
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/72731

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16157208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/72731

A Size-Aware T ype System
w ith A lgebraic D ata T ypes
W ith proofs of soundness and d ecidab ility

Alejandro Tam alet, O lha Shkaravska, and M arko van Eekelen
{A .Tam alet, O.Shkaravska, M .vanEekelen}@ cs.ru.nl

Technical Report ICIS-R08006**
Institute for Computing and Information Sciences

Radboud University
Heyendaalseweg 135, 6525 A J, Nijmegen, The Netherlands.

A b stract. We present a size-aware type system for a first-order func
tional language with algebraic data types, where types are annotated
with polynomials over size variables. We define how to generate typing
rules for each data type, provided its user defined size function meets cer
tain requirements. As an example, a program for balancing binary trees
is type checked. The type system is shown to be sound with respect to
the operational semantics in the class of shapely functions. Type check
ing is shown to be undecidable, however, decidability for a large subset
of programs is guaranteed.

Keyw ords: Size Analysis, Shapely Functions, Type Checking, Algebraic
Data Types, Ordinary Inductive Types

1 In trodu ction

Embedded systems or server applications often have lim ited resources available.
Therefore, it can be im portant to know in advance how much time or memory
a com putation is going to take, for instance, to determine how much memory
should at least be put in a system to enable all desired operations. This helps to
prevent abrupt term ination on small devices like mobile phones and Ja va cards
as well as on powerful computers running memory exhaustive computations like
G R ID applications and model generation. Analysing resource usage is also in
teresting for optim isations in compilers, in particular optim isations of memory
allocation and garbage collection techniques. An accurate estim ation of heap
usage enables preallocation of larger chunks of memory instead of allocating
memory cells separately when needed, leading to a better cache performance.
Size verification can be used to avoid memory exhaustion which helps to pre
vent attacks that exploit it, like some “Denial of Service” attacks. Size-aware

** A shorter version of this work entitled “Size Analysis of Algebraic Data Types” was
presented in the Ninth Symposium on Trends in Functional Programming, 2008.

type systems can also be used to prove term ination of finite computations or
progression of infinite ones (see the related work section).

Decisions regarding these (and related) problems should be based on form ally
verified upper bounds of resource consumption. A detailed analysis of these
bounds requires knowledge of the sizes of the data structures used throughout
the program (see [21]).

As part of the A H A project, we study in this paper a type-and-e ffect sys
tem [17,15] for a strict first-order functional language w ith algebraic data types,
where types are annotated w ith size inform ation. W e focus on shapely func
tion definitions in this language, where shapely means that the size of their
output is polynom ial w ith respect to the sizes of its arguments. Form ally, if
sizeT i: Tj ^ N are the size functions of the types t for i = 1..k + 1, a function
f : t i x . .. x Tk ^ Tk+i is shapely if there exists a polynom ial p on k variables
such that

V x i: T i , . . . , x fc : Tk . size Tfc+1 (f (x i , . . . , x fc)) = p (s ize n (x i) , . . . , size Tk (x k))

For instance, if we take for lists their length to be their size, then appending
two lists is shapely because the size of the output is the sum of the sizes of the
inputs. However, a function that conditionally deletes an element from a list is
not shapely because the size of the output can be the same as the size of the
input or one less, which can not be expressed w ith a unique polynom ial. The
definition can be easily extended to size functions that return tuples of natural
numbers.

W e have previously shown for a basic language (whose only types are inte
gers and lists) and a simplified size-aware type system, that type checking is
undecidable in general, but decidable under a syntactical restriction [18]. Type
inference through a combination of dynam ic testing and type checking was de
veloped in [22]. A demonstrator for type checking and type inference is available
at w w w .a h a .cs .ru .n l.

In this paper we extend this analysis to algebraic data types. W e show a
procedure to generate size-aware typing rules for an algebraic data type, provided
its size function has a given form. Furtherm ore, for any data type we define a
canonical size fu n c tio n which is used in case no size function is defined by the
user. W e prove soundness of the type system w ith respect to its operational
semantics, which allows sharing. In the presence of sharing, the size annotations
can be interpreted as an upper bound on the amount of memory used to allocate
the result. Type checking is shown to be undecidable, however, the syntactic
restriction introduced in [18] can be used to guarantee decidability. W e also give
an example that shows that the type system is incomplete.

This paper is organised as follows. In Section 2 we define the language and the
type system, and we give generic typing rules for user defined size functions. In
Section 4 we deal w ith soundness, decidability and completeness issues. Section 3
recalls the category-theoretic semantics of inductive types as in itia l algebras. W e
show that for parameterised polynom ial inductive types the canonical size func
tion is sensible and, moreover, that it is an in itia lity homomorphism. Section 5

2

http://www.aha.cs.ru.nl

discusses the addition of size-parametric data types to the language. Section 6
comments on related work and Section 7 draws conclusions and gives pointers
to future work.

2 Size-A w are T yp e S ystem w ith A lgebraic D a ta T ypes

W e start this section by introducing the working language and types w ith size
annotations followed by an example w ith binary trees in 2.2. Subsection 2.3 shows
how to obtain typing rules from a size function that meets the requirements
stated in 2.1.

2.1 Lan g u ag e an d T yp e s

W e define a type and effect system in which types are annotated w ith polynom ial
size expressions:

p ::= c | n | p + p | p — p | p * p

where c is a rational number and n denotes a size variable that ranges over nat
ural numbers. A zero-order type can be one of the prim itive data types (boolean
and integers), a type variable or size annotated algebraic data type:

t ::= Boo l | In t | a | T Pl’" ',Pn (t i, . . . , Tm)

An algebraic data type is annotated w ith a tuple of polynomials. This allows
one to measure different aspects of an element of that type, for instance, the
number of times each constructor is used. To sim plify the presentation we w ill
usually write just T p(T).

Note that the types List0(Listm(In t)) are equivalent for all m because their
only inhabitant is the em pty list. W hen counting the occurrences of all construc
tors, we can generalise this to any algebraic data type by regarding as equivalent
all elements that have a size of zero in all the non-nullary constructors of the
outer type. For example, elements of type Tree1,0(L ist1’m(In t)) are considered
equivalent for any m. The canonical value of this class is Tree1,0(List1’0(In t)) .
In this work t denotes in fact the canonical representative t= .

The sets F V (t) and F S V (t) of the free type and free size variables of t , are
defined inductively in the obvious way. Note, that F S V (List0(Listm (a))) = 0,
since this type is equivalent to List0(List0(a)). Let t ° denote a zero-order type
whose size annotation contains just constants or size variables. First-order types
are assigned to shapely functions over values of t°-types.

t f ::= t ° x . .. x t ° ^ Tfc+1
such that F S V (Tk+1) C F S V (t °) U ••• U F S V (t °)

For to ta l functions the following condition is necessary: fo r all in s ta n tia tio n s
* o f size variables w ith them selves or zeros, F S V (*Tn+1) C F S V (* t °) U • • • U
F S V (*T °). Consider, e.g., the first-order type Listn (Listm(a)) ^ Listm(Listn (a)).

3

W hen n = 0 the input type degenerates to List0(List0(a)), but in the output,
the outer list must have size m, which in this case is unknown. Hence, this first
order type may be accepted w ithout the condition on instantiations, only if a
function of this type is undefined 1 on em pty lists. In the previous example the
type may correspond to an n x m-matrix transposition function, in which case
undefinedness on Nil would be interpreted as the exception “cannot transpose
an em pty m atrix” .

W e work w ith a fairly simple first-order language over these types. The fol
lowing grammar defines the syntax of the language, where b ranges over booleans
and i over integers, x denotes a program variable of a zero-order type, C stands
for a constructor name and f for a function name.

d ::= d ata T (a) = C (t 1 (a)) 1 . . . 1 C r (Tr (a))
a ::= b | i | f (x) | C (x)
e ::= a | le t fu n f (x) = e1 in

| le t x = a in e | i f x then e1 e ls e e2
| match x w ith 1 C 1 (x 1) ^ e c 1 1 . . . 1 C r (xr) ^ e c r

p r ::= d* e

On the data type definition we have abused of the notation: only type con
structors may have type variables as parameters. Types appearing on the right
hand side of the definition of a data type must not have free size variables. W e
prohibit head-nested let-expressions and restrict subexpressions in function calls
to variables to make type checking straightforward. Program expressions of a
general form can be equivalently transformed into expressions of this form. It
is useful to think of the this as an interm ediate language. W e also assume that
the language has the typ ical basic operations on integers and booleans, but their
study is om itted since they do not involve size annotations.

In order to add size annotations to an algebraic data type, it must be decided
what to measure. Because of polymorphism, one can measure only the outer
structure, e.g., since the size of L ist(a) must be defined for any a, the size of a
L ist(T ree (In t)) w ill be just the length of the list. Bu t, because the size is part of
the type, all the elements of the list must have the same size, which allows the
user to compute the total size once the sizes of the trees are known. Another
consequence of polymorphism is that one usually needs to count the number of
times each constructor is used to build an element. A size function for

d ata T reeA B (a ,3) = Empty | Leaf (a) | Node(3, TreeAB(a, 3), T reeA B (a ,3))

should return the number of empties, leaves and nodes. Any size function for
these trees that returns a single natural number is losing inform ation and the
user w ill not be able to calculate the total size once a and 3 are known. One may
not want to count the number of times some constructor is used because it can
be deduced from the others or it is constant, e.g., any finite list has always one nil
constructor cell. Ignoring some constructors can also make a function definition

1 We use a nonterminating function to express undefinition.

4

shapely as in the case of a function that can return trees of type TreeAB w ith
different number of empties and leaves, but always the same number of nodes.
If all the constructors cells are counted, such a function is not shapely, however,
if only nodes are counted, it is shapely.

W e require a size function for T (a) to be total and have the form

ki
s izet (C j(x j1 , . . . , X jk i)) = Cj + ^ 2 Y (x j j)

j=1
where xjj : Tjj , cj is a non-negative integer or a tuple of non-negative integers
and

() = I s izet (x jj) if T jj (a) = T (a)
Y jj 0 otherwise

Henceforth, we w ill assume that every size function satisfies these requirements.
The m otivation for this is twofold. On one hand linearity is needed for decid
ab ility (see 4.2) and on the other hand, requiring the recursive calls of the size
function to be applied to (some of) the arguments of the constructors, allows us
to relate their sizes w ith the annotations of the respective types in the context
(see 2.3).

A canonical size fu n c tio n for T (a) is a size function where each cj is 1 [, the
tuple of arity r (the number of constructors of T) w ith all zeros except for a 1
on the i-th position. It is always possible to obtain a canonical size function for
a given algebraic data type, and there is only one way to construct it, thus it is
unique for that type. W hen no size function for a type is provided by the user,
its canonical size function is used. W e w rite sT for the canonical size function of
T (a). For instance, SList is a function that takes a polym orphic list / and returns
(1, leng th (/)), since it is defined as:

SList(Nil) = (1, 0)
SList(Cons(hd, t l)) = (0, 1) + SList(t l)

The syntax distinguishes between zero-order let-binding of variables (le t)
and first-order letfun-binding of functions (le tfu n). In a function body, the only
free program variables that may occur are its parameters: F V (e1) C {x 1, . . . , xn}.
The operational semantics is standard, therefore the definition is postponed until
it is used to prove soundness (Section 4).

A context r is a finite mapping from zero-order variables to zero-order types.
A signature S is a finite function from function names to first-order types. A
typing judgement is a relation of the form D ; r e : t , where D is a set of
D iophan tine equations (i.e., w ith integer solutions) that constrains the possible
values of the size variables, where v a rs (D) C F S V (t ° x ... x t °) , and S contains
a type assumption for the function that is going to be type checked along w ith
the signatures of the functions used in its definition. W hen D is em pty we w ill
write r \~s e : t . The entailm ent D h p = p' means that p = p' is derivable
from the equations in D , while D h t = t ' means that t and t ' have the same
underlying type and equality of their size annotations is derivable. W e w rite the

5

union of the constraints c1 and c2 as c1 ,c2, and we w rite r 1 , r 2 to denote the
union of the contexts r 1 and r 2, provided d o m (A) n d o m (A) = 0.

The typing rules for the language, excluding the ones for data types, are
shown in Figure 1. The F u n A p p rule needs some comments on its notation:

D; r h s b: Bool BCONST D; r h s i : In t ICONST

D h t = t '
D; r , x : t hs x : t '

r (x) = Bool D; r hs et : t D; r hs ef : t
D; r hs i f x then et else e f : t

x dom (r) D; r hs e1: Tx D; r , x : Tx hs e2 : t
D; r hs le t x = e1 in e2 : t

I f

L et

£ (ƒ) = Ti X • • • X T° ^ Tk+1
x i: T1° , .. . , xk : t ° h s e 1 : Tk+ 1 D; r h s e2 : t '
------------------- --------- ------------- --- Le tFu n

D; r hs le tfu n f (x1 , . . . , xk) = e1 in e2 : t

Z (f) = T° X ... X T° ^ Tk+1
D h t = Tk+1 [t ° := t1 , ... , t ° := t '] D h C
——-------- --------- 1—,--- —-------- ----- FunApp

D; r , x1 : T1 , ... ,xk : Tfc hs f (x 1 , . .. ,xk): t

F ig . 1. Typing rules excluding the ones for data types.

t [t ° := t { . . . t ° := Tk] is the simultaneous substitution in t of t ° by t/ for
i = 1..k. This is done as follows:

1. Check that the underlying type (i.e., the type w ithout the size annotations)
of t ° and Tj' are the same, except for the type variables.

2. Check that every type variable in each t ° is substituted by the same zero
order type by each t/, and substitute them in t .

3. Substitute in t the size variable of t ° by the corresponding size expression in
Tj' . It may happen that the same size variable appears in different types t °
and t ° , and that it is substituted by size expressions pj and p j, respectively.
In such a case, replace the size variable by pi and add the equation pi = pj
to C (which is in itia lly em pty).

As example, consider the last step in type checking append (see [19]).

S(C ons) = a ' x List"' (a ') ^ L is t^ + V)
D h List"+m(a) = List"'+ 1 (a ')[a '/ a , L is t" '(a ')/ L is t(" - 1)+m(a)]
----------------- p— 7—------------------------------------ Fu n A p p

h : a, z : List(" - 1)+m(a) h^ Cons(h, z) : List"+m(a)

To do the substitutions we follow the 3 steps described before. As a first step
we check the consistency of the underlying types of the actuals and the fo rm a ls .

6

Since we omit type variables, there is nothing to check in a '/a; and is obvious
that List" and List(" -1)+m have the same underlying type, List. Then we check
that each type variable is instantiated to same value, which is true since in
both cases a ' is instantiated to a. W e replace a ' by a in List" +1(a '). F in a lly we
replace n ' by (n — 1) + m to get the entailm ent h List"+m(a) = List(" -1)+m+1(a).
Since there is only one substitution of n ', the set of equations C is empty.

The im plicit side-conditions on F u n A p p , i.e., the checks of consistency of
the underlying types made in the first two steps, w ill be om itted in the following
examples because they are part of conventional type checking. W e w ill concen
trate on the checking the entailments about size expressions, for instance, in the
append example, we w ill just w rite the entailm ent D h n + m = (n — 1) + m +1.

The set C is used e,g., when type checking a function to do m atrix m ultip li
cations: L ist"(L is tk(In t)) x Listk(Listm(In t)) ^ L ist"(L istm(In t)) . If the first k
is instantiated w ith p 1 and then the second w ith p2, we substitute k w ith say p 1,
but we add the requirement D h p 1 = p2.

In [18] we defined a type system for a sim ilar language, whose only data type
were lists and integers. The typing rules for calculating the size of lists were
“hardcoded” in the type system by the typing rules in Figure 2.

D h p = 0
D; r h^ Nil : Listp(r) NlL

D h p = q + 1
D; r , hd : t, tl : List9(t) h^ Cons(hd, tl): Listp (t) Cons

D, p = 0; r , x : Listp(T) h^ eNii : t ' hd , tl dom (r)
D; r , x : Listp(T), hd : t, tl : Listp-1(T) h^ econs : t '

„ _ . . , match x w ith | Nil ^ eNil ,
D ; r , X: ListP(T) h- | Cons(h,d, tl) ^ eco : T'

M atch

Cons

Fig . 2. Typing rules for lists.

The main contribution of this work is to extend the type system to cope w ith
other algebraic data types.

2.2 E x am p le : B in a ry T rees

Consider the following definition of b inary trees:

d a ta Tree(a) = Empty | Node(a, Tree(a), T ree(a))

The canonical size function for Tree is:

7

STree(Empty) = (1, 0)
STree(Nodef^ /, r)) (0, 1) + STree(1) + STree(r)

Conforming to STree, an annotated binary tree has the form Tree6’" (a) , where
e is the number of Empty constructors (the leaves of the tree) and n is the number
of nodes. W e want to obtain typing rules for b inary trees that w ill enable us to
statically check the values of e and n when the binary tree is the result of a
shapely function. W e need one rule per constructor and one rule for pattern
matching a b inary tree. An em pty tree has one leaf and no node, thus:

D h (e, n) = (1, 0)
------------------------ E m pt yD; r h^ Empty : Tree£’n(r) E m pty

From STree we obtain that in a non-empty tree, the number of leaves is equal
to the sum of the number of leaves in each subtree and that the number of
nodes is one more than the sum of the number of nodes in each subtree. W e
use variables for the sizes of the subtrees and we relate them accordingly in the
premise:

D h (e, n) = (0, 1) + (ei, n i) + (e2, n2)
D; r, v : t , l : Tree£1’ni (t), r : Tree£2’n2 (t) h^ Node(v, l, r): Tree£’n (t) N ° DE

Sim ilarly, in the typing rule for pattern matching a binary tree, we introduce
fresh variables in the typing context of the premises for the unknown quantities
and we add their relationship to the set of conditions.

D, (e, n) = (1, 0); r , t : Treee,n(T) hs eEmpty: t
(e, n) = (0, 1) + (ei, n i) + (e2, n2); r ,

ee,n(T), v : t, l : Tree£1’ni (t), r : Tree£2’n2 (t) h£
e1, e2, n 1 n2 </. vars(D) v, l, r </. d o m (r)

D; r , t : Treee,n (t) h^ match t w ith | E ^ ^ ^ :| Node(v, l, r) ^ eNode

M T r e e

To see how these rules work in practice, we apply them to a function to
balance a (not necessarily ordered) b inary tree. To sim plify the example we add
syntactic sugar to avoid le t constructs. It is not our intention to explain the
balancing algorithm, but just to show that there are many interesting functions
that can be w ritten in our language. W e begin w ith a function for right-rotation
of nodes. W e use undefined to indicate a non-terminating expression w ith the
required type.

r _ r o t (v ,1 ,r) : a x Tree61’" 1 (a) x Tree62’" 2(a) ^ Tree6l+62’ni + "2+1(a) =
match l w ith | Empty ^ undefined

| Node(v1, 11, r 1) ^ Node(v1, 11, Node(v, r 1, r))

8

B y applying the rule M T r e e we get two branches. The branch for the Empty
case is undefined and thus we do not need to type check it. The other branch is

(e1,m) = (e1 + e2, m + «2 + 1) =
(en + e12, «11 + «12 + 1) (en + e12 + e2, «11 + («12 + «2 + 1) + 1)
-- N ode

(e1, « 1) =
(en + e12,«11 + «12 + 1); N d (,
v, V1 : a, l : Tree“1’" 1 (a), hs N i d . ^ ^ : Tree£1+e2’n i+n2+1(a)
¿1 : Tree“- — (a), N° de(v, r1, r))
r 1: Tree“12’" 12(a)
------------------- — -------------------------------------- M T r e e

v : a, l : Tree“1’" 1 (a), e1 +e2n1+n2+1, ,’ “2 hs match l . . . : Tree“1 +“2,n1+n2+1 (a)r : I ree“2 ’" 2 (a) v '

Sim ilarly, we can type check the left-right rotation function. For sim plicity
we w rite it in a Haskell-like style of pattern matching.

I r . r o t : a x Tree61’" 1 (a) x Tree62’" 2 (a) ^ Tree61+62’" 1+ "2+1(a)
lr - ro t(v, Node(v1, 11, Node(v12, 112, r 12)), r) =

Node(v12, Node(v1, 11, 112), Node(v, r 12, r))

Now we define the left balance function, which is easily type checked since
both branches have the same type. The definitions of balance and RightWeight
are om itted because they are not needed for out analysis.

l .b a l (v, l, r) : a x Tree61’" 1 (a) x Tree62’" 2 (a) ^ Tree61+62’" 1+ "2+1(a) =
i f balance(l) == RightWeight
then lr_ ro t(v, l, r)
e ls e r_ ro t(v, l, r)

Then we type check a function that inserts an element into a balanced binary
tree:

in se r t (a, t): a x Tree6’" (a) ^ Tree6+1’"+ 1(a) =
match t w ith | Empty ^ Node(a, Empty, Empty)

| Node(v, l, r) ^ let 12 = in se r t (a, l)
in i f h e ig h t(12) == h e ig h t(r) + 2

then l_ bal(v, I2, r)
e ls e Node(v, 12, r)

Applying M T r e e we get two branches. For the Empty branch we get the
entailm ent (e, n) = (1, 0) h (e + 1, n + 1)= (1 + 1, 0 + 0 + 1) and for the Node
branch we have the judgement:

(e , ^ ,= ^ 6 + " ? / n 1 + n + 6 1 "t : T ree6’" (a) ,h ^ let I2 = ... : Tree6+1’"+ 1(a) v : a , l : Tree61’" 1 (a), r : Tree62’" 2 (a) ^ 2 v 7

9

Using L e t we get 12 : Tree61 + 1 ’" 1+1(a). Both branches of the i f have the
same type, so we only need to check the entailm ent it generates:

(e, n) = (e 1 + e2, n 1 + n 2 + 1) h (e + 1, n + 1) = ((e 1 + 1) + e2, (n 1 + 1) + n 2 + 1)

Then we define a function to build a balanced tree from a list:

b u ild -b a l- tre e (xs) : L is t"(a) ^ Tree"+1 ’ " (a) =
match xs w ith | Nil ^ Empty

| Cons(hd, t l) ^ in s e r t(hd, b u ild -b a l- tre e (t l))

From the Nil branch we get the condition n = 0 h (n + 1 , n) = (1 , 0), which
is triv ia lly true and for the Cons branch we have:

h (n + 1 , n) = ((n — 1) + 1 + 1 , (n — 1) + 1)
--- F u n A p p
h d : a , t l : L ist"-1(a) h^ in se r t (h d , build _ baL tree (t l)) : Tree"+1 ’" (a)

Finally, we define and type check a function that balances a b inary tree:

balance-tree (t) : Tree6’ " (a) ^ Tree"+1 ’ " (a) = b u ild -b a l-tree (fla tten (t))

where f la t te n is a function w ith type Tree6’" (a) ^ L is t"(a) that returns a list
w ith the elements of a binary tree. B y applying the typing rule for function
application twice, we get the triv ia l entailm ent h (n + 1, n) = (n + 1, n). W hen
the tree is flattened, we loose the inform ation about e, thus e does not appear
in the resulting type of balance, tree .

For Tree it does not make sense to count both constructors because if e and
n are the number of Empty and Node constructors in any Tree, respectively, it
holds that e = n + 1. However, in general there is no such relationship. As an
example where counting different constructors is relevant, consider binary trees
defined as:

d a ta Tree(a) = Empty | Leaf(a) | Node(Tree(a), T ree(a))

Suppose that we annotate Tree w ith e, l and n representing the number of
empties, leaves and nodes, respectively. A function that replaces all empties w ith
a leaf has type a x Tree6 ’ 1 ’ " ^ Tree0 ’6+1 ’" .

2.3 T y p in g R u le s fo r A lg e b ra ic D a ta T yp e s

Below, we give a procedure for obtaining typing rules for an arb itrary algebraic
data type. Let T (a) be an algebraic data type defined as

d ata T (a) = C 1 (t 1 (a)) | . . . | C r (r r (a))

10

and let sizeT be the size function of T (a). For each constructor C* we add a
typing rule of the form

D h p = c, + 1 p,j
D; r, x,j : Y ,j(T (t)) for j = 1..fc, hs C ,(x ,1 ,. .,x ,k i): T p(t) C i f0r * = 1" r

where c* and the a j are taken from the definition of sizeT , and Yjj is defined as

Y j (T (t)) =
T (t) if Tjj (t) = T (t)
Tjj (t) otherwise

The idea is that if the type of X j is T (t), the one we are defining the typing
rules for, then it must have a size annotation that we call p j , otherwise its type
is just Tjj (t). There is a clear correspondence between y and y '.

W e also add a typing rule for pattern matching an element of type T (a):

D, p = ci + J] 1 n ,j; r, x : T p(t)
x j Tij (T 0j)-)1 fo r j = 1 ..fe h s e‘ :T ’ = L r

nij 1/ vars(D), x,j </. dom (r) for i = 1 ..r, j = 1 ..fc,
M atchT

match x w ith | C 1 (x11, ... , x1k1) ^ e1

D; r, x : T p(t) hs : : r '

1 C r (xr1 , . . . , xrfcr) er

Each of the size variables of njj and the formal parameters of the constructors
are assumed to be fresh. Notice that there is one premise per constructor. W hen
Y ij (T (t)) is T j (t) we regard njj as 0, that is, we omit that variable from the
sum.

Instead of generating one typing rule for each constructor, it is possible to
derive a size-annotated type for each of them, add these types to the set of sig
natures S and then use the function application rule. This approach is preferred
since it results in a type system w ith fewer rules, however, for presentation pur
poses, we have chosen to generate typing rules for them because it makes clearer
the role that the set of constraints D plays. A typing rule for pattern matching
each algebraic data type is still needed.

3 Indu ctive T yp es as In itia l A lgebras

In this section we recall categorical semantics of inductive types [4]. W e recapit
ulate necessary notions from category theory and recall, that an inductive type
is an in itia l algebra of the endofunctor corresponding to its constructors. W e w ill
see that the canonical size function of an polynom ial inductive type is sensible
and, moreover, it is an in itia lity homomorphism. Here we think of types as of
sets.

11

Recall the notion of a functor. An endo functor from S e t to Set, w ith endo
emphasising that the domain and the codomain of the given functor coincide,
sends sets to sets and se t m a p s to se t m a p s . A functor satisfies three simple
properties [4], e.g., F (ƒ o g) = F (ƒ) o F (g). A simple example is a lis t fu n c to r
L . It sends a set A to the set List (A) of lists of elements from A , and a function
ƒ : A ^ B to the function L (f) := m a p (ƒ) : L ist(A) ^ L is t(B), where
m ap : (a ^ a ') ^ List (a) ^ List (a ') is the usual lifting of a set map to a list
map.

Now we define the notion of an in itia l algebra. F irst, consider an example. Let
A be a set. The set List (A) of all lists of elements from A is defined inductively
by two constructors:

Nil : 1 ^ List (A)
Cons: A x List (A) ^ List (A)

where 1 = { * } is a singleton set. So, the set L ist(A) may be presented as a pair

^List(A), [Nil, Cons] : (1 + A x L is t(A)) ^ L ist(A) j ,

where + denotes a coproduct (a disjoint sum) of two sets. One says that the lists
form an F -algebra o f an endo functor F , where F (X) = 1 + A x X , which sends
ƒ : X ^ Y to F (ƒ) = (1 + A x X) ^ (1 + A x Y), so, that F (ƒ) left (*) = *,
and F fright (a x) (a ƒ (x)) .

Sim ilarly, b inary trees w ith nodes from A form an algebra of an endofunctor
F ', where F '(X) = 1 + A x X x X :

^Tree(A), [Empty, Node] : (1 + A x Tree(A) x T ree(A)) ^ T ree (A)j

An inductive type is not the only possible F-algebra, where F defined by
the collection of its constructors. There are other F-algebras, that is, pairs of
the form (X , aX : F (X) ^ X for some set X . Roughly speaking, an inductive
type is the m in im a l F-algebra for F . To make this statement formal, we need to
recapitulate the notion of a ho m om orph ism o f F -algebras. Let (X , ax : F (X) ^
X and (Y , aY : F (Y) ^ Y) be F-algebras. A set map ƒ : X ^ Y , such that:

F (X) ax X

F (ƒ)

F (Y)
ay

Y

is called a homomorphism.
An inductive type corresponding to F is an in itia l F -algebra (or a least fixed

point of F), i.e., there is a unique h o m om orph ism fro m i t to any o ther F -algebra.
For example, lists of A form the in itia l algebra of F (X) = 1 + A x X .

ƒ

12

W hat does in itia lity bring to size analysis? Consider e.g. an in itia lity ho
momorphism from lists of A to the F-algebra (N , aN : (1 + A x N) ^ N) ,
where

On , left(*) = 0
aN, right(a, n) n + 1

This homomorphism is the function length : List (A) ^ N :

. t . [Nil, Cons]
1 + A x L is t (A)-------- ► List(A)

F (leng th)

1 + A x N on

length

N

Indeed, one can easily show that the diagram above commutes. On one hand
length(N il(*)) = length(Nil) = 0, and leng th(Cons(a, x)) = leng th(x) + 1. On the
other hand, aN ,left (F (len g th)lef t (*)) = aN ,left (*) = 0 and sim ilarly for the Cons
part: on,right (F (len g th) right (a, x)) = o n ,right (a, leng th (x)) = len g th (x) + 1.

3.1 T h e C a n o n ica l S ize F u n c tio n o f P o ly n o m ia l In d u c tiv e T yp es

W e say that a size function for T is sensible if it returns the exact amount of
each constructor of T that its argument contains. Recall that an inductive type
is an in itia l algebra of the endofunctor corresponding to its constructors [4]. W e
w ill show that the canonical size function of an polynom ial inductive type is
sensible.

An endofunctor is called po lynom ia l if it sends a set X to a finite coproduct
of its finite products (w ith probably some other constant sets). If the endofunc
tor of an inductive type T (a) is polynom ial, it follows from the construction of
the endofunctor that the type (up to isomorphism) has a finite number of con
structors (corresponding to the finite coproduct) of finite arity (finite products).
Moreover, the types of arguments of constructors are either defined types that
do not depend on T (a), type variables, or T (a). Such inductive types are called
param eterised po lynom ia l inductive types [9], where the word “parameterised”
refers to polymorphism. It follows from the definition of an polynom ial induc
tive type that its canonical size function is sensible. Indeed, in the definition of a
canonical size function all the coefficients a j at inductive arguments are 1, and
at noninductive arguments a j = 0. So, one easily shows by induction that the
sensibility condition holds.

Note, that for a polym orphic type its endofunctor is param etric. For instance,
in the param etric endofunctor for lists of type a is F a (X) = 1 + a x X . Below
we omit subscripts for parameters.

Let T (a) be a parameterised polynom ial inductive type, and F be the cor
responding endofunctor. Let the i-th constructor C j, w ith 1 < i < r, be of type
a x (T (a))k for some k > 0. Then the i-th injection of F (X) is a x X k. W e

13

want to show, that the ty p e ’s canonical size fu n c tio n is an inithality h o m o m o r
p h ism from the type to an F-algebra (N r , aNr : F (N r) ^ N r) . Form ally, the
i-the injection of set F (N r) is a x (N r) k and aNr, j sends (a, n i, . . . , nk) to

1 + Z j= i nj.
To ease reading we consider not the full homomorphism diagram, but only

its part for the i-th injection:

a x (T (a)) k C i ► T (a)

a x

a x (N r)

ST

^k aNr, j t N r

It triv ia lly commutes:

ST (C j(a , x i , . . . , xk)) = lj + Z j =1 S T (x j)
and
aN r, j ((a x sT)(a, x i, .. ., xk)) =
aN r, j (a, s t (x i) , . . . , s t(x k)) = l j + I] k=1 s t (x j)

4 Soundness, D ecid ab ility and C om p leten ess

This section is devoted to soundness and completeness of the type system and
decidability of type checking, extending previous results on these topics to a
language w ith algebraic data types.

4.1 Soundness

Set-theoretic heap-aware semantics of a ground algebraic data type (i.e., a type
where all size and type variables are instantiated) is an obvious extension of
the semantics of lists that can be found, for instance, in [18]. In tu itively, an
instance of a ground type is presented in a heap as a directed tree-like structure,
that may overlap w ith other structures. The only restriction is that it must be
acyclic. Note that cyclic structures may be studied as, for instance, in the paper
of Hofmann and Jost [12] about heap-space analysis for a subset of Java.

Since our type system is not linear, that is, a program variable may be used
more than once, a data structure in a heap may consist of overlapping substruc
tures. This is the case, for instance, for a heap representation of Node(1, t, t),
where t is a non-empty tree. In general, in a calculation of the size of a structure,
a node is counted as m any times as it is referenced. Hence, a sensible size func
tion gives an upper bound for the actual amount of constructor cells allocated

14

by the structure. If there is no internal sharing, the sensible size function is equal
to the amount of cells actually allocated.

A location is the address of some constructor-cell of a ground type. A program
value is either an integer or boolean constant, or a location. A heap is a finite
partial mapping from locations and fields to program values, and an object heap
is a finite partial map from locations to C o n stru c to r , the set of (the names of)
constructors. Below, we assume that for any heap h, there is an object heap oh
such that d o m (h) = d o m (o h).

Let t be a type defined by a set of constructors C j, where 1 < i < r. W ith a
constructor C j of arity kj > 0, we associate a collection of field names C j- fie ld j ,
where 1 < j < kj . Let F ield be the set of all field names in a given program.
To avoid technical overhead w ith semantics of null-ary constructors, we do not
consider a null-address NULL as a program value. The problem is that a type
may have more than one null-ary constructor. If one had a NULL-address, then,
to avoid ambiguity, one of the null-ary constructors would have been associated
w ith NULL, whereas the others would have been placed in some locations. This
would have made the proofs non-uniform. W e also assume that any null-ary
constructor is placed in a location w ith 1 em pty integer field. W ith a 0-arity
constructor C j we associate the field name f ie ld i . Thus, the definitions and
proofs for null-ary and non null-ary constructors w ill be very sim ilar. The reason
to introduce a “ fake” field for null-ary constructors is to make the proofs more
uniform. Form ally:

Val v ::= i | b | i i e Loc i e In t b e Bool
Heap h : Loc ^ Field ^ Val ObjHeap oh : Loc ^ Constructor

W e w ill write h[£.field := v] for the heap equal to h everywhere but in ¿,
which at the field of I named fie ld gets the value v.

The semantics w of a program value v is a set-theoretic interpretation w ith
respect to a specific heap h, its object heap oh and a ground type t •, via a five-
place relation v |=h;oh w. Integer and boolean constants interpret themselves,
and locations are interpreted as non-cyclic structures:

6 1 h;oh 7 =B0ol b
if C is a null-ary constructor of T, i e dom,(h), oh (i) = C
and the constant vector c is the size of C

wk) if i e dom (h), oh (i) = C
C : r* x ... x r* ^ t * (i.e. it is a ground instance),
t * = T n (t *') for some t *', n0 = sizeT (C (w i,... , wk)),
and for all 1 < j < k : h.i.C_ field j dom(h)un; oh|dom<oh>\M w.

where h|dom(h)\{£| denotes the heap equal to h everywhere except for ¿, where
it is undefined.

W hen a function body is evaluated, a frame store m aintains the mapping from
program variables to values. A t the beginning it contains only the actual function

i |=B; oh
T c(T«) C

i = Bioh C (w i......

B; ohi= iInt

15

parameters, thus preventing access beyond the caller’s frame. Form ally, a frame
store is a finite partial map from variables to values: Store s : E xp V a r ^ Val.

An operational semantics judgement s; h; oh , C h e ^ v; h'; oh ' inform ally
means that at a store s, a heap h, its object heap oh and w ith the set C of function
closures (bodies), the evaluation of an expression e term inates w ith value v in
the heap h' and object heap oh '.

Using heaps and frame stores, and m aintaining a mapping C from function
names to bodies for the functions definitions encountered, the operational se
mantics of expressions is defined by the following rules:

s; h; oh , C h c ^ c; h; oh OSICons g. h; oh , C h x ^ s(x); h; oh O SV ar

Ci is a 0-ary constructor i e dom (h)
O SC ons - 0s; h; oh , C h Ci ^ i; h[i.C^ fie ld i := i]; oh [i := Ci]

s(x i) = vi , ... , s(xk) = vk i e dom (h)
s; h; oh , C h C (x i , . . . ,x k) ^ i; h[i.C_ field i := vi , . . . , i . C field k : = vk]; oh [i := C]

O SC ons

s(x) = 0 s; h; oh , C h ei ^ v; h'; oh'
— -----— — ----------------------------7— -7 O S IfT ru es; h; oh , C h i f x then ei else e2 ^ v; h ; oh

s(x) = 0 s; h; oh, C h e2 ^ v; h'; oh '
O SIf Fa lses; h; oh , C h i f x then ei e lse e2 ^ v; h'; oh'

s; h; oh , C h ei ^ v i ; hi ; oh i s[x := vi]; hi ; oh i , C h e2 ^ v; h'; oh'
s; h; oh , C h le t x = ei in e2 ^ v; h'; oh' O SLe t

oh (s(x)) = Ci
Ci is a 0-ary constructor in the collection Ci/, 1 < i ' < r

s; h; oh , C h ei ^ v; h'; oh'
-------8---------------------------------- 9------------ O SM atch - Ci - 0

match x w ith | C i (xi i , . . . , xik l) ^ ei
s; h; oh , C h ̂ ̂ ^ v; h'; oh'

1 Cr (xri , . . . , xrkr) er

oh (s(x)) = Ci h .s(x).C^ fie ld i = vi , .. ,h .s(x).C^ fieldk, = vki
s[xi := vi , ... , xki := vki]; h; oh , C h ei ^ v; h'; oh'

match x w ith | C i (xi i , . . . , xik l) ^ ei
s; h; oh , C h . ^ v; h'; oh'

| Cr (xri , . . . , xrkr) er

O SM atch - Ci

16

s; h; oh , C [f := ((x i , ... , xn) x ei)] h e2 ^ v; h'; oh'
— ---- — — ----— -------- ------ :--------------- j O SLe tFu ns; h; oh , C h letfun ƒ ((x i , . .. , xn)) = ei in e2 ^ v; h ; oh

C (f) = (y i,...,y n) x e/ F V (e/) C y
[yi := s(xi) , . . . , yn := s(xn)]; h; oh, C h e/ ^ v; h '; oh'

s; h; oh , C h ƒ (x i , ... ,xn) ^ v; h'; oh' O SFu n A p p

Let a valuation e : S izeV a r ^ Z map size variables to concrete sizes (integer
numbers) and an instantiation n : T ypeV ar ^ t • map type variables to ground
types. Applied to a type, context, or size expression, valuation and instantiation
map all variables occurring in it to their valuation and instantiation images:
e(p[+, - , *]p) = e(p)[+ , - , *]e(p) and n (e (T p(T))) = T e(p)(n (T)).

The soundness statement is defined by means of the following two predicates.
One indicates whether a program value is meaningful w ith respect to a certain
heap and ground type. The other does the same for sets of values and types,
taken from a frame store and ground context:

Validval(v, t *, h; oh) = 3 w. v |=Bi ° h w
Validstore(vars, r , s, h; oh) = V x e vars. Validval(s(x), r (x), h, oh)

Now, stating soundness of the type system is straightforward:

T h eo rem 1. Let s; h; oh , [] h e ^ v; h'; o h Then fo r any context r ,
signature S , and type t , such that True; r h^ e : t is derivable in the type
system , and any size va lua tion e and type in s ta n tia tio n n, i t holds th a t i f the
store is m eaningfu l w .r.t. the con tex t n (e (r)) then the ou tpu t value is m eaningfu l
w .r .t the type n (e(T)):

V n, e. Validst0re (FV (e), n (e (r)), s, h, oh) = ^ Validvai(v, n (e(T)), h', oh ')

To prove the theorem one needs to discuss some semantic notions and prove
a few technical lemmas.

W e assume benign sharing of variables [11]. It means that evaluation of an
expression leaves intact the regions of the heap, accessible from the free variables
of the continuation. This condition is not typeable, but may be approximated
statically by some type system, such as uniqueness types [3]. The discussion on
this topic is beyond the scope of this report.

To formalise the notion of benign sharing we introduce a fo o tp r in t func
tion R : Heap x ObjHeap x Val — ► P (Loc), which computes the set of loca
tions accessible in a given heap h, w ith a corresponding object heap oh , w ith
d o m (o h) = d o m (h) from a given value:

R (h , oh , c) = 0
T 0, if I dom(h)

oh, i { ¿ } U U k=i R (h |d °m (h)\{£|, oh | dom(oh)\{£|, h .i .C .fie ld j),
[if oh(^) = C

17

where f |X denotes the restriction of a (partia l) map f to a set X .
W e extend R tostoresby R (h , oh, s) = doms R (h , oh, s (x)). So, operational-

semantics rule w ith benign sharing looks as follows:

s; h; oh , C h ei ^ v i; h i; o h i
s[x := v i]; h i; oh i, C h e2 ^ v; h'; oh '
h|R(h, oh, s|fv(e2)) = h i|R(h, oh, s|Fy(e2))
oh |R(h, oh, s|fv (e2)) = oh i |R(h, oh, s|Fy (e2))

— ;------------ 2------- :-----------¡”2— T7 O S L e ts; h; oh , C h le t x = ei in e2 ^ v; h'; oh

Lem m as and soundness p roo f.

Lem m a 1 (A p ro g ram v a lu e ’s fo o tp rin t is in th e h eap).
R (h , oh , v) C d o m (h).

Proof. The lemma is proved by induction on the size of the (domain of the) heap
h.

d o m (h) = 0: Then R (h , oh , v) = 0 is triv ia lly a subset of d o m (h).
dom (h) = 0:

v = i Then, R (h , oh , v) = 0, which is triv ia lly a subset of d o m (h).
v = i an d d o m (h) = (dom (h) \ { i }) U { i } : From the definition of R we get

R (h oh , i) { i } U -̂_i R (h |dom (h)\{¿}, oh |dom(oh ̂ {- i} h -l.C -fie ld j) .
Applying the induction hypotheses we derive that

R (h |dom (h)\{^}, oh |dom(oh)\{^}, h .i .C -fie ld j) C dom (h |dom (h)\{^})

for all 1 < j < k. Hence, R (h , oh , l) C d o m (h). □

Lem m a 2 (E x te n d in g a heap does no t change th e fo o tp rin ts o f p ro
g ram va lu e s). I f i ^ d o m (h), h' = h [i.C „field i := v i , .., i.C _fie ld k := vk] f̂ or
some v i, .., v k and oh ' = o h [i := C] then fo r any v = i one has R (h , oh , v) =
R (h ', oh', v).

Proof. The lemma is proved by induction on the size of the (domain of the) heap
h.

d o m (h) = 0: Because h' = [i.C _fie ld i := v i , .., i.C _fie ld k := vk] and v = i we
have v ^ dom (h'). Therefore, R (h , oh, v) = 0 = R (h ', oh', v).

d o m (h) = 0: W e proceed by case distinction on v.
v = i then R (h , oh, v) = 0 = R (h ', oh', v).
v = i ': Let i ' ^ d o m (h). Then R (h , oh, i ') = 0 and R (h ', o h ', i ') = 0

because i ' ^ d o m (h ') as well, since i = i ' and d o m (h ') = d o m (h) U i.
Let i e dom (h). From the definition of R we get

k'
R (h , oh, i ') = { i ' } U U R (h | dom(h)\{^'}, oh |dom(oh)\{^'}, h .i .C -fie ld j) .

j= i

18

where oh (i ') = C '.
Due to h '(i ') = h (i') and

h |dom(h')\{^'} h|dom(h)\{^'} [h.i .C -f ie ld i : v 1 , .. , h .i -C f i e l d k : vk],

and the induction assumption one has

R (h |dom (h)\{^'}, oh | dom (oh)\{^'}, h .i .C -fie ld j)
R (h | dom(h')\{^'} , oh |dom(oh')\ {¿ '}, h .i .C -fie ld j)

for all 1 < j < k'. So,

R (h ', oh ', i ') =

= { i ' } U j i R(h'|dom (T')\{£'} , oh '| dom(oh')\{£'}, h '. i'.C 'f ie ld j)
= { i ' } U Uk= i R(h|dom (h)\{£'}, o h |dom(oh)\{£'}, h .i'.C ' f i e l d j)
= R (h , oh, i ') .

Lem m a 3 (V a lid ity fo r U n io n o f V a ria b le S e ts). F or all stores s and
ground contexts r the predicate Validst0re(varsi U vars2, r , s, h; oh) is true if
and only i f both Validstore(va rs i, r , s, h; oh) and Validstore(va rs2, r , s, h; oh)
are true.

The lemma follows im m ediately from the definition of a valid store.

Lem m a 4 (E x te n d in g heaps p reserves m o de l re la tio n s).
For all heaps h and h ', if h' | dom(h) = h and oh ' | dom(h) = oh then v = • o w

7• I T'; oh'im plies v |=T• w.

Proof.
The lemma is proved by induction on the definition of |=.

v = i: In this case t • = In t and w = i, hence v |=T.; oh w by the definition.
v = i and a n u ll- a ry co n stru c to r:

i I_T;oh c
1 c(r*') C

B y the definition we triv ia lly obtain i _ ^ c;̂ °h-̂ C .

v = i and a non n u ll- a ry co n stru c to r: In this case t * = T n (t •') for some
n0 and

i ^nO0; ^ C (w i , . . . ,w k)

for some w j, such that

i e d o m (h), o h (i) = C
n0 = s iz e t(C (w i, .. ., wk))
C : Ti* x . .. x Tk* ^ t *
h .i.C f i e l d i _T|.d°m(h)\{£>; w i

h .i.C f i e l d k _ T•d°m(h)\í̂ >; w k
k

19

W e want to apply the induction assumption, w ith heaps h | dom(T)\{£}, h' | dom(T')\{^}
(as “ h” and “ h '” respectively). The condition of the lemma is satisfied be
cause

h |dom(T')\{£}|dom
h | dom(T')\{^} |dom(T)\{^}
h | dom(T)\{^} h|dom(T)\{^}

Thus, we apply the assumption oh '|dom(T) = oh , the induction assumption
and h .i = h' . i to obtain

i e d o m h', o h '(i) = C
n0 = s iz e t(C (w i, . . . , w k))
h ' . i .C f i e ld i _T•l¿°m(h')\{£>; w i

h '.i.C f i e l d k w kk

Then, i oh C (w i , . . . , w k) by the definition. □

Lem m a 5 (V a lu e s o n ly depend on va lu es a t th e ir fo o tp rin ts).
For v , h, w , and t *, the rela tion v oh w im plies

= T|R(h, oh, v ̂oh|R(h, oh, v)
v I T

Proof. The lemma is proved by induction on the definition of =.

j_l i I T|R(h, oh, v) , oh |R(h, oh, v)v = i: then w = i and v = • , , , , i.
v = i and a n u ll- a ry co n stru c to r: then w = C i is a null-ary constructor of

t • = T Ci (t •') and
I_T|R(h, oh, v), oh |R(h, oh, v)v = T • C i

v = i and a non n u ll- a ry co n stru c to r: then t * = T n (t •') for some t •', that
w = C (w i, . . . , wk) for some w i , . . . , wk

i e d o m (h), o h (i) = C
n0 = sizet (C (w i, .. ., wk))
C : t * x . . . x Tk* ^ t *
h .i.C f i e l d i _ h i‘i°m(h)\{£>, o h w i ,

h . i .C f i e ld k _ h l¿°m(h)\{£>, o h w k,

W e apply the induction assumption, w ith the heap h | dom(t)\{^}:

20

i G dom (h), oh(i) — C
C : t* x ... x r* ^ t •

h|dom(h)\{£} |R(h|d°m(fc)\{í } , oh 1 dom(oh)\{£} , h.i.^ fieldi) ,
L I! n £ IJ I l oh 1 dom(oh)\{^} 1 R(h |dom(h)\{£} , oh|d°m(°l)\{<}, h.£.C_fieidi) .h.i.C f ie ld i |—_• rw i ,

> h|dom(h)\{£} k (h|J°m(̂)\{f} , oh 1 dom (oh)\{£} , h.^.^field k ̂
U l> r< G U l—l oh 1 dom(oh)\{ }̂ 1 R(h 1 dom (h)\{£} , oh 1 dom (oh)\{£} , h.i.^ fieldk) ;h.i.^^ —fijeld k — • ,k

Due to R (h | dom(T)\{^}, o h | dom(oh)\{^}, h .i C f i e ld j) C d o m (h) \ { i } (lemma
1) we have

h | dom(T)\{£} | R-(T|dom(h)\{£}, oh, TXC fieid j) =
h |r(T| dom(h)\{£} , oh | dom(oh)\{£} , T.̂ .̂ -fieldj)
h | "R(T | dom (h)\{£} , oh |d°m(°h)\{£}, T.i.C_fieidj)\{ }̂ .

for all 1 < j < k. Due to i e R (h , oh , i) , and lemma 4, w ith

R (h |dom(T)^.^ o h | dom(oh)^.^ h .i .C -fie ld j) \ { i } C R (h , oh , i) \ { i }

we have

i e dom(hR(T, oh, £)), o h (i) = C
n0 = s iz e t (C (w i,. . . , wk))
7 I /) /—f r; JJ I T|R(h, oh, £)\{ }̂ oh|R(h, oh, £)\{ }̂h|R(T, oh, £).i-C f i e l d i ĵ —t • ' ' ' w i,

7 1 f) s~i n 7? I_T|R(h, oh, ¿)\{ }̂ oh|R(h, oh, ¿)\{ }̂h|R(T, oh, i) I - C f i e ld k = • (, ,) w k

Thus, i _ T lR(h, o1, ^ o1, £) C (w i , . . . , w k). □

Lem m a 6 (E q u a lity o f th e “ m ean in gs” o f a p ro g ram va lu e in tw o heaps
fo llow s fro m th e e q u a lity o f th e fo o tp rin ts).
I f h|R(T, oh, v) h |R(T, oh, v) and o h |R(T, oh, v) oh |R(T, oh, v) then v _r•

T' ,oh'
w im p lies v = t• w.

Proof. Assume v _ T¡,oh w. Lem m a 5 states that this implies v o1, ^ o h o 1 , v)
w. From the assumption of the lemma we get v o1, v ̂oh |R(h o1, v) w.
Now we apply lemma 4, which gives v _ T.,oh w. □

Lem m a 7 (C h a n g e S to re).
G iven a typ ing context r , store s, heap h with oh, value v , a se t o f variables

vars and a variable x e vars, s.t. x e do m s, we have Validstore(vars , r , s[x :=
v], h, oh) Validstore(vars, r , s, h, oh).

Proof. The lemma follows from the definition of Validstore.

21

Lem m a 8 (S u b s e tF V).
G iven a se t o f variables v a r s i, typing context r , stack s, and heap h w ith
oh, fo r any se t o f variables va rs2 such th a t such th a t va rs2 C vars i we have
Validstore(v a rs i, r , s, h, oh) Validstore(va rs2, r , s, h, oh).

Proof. The lemma follows from the definition of Validstore.

T he soundness theorem is a partia l case o f the fo llow ing lem m a:

Lem m a 9 (So u n d n ess). For any s, h, oh, C, e, v , h', oh' a se t o f equations D ,
a con tex t r , a signature S , and a type t , any size va lua tion e, a type in s ta n tia tio n
n such tha t

— s; h; oh , C h e ^ v; h'; oh',
— D ; r h^ e : t is derivable in the type system , and is a node in som e deriva

tio n tree, where all fu n c tio n s called in e are declared via letfun,
— D holds on size variables valuated by e (i.e . D e holds)

i f the store is m eaningfu l w .r.t. the context n (e (r)) then the ou tpu t value is
m eaningfu l w .r .t the type n (e(T)).

Proof. For the sake of convenience we w ill denote n(e(T)) via Tne and n (e (r))
v ia r ne.

W e prove the statement by induction on the height of the derivation tree for
the operational semantics. G iven s; h; oh , C h e ^ v; h'; oh , we fix some r ,
S , and t , such that D ; r h^ e : t . W e fix a valuation e e F V (r) U F V (t) ^ Z ,
a type instantiation e e F V (r) U F V (t) ^ t *, such that the assumptions of the
lemma hold.

W e must show that Validva|(v, Tne, h', oh') holds.

O S IC o n s : In this case v = i for some constant ci and t = In t . Then, by the
definition we have i _ TIntoh i and Validvai(v, In t , h' = h, oh' = oh).

O S V a r : From D e it follows that Tne = t^e. From this and Validstore(F V (x), (r U
x : t ') ne, h, oh , s) it follows that

Validva|(s(x), t , h' = h, oh ' = oh)

OSCons-O : in this case e = C j, where C is a null-ary constructor of some type
T , v = i e d o m (h). From the type derivation we have that t = T p(t ') for
some t ', and, moreover, D h p = c*. B y the definition of = relation we have
i _ T [ƒ:(<C1-fi;ê di :=i], oh[£:=Ci] C i, and therefore

D I i =__T^.Cifie/di:=i], oh[£: = Ci] c
D e h ̂ = t Pe (t ') C i

Thus,

Validval(v, T pe (r ') no h' = h[i.C* f i e l d i := i], oh ' = o h [i := C*])

22

O SC o n s: In this case e = C (x i , . . . , x k), v = i e d o m (h). From the typing
rule we have that t = T p(t ') for some t ' and there exist T j, such that
x j : Tj C r , and one has the instance of C of type t 1 x . .. x Tk ^ T p(t ') .
Moreover, Tj = TjPj (*) for some p j if Tj takes part in the counting sizes,
(otherwise think that it is equal to zero).
Since Validstore(F V (e), Tne, s, h, oh) there exist Wj such that s (x j) = T! oh
W j. From the operational-semantics judgement we have h' = h [i.C f i e ld 1 :=
s (x 1) , . . . , i.C f i e l d k := s(xk)]. Therefore, h '. i .C f i e ld j _ T !oh W j. It is easy
to see that h = h' |domT'\{£| and sim ilarly for oh '.

From the definition of = relation it follows that pje = s i z e (w j). From what

i _TP(0l') C (w i, . . . , Wk) and thus Validva|(i, Tne, h', oh ').
O S IfF a ls e : In this case e = i f x then e1 e ls e e2 for some e1, e2, and x.

Knowing that D ; T hx e2: t , we apply the induction hypothesis to the
derivation of s; h; oh , C h e2 ^ v; h '; oh ' to obtain

From F V (e 2) C F V (e), Validstore(F V (e), r ne, s, h, oh), and lemma 8 it
follows that Validvai(v, Tne, h', oh ').

O S IfT ru e : In this case e = i f x then e1 e ls e e2 for some e1, e2, and x.
Knowing that D ; r hx e1: t , we apply the induction hypothesis to the
derivation of s; h; oh , C h e1 ^ v; h '; oh ' to obtain

From F V (e 1) C F V (e), Validstore(F V (e), r ne, s, h, oh), and lemma 8 it
follows that Validvai(v, Tne, h', oh ').

O S L e tF u n : The result follows from the induction hypothesis for

w ith D ; r hx’ e2 : t and the same n, e.
O S L e t: In this case e = le t x = e1 in e2 for some x, e1, and e2 and we have

s; h; oh , C h e i ^ v i; h i; o h i and s[x := v i]; h i; oh , C h e2 ^ v; h'; oh
for some v 1 and h1. W e know that D ; r hx e1: t ', x e r and D ; r , x : t ' hx

From the typing rule we have that D implies p = c + 5^j= 1 a j P j. For the
ground valuation we have

k

follows that pe = c + X j= i f l js iz e (w j) = sizeT (C (w 1, . . . , w k)). This gives

Validstore(F V (e 2), Tne, s, h, oh) = ^ Validva|(v, t ne, h', oh ')

Validstore(F V (e i) , Tne, s, h, oh) = ^ Validva|(v, t ne, h', oh ')

s; h; oh , C [ƒ := (x x e i)] h e2 ^ v; h'; o h ',

23

e2 : t for some t '. Applying the induction hypothesis to the first branch
gives Validstore(F V (e i) , r n(, s, h, oh) = ^ Validva|(v 1, t^ (, h1, oh 1). Since
F V (e1) C F V (e i)U (F V (e 2)\ {x }) = F V (e) and Validstore(F V (e), r n(, s, h, oh)
we have from lemma 8 that Validstore(F V (e i) , r n(, s, h, oh) holds and hence
we have Validva|(v1, t^ (, h1, oh 1).
Now apply the induction hypothesis to the second branch to get

Validstore(F V (e2), r n(U {x : t '}^ (, s[x := v i], h i, oh i) = ^ Validva|(v, Tn(, h', oh').

F ix some y e F V (e 2). If y = x, then Validva|(v1, t^ (, h1, oh 1) implies
Validva|(s[x := v i](x), t^ (, h i, o h i). If y = x, then s[x := v i](y) = s (y).
Because we know that sharing is benign, h |r (t , oh, s(y)) = hi| r (t , oh, s(y)),
applying lemma 6 and then 8 we have that s (y) _ T,’ wy implies

s (y) = r 1 ’ oyh)1 wy implies s[x := v 1](y) =^1 ’ oyh)1 wy and thus Validva|(s[x :=
v i](y), r^e(y), h i, oh i) . Hence, Validstore(FV(e2), r , , (U {x : t '}^ e, s[x := v i], h i, oh i)
Therefore, Validva|(v, t n(, h', oh ').

O SM atch-O -ary: In this case the expression e has the form

match x w ith | C i(x ii, .. ., x ik1) ^ ei

1 C r (x r 1 , . . . , xrkr) er

The typing context has the form r = r ' U { x : T p(t ') } for some r ', t ', p.
The operational-semantics derivation gives s(x) = i, and C* is a null-ary
constructor of x-s type. Hence valid ity

s(x) ^ o ^ « Cj

gives e(p) = c*. From the typing derivation for D ; r h x e : t we know that
p = c*, D ; r ' h x e*: t . Applying the induction hypothesis, w ith D (Ap(= c*
then yields Validstore(F V (e *), (, s, h, oh) = ^ Validva|(v, t n(, h', oh ').
From F V (e *) C F V (e), Validstore(F V (e), r n(, s, h, oh) it follows that

Validva| (v, t n (, h', oh ')

O SM atch -C *: In this case, again, the expression e has the form

match x w ith | C i(x ii, .. ., x ik1) ^ ei

1 C r (x r i , . . . , xrkr) er

The operational-semantics derivation gives o h (s (x)) = C*. The typing con
text has the form r = r ' U { x : T p(t ') } for some r ', t ', p. Hence valid ity

s(x) _T p °l)̂ne C i (w l , . . . ,w k)

gives h.s(x).C* f i e l d „• = T! oh W j.

24

From the typing derivation for D ; r hx e : t we know that

ki
D , p = c* + ^ a*jn*j, r ', x : T p(t '), x*j : T nij hx e*: t

j= i

To apply the induction hypothesis we must extend the valuation e to n*j
(call this extension e') so that

ki
D(/ A p (= c* + ^ a*j n*j(/ holds

j= i

W e assign n j = sizeTij (W j), taken from the definition of =-relation for
h .s (x).C ^ fie ld j. Then from the definition of =-relation for s(x) it follows
that p(/ = p(= size T (C (W i,... ,W k)) = c* + ^ k= 1 a ij size T .. (W j) = c* +
E ki

j= i a*j nj v .
Applying the induction hypothesis, w ith D A p = c* + 1 a j n j w ith e', n
then yields

Validstore(F V (ei), (r 7 x : T p(t 7), x j : T nij)ne/, s[..xij := h .s(x).C i f ie ld j ,..], h, oh)
= ^ Validvai(v, Tne/, h7, oh7)

W e must show that

Validstore(F V (ei), (r 7 x : T P (t 7), x j : T nij)ne/, s[..xij := h .s(x).C i fie ld j ,..], h, oh)

It is easy to see, that FV e *) C F V (e) U {x *1, . . . , x*ki}. W e triv ia lly have
that Validstore(F V (e), (r ' x : T p(t ')) n(, s, h, oh). Further, from the model
relations above we have that
Valid va|(s[..x*j := h .s(x).C * f i e ld j , ..](x*j), Tj ,, h, oh). So, the store for eval
uation of e* is meaningful as well.
W e apply the induction hypothesis and get Validva|(v, t , h', oh ') for the
valuation e '. The last step is to show that Validva|(v, t n(, h', oh ') for the
in itia l valuation e. This is triv ia lly true, because t has only free size variables
from d o m (e), where e and e' coincide.

O S F u n : W e want to apply the induction assumption to

[yi := v i , . . . , yk := vk]; h; oh , C h e/ ^ v; h'; oh ' .

Since the original typing judgement is a node in a derivation tree, where
all called in e functions are defined via letfun, there must be a node in the
derivation tree w ith True, y 1 : t £, . . . , yk : t£ h x e/ : t '.
W e take n' and e' , such that

— n '(a) = Tan(, where Ta is such that a is replaced by Ta in the instantiation
of the signature in *this* application of the FuNApp-rule.

— e '(n j) = p j , where n j is replaced by p j in the instantiation of the
signature in *this* application of the FuNApp-rule.

25

True (“no conditions”) holds triv ia lly on e '.
From the induction assumption we have

Valid store ((y i, ... yfc), (y i : t^/e' , .. . , yfc : Tk, n'e'), [yi := v i, ... ,yn := v„], h; oh)
= ^ Validva|(v, Tj/e/ , h7; oh7)

From Validstore(F V (e), r nE, s, h; oh) we have validity of the values of the actual pa
rameters: Vj ° (x) Wj for some W j, where 1 < j < k. Since r nE(x j) = T °n/E/, the
left-hand side of the implication holds, and one obtains Validva|(v, T̂ /e/ , h7; oh7).
Since D E implies t 7[. .. a := Ta . . .] [. . .nij := pij .. .]nE = TnE, and by the definition
of n7, e7 we have T̂ /e/ = t 7[. .. a := TanE . . .] [. . .nij := pijE ...] one easily obtains
TnE = T7'e' and, eventually, Validva|(v, T7nE, h7; oh7).

Q .E.D .
The soundness p ro o f is finished. :-)

4.2 D e c id a b ility

Type checking using the type system studied in this work seems to be straight
forward because for every syntactic construction of the language there is only one
applicable typing rule. The procedure u ltim ately reduces to proving equations
involving rational polynomials.

Lem m a 10. The type checking problem D ; r hx e : t can be reduced to check
ing a fin ite num ber o f en ta ilm en ts o f the fo r m D ' h p = q, where the variables
in D ', p and q are either free size variables o f r or size variables introduced
during the type checking procedure.

Proof. B y induction on the structure of the language.

Bu t consider the following expression, where f : List” 1 (a 1) x . .. x List” k (a k) ^
Listpi(” i ’...’” fc } (a) for i = 0,1, 2, (assuming we count only the number of ele
ments).

le t x = fo (x i, .. ., xk) in match x w ith | Nil ^ f i(x i, .. ., xk)
| Cons(hd, t l) ^ /2(x 1, . . . , x k)

W hen checking whether this expression has type List” 1 (a 1) x . .. x List” k (a k) ^
Listp(ni’...’” fc} (a), in the Nil branch we w ill get the entailment

po(n i, .. . ,n k) = 0 h p (n i, . . . , nk) = p i(n i, .. ., nk)

To validate this entailm ent we must know whether po has roots or not (that is,
whether the Nil branch can be entered at a ll). This is necessary to type check,
for instance, a function definition where p = 0 and p 1 = 1. In [18] it is shown
that for any given polynom ial q, it is possible to construct a function f 0 whose
result has as size annotation the polynom ial p0 = q2, whose roots are exactly

26

the ones of q. Hence, type checking reduces to solving H ilb ert’s tenth problem
and thus it is undecidable.

The source of the problem in the previous example was that the pattern
match was done over a variable bound by a le t . W e can avoid these cases w ith
a syntactical restriction that we call no-let-be fore-m atch : given a function body,
allow pattern matching only on the function parameters or variables bound by
other pattern matchings. Even w ith this restriction, one can w rite all shapely
prim itive recursive functions for our data types because they induce a (polyno
m ial) functor. For instance, the operator for prim itive recursion on lists is defined
as follows:

ƒ (x, y) = match x w ith | Nil ^ $ (y)
| Cons(hd, t l) ^ h(hd , t l , y, ƒ (t l , y))

where g and h are functions already defined, and y is a sequence of parame
ters. It is obvious that ƒ satisfies the syntactic restriction. However, we want to
emphasise that this condition is sufficient, but not necessary for decidability.

This condition can be enforced by a more restrictive grammar where the
let-construct in e is replaced by le t x = b in e „omaich, where

enomatch : b
1 le t y = b in enomatch
| i f y then e „omaich, e ls e enomatch
| le t fu n ƒ (x i, . . . , xn) = e in e „omaich,

For this reason we call the syntactic condition no-let-before-m atch .
W e say that a set of constraints is linear if each constraint is of the form

n = c + J 2 i=1 a* • n*, where the components of n and n* are either constants or
size variables and c is a tuple of constants.

Lem m a 11. I f D is linear th en type checking D ; r hx e : t , reduces to checking
a se t o f en ta ilm en ts o f the fo rm D ' h p = q, where D ' is linear.

Proof. B y lemma 10 we know that the type checking problem term inates w ith
a set of entailments of the form D ' h p = q. W e prove the linearity of D ' by
induction on the structure of the language. Except for the match case, the result
follows from the induction hypothesis, since D ' = D .

Assume that e is an expression of the form match x w ith . . . and that x has
type T P in the context. The MATCH generates new judgements where for each
constructor C*, D ' = D , p = c* + Y1 k= 1 a j • n j . Thus, it only remains to prove
that p is indeed a constant or a size variable (not any polynom ial).

If x is free in e or it is the parameter of a function, then it must have a
t °-type on the context. From the definition of t °-types, p is a tuple w ith size
variables or constants. Otherwise, due to the syntactic restriction, e can not be
a subexpression of a let-body and thus x must be bound by another match.

27

Hence, there is a variable y and a superexpression e' of e, such that

e' = match y w ith | C i(x ii, .. ., x ik l) ^ ei

| C ;(x ;i, . . . ,x , .. . ,x ifci) ^ e;

1 C r (x r i , . . . , xrkr) er

being e a subexpression of e; . B u t then the match rule applied to the judgement
containing e' added a fresh size variable as the size annotation of x, and it is
obvious that no rule can change that. Thus, when we get to type checking e, p
is a size variable.

The M a tc h rule has in its premises judgements where the size of the variable
being matched is expressed in D as a linear combination of new variables. Any of
these variables can in turn be further subdivided, creating a tree-decom position
of a size variable as shown in Figure 4.2. The no-let-before-m atch restriction en-

n

n il ni2 «31 «32 «33

«311 «312

Fig . 3. Example of a tree-decomposition of a size variable. The edges mean that the
father is a linear combination of the children.

sures that only size variables, and not polynom ials on them, are linearly decom
posed. The previous lemma tell us that after applying the typing rules, the set
of constraints in the entailments left to check, contain only tree-decomposition
of (some of) the free size variables of r . W ith this lemma it is easy to prove
decidability of type checking the restricted language.

T h eo rem 2. Type checking an expression th a t conform s to the no-let-before-
match restr ic tio n is decidable.

28

Proof. Let e be an expression that satisfies the syntactic condition, which we
want to type check. A t the beginning of the type checking procedure the set of
constraints is em pty and thus it is triv ia lly linear. B y lemma 11, type checking
e reduces to checking a set of entailments of the form D ' h p = q, where D '
is linear. Then we replace the variables in p and q using the equations in D ',
following a breadth-first order in the tree-decomposition of each size variable,
until we get to an equality of two expression that depend only on the leaves of
these trees. Bu t since each variable is substituted by a linear combination, the
two expression are polynom ials on the leaves of the tree-decompositions. Finally,
asserting the value of the equality reduces to comparing the coefficients of the
polynomials.

4.3 C om p leten ess

The type system is not complete: there are shapely functions for which shapeli
ness cannot be proved by means of the typing rules and arithm etic. This comes
as no surprise if we consider that the type system subsumes Peano arithm etic.
Another reason for incompleteness is that the typing rule for i f does not keep
any size inform ation obtainable from the condition. Consider, for instance, the
following schema of expressions, where ƒ (x) is a list of integers:

le t z = ƒ (x) in i f leng th (z) == 0 then z e ls e Nil

These expressions have type List0(In t) , however, the type checker fails to ac
knowledge it.

5 S ize-param etric data typ es

In the definition of algebraic data types of our language, we forbade free size
variable. In this section we extend the language to work w ith a restricted class
of types that are parametrised by size variables.

W e extend the syntax of our language to allow size-param etric data types.
The type T being defined is parametrised by a tuple of size variables m, which
can be used as sizes for the types of the variables of the constructors, provided
they are not T itself. Occurrences of T are again parametrised w ith m.

Inform ally, this can be expressed as

spd ::= spdata Tm(a) = C i (t 1m] (a)) | . . . | C r (t [m](a))

where (t i, . . . , Tk)[m] = (T[m], . . . , t],^). If t = T then t m = Tm, otherwise t m
is a type that can use the variables in m as size annotations.

An m-ary tree is a tree where each node has m subtrees. W e say that a tree of
height h is h-fu ll if all the leaves are at height h. W hen the height is not relevant,
we say that it is fu ll. W e can define m-ary full trees as a size-parametric data
type.

29

spdata MFullTreem(a) = Empty | Node(a, Listm(MFullTreem(a)))

It is clear that this defines m-ary trees. They are also full because the subtrees
at the same level must all have the same size. Assuming that we are counting
the occurrences of each constructor2, it is not hard to come up w ith typing rules
for MFullTree.

D h (e, «) = (1, 0)
E m pt yD; r h^ Empty: MFullTreem,n (t)

D h (e, «) = (0, 1) + m * (e', « ')
--------------------------- ----------------------------------- N ode
D; r, v : t , ts : Listm(MFullTreemi’n (t)) h^ Node(v, ts): MFullTreem,n(T)

D, (e, «) = (1, 0); r , t : MFullTreemn(T) h^ eEmpty: t '
D, (e, «) = (0,1) + m * (e', « '); r , t : MFullTreemmn(T), ,

v : t , ts : Listm(MFullTree£’n'(t)) ^ eNode: T
e', « ' vars(D) v, ts dom (r)

-- M M FT ree
D; r , t : MFullTree&"(T) h^ match t w ith | E ^ ^ : t ' m v 1 ^ | Node(v, ts) ^ eNode

A size function for MFullTree counting both constructors is defined below:

size : MFullTreem(a)
size (Em pty) = (1, 0)
s iz e (Node(v, ts)= (0, 1) + m * match ts w ith | Nil ^ (0, 0)

| Cons(hd, t l) ^ size(hd)

To get the size of the subtrees we must first get an element of the list by
doing a pattern match. B u t there is no direct relationship between this size
function and the previous typing rules. The size function used in the typing
rules is simpler because the size of the subtrees can be obtained from the typing
context. In order to restore the relationship, we add a parameter to the size
function representing the size of the subtrees.

size : MFullTreem(a) x (N x N) ^ N x N
size (Empty, (e', n ')) = (1, 0)
s iz e (Node(v, ts), (e', n ')) = (0, l) + m * (e ', n ')

W e can generalise the procedure for defining size functions in the following
way. Suppose that Tm(a) = C 1(t 1m](a)) | . . . | C r (r im](a)) and let d be the max
imum number of occurrences of Tm(a) w ith in Tj, for all i = 1..r. Then the size

2 Since the number of nodes in an m-ary full tree depends on its height, any function
that re-shapes one of these trees will have size annotations involving logarithms.
Therefore, for this data structure it would be better to define its size as its height.

30

function for Tm w ill take d extra parameters for the sizes of the subexpressions of
type T . A constructor m ay ignore some of these arguments, as was the case for
Empty. A canonical size function for a size-parametric data type can be defined
by m ultiplying the size of the types other than T by the size of its elements.
W hen the size of a subexpression of type T is needed, it is replaced it w ith the
respective argument. Note that a size-parametric algebraic data type defines a
fa m ily of ordinary inductive data types.

The size-aware typing rules are then obtained as we did for non-parametric
algebraic data types, w ith the only exception that now the extra parameters of
the size function are bound to the respective sizes in the typing context. Consider
two functions to re-shape an m-ary full tree, one that prunes the first branch
of each subtree (assuming m > 1) and one to add a new level at the bottom.
Note that in a MFullTree we a leaf is represented by m Em pty’s. For the sake of
sim plicity, assume we are counting just the number of nodes.

p r u n e (t) : MFullTreem (a) ^ MFullTreem—im)(a) =
match t w ith | Empty ^ undefined

| Node(v, ts) ^ Node(v, ta il (prune (ts)))

a d d J e v e l(v, t) : a x M FullT ree^ (a) ^ MFullTreem” ’m)(a) =
match t w ith | Empty ^ Node(v, l is t-o f - e m p tie s (m))

| Node(v1, ts) ^ match ts with
| Nil ^ Node(v1, lis t_o f _trees(v, m))
| Cons(hd, t l) ^ Node(v1, Cons(hd, a d d J e v e l(v, t l)))

where l is t-o f - e m p tie s (m) is a list of m > 0 Em pty’s and l is t-o f- tr e e s (v, m) =
Node(v, l is t-o f -em p ties (m)).

Since the number of nodes in an m-ary full tree depends on its height, any
function that re-shapes the tree w ill have size annotations involving logarithms
and w ill not be polynom ial. In our examples, the size functions are

j lo g 2 (n + 1) - 1 if m = 2
f (n , m) — < (m_ 1) (n*(m—1) + 1)_i

1---------- s------- if m > 2V. m—2

g(n, m)
n + 1 if m = 1

(n*(m-1) + 1)_ i
m------- ------ 1 if m > 1. m—1

To avoid the logarithms we can define the size of m-ary full trees as their
size. Then

p ru n e : MFullTreem (a) ^ MFullTreem—1(a)
a d d Je ve l : a x M FullTreem (a) ^ MFullTreem+1(a)

31

6 R elated W ork

Am ortised heap space analysis has been developed for linear bounds by Hofmann
and Jost [11]. Precise knowledge of sizes is required to extend this approach
to non-linear bounds [21]. B rian Cam pbell [6] extended this approach to infer
bounds on stack space usage.

A type system based on amortised com plexity analysis of heap-space require
ments for a Java-like language w ith explicit deallocation is studied by Hofmann
and Jost in [12]. Their approach is use view s to assign a potential to each pos
sible path expression, avoiding explicit m anipulation of size expressions. They
cope w ith inheritance and aliasing and circular data structures, but they do not
treat type inference and the potential is an over-approximation. Another type
system for an object-oriented language w ith a deallocation prim itive is presented
by Chin et al. [8], which incorporates an alias control via usage aspects.

Some interesting in itia l work on inferring size relations w ith in the output of
X M L transformations has been done by Su and Wassermann [20]. Although this
work does not yield input-output dependencies, it is able to infer size relations
w ith in the output type, for instance if two branches have the same number of ele
ments. Herrm ann and Lengauer presented a size analysis for functional programs
over nested lists [10]. However, they do not solve recurrence equations in their
size expressions, as this is not im portant for their goal of program parallelisation.

Other work on size analysis has been restricted to monotonic dependencies.
In type-based te rm in a tio n analysis e.g., it is enough to assure that the size (more
precisely, an upper bound of it) of a data structure decreases in a recursive call.
Research by Pareto has yielded an algorithm to autom atically check sized types
where linear size expression are upper bounds [16]. In the thesis of Abel [1] ordi
nals above w are considered as well (they are used, e.g., for types like streams).
The language of (ordinal) size expressions for zero-order types in this work is
rather simple: it consists of ordinal variables, ordinal successor, and an ordinal
lim it (see also [2]). This is enough for term ination analysis, however for heap
consumption analysis more sophisticated size expressions are needed. Construc
tion of non-linear upper bounds using a traditional type system approach has
been presented by Hammond and Vasconcellos [24], but this work leaves recur
rence equations unsolved and is lim ited to monotonic dependencies. The work on
quasi-interpretations by Bonfante et al. [5] also requires monotonic dependencies.

The Em Bounded project aims to identify and certify resource-bounded code
in H um e, a domain-specific high-level programming language for real-time em
bedded systems. In his thesis, Pedro Vasconcelos [23] uses abstract interpretation
to autom atically infer linear approximations of the sizes of recursive data types
and the stack and heap of recursive functions w ritten in a subset of H um e.

Exact input-output size dependencies have been explored by Ja y and Sekan-
ina [14]. In this work, a shapely program is translated into a program involving
sizes. Thus, the relation between sizes is given as a program. However, deriving
an arithm etic function from it is beyond the scope of the paper. In a closely
related work [13], Ja y and Cockett study shapely types, i.e., those whose data
and data can be separated in a categorical setting. A notable difference is that

32

we do not consider a type shapely per se, instead its size function determines
whether it is shapely.

An application of exact size inform ation is load d istribu tion for parallel com
putation. For instance, size inform ation helps to distribute a storage effectively
and to safely store vector fragments [7].

7 C onclusions

W e studied an effect type system w ith size annotations for a first-order functional
language. W e provided generic typing rules for algebraic data types based on user
defined size functions and we proved soundness of the type system w ith respect
to the operational semantics. Our choice to allow (not necessarily monotonic)
polynomials as size annotations brings undecidability to type checking, however,
it was shown that for a wide range of programs, decidability of type checking
functions w ith algebraic data types can be ensured. Our experience is that in
practice, the entailments obtained while type checking are easily solvable.

Although the practical applicability of this work is lim ited, it explores the
current lim its of the field. It is also an step towards our goal of providing a prac
tical resource analysis. Its main lim itation is that it requires size dependencies
to be exact. W e are working on an extension of the type system that allows to
express lower and upper bounds by specifying a fam ily of indexed polynomials.

R eferences

1. A. Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD the
sis, L F E Theoretische Informatik, Ludwig-Maximilians-Universitt Mnchen, 2006.

2. A. Abel. Implementing a Normalizer Using Sized Heterogeneous Types. Journal
o f Functional Programming, M SF P ’06 special issue, 2008. to appear.

3. E. Barendsen and S. Smetsers. Uniqueness typing for functional languages with
graph rewriting semantics. Mathematical Structures in Computer Science, 6:579
612, 1996.

4. M. Barr and C. Wells. Category theory fo r computing science. Prentice-Hall, Inc.,
Upper Saddle River, N J, USA, 1990.

5. G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretations, a way to
control resources. Theoretical Computer Science, 2005.

6. B . Campbell. Space Cost Analysis Using Sized Types. PhD thesis, School of Infor
matics, University of Edinburgh, 2008.

7. S. Chatterjee, G. E. Blelloch, and A. L. Fischer. Size and access inference for
data-parallel programs. In Proceedings o f the A C M SIG P L A N 1991 conference on
Programming Language Design and Im plem entation (P L D I’91), pages 130-144,
New York, USA, 1991. ACM Press.

8. W.-N. Chin, H. H. Nguyen, S. Qin, and R. Martin. Memory Usage Verification
for OO Programs. In C. Hankin and I. Siveroni, editors, Intl Symposium on Static
Analysis (SA S 2005), volume 3672 of LNCS, pages 70-86. Springer Berlin Heidel
berg, 2005.

9. P. Dybjer. Inductive and Recursive Definitions in Constructive Type Theory.
T Y P E S Summer School, Goteborg, Aug. 2005.

33

10. C. A. Herrmann and C. Lengauer. A Transformational Approach which Combines
Size Inference and Program Optimization. In W . Taha, editor, Semantics, Appli
cations, and Im plem entation o f Program Generation (S A IG ’01). Springer-Verlag.

11. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order
functional programs. SIG P L A N Not., 38(1):185-197, 2003.

12. M. Hofmann and S. Jost. Type-Based Amortised Heap-Space Analysis (for an
Object-Oriented Language). In P. Sestoft, editor, Proceedings of the 15th Euro
pean Symposium on Programming (ESOP), Programming Languages and Systems,
volume 3924 of LN C S , pages 22-37. Springer, 2006.

13. B . C. Jay and J. R. B . Cockett. Shapely Types and Shape Polymorphism. In
Programming Languages and System s - ESO P ’94, pages 302-316. Springer Verlag,
1994.

14. B . C. Jay and M. Sekanina. Shape checking of array programs. In Computing:
the Australasian Theory Seminar, Australian Computer Science Communications,
volume 19, pages 113-121, 1997.

15. F. Nielson and H. R. Nielson. Type and Effect Systems. In Correct System Design,
Recent Insight and Advances, (to Hans Langmaack on the occasion o f his retirement
from his professorship at the University of Kiel), pages 114-136, London, U K , 1999.
Springer-Verlag.

16. L. Pareto. Sized Types. Chalmers University of Technology, Goteborg, 1998. Dis
sertation for the Licentiate Degree in Computing Science.

17. B . C. Pierce. Advanced Topics in Types and Programming Languages. M IT Press,
2004.

18. O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial Size Analysis
for First-Order Functions. In S. R. D. Rocca, editor, Typed Lambda Calculi and
Applications (T L C A ’2007), Paris, France, volume 4583 of LNCS, pages 351-366.
Springer, 2007.

19. O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial size analysis
of first-order functions. Technical Report ICIS-R07004, Radboud University N i
jmegen, January 2007.

20. Z. Su and G. Wassermann. Type-based Inference of Size Relationships for X M L
Transformations. Technical Report CSE-2004-8, UC Davis, Apr. 2004.

21. M. van Eekelen, O. Shkaravska, R. van Kesteren, B. Jacobs, E. Poll, and S. Smet-
sers. AHA: Amortized Heap Space Usage Analysis. In M. Morazan, editor, Selected
Papers o f the 8th International Symposium on Trends in Functional Programming
(T F P ’07), New York, USA, pages 36-53. Intellect Publishers, U K , 2007.

22. R. van Kesteren, O. Shkaravska, and M. van Eekelen. Inferring static non-
monotonically sized types through testing. In Proceedings o f 16th International
Workshop on Functional and (Constraint) Logic Programming (W F LP ’07), Paris,
France, volume 216C of EN TC S, pages 45-63, 2007.

23. P. B . Vasconcelos. Space Cost Analysis Using Sized Types. PhD thesis, School of
Computer Science, University of St. Andrews, August 2008.

24. P. B. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive, Poly
morphic and Higher-Order Functional Programs. In P. Trinder, G. Michaelson,
and R. Pena, editors, Im plem entation o f Functional Languages: 15th International
Workshop, IFL 2003, Edinburgh, UK, September 8-11, 2003. Revised Papers, vol
ume 3145 of LNCS, pages 86-101. Springer-Verlag, 2004.

34

