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Non-quasiparticle states in Co2MnSi evidenced through magnetic tunnel junction

spectroscopy measurements
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We investigate the effects of electronic correlations in the full-Heusler Co2MnSi, by combining a
theoretical analysis of the spin-resolved density of states with tunneling-conductance spectroscopy
measurements using Co2MnSi as electrode. Both experimental and theoretical results confirm the
existence of so-called non-quasiparticle states and their crucial contribution to the finite-temperature
spin polarisation in this material.

Next generation electronic devices will profit from
technologies that control the spin degrees of freedom.
Therefore, half-metallic ferromagnets (HMF), in which
the majority-spin density of states (DOS) crosses the
Fermi level (EF ) while the minority-spin DOS shows a
semiconducting behavior at EF (or vice versa), can be
seen as essential components for tunneling magnetoresis-
tance (TMR) devices. In HMF-based TMR devices the
magnetoresistance should, ideally, diverge if the conduc-
tion electron spins are 100% spin-polarized. It is further
expected that, if such a HMF could be epitaxially grown
on a semiconducting surface, fully polarized (100%) elec-
trons could be possibly injected into the semiconductor.

First band-structure calculations performed on the
half-Heusler, NiMnSb (C1b-type structure), predicted a
100% spin polarization [1]. Subsequently, the studies
were extended to other half-metallic systems. Of partic-
ular interest for realizing magnetic tunneling junctions
(MTJ) appears to be the full-Heusler alloy Co2MnSi
(L21-type structure). A minority-spin band-gap of 0.4eV
has been predicted and a Curie temperature of Tc =
985K and a saturation magnetisation of 5µB was re-
ported [2].

Some of us [3] recently fabricated magnetic tunnel
junctions (MTJ) consisting of highly ordered Co2MnSi
epitaxial bottom electrode, Al-O tunnel barrier, and
Co75Fe25 top electrode. A TMR ratio of 159%, at low
temperatures and a value of 70% at room temperature,
was determined. More recently, MTJ structures consist-
ing of Co2MnSi/Al-O/Co2MnSi were fabricated, having
a TMR ratio of 570%, at 2K, the largest one reported to
date for an Al-O amorphous tunneling barrier [4]. These
experiments reveal the HMF character of Co2MnSi with
a minority spin band gap and a high decrease of TMR
ratio with temperature [5].

In order to understand the large temperature vari-
ation of the TMR ratio in Co2MnSi, it is important
to investigate the temperature dependence of its half-

metallic density of states in the presence of electron-
electron interaction. Zero-temperature band structure
calculations within the framework of Density Functional
Theory (DFT) were reported by Galanakis et al. [6].
According to these calculations, the half-metallic char-
acter of Co2MnSi is determined by the existence of a
minority spin gap formed between the triply degener-
ate Co-Co anti-bonding t2g and the double degenerate
Co-Co anti-bonding eg [6] bands. However, standard
DFT - local density approximation (LDA), calculations
are in general insufficient to describe some important
many-body features of HMF, at zero or finite temper-
atures. One of these effects is the appearence of so-called
non-quasiparticle (NQP) states, i. e. states appearing
within the minority spin band gap just above the Fermi
level. These states describe low-energy electron excita-
tions for minority spins, which turn out to be possible
as superpositions of spin-up electron excitations and vir-
tual magnons [7, 8, 9] (“spin-polaron”) processes. There-
fore, their description require an appropriate treatment
of dynamical many-body effects. NQP states have been
studied in several half-metals [10, 11, 12, 13, 14] by using
a combined LDA+DMFT (dynamical mean field theory)
approach (for a review, see Ref.15). NQP states con-
tribute significantly to the tunneling transport in het-
erostructures based on HMF [16, 17, 18]. At T = 0K,
the density of NQP states vanishes at the Fermi level, EF

(in the presence of spin anisotropy at a slightly higher en-
ergy EF + ~ωm, see below), while for T > 0 tails of the
NQP states cross the Fermi energy and contribute to the
depolarization.

In this Letter, we show the crucial importance of non-
quasiparticle states for the finite-temperature depolar-
isation in Co2MnSi. This is achieved by combining a
theoretical analysis of the spin-resolved density of states
with tunneling-conductance spectroscopy measurements
at different temperatures in a Co2MnSi - based MTJ. Our
combined experimental and theoretical analysis confirms
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the presence of NQP states and emphasizes their con-
tribution to the finite temperature polarization in this
material.

Band-structure calculations were performed for the
half-metallic Co2MnSi alloy for the experimental lattice
constant a = 5.65Å. Calculations were performed using
a recently developed LSDA+DMFT scheme [19]. Corre-
lation effects in the valence Co and Mn d orbitals are in-
cluded via an on-site electron-electron interaction in the
form 1

2

∑
i{m,σ} Umm′m′′m′′′c†imσc†im′σ′cim′′′σ′cim′′σ. The

interaction is treated in the framework of dynamical
mean field theory (DMFT) [15], with a spin-polarized T-
matrix Fluctuation Exchange (SPTF) type of impurits

solver [20]. Here, cimσ/c†imσ destroys/creates an elec-
tron with spin σ on orbital m on site i. The Coulomb
matrix elements Umm′m′′m′′′ are expressed in the usual
way [21] in terms of three Kanamori parameters U , U ′

and J . Since the static part of the correlation effects is
already included in the local spin-density approximation
(LSDA), “double counted” terms must be subtracted. To
obtain this, we replace Σσ(E) with Σσ(E)−Σσ(0) [22] in
all equations of the LSDA+DMFT procedure [15]. Phys-
ically, this is related to the fact that DMFT only adds dy-

namical correlations to the LSDA result. For this reason,
it is believed that this kind of double-counting subtrac-
tion “Σ(0)” is more appropriate for a DMFT treatment of
metals than the alternative static “Hartree-Fock” (HF)
subtraction [23].
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FIG. 1: (Color online) Spin resolved density of states
of the Co2MnSi full-Heusler alloy obtained by LSDA and
LSDA+DMFT. The LSDA+DMFT results are obtained for
U=3eV and J=0.9eV (in both Co and Mn), and different tem-
peratures.

Fig. 1 shows the results of DOS calculations using
the LSDA and LSDA+DMFT schemes at different tem-
peratures. Realistic values of U for all 3d metals are
predicted to vary between 2 and 6-7 eV [15]. We have

checked that for values of the U parameters between 2
and 4eV the spectral weight of NQP states is not signifi-
cantly changed in agreement with recent calculations [11].
Here, we present results for U = 3eV and J = 0.9eV . In
order to resolve the LSDA minority-spin gap, a broaden-
ing of around 15K and a k-point mesh of 2304 points was
used in the reduced Brillouin zone. The LSDA density
of states, i. e. the T = 0K result, confirms the existence
of a minority-spin gap at EF , in agreement with pre-
vious results [6]. In contrast, finite-temperature results
obtained within LSDA+DMFT display a broadening of
the NQP states across the Fermi energy (Fig. 1) in the
minority spin channel, and a spectral weight redistribu-
tion for majority spins.

Static non-collinear spin configurations at finite tem-
peratures, produce a homogeneous mixture of spin-up
and spin-down density of states, in such a way that the
proportionality relation between polarization and mag-
netization is roughly maintained as a function of temper-
ature δP (T ) ∝ δ < Sz > [24]. Previously, this propor-
tionality relation was reproduced in magnetic semicon-
ductors [25], in qualitative agreement with experimental
data [26]. In contrast, for some HMF materials, it was
shown by model considerations [18] as well as direct nu-
merical calculations [10, 11, 14], that the polarization
displays a completely different temperature behavior in
comparison with the magnetization.

In order to confirm experimentally the existence of
NQP states in Co2MnSi and to investigate their temper-
ature dependence, we carried out tunneling spectroscopy
measurements for Co2MnSi-based MTJ. Specifically, the
measurements were first carried out for Co2MnSi/Al-
O/Co2MnSi-MTJ, for which a TMR ratio of 570% at
2K was achieved in previous studies [5]. A positive bias
voltage was applied to the upper Co2MnSi electrode, in
order to control the tunneling of electrons from the lower
electrode to the upper one.

Figs. 2 (a) and (b) show the bias-voltage depen-
dence of the differential tunneling conductance (dI/dV )
in the anti-parallel (AP) configuration, and the normal-
ized TMR ratio, respectively. The measurements were
conducted at temperatures between 2K and 300K. At
T = 2K, only a very small tunneling conductance is ob-
served below the lowest bias voltage (V ≈ 1mV ). This
is due to the half-metallicity of Co2MnSi. However, the
tunneling conductance rapidly increases in the low-bias
region (10mV < |V | < 150mV ), producing a rapid
decrease of the TMR ratio as can be seen in Fig2(b).
With increasing temperature, the tunneling conductance
around the zero-bias region gradually increases and the
steep structure at low bias is gradually lost.

These results are consistent with the temperature de-
pendence of the TMR ratios and the saturation magne-
tization for Co2MnSi plotted in Fig. 3. Here, the theo-
retical TMR ratio was obtained from the LDA+DMFT
polarisation by using Julliere’s formula and assuming a
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FIG. 2: (Color online) (a) Tunnel conductance for the
Co2MnSi/Al-O/Co2MnSi anti-parallel magnetic tunnel junc-
tion and (b) TMR ratio (normalized to T = 2K, V = 0), as
a function of voltage for different temperatures. The inset
of panel (a) shows the conductance normalized to zero bias
voltage.

temperature-independent value of 0.5 for the spin polar-
isation of FeCo, as obtained independently from other
measurements [27]. Despite its approximate character,
this formula reproduces correctly the temperature depen-
dence of the spin-polarization as was previously seen in
detailed theoretical investigation of the tunneling cur-
rent in the Half-metallic ferromagnets [17, 18]. More-
over, this is the standard formula used to extract the
spin-polarization from TMR data [28]. The saturation
magnetization (MS) was measured using a SQUID mag-
netometer for a MgO-sub./Cr/Co2MnSi film having the
same bottom electrode structure as the MTJs. As one
can see, MS values change little in the temperature range
2K ≤ T ≤ 300K (since Tc ≃ 985K this corresponds to
0.002 ≤ T/Tc ≤ 0.3). In contrast, the spin polariza-
tion (and thus the TMR ratio) decrease drastically in
the same temperature range. As can be seen from Fig. 3
the experimental temperature dependence of the TMR
ratio and of the magnetisation is in rather good agree-
ment with our LSDA+DMFT calculation. Moreover,
for T . 200K, the experimental polarisation curve (ob-
tained from the TMR data by inversion of Julliere’s for-
mula) is quite well reproduced by the analytic expression
1 − P (T )/P (0) ∝ T lnT/T ∗ predicted in Ref.[18]. Here,
T ∗ represents a crossover temperature ≈ (∆/W )2Tc, be-
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FIG. 3: (Color online) Comparison of the TMR ratio
and magnetisation (M) as a function of temperature for a
FeCo/Al-O/Co2MnSi tunnel juction as obtained from experi-
mental data and from LSDA+DMFT. Triangle-down/up rep-
resents the measured polarization and the fit to the analytic
expression 1 − P (T )/P (0) ∝ T ln T/T ∗ [18].

low which the δP (T ) ∝ δ < Sz > behavior is expected.
∆ = 0.4eV is the minority spin gap, W ≈ 8eV the band-
width and Tc ≈ 985K. The value of T ∗ estimated by this
expression (T ∗ ≈ 2.5K) is in good agreement with the
value T ∗ = 2.7K obtained from a fit to the experimental
data. These facts, combined with the strong tempera-
ture dependence of the differential tunneling conductance
shown in Fig. 2 clearly support the existence of minority-
spin NQP-states above the Fermi level.

The behavior of dI/dV as a function of bias volt-
age V and temperature can be understood by using the
schematic picture shown in Fig. 4. Here, the crucial
role of NQP states is apparent. In the case of an ideal
half-metal at T ≈ 0K, no tunneling process can occur
in the AP state, as there are no electronic states which
can contribute to the tunneling. Upon applying a finite
bias voltage (e|∆V | > ~ωm ) to the tunnel junctions,
a conducting channel for the minority spins opens due
to the nonvanishing NQP density of states (Fig. 4(a)).
Here, ~ωm is the anisotropy gap in the magnon spectrum,
below which the density of non-quasiparticle states van-
ishes [16]. At finite temperatures (kB T > ~ωm), NQP
states are expected to broaden and to extend across EF

as shown in Fig.1. Therefore, a finite tunneling conduc-
tance occurs even at vanishing bias voltage (Fig. 4(b)),
producing a rapid decrease of spin polarization.

The NQP picture suggests that in order to improve the
performances of Co2MnSi-based MTJ, a special attention
should be paid to magnon excitations. This suggests a
strategy to improve the performances of Co2MnSi-based
MTJ. The idea is to modify the magnon excitations,
while at the same time preserving the electronic prop-
erties, i.e. maintaining the gap in the minority chan-
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FIG. 4: (Color online) Schematic representation of an elec-
tron tunneling process at ∆V ≈ 0 and at finite bias voltage
in a Co2MnSi/Al-O/Co2MnSi magnetic tunnel junction. At
T ≈ 0K (a), NQP states vanish at EF , while for T > 0 (b)
(see text) NQP states extends across EF and an additional
tunneling channel opens.

nel. One possibility would be to increase the magnetic
anisotropy and thus the magnon gap [29]. This can be
achieved by a proper doping with rare-earth atoms in
the half-metallic material [29]. Experimental work is in
progress.

Finally, let us comment on alternative depolarisa-
tion mechanisms. Dowben et. al. [24] showed that
finite-temperature non-collinearity produces a spin mix-
ing which ultimately leads to a nonvanishing but sym-
metric DOS around the Fermi level in the gap of the
insulating spin channel. In contrast, as discussed above,
the low-energy DOS within the minority gap induced by
many-body effects (NQP states) appears only above the
Fermi level, and is thus strongly asymmetric. In addition,
its low-energy part is strongly temperature dependent,
and much larger in magnitude than the one produced
by non-collinear or spin-orbit effects. Therefore, we ex-
pect depolarisation due to NQP states to be dominant
in comparison with other effects, such as as the static
non-collinearity [24] or spin-orbit coupling.

In summary, we caried out a combined theoretical
and experimental study of depolarisation effects in half-
metallic Co2MnSi. Our tunneling conductance mea-
surements in Co2MnSi-based magnetic tunnel junctions
showed for the first time the existence of NQP states
above the Fermi level in the minority spin channel. The

behavior of the finite-temperature conductance demon-
strates the important role played by NQP states in in-
ducing depolarization, an effect which should be care-
fully considered in designing Co2MnSi-based MTJ de-
vices. The drastic reduction of the TMR ratio from low
to room temperatures is a clear evidence of the detri-
mental effect played by the NQP states on the electron
spin polarization. A possible strategy to improve the per-
formances of the Co2MnSi-based MTJ by increasing the
magnon anisotropy was also discussed.
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