
ON FINITE DIMENSIONAL JACOBIAN ALGEBRAS

SONIA TREPODE AND YADIRA VALDIVIESO-DÍAZ

Abstract. We show that Jacobian algebras arising from a sphere
with n-punctures, with n ≥ 5, are finite dimensional algebras. We
consider also a family of cyclically oriented quivers and we prove
that, for any primitive potential, the associated Jacobian algebra
is finite dimensional.

1. Introduction

A potential S in a quiverQ is an element of the path algebra ofQ such
that S is a linear combination of cyclic paths. The Jacobian algebra
P(A, S) associated with the quiver to a potential is the quotient of the
complete path algebra by the Jacobian ideal, where J(S) is generated
by the partial derivatives of S with respect to the arrows of Q

Quivers with potentials play an important role in Physics and Mathe-
matics. Derksen, Weyman y Zelevinsky, in [5], introduced quivers with
potentials in the context of cluster algebras. In the same year, Fomin,
Shapiro y Thurston, in [6] gave a class of cluster algebras arising from
ideal triangulations of surfaces. Later, a link between this papers was
established by Labardini-Fragoso in [7], he considered surfaces with a
non-empty boundary and he gave a potential associated with an ideal
triangulation such that its corresponding Jacobian algebra is finite di-
mensional.

In the firts part of this work, we study Jacobian Algebras associated
with ideal triangulations of a sphere with n ≥ 5. Our main result is
the following:

Theorem 1. Let (S,M) be a sphere with n-punctures, where n ≥
5. For every ideal triangulation τ of (S,M), the Jacobian algebra
P(A(τ), S(τ)) is finite dimensional.

An sphere with 4-punctures was studied by Barot and Geiss (in [2],
Section 5), the algebra associated to this surface is a tubular cluster
algebra.

In the Theory of cluster algebras, primitive potentials, which are a
linear combination of all the chordless cycles in a quiver Q, appear in
many contexts, for example in cluster tilted algebras of Dynkin type
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([5], Section 9). Also, it follows from [4] that cluster tilted algebras with
cyclically oriented quivers have a primitive potential (see definition of
a cluster tilted algebra in Section 4).

In the proof of our main Theorem 1, we use a particular ideal trian-
gulation τ of a sphere with n-punctures such that the quiver associated
to τ is cyclically oriented but its associated potential is not primitive.

In the second part of this work, we give a class of cyclically oriented
quivers such that any primitive potential induce a finite dimensional
Jacobian algebra.

The paper is organized as follows: In Section 2, we recall some defi-
nitions of quivers with potentials, path algebras, Jacobian algebras and
ideal triangulations of surfaces. In Section 3, we prove that every Ja-
cobian algebra associated with an ideal triangulation of a sphere with
n ≥ 5 are finite dimensional. Finally, in Section 4, we give a combina-
torial description of a quiver Q such that any of its primitive potentials
induce a finite dimensional Jacobian algebra.

Remark. While we were finishing this manuscript, we were aware of the
recent paper [8], where Labardini studies properties of the potential
associated with surfaces with an empty boundary and some particular
genus, and the author asks if the Jacobian algebras associated with tri-
angulations of surfaces with an empty boundary are finite dimensional
algebras. Theorem 1 answers affirmatively the question of Labardini
for surfaces of genus zero.

2. Preliminaries

2.1. Quivers and potentials. In this section, we fix notations for a
path algebra and the complete path algebra, and recall basic definitions
of quivers with potential (cf. [5]).

Let Q be a finite quiver and k be a field. We denote by R the k-
vector space kQ0 , by A the k-vector space kQ1 and, for each nonnegative
integer d by Ad the R-bimodule A⊗R · · · ⊗R A︸ ︷︷ ︸

d

.

With this notation, the path algebra of Q is the k-algebra defined as
the (graded) tensor algebra

R〈A〉 =
∞⊕
d=0

Ad

and the complete path algebra of Q is the k-vector space defined by

R〈〈A〉〉 =
∞∏
d=0

Ad.
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Also, R〈〈A〉〉 is a topological k-algebra with the m-adic topology,

where m is the ideal
∞∏
d=1

Ad.

Notice that the elements of R〈〈A〉〉 are (possibly infinite) k-linear
combinations of paths in Q.

Denote by R〈〈A〉〉cyc the k-subspace of R〈〈A〉〉 whose element are
k-linear combinations of cycles in Q.

Definition 1. ([5], Definition 3.1)

• A potential S is an element of the k-subspace R〈〈A〉〉cyc.
• For every ξ ∈ Q1, we define the cyclic derivative ∂ξ as the

continuous k-linear map

R〈〈A〉〉cyc → R〈〈A〉〉
acting on paths by

∂ξ(a1 · · · ad) =
d∑

k=1

δξakak+1 · · · ada1 · · · ak−1

• The Jacobian ideal J(S) of a potential S is the closure of the
ideal

I(S) = 〈∂ξ(S) | ξ ∈ Q1〉
in R〈〈A〉〉.

• The Jacobian algebra P(A, S) of S is the closure of the quotient
R〈〈A〉〉/J(S).

2.2. Triangulations of surfaces. In this section, we review some def-
initions and theorems of triangulations of surfaces (cf. [[6])]).

Definition 2. ([6], Definition 2.1)
A bordered surface with marked points is a pair (S,M), where S is

a connected oriented 2-dimensional Riemann surface with a (possibly
empty) boundary and M is a finite and non-empty set of points in S,
called marked points, such that there is at least one marked point on
each connected component of the boundary of S.

Marked points in the interior of S are called punctures, we denote by
P the set of punctures.

In this paper, we study spheres with n punctures, n ≥ 5, but for
the following definitions, in order to avoid surfaces that cannot be
triangulated or with ”not-good” properties, we need to exclude:

• spheres with one or two punctures;
• unpunctured or once-punctured monogons;
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• unpunctured digons; and
• unpunctured triangles

Definition 3. ([6], Definition 2.2, 2.4) A (simple) arc γ in (S,M) is a
curve in S such that:

• the endpoints of γ are marked points in M;
• γ does not intersect itself, except that its endpoints may coin-

cide;
• γ is not contractible into M or onto the boundary of S;
• γ does not cut out an unpunctured monogon or an unpunctured

digon.

Two arcs are compatible if there are arcs in their respective isotopy
classes whose relative interiors do not intersect.

An arc whose endpoints coincide is called a loop.

Definition 4. ([6], Definition 2.6)
An ideal triangulation of (S,M) is any maximal collection of pairwise

compatible arcs whose relative interiors do not intersect each other.
The arcs of the triangulation cut the surface S into ideal triangles.

The three sides of an ideal triangle do not have to be distinct, i.e., we
allow self-folded triangles.

γ

Figure 1. Self-folded ideal triangle

An ideal triangulation of an n-punctured sphere, is easy to calculate,
it consists of 3n arcs.

3. Jacobian algebras arising from a sphere with
n-punctures

The algebra arising from a sphere with punctures was studied for first
time by Barot and Geiss in [2]. They prove that the tubular cluster
algebra of type (2,2,2,2) corresponds to a sphere with 4-punctures (see
definition of a cluster tilted algebra in Section 4). In this section, we
study the Jacobian algebras arising from a sphere with n-punctures,
where n ≥ 5.

It is well known that the finite dimension property is preserved via
mutations, then, in order to prove the Theorem 1, it is enough to prove
that there exists an ideal triangulation τ such that the Jacobian algebra
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P(A(τ), S(τ)) is finite dimensional. For that reason below we give a
particular ideal triangulation with this property.

Consider the ideal triangulation τ described in Figure 2. For no-
tational convenience we label the punctures on the poles with pn+1

and pn+2, so we will consider the sphere with (n+ 2)-punctures, where
n ≥ 3.

The quiver associated to the ideal triangulation τ is the quiver de-
scribed in Figure 3.

pn+2

pn+1

p1 p2
pn

Figure 2. Sphere with (n+ 2)-punctures
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. . .

Figure 3. Quiver associated with the ideal triangula-
tion τ

For each puncture pi ∈ P in the sphere, we choose a non-zero scalar
xi ∈ k. By Definition 23 in [7], the potential S(τ) associated with the
ideal triangulation τ given in Figure 2, according to the label in the
arrows of the quiver in Figure 3 is:

S(τ) = xn+1α1 . . . αn + xn+2δ2n−1δ2n . . . δ1δ2

+
∑n
i=1 αiβ2i−1β2i +

∑n
i=1− 1

xi
αiδ2i−1δ2i
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We denote by S = S(τ) and by A = A(τ). Before proving Theorem
1, we establish some useful identities in the Jacobian algebra P(A, S).

Lemma 1. The following identities hold in the Jacobian algebra P(A, S):

β2i−1β2iδ2(i−1)−1δ2(i−1) = xi−1β2i−1β2(i−1)β2(i−1)−1β2(i−1)(1)

=
xi−1
xi

δ2i−1δ2iβ2(i−1)−1β2(i−1)(2)

=
1

xi
δ2i−1δ2iδ2(i−1)−1δ2(i−1)(3)

Proof. The first and the second identity follow in the same way. We
prove the first one.

Since

∂αi−1
(S) = β2(i−1)−1β2(i−1) + xn+1αi . . . αi−2 − x−1i−1δ2(i−1)−1δ2(i−1),

then in the Jacobian algebra P(A, S) we have the identity

β2i−1β2iδ2(i−1)−1δ2(i−1) = xn+1xi−1β2i−1β2iαi . . . αi−2

+xi−1β2i−1β2iβ2(i−1)−1β2(i−1)

The first term on the right hand is in the Jacobian ideal, because it
contains the factor β2iαi = ∂β2i−1

(S). Then

β2i−1β2iδ2(i−1)−1δ2(i−1) = xi−1β2i−1β2iβ2(i−1)β2(i−1)−1β2(i−1)

Now we prove the third identity. By the relations induced by ∂αi−1
(S),

we have:

β2i−1β2iδ2(i−1)−1δ2(i−1) = −xn+1αi+1 . . . αi−1δ2(i−1)−1δ2(i−1)

+
1

xi−1
δ2i−1δ2iδ2(i−1)−1δ2(i−1)

Denote by ρ = αi+1 . . . αi−2αi−1δ2(i−1)−1δ2(i−1). Notice that ρ is a
path of length n+ 1. We claim that ρ is in the Jacobian ideal.

Using ∂δ2(i−1)
(S), we have the following identity

αi−1δ2(i−1)−1 = xi−1xn+2δ2(i−2)−1δ2(i−2) . . . δ1δ2

.
Then, replacing αi−1δ2(i−1)−1 in ρ, we have

ρ = xn+2xi−1αi+1 . . . αi−2δ2(i−2)−1δ2(i−2) . . . δ1δ2δ2(i−1),

that is a path of length 3n in the Jabobian algebra.
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Replacing δ2(i−2)−1δ2(i−2) by the relation induced by ∂αi−2
(S), the

path ρ is a path of length 4n− 3. Iterating this process and using the
topology of the Jacobian algebra ρ is in the Ideal Jacobian.

Then, β2i−1β2iδ2(i−1)−1δ2(i−1) = 1
xi−1

δ2i−1δ2iδ2(i−1)−1δ2(i−1). �

Lemma 2. Then the following identities hold in the Jacobian algebra
P(A, S).

αiδ2i−1δ2i = xixi−1δ2(i−1)−1δ2(i−1)αi−1(4)

αiαi+1δ2(i+1)−1 = δ2(i−1)αiαi+1 = 0(5)

Proof. The identity (4) follows as the first two identities in Lemma 1.
We proof the second one.

Notice that

∂δ2(i+1)
(S) = −x−1i+1α(i+1)δ2(i+1)−1 + xn+2δ2(i)−1δ2i . . . δ2(i+1),

then we have the identity

αiαi+1δ2(i+1)−1 = xi+1xn+2αiδ2i−1δ2i . . . δ2(i+1).

By the identity (3) in Lemma 1 the term on the right hand is equal
to

xi+1xn+2αiβ2(i)−1β2iδ2(i−1)−1 . . . δ2(i+1),

which is in the Jacobian ideal because it contains a factor α1β2i−1 =
∂β2i(S).

Then αiαi+1δ2(i+1)−1 = 0 in the Jacobian algebra P(A, S). �

Now, we can prove our main result.

Remark 1. Notice that every path that contains the factor αiβ2i−1
or β2iαi is a zero in P(A, S), because αiβ2i−1 = ∂β2i(S) and β2iαi =
∂β2i−1

(S). Moreover, by the identities in Lemma 1, every path that
contains a factor αiδ2i−1δ2iδ2(i−1)−1δ2(i−1) or αiδ2i−1δ2iβ2(i−1)−1β2(i−1) is
zero in P(A, S).

Proof of Theorem 1. It is enough to prove that P(A, S) is finite dimen-
sional. We will prove that every path of length at least 2n + 4 is an
element of the Jacobian ideal J(S).

Let ρ be a path of length at least 2n + 4. By the Remark 1 it is
enough to analyze if ρ contains only βi and δi or only αi and δi in its
factors.

Consider the first case. Without loss of generality we can assume
that ρ starts with β2n−1 or δ2n−1.
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We notice that if the length of the path is at least 6 then we have
the following possible factors:

I. β2i−1β2iδ2(i−1)−1δ2(i−1),
II. δ2i−1δ2iδ2(i−1)−1δ2(i−1),

III. β2i−1β2iβ2(i−1)−1β2(i−1) or
IV. δ2i−1δ2iβ2(i−1)−1β2(i−1).

By Lemma 1, ρ = xδ2n−1δ2n . . . δ1δ2δ2n−1δ2nρ
′, where ρ′ is the rest of

the path ρ and x ∈ k is the product certain scalars xj.
Hence, by the relation induced of the partial derivative

∂δ2(W ) = xn+2δ2n−1δ2n . . . δ1 + x1α1δ1,

we have that

ρ = −xx1α1δ1δ2δ2n−1δ2nρ
′.

Then ρ is zero in P(A, S) (see Remark 1).
Now suppose ρ has only elements αi and δi. Then ρ contains the

following possible factors:

I’. αiαi+1δ2(i+1)−1 (or δ2iαiαi+1)
II’. αiδ2i−1δ2iαiδ2i−1δ2i

III’. αi . . . αi−1αiαi+1αi+2

It follows from the identity (5) in the Lemma 2, that ρ is zero in the
case where it contains the factor I’.

By the identity (4) in Lemma 2, the second possible factor is equal
to

x−1i−1x
−1
i αiαi+1δ2(i+1)−1δ2(i+1)δ2(i−1δ2i)

then ρ is zero.
Finally, using the relation ∂αi

(S) and ∂β2i(S) the last factor is equal
to

αiδ2i1δ2iαiαi+1αi+2.

Since the walk ρ contains the possible factor I’, then it is zero. �

4. Potentials in a class of cyclically oriented Quivers

We have shown that the Jacobian algebras arising from a sphere with
n-punctures are finite dimensional. We observe that the quiver Q in
Figure 3 associated with the ideal triangulation in Figure 2 is cyclically
oriented and its associated potential is not primitive. It is not difficult
to prove that the Jacobian algebras, given by the quiver Q with any
primitive potential, are not finite dimensional.
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In this section, we consider a particular family of cyclically oriented
quivers and we prove that, for any primitive potential, the associated
Jacobian algebra is finite dimensional.

We start by recalling the definition of cyclically oriented quiver.

Definition 5. ([4], Definition 3.1) A walk of length p in a quiver Q is
a (2p+ 1)-tuple

w = (xp, αp, xp−1, αp−1, . . . , x1, α1, x0)

such that for all i we have xi ∈ Q0, α ∈ Q1 and {s(αi), e(αi)} =
{xp, xp−1}. The walk w is oriented if either s(αi) = xp−1 and e(αi) = xp
for all i or s(αi) = xp and e(αi) = xp−1 for all i. Furthermore, w is
called a cycle if x0 = xp. A cycle of length 1 is called a loop. We often
omit the vertices and abbreviate w by αp · · ·α1. An oriented walk is
also called path.

A cycle c = (xp, αp, . . . , x1, α1, xp) is called non-intersecting if its
vertices x1, . . . , xp are pairwise distinct. A non-intersecting cycle of
length 2 is called 2-cycle. If c is a non-intersecting cycle then any
arrow β ∈ Q \ {α1, . . . , αp} with {s(β), e(β)} ⊆ {x1, . . . , xp} is called
a chord of c. A cycle c is called chordless if it is non-intersecting and
there is no chord of c.

A quiver Q without loop and 2-cycle is call cyclically oriented if
each chordless cycle is oriented. Note that this implies that there are
no multiple arrows in Q. A quiver without oriented cycle is called
acyclic and an algebra whose quiver is acyclic is called triangular.

Let A be a finite-dimensional algebra over an algebraically closed
field k. We denote by Db(A) the bounded derived category of the
category of finite-dimensional (left) A-modules, by τ the Auslander-
Reiten translation and by S the suspension of Db(A). Let CA be the
hull triangulated category of Db(A)/τ−1S.

Amiot showed in [1] that if the global dimension of A is less or equal
than two, and the functor τ−1S is nilpotent, then the category CA is
Hom-finite, and the image of A in CA is a cluster-tilting object. In this
case, the category CA is called cluster category.

In the hereditary case, the endomorphism algebra EndCA(A) is called
cluster tilted algebra.

In [3] cluster algebras (or cluster categories in the hereditary case)
with cyclically oriented quivers were studied in order to decide if a
cluster algebra is of finite type. Later in [4], it was given an explicit
description of the minimal relations in cluster tilted algebras with this
kind of quivers, and it follows from this result that the potential asso-
ciated with this kind of algebras is primitive. As we observed at the
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beginning of the section, the quiver Q in Figure 3 associated with the
ideal triangulation in Figure 2 is cyclically oriented and its associated
potential is not primitive, showing that the previous result does not
extend to Jacobian algebras.

In the following theorem, we give a combinatorial description of the
quiver such that the Jacobian algebra with a primitive potential is a
finite dimensional algebra.

Theorem 2. Let Q be a quiver such that:

i) Q is cyclically oriented;
ii) for every not-minimal path ρ there exists at least one arrow with

at most 2 antiparallel minimal paths.

Then the Jacobian algebra P(A, S), where S is a primitive potential,
is a finite dimensional algebra.

We need some definitions and lemmas before proving Theorem 2.

Definition 6. ([4], Definition 3.3) A path γ which is antiparallel to
an arrow η in a quiver Q is a shortest path if the full subquiver gen-
erated by the induced oriented cycle ηγ is chordless. A path γ =
(x0

γ1−→ x1
x−→2→ · · · → xL) is called shortest directed path if there

exists no arrow xi → xj in Q with 1 ≤ i + 1 < j ≤ L. A walk
γ = (x0 x1 x2 · · · xL) is called a shortest walk if there is
no edge joining xi with xj with 1 ≤ i + 1 < j ≤ L and (i, j) 6= (0, L)
(we write a horizontal line to indicate an arrow oriented in one of the
two possible ways).

For each quiver Q, and η an arrow in a cycle C, we construct a
sequence of arrows {α0, . . . , αk, . . . } in the following way:

Step 0 We denote by α0 = η and choose an antiparallel shortest path
ρ0 to α0;

Step 1 We denote by α1 the arrow in the path ρ such that t(α0) = s(α1)
and choose an antiparallel shortest path ρ1 to α1, such that the
cycle α0ρ0 is different from the cycle α1ρ1;

Step 2 We denote by α2 the arrow in the path ρ1 such that s(α1) =
t(α2) and choose an antiparallel shortest path ρ2 to α2, such
that the cycle α1ρ1 is different from the cycle α2ρ2;

...
Step k We denote by αk the arrow in the path ρk−1 such that

– If k is even t(βi) = s(βi+1) or s(βi) = t(βi+1) if i is odd;
– The cycle αkρk is different from the cycle αk−1ρk−1
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Remark 2. In the following quiver, which is associated to a triangu-
lation of a sphere with 4 punctures, this process generates an infinite
sequence of arrows.
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Lemma 3. Let Q be a quiver cyclically oriented and η be an arrow
the cycle C. Then there exist a finite sequence of arrows {α0, . . . , αm}
constructed as above, that means, αm has only one antiparallel shortest
path.

Proof. Suppose that such sequence does not exist. Let {α0, . . . , αk, . . . }
be a sequence of arrow constructed as above, then is infinite. Let j be
the minimal natural such the elements of the subsequence {α0, . . . , αj−1}
are different. With out lost of generality suppose that α0 = αj, in this
situation j is even.

Let {ρ0, . . . , ρj} be the subsequence of the antiparallel shortest path
corresponding to the subsequence {α0, . . . , αj}. To fix notation, for
each arrow αk, let xi = s(αk) yi = t(αk).

Denote by ζk = (yk → · · · → xk+1) the subpath of ρk if k is even or
ζk = (yk+1 → · · · → xk) the subpath of ρk if k is odd. Consider the not
oriented walk

ζ = ζ0ζ1 . . . ζj−1 = (y0 → · · · → x1 ← · · · ← y2 → · · · ← yj).

We show that ζ is a shortest walk, contradiction the hypothesis.
Suppose ζ is not chordless. Let β = x→ y be an chord of ζ. Suppose
that x belongs to ζk and y belongs to ζk′ and without lost of generality
k ≤ k′ and k, k′ are even, moreover consider β such that

ζ ′ = (x . . . xk . . . y′k . . . y x)

is a chordless walk, then by hypothesis ζ ′ is an oriented chordless cyle,
hence k = k′. Hence β is a chord in αkρk, a contradiction of the
construction of the sequence {α0, . . . , αk, . . . }. �

In the proof of Theorem 2, we use the same notation for the se-
quences.

Proof of Theorem 2. Let C = β0 . . . βn be a minimal oriented cycle. We
only give the argument of the proof in the case that each vertex in Q has
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at most 2 antiparallel paths. If a vertex has more than 2 antiparallel
paths, we can apply recursively the same idea to each antiparallel path.

By Lemma 3, there exists a finite sequence of arrows {α0, . . . , αm}
and the corresponding finite sequence of antiparallel shortest directed
paths {ρ0, . . . , ρm} such that β0 = α0 and αm has only an antiparallel
path. As in Lemma 3, we denote by xi = s(αi), yi = t(αi) and by
ζi = (yi → · · · → xi+1) the subpath of ρi if i is even or ζi = (yi+1 →
· · · → xi) the subpath of ρi if i is odd. Using this notation, we have
C = β0 . . . βn = α0ζ0α1.

Notice that ∂αi
(S) = kiαi+1ζi + ki−1αi−1ζi−1 if i is odd or ∂αi

(S) =
ki−1ζi−1αi−1 + kiζiαi+1 if i is even for every i 6= m, where ki, ki−1 ∈
k. Then using the relations induced by ∂αi

(S) we have the following
equalities:

C = α0ζ0α1 = −k1
k2
α2ζ1α1 =

Ç
−k1
k2

åÇ
−k2
k1

å
α2ζ2α3 =

= · · · =
Ç
−k2j−1

k2j

å
α2jζ2j−1α2j−1 = α2jζ2jα2j+1.

Since the arrow αm has only one antiparallel path, hence ∂αm(S) =
km−1αm−1ζm−1 if m is odd or ∂αm(S) = km−1ζm−1αm−1 if m is even.
Then the factor αm−1ζm−1 or ζm−1αm−1 is zero, then the cycle C is in
the Jacobian ideal.

Now we consider C not to be a chordless cycle in Q. By hypothesis,
there exists an arrow α in C such that α has at most 2 antiparallel
paths. To fix notation denote by C = (x1

α1→ x2
α2→ . . . xn

αn→ x1)
where α = α1. Since C is not a chordless cycle, then there exists a
chord β : xi → xj with vertices in C such that C1 = β1αj . . . αi is a
chordless cycle. Since Q is cyclically oriented, then the not oriented
walk ζ1 = βαi+1 . . . αj−1 is also not chordless. Applying recursively
this argument to each not chordless walk ζi, we find a chordless cycle
C ′ such that its vertices are also vertices in C. To fix a notation
let Ck = βkαjk . . . αik be the chordless cycle that was found in the k
recursive step and C ′ = β1 . . . βm be the chordless cycle.

Let βk be the arrow in C ′ such that α1 is an arrow in Ck. Then

∂β1(S) = m0αjk . . . αik +m1βk+1 . . . βk−1 +
t∑
i=2

miρiγi,

where ρiγi are the other antiparallel paths to βk and mi are non zero
scalars. Hence, the cycle C is equal to

−m−10 m1α1 . . . αjk−1βk+1 . . . βk−1αik+1 . . . αn −
t∑
i=2

m−10 miρiγi,
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whose summands have a chordless cycle as a factor. Then, by the first
part of the proof, C is zero. �
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