUTION TO THE FICK-JACOBS
EQUATION INSIDE AN EXPONENTIAL
CAVITY

As can be seen from [34] and [33, p. 68] the equation
that describes the transport process of non-interacting
Brownian particles inside a tube of variable width, and
bounded to an external force F', is the so called Fick—
Jacobs equation. It can be written in terms of the
transversally integrated current J given by

J on

—=—-A—+FA 1

D ox + pn (1)
where D is the diffusion constant, 7! = kgT, A = A(x)
is the width of the channel at the z position, n(z) is
the concentration that is considered constant along the
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FIG. 1. Asymmetric cavity described by a combination of
exponential functions, see Eq. (2). The parameters used are
A1 =4, a1 =0.035, £ =50 and L = 200, where the distances
are expressed in terms of the lattice spacing a used in the MC
simulations.

transverse direction of the channel, and J is the total
number of particles that cross the transversal area A per
unit of time.

Depending upon the complexity in the shape of the
cavity, this equation can be particularly difficult to solve.
However in some exceptional cases it is possible to find
the exact solution to Eq. (1). In particular, we consid-
ered a chain of identical asymmetric cavities, see Fig. (1).
Each of these two—dimensional cavities is described by a
combination of two exponential functions,
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(2)

As we are interested in asymmetrical cavities, we will
use ¢ < L/2. In order to maintain the continuity of the
piecewise function in x = ¢ and = = L, the parameters
Ay, As, a1, az, L, £ are related by:

- alé
Ay = Ay ek (4)
ar > as >0 (5)

Because the particles inside the cavity are neither cre-
ated nor destroyed, when the system has reached the
stationary state, the current J is constant, for a given
force and mean concentration of particles in the cavity.
With that in mind, it is possible to propose a complete
general solution, which has two terms, one proportional
to e®F%) (which corresponds to the homogeneous solu-
tion, J = 0), and the other proportional to e~%1* or e®2*.
Then we solve it for both regions defined by Eq. (2).

Let us consider this expression for the concentration
as a function of =z,

o<z </
{<x<L
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where Cq, Cy, C3 and Cy are constants. To determine
these constants, we make use of the following conditions:

J is constant along the cavity: If J; is the current
when z € [0; ¢] and Js is the current when « € [¢; L],
then J; = Jo = JVz € [0; L.

n(x) is continuous: So we can write n1(0) = na(L) and

N is constant: The total number of particles in-
side the cavity is constant, so the relation

[ A(z)n(z)dz = N holds.

With these assumptions it is possible to find the exact
solution to Eq. (1) in the stationary state for the cur-
rent of non—interacting particles and the concentration
of particles along the cavity. Unfortunately, the analyt-
ical expressions of the constants C;, Cs, Cs, and Cy of
Eq. (6), as functions of the parameters of the system A,
a1, £, and L are too long to be written here. Instead,
the exact analytical results of J and n for the particular
cavity of Fig. 1, along with MC simulations will be shown
in figures.

III. FICK-JACOBS EQUATION FOR
INTERACTING PARTICLES

It has been shown that it is possible to find a modi-
fied version of the Fick—Jacobs equation for the case of
hard-core interacting particles, see [42]. This equation
is similar to Eq. (1), but it takes into account the fact
that two particles cannot occupy the same position at
the same time. This is embraced in the non-linear term
n(l —n):

J on
D= —A% + FABn(1 —n) . (7)

Eq. 7 resumes the diffusion of many interacting par-
ticles, in a one—dimensional partial differential equation.
If we have reached the stationary state, J is constant, so
there is no temporal dependence. It is also important to
mention that Eq. (1) and Eq. (7) are only valid when the
concentration is almost constant in the transverse direc-
tion of the cavity, i.e., n(x,y) ~ n(z).

To solve this equation, we described the boundary of
the cavity and n(z) with the corresponding Fourier series
up to the 9*" term. Finally, we obtained the coefficients
of each term and found approximate expressions of the
current and the concentration inside the cavity, in the
stationary state.

IV. SIMULATIONS

In order to assess the validity of the results, we sim-
ulated the described system using the standard MC
method. The first step is to discretize the cavity depicted
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FIG. 2. Concentration as a function of position when the force
is applied to the right. § = 0.05 and ¢ = 0.4. The dashed
line was obtained from Eq. (1) and A corresponds to the non—
interacting particles simulation, averaged over 10° configura-
tions. The continuous line is the corresponding theoretical
solutions obtained from Eq. (7) for a system with interacting
particles and A corresponds to the interacting particles sim-
ulations, averaged over 10® configurations. The time is 10°
MC time steps and thereafter (steady state). The length of
the horizontal axis, 0 < x < 200 corresponds to the size of
one cavity, see Fig. 1.

in Fig. 1. We used a two—dimensional square lattice of
200 sites long and 50 sites tall, with lattice spacing a = 1.
Then we draw the boundaries of the cavity inside the lat-
tice. On the exits we set periodic boundary conditions
to simulate an infinite channel of cavities. The process is
simulated as follows. Each particle occupy only one site.
A particle is selected randomly, and it is able to jump
in any of the four possible directions (up, down, left or
right).

The jumping rate of each direction is determined by
the applied force. For example, if there is no force, all
the particles have the same jumping rate in any direction.
The jumps have a length equal to the size of a particle.
If the force is applied to the right in the xz—axis, the jump
rate is:

PH = PT = Pl =D
where § = |F|a, and we set p = 1 for simplicity. Anal-
ogously, if the force is applied to the left,

P_ =p(1+49) )
PH = PT = Pl =D
The relation between the dimensionless external force §
and the actual force F' acting on the particle is given
by 1+ 6 = ePlIFle. Considering § < 1, it is possible to
assume 0 =~ §|F|a.
If a particle tries to move into an occupied site, the
process will not take place. That is how we represent
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FIG. 3. Current of particles when the force is applied to
the left (J- < 0) or to the right (Jy > 0). The continuous
lines are the corresponding theoretical solutions obtained from
Eq. (7). The dots correspond to numerical simulations. m:
c =201 e c =02 A c = 04. The dashed line is the
solution to Eq. (1), and O are the corresponding simulation
with non—interacting particles for ¢ = 0.4. In all cases we
perform averages over 210° configurations. The time is 10°
MC time steps.

the hard—core interaction. In other words, it is only one
particle allowed on each site of the lattice. If the parti-
cles do not interact with each other, this condition is not
fulfilled; i.e. multiple occupation is allowed. In all cases
the jumps that cross the wall of the cavity are forbidden.
Another key question that has to be considered is the
temporal discretization. We say that one time step has
passed when, in average, every particle had the opportu-
nity to jump once. That is a convention widely used in
MC simulations.
The mean concentration c¢ in the cavity is given by,

N
C= —F——mm 5 10
fOL A(zx)dx 10)

where N is the total number of particles inside the cavity,
and in the discrete case, fOL A(x)dx is the total number
of sites inside the cavity. Once all the rules have been set
up, we let the system evolve until the stationary state has
been reached. After that, we can measure any relevant
quantity. In this paper we will consider the current of
particles that cross the cavity per unit of time, J, the
concentration, n, and the mobility, u.

V. RESULTS AND DISCUSSION

We solved Eq. (7) for the same cavity described in Sec-
tion IT considering particles that interact through hard—
core potential. The first quantity we can measure to
check the validity of Eq. (7) is the concentration pro-
file, n(x). The results for interacting and non-interacting
particles are shown in Fig. 2. It can be appreciated that
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FIG. 4. Difference in the current as a function of the force.
The mean concentration is ¢ = 0.1. The dashed line was ob-
tained from Eq. (1) and O corresponds to the non-interacting
particles simulation. The continuous line is the corresponding
theoretical solution obtained from Eq. (7) and B corresponds
to the hard—core interacting particles simulation. We perform
averages over at least 2.510° configurations and the time is
10° MC time steps in both cases.

both theoretical solutions match the simulation points.
Although they are similar in some sense, it is clear that
the interaction plays an important role in the way parti-
cles arrange inside the cavity. It shifts horizontally the lo-
cation of the maximum of concentration n(z) and makes
it less pronounced. This effect is larger when the force
increases. A more detailed discussion of this result can
be seen in [42].

Furthermore, in Fig. 3 we can see the current obtained
when the force is applied to the left (J_ < 0) and when
the force is applied to the right (Jy > 0) for different
values of the mean concentration. We also show in Fig. 4
and Fig. 5 the difference of these two quantities, AJ =
Jy 4+ J- = |J4| — |J-|. Due to the asymmetry of the
cavity, AJ > 0 for the non interacting system as expected
(see, e.g. Ref. [21]).

We compared the results obtained for non-interacting
and hard-core interacting particles in Fig. 4 and Fig. 5.
The solution to Eq. (7) is expressed as an infinite ex-
pansion of harmonic functions, that in fact has been
truncated up to the 9" term. Instead, the solution to
the non—interacting case is the exact solution to Eq. (1).
Considering these two plots, we can see that for the non-
interacting case the only effect of the change in the mean
concentration is, as expected, a rescaling of the vertical
axis. Analytical results depart from numerical simula-
tions as the force is increased, since larger forces imply a
worsening of the conditions for the validity of the Fick—
Jacobs equation. Nevertheless, we wish to highlight that
the hard-core interaction enlarges the validity range of
the Fick—Jacobs equation, as can be appreciated in Fig. 5,
where the concentration is higher.

Another quantity used to describe the transport of par-
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FIG. 5. Difference in the current as a function of the force.
The mean concentration is ¢ = 0.4. Dashed line was obtained
from Eq. (1) and A corresponds to the non-interacting par-
ticles simulation. The continuous line is the corresponding
theoretical solution obtained from Eq. (7) and A corresponds
to the hard—core interacting particles simulation. We per-
form averages over 510° configurations and the time is 10°
MC time steps in both cases.

ticles inside the cavity is the mobility, u, defined as,

e = ’”f;‘ (11)

where vg, (vq_) is the mean drift velocity when the force
is applied to the right (left).

The average time t that a particle needs to cross a
whole cavity is t1 = L/|vq.|. After this amount of time
has passed, all the N particles also have crossed the cav-
ity. Then |Jy| = N/ty, and substituting in Eq. (11) one
has,

|Jx| L

NG (12)

|va, | =
In Figs. 6 and 7 we can see the mobility as a func-
tion of the force applied for positive and negative force
and for different concentrations. For a given value of 6,
the highest mobility corresponds to the non-interacting
case, and as we increase the concentration, with hard—
core interaction, the mobility reduces. As expected for a
non-interacting system the mobility 4 and p_ increases
with ¢ (see e.g. [43]). This is also the behavior of py and
1 for interacting systems when the mean concentration
c is very small. For larger values of ¢ the dimensionless
force § produces the accumulation of particles near the
exit of the cavity where the transverse area A is small.
This effect increases with §, and the mobility is reduced
(see Figs. 6 and 7).
Due to the particle-hole symmetry, for a given dimen-
sionless force ¢, it is possible to obtain (independently of
the cavity shape, see [41]) that

(1—c)AJ' ¢ = —cAJ® (13)
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FIG. 6. Mobility as a function of the force when the force
is applied to the right. The dashed line was obtained from
Eq. (1) and O corresponds to the non—interacting particles
simulation. The continuous lines are the corresponding theo-
retical solutions obtained from Eq. (7) for each mean concen-
tration: ¢ = 0.1 (W), c=0.2 (@), c = 0.3 () and c = 0.4(a).
In all cases we perform averages over 210° configurations.
The time is 10° MC time steps.
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FIG. 7. Mobility as a function of the force when the force is
applied to the left. The dashed line was obtained from Eq. (1)
and O corresponds to the non-interacting particles simula-
tion. The continuous lines are the corresponding theoretical
solutions obtained from Eq. (7) for each mean concentration:
c=01(m),c=02(®),c=03(s) and c = 0.4(a). In all
cases we perform averages over 2 10° configurations. The time
is 10> MC time steps.

where AJ¢ = |J$| — |J¢]| is the difference in the current
for a given mean concentration c¢. This condition is triv-
ially fulfilled in the MC simulation (when a particle jumps
to the right, one hole jumps to the left, or vice versa),
but it is also obtained form Eq. (7) (see [42]). Eq. (13)
implies that AJ = 0 for ¢ = 0.5. This is in agreement

with the comparatively small value of AJ obtained for
c¢=0.4 in Fig. 5.

It is important to notice that, in all cases, the analytic
solution for the mobility is slightly higher than the simu-
lations, even for the exact solution of the non—interacting
case. This is probably a consequence of the discretization
of the system in the simulation, that is not present in the
Fick—Jacobs equation.

VI. CONCLUSION

We considered the transport of particles inside a chain
of cavities with exponential shape. We compared the cur-
rent, the concentration and the mobility of interacting
and non—interacting particles. The former are described
by the Fick—Jacobs equation; in this particular case, we
found the exact solution. The latter is described by a
similar equation with a non—linear term, that takes into
account the hard—core interaction between particles. In
this case the solution is expressed by a finite sum of har-
monic functions.

We can conclude that, when the concentration is low,
both systems behave in a similar manner. The interac-
tion does not play an important role and the non-linear
term in Eq. (7) is negligible. In contrast, for higher
concentrations, the non—linear term becomes significant.
This implies that, when the concentration is high enough,
the current of particles is mainly determined by the in-
teraction between particles and not so much by the in-
teraction of the particles with the borders of the cavity.

For interacting particles one can see that even when
there is a small difference between the results of J and
1 obtained from the generalization of the Fick—Jacobs
equation from the ones obtained from MC simulations
for the same system, the general tendencies of all the
analytical results as a function of concentration and ex-
ternal force are verified.

Comparing the analytical results with the correspond-
ing MC results, one can note that the results of the mo-
bility u, obtained from the modified Fick—Jacobs equa-
tion for interacting particles, are at least as good as the
ones obtained from the original Fick—Jacobs equation for
non-interacting particles. For the current difference AJ
one finds a better agreement for the case of interacting
particles. On the other hand, a very good agreement be-
tween the concentration n(z) obtained from the modified
Fick—Jacobs equation and numerical results was found.
In summary, the generalization of the Fick—Jacobs equa-
tion gives a good description for the diffusion and the
transport of particles with hard-core interaction in nar-
row channels.
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