
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/72725

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16157202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/72725

Nova Micro-Hypervisor Verification
Formal, machine-checked verification of one module of the kernel source code

(Robin deliverable D.13)

H e n d r ik T e w s* T j a r k W e b e r* M a r c u s V o lp ^

E r i k P o ll* M a r k o v a n E e k e le n * P e t e r v a n R o s s u m *

* Radboud Universiteit Nijmegen, The Netherlands
http://www.sos.cs.ru.nl/

t Technische Universität Dresden, Germany
http://www.tudos.org/

M a y 3 0 , 2 0 0 8

Revision 74

ICIS technical report number ICIS-R08012

This work has been supported by the European Union through PASR grant 104600.

http://www.sos.cs.ru.nl/
http://www.tudos.org/

1 Executive Summary

This document describes our achievements in work package 4 (kernel specification and
verification) of the Robin project towards the verification of selected parts of the Nova
micro-hypervisor. Despite organizational difficulties that were beyond our control (see
below) we were able to finish our task successfully. In this line of work we achieved the
following results.

1. A precise formalization of the IA32 hardware in the interactive theorem prover
PVS, see Sections 4.1-4.6 . The formalization faithfully models all the peculiarities
of the real hardware that can lead to subtle errors in kernel programming. It
includes a novel approach for formally describing memory-mapped devices. Well-
behaved and well-typed memory (which are necessary to reason efficiently about
the Nova source code) are established as an invariant and a set of theorems on top
of the low-level formalization. Well-behaved and well-typed memory therefore rest
only on properties that the Nova hypervisor itself ensures and not on additional
assumptions.

2. A formal semantics in PVS of a sufficiently rich subset of C ++ , see Section 4.7.
The semantics follows the C + + standard [Int07b], Compiler specifics can be added
as additional assumptions in an orthogonal way. The semantics covers all C + +
statements, expressions and data types with a few exceptions (such as goto and
flo a t/d o u b le) that are not needed for Nova.

3. A semantics-compiler prototype capable of translating C + + into its semantics in
PVS, see Chapter 3. The semantics compiler is based on Olmar, our novel OCaml
framework for parsing C++.

4. The whole verification environment has been successfully used in several case stud­
ies, see Section 4.8. As proof of the expressive power of our IA32 hardware formal­
ization we modelled a memory mapped device. Additionally we verified a small
search algorithm in C ++. The verification of about 100 lines of Nova source code
has been started, the proofs are however not finished yet.

During the project we were confronted with two major difficulties. Firstly, because of
administrative difficulties our second postdoc in work package 4, was not able to timely
renew his working permit for the Netherlands and had to quit his contract in the project
in the sequel. Secondly, substantial parts of the Nova hypervisor source code became
only available very late in the project.

Because of these difficulties the original goal of verifying selected properties of one
module of the Nova hypervisor was not sensible any more. Instead we focused on a deeper

3

1 Executive Summary

and more exact formalization of the IA32 hardware and attempted smaller case studies.
As a result we achieved a new goal that was not planned originally: We developed a novel
approach for the formalization of memory mapped devices and proved its applicability
in a small case study (see Section 4.8.4).

4

Contents

1 Executive Summary 3

2 The Robin Verification environment 7
2.1 Challenges for low-level systems-code verification 7
2.2 Requirements for Kernel V erifica tio n ... 9
2.3 The Robin Verification A p p ro a c h .. 9
2.4 Consistency and Completeness.. 11

3 Translating C + + into PVS 13
3.1 Olmar - An OCaml backend for E l s a ... 14
3.2 Semantics co m p ile r.. 15

4 Verification environment in PVS 17
4.1 General c o n c e p ts ... 17

4.1.1 File vfiasco-prelude.pvs.. 20
4.1.2 File b its .p v s .. 26
4.1.3 File g raph .pvs... 27
4.1.4 File hoare .pvs... 31

4.2 Hardware d e t a i l s ... 31
4.2.1 File constants.pvs.. 31

4.3 State transformers .. 33
4.3.1 File resu lt.pvs... 33
4.3.2 File state-transformer.pvs .. 35

4.4 Abstract memory in terface ... 37
4.4.1 File memory.pvs... 37
4.4.2 File abstract_data.pvs .. 41
4.4.3 File plain_m em ory.pvs.. 43

4.5 Concrete m em o ries .. 46
4.5.1 File physical_memory.pvs... 46
4.5.2 File challenge-phymem.pvs.. 46
4.5.3 Files paging-data.pvs and paging-data-models.pvs.......................... 46
4.5.4 File linear_memory.pvs.. 46
4.5.5 File challenge-linear.pvs ... 47

4.6 Allocation, File a llocato rs.pvs.. 47
4.7 C + + Sem antics.. 51

4.7.1 File ty p es .p v s ... 51

5

Contents

4.7.2 File sta tem ents.pvs...51
4.7.3 File plain_memory_rewrites.pvs..52
4.7.4 File datatype_m odel.pvs...52
4.7.5 File conversions.pvs...52
4.7.6 File expressions.pvs...52
4.7.7 File statement-rewrites.pvs..53

4.8 Verification exam ples..53
4.8.1 File cpp-examples.pvs54
4.8.2 File search-example.pvs..54
4.8.3 File device_memory.pvs..54
4.8.4 File random_device.pvs..55
4.8.5 File cpp-verification.pvs55
4.8.6 File ptab-sync-master-defs.pvs...55
4.8.7 File ptab-sync-master.pvs ..55

5 Conclusion 57

A Bibliography 59

6

2 The Robin Verification environment

This document describes the work performed and the achievements reached in work
package 4 (kernel specification and verification) of the Robin project towards the goal
of verifying selected properties of the Nova micro-hypervisor source code (which was
developed in parallel in work package 1). In order to reach our goals we built a verification
environment for kernel-level C + + code, the Robin verification environment. The Robin
verification environment is based on (1) a formalization of the execution context of kernel-
level C + + code in the interactive theorem prover PVS [ORR+96] and (2) a semantics
compiler that translates C + + code into its semantics in PVS.

In this introduction we first analyze the challenges in kernel verification and list in
Section 2.2 (on page 9) the requirements the Robin verification environment should fulfill.
Section 2.3 (on page 9) describes our verification approach and, finally, Section 2.4 (on
page 11) contains the results that we achieved.

In the remaining document Chapter 3 describes the semantics compiler in detail and
Chapter 4 gives a detailed introduction into the formalization of the execution envi­
ronment in PVS. The original deliverable additionally contains a 3,000 page appendix
containing the PVS sources and the proofs, see h ttp ://w w w .cs.ru .n l/~ tew s/R o b in .

2.1 Challenges for low-level systems-code verification

The Nova micro-hypervisor is an operating-system kernel written in C ++ . Its low-level
code deviates sufficiently from examples in textbooks about verification or semantics.
Therefore the development of a suitable semantics and the verification were challenging
in several ways.

C + + source code Currently, there seems to be no convincing alternative to C /C + +
for kernel programming. Consequently the Nova micro-hypervisor is written in C++.
C + + programs are more difficult to formalize than, say, Haskell or Modula3 programs,
for a number of reasons:

• The C + + standard [Int07b] is relatively vague in order to permit conforming C + +
implementations on the weirdest platforms. For instance, the signed integral types
are not required to contain negative numbers. Further, casts between different
pointer types might change the pointer (to satisfy alignment requirements), except
for the case where one casts to void * and back to the original pointer.

Because of the vagueness of the C + + standard almost every program relies in
some way on platform or compiler specific properties. Consequently, a formal-

7

http://www.cs.ru.nl/~tews/Robin

2 The Robin Verification environment

isation of C + + program must incorporate some properties of the specific C + +
implementation that is used to compile the program.

• The template mechanism of C + + alone is Turing complete [Vel]. This means, the
compiler can be forced to do arbitrary computations at compile time. A formali­
sations of C + + templates is accordingly difficult.

We were never aiming at a semantics of C + + templates. During the project we
never dealt with source code containing templates. If we would have encountered
templates, we would have used the template instantiation facilities of our semantics
compiler to generate a semantics for instantiated template code.

• Type casts and goto-jumps are features that are traditionally not handled in text­
books on program semantics. However, it is impossible to write a micro hypervisor
without typecasts. Moreover, in order to avoid unduly performance penalties one
needs some kind of unstructured jump such as setjm p/longjm p [lon] or continua­
tions at a few, selected places.

Embedded assembly code and direct hardware manipulations For operations that
are not supported in C + + (mostly direct hardware manipulations) the hypervisor sources
contain some assembly code, mostly in the form of inlined assembly. Assembly code is
needed at least for the following operations:

• Access to hardware registers, such as those from the APIC (Advanced Pro­
grammable Interrupt Controller), but also special processor registers, such as CR3
(page-directory base register), EFLAGS (the flags register), the global descriptor
table, the interrupt descriptor table, the task-segment register and the feature
control registers CR0 and CR4.

• Embedding special instructions in the code, such as IRET (return from interrupt),
INVLPG (invalidate a TLB entry).

• Manipulating the stack frame to access and modify parameters of system calls or
for programming non-local exists such as longjmp of continuations.

Nonstandard program environment The hypervisor runs like usual programs in vir­
tual memory. However, the hypervisor manipulates the virtual memory mapping itself.
Some parts of the memory are visible multiple times at different virtual addresses. One
can therefore have very subtle aliasing: A variable x at address a can be changed by
writing to the totally different address a2.

The hardware manipulations that the hypervisor must perform bear the possibility
of very subtle errors. Some reserved bits in hardware data structures, such as the page
directory entries, must be zero. Other reserved bits have an unknown value and must
not be changed.

8

2.2 Requirements for Kernel Verification

The hardware model and the semantics of data
types provide the basic operations and proper­
ties for the verification of the hypervisor. For
hardware data types the hardware model relies
on the semantics of data types. Technically

d a t a t y p e s i ^ h a r d w a r e (hypervisor)

where (p is one property from the specification,
such as termination without runtime type er­
rors.

Figure 2.1: Robin verification approach

2.2 Requirements for Kernel Verification

Because of the special nature of kernel-level code we aimed at a verification environment
that meets the following requirements.

Correct execution environment The hardware features used in Nova must of course be
modelled correctly. Hardware features not or only partially used must be modelled
such that any wrong use of them definitely triggers an verification error.

Kernel programming errors Apart from common programming errors the verification
environment must also catch as many as possible kernel specific programming er­
rors. Such errors include reserved bit violations, casting errors and errors resulting
from a broken virtual address translations

C + + Standard The verification environment should follow as closely as possible the
C + + standard [Int07b] (even though the standard is ambiguous). Compiler specific
assumptions are added in an orthogonal way only where needed.

2.3 The Robin Verification Approach

We give now an overview about our verification approach and the design of the Robin
verification environment. Our approach is depicted in Figure 2.1, it has already been
worked out in the VFiasco project [HT05, HT]. We rely heavily on the interactive theo­
rem prover PVS [ORR+96], which is therefore a key component of the Robin verification
environment. The input language of PVS is higher-order logic enriched with predicate
subtyping and some other forms of dependent types. Higher-order logic contains a com­
plete lambda calculus. For the verification one therefore models the system at hand in
a functional way inside PVS and later uses the prover component of PVS to establish
theorems about it.

N ova interface specification

(Semantics o f the)
N ova source code

Semantics o f
Hardware model

data types

9

2 The Robin Verification environment

We use source-code verification, that is we translate the C + + source code into a
set of specific functions that are defined in the PVS input language. With source-code
verification one can benefit from the relatively high abstraction level present in the source
code (which is lost in object code). However, source-code verification also means that
we do not directly verify the object code that will really be running.

In our approach the translation of the C + + code into PVS depends on a formalization
of the runtime environment of the kernel in PVS. This runtime environment consists of
a number of parts that can roughly be split into a hardware model and a semantics of
data types, as depicted in Figure 2.1. The runtime environment provides a formalization
for

• relevant IA32 hardware details

• state transformers as semantic domain for C + + statements and expressions

• physical memory, virtual memory and an abstract memory interface for kernel
programming (called plain memory)

• memory allocation

• C + + statements and expressions

For a detailed description see Chapter 4. The formalization does not blindly model the
reality. Instead the modelling is done in such a way that certain subtle programming
errors yield a specific error state instead of doing nonsense. For instance the attempt to
interpret a string as a page-directory entry yields an abnormal result value. This kind
of error checking works even for the hardware initiated page directory traversals done
during address translation.

The Robin verification environment consists of

• the interactive theorem prover PVS,

• the formalization of the kernel runtime environment in PVS

• the semantics compiler implementing a denotational semantics for (a subset of)
C + + in the higher-order logic of PVS

Figure 2.2 depicts the data flow in the Robin verification environment. A semantics
compiler generates the semantics of the C + + sources as PVS source code. This is
loaded into PVS, together with the formalization of the runtime environment and the
specifications that one wants to prove.

Verification proceeds by reasoning in PVS over a nontrivial state transformer that rep­
resents the semantics of some source code. This is mostly done by applying a start state
to the state transformer and proving properties of the result. Such a verification could
equivalently be performed by computing the weakest precondition of the verification goal
with respect to the program.

A slightly different view on the verification environment is as follows: The runtime
environment defines an abstract state machine. The basic state transformers of the

10

2.4 Consistency and Completeness

run time
environment

N f
C + + sources 'V

Semantics compiler _ semantics
with annotations (using Olmar) ' in HOL S

/ S,

external
specification

Figure 2.2: Approach for source code verification

C + + semantics describe the actions of this state machine. The program is symbolically
executed on top of the state machine. Properties are derived from the state changes that
one observes.

In our design the ingredients of our verification environment are relatively independent
from each other. It is therefore possible

• To add additional axioms for certain properties of certain data types. For instance,
to model a compiler specific assumption about the size of unsigned i n t or the
precise behaviour of some type casts.

• to add new operations to the runtime environment

• to use different versions of the runtime environment for different pieces of the
Nova hypervisor. The boot code of the hypervisor can be verified against physical
memory and the hardware independent parts can be verified against a traditional,
untyped memory model.

• to adopt the semantics for new C + + features or compiler specific C + + constructs.

2.4 Consistency and Completeness

Our runtime environment in PVS and the C + + semantics are necessarily incomplete
(both in the technical and the logical sense). However, many of the omissions do not
lead to global assumptions on the validity of our verification. The hardware model, for
instance, does not contain virtual 8086 mode, but the validity of our verification does not
hinge on the absence of instructions that enable virtual 8086 mode. Instead the VM flag,
which controls this mode, is protected with a suitable side effect. Any attem pt to enable
virtual 8086 mode will result in a verification error. Hence a proof of normal termination

11

2 The Robin Verification environment

suffices to show that virtual 8086 mode is never enabled. Similarly, the use of missing
features in the C + + semantics will trigger an assertion in the semantics compiler.

A number of features are currently completely absent in our verification environment,
because their formalization is considered future work. These features are (1) the Trans­
lation Lookaside Buffer (TLB)1, (2) cache policy checking for devices, (3) segment offsets
and segment size checking, (4) linking object code and instruction fetch to the abstract
C + + semantics. Because of their absence we are currently unable to detect certain kinds
of errors, namely

• TLB errors, e.g. inconsistencies between the TLB and the page tables, or implicit
assumptions about the TLB size and structure,

• segment violations (the Nova micro-hypervisor uses a flat memory model where no
segment violations can occur, however, currently we do not check that the segment
descriptors are filled with the proper values),

• cache policy errors for memory-mapped devices, and delayed side effects for
cachable memory-mapped devices,2

• discrepancies between our C + + semantics and the compiled object code, which
(apart from compiler bugs) could occur for the following reasons: volatile-related
errors in the source code3, certain compiler optimizations (e.g. delayed write-back
to memory), or self-modifying code (however, no self-modifying code is contained
in our current verification target).

Ignoring the missing features, our verification will build on the following general as­
sumptions:

• The software to be verified will be executed on a single-processor system.

• Caches for real memory are working completely transparent and can be ignored.
This should be guaranteed by the hardware on single-processor systems.

• The involved software tools—the C + + compiler used to compile the Nova micro­
hypervisor, our semantics compiler (including the Elsa C + + parser and type
checker), and PVS—produce correct results.

1 The TLB is a special CPU-internal cache for virtual-to-physical address translations.
2The source code tha t we currently target does not involve any devices. In general, cache policy

checking for memory-mapped devices is trivial to add with our mechanism for side effects. To model
cache effects on cachable devices, the model of the device should include the relevant cache effects.

3Any C + + compiler is perm itted to perform arbitrary optimizations with respect to non-volatile data.
Memory accesses to such data are not part of the observable behavior of a C + + program, which
makes a correct semantics difficult. At the moment our C + + semantics treats all data as volatile.
A verification based on the current semantics will therefore not catch missing volatile annotations
or missing memory fences.

12

3 Translating C + + into PVS

For reasoning about C + + programs one needs a semantics of (at least some subset of)
C ++. For doing so in a theorem prover one needs a tool that translates C + + into its
semantics in the input language of the theorem prover. We call this translation tool the
semantics compiler. This chapter is about the semantics compiler.

The semantics compiler does not do very complicated things. It mostly performs some
kind of syntactic translation, for instance connecting statements with the ##-operator
for state-transformer composition instead of with semicolons. Most complicated parts
of the semantics are inside the semantic combinators, see Section 4.7. The semantics
compiler only performs the translation from statements to semantic combinators.

The most complicated part of the semantics compiler is therefore the C + + parser
and type checker. The requirements here are lower than for a normal compiler, because
the semantics compiler will only be run on type-correct programs and does not need to
generate good diagnostics on error. Nevertheless, a C + + parser and type checker are
still far too complex to rewrite them from scratch within the scope of the Robin project.

The choice of freely available C + + parsers is not particularly big. In the predeces­
sor project VFiasco we collected some experience with Open C + + [Chi93]. The meta
programming model of Open C + + is not really suited for a semantics compiler and the
enforced programming style using the visitor pattern with several template instantia­
tions is far from easy. Open C + + lacks a type checker and there is not even a symbol
table. Moreover, according to its SourceForge web page [Chi], Open C + + is not actively
maintained anymore since August 2004. For the Robin project we were therefore forced
to chose a new C + + front-end.

An obvious choice seems to be reusing the GNU Compiler Collection (GCC) front­
end. For semantic analysis however, GCC is far from optimal. The nodes of the internal
abstract syntax tree are dynamically typed. Further GCC tends to change the syntax
tree in place, possibly loosing valuable information. Because of difficulties with GCC
the Goanna project [FHJ+07] abandoned GCC and chose a proprietary C + + front-end.

In Robin we decided to reuse the Elsa C + + front-end developed by Scott Mc-
Peak [McP]. Elsa contains a fairly complete C + + parser and type checker. It has
been developed for semantic analysis within the Oink collection of C + + static analysis
tools [CW]. Its internal abstract syntax tree is fairly detailed and relatively well suited
for semantic analysis. Elsa is used in a number of different projects as well, most notably
in the semantic analysis of the Mozilla source code performed by the Mozilla foundation
itself.

The next section describes our adaptations to Elsa and Section 3.2 the design of the
semantics compiler.

13

3 Translating C++ into PVS

3.1 Olmar - An OCaml backend for Elsa

Elsa is based on the generalized LR parser generator Elkhound and on Astgen, a special
tool for creating class structures that mimic variant types from ML. A big portion of
the types used in the abstract syntax tree (abbreviated as Ast in the following) of Elsa
are automatically generated by Astgen from a description of the variant types and the
contained data. The types for the Ast nodes follow the standard encoding of variant
types in C++: Every variant type is encoded with a class hierarchy that has one subclass
for each variant. Such structures are usually traversed using the visitor programming
pattern. In addition to the C + + class hierarchies, Astgen generates several visitors
for the Ast. The approach using Astgen opens the possibility to extend Elsa by meta
programming: Instead of adding the feature to Elsa itself, one extends Astgen and lets
it generate the source code for the feature.

In comparison with ML style pattern matching, the visitor pattern is tremendously
verbose. Further, the Astgen-generated visitors are very limited. They cannot pass
computed values upwards and downwards during the Ast traversal. Even writing a simple
depth function is impossible. For those reasons and because for symbolic processing
of abstract syntax trees C + + is much weaker than ML-style languages we decided to
develop an OCaml backend for Elsa, called Olmar, that outputs its internal Ast as an
OCaml data structure that can be processed by independent OCaml programs.

In the first version of Olmar we modified and extended Astgen to let it generate
the OCaml reflection code, which rebuilds the Elsa Ast as an OCaml object. The
OCaml reflection code is linked with a modified version of Elsa, which is then capable
of storing its internal Ast as an OCaml object on disk (using OCaml’s capability to
marshal arbitrary data structures to disk). These marshalled data structures can then
be read by separate Olmar tools, which are pure OCaml programs. The first Olmar
tools we developed were memcheck, a type consistency checker for OCaml Ast objects,
and ast_graph, an Ast visualizer generating dot files for the graphviz package [Gra]. The
semantics compiler was also developed as such an Olmar tool, see Section 3.2.

A second version of Olmar is currently underway, which fixes a number of shortcomings
of our first approach. Most notably, Olmar version 1 is too tightly integrated with Elsa.
It requires therefore a specifically patched Elsa version and cannot be combined with
other versions of Elsa, especially not with the one the Mozilla foundation is using and
developing in its pork repository.

In Olmar version 2 we exploit the fact that the Astgen internal Ast for Astgen source
files is generated by astgen itself. Therefore one can easily add OCaml reflection sup­
port to Astgen itself, and manipulate the A st’s from Astgen in OCaml programs. In
Olmar version 2 Astgen is run on Elsa’s Ast description, generating an OCaml object
of the Astgen Ast of Elsa’s Ast description. Then a bunch of Olmar tools read that
Ast description and generate the reflection code for Elsa as well as all the structurally
determined utility code. Especially, all the Ast traversal code of the visualization tool
ast_graph is generated this way. Then Elsa is compiled and one can feed it with C + +
sources whose Ast is then saved as an OCaml object to be read from (other) Olmar
tools.

14

3.2 Semantics compiler

There is clearly a bootstrap problem in Olmar version 2, because the Olmar tools
generate the OCaml reflection code for Astgen. For that they need the OCaml object
of Astgen’s own Ast, which can only be created from Astgen with OCaml reflection code
compiled in. To break this bootstrap cycle the generated OCaml reflection code for
Astgen is contained in the distribution.

In Olmar version 2 the OCaml reflection code is more or less independent from Elsa
or Astgen. Additionally, the Olmar tools that generate the reflection and utility code
are highly customizable to deal with exceptions from the general code-generation rules.
In the future it will therefore be possible to distribute Olmar for several versions of Elsa.

Olmar is freely available at h t t p : //www.cs.ru .n l/~ te w s /o lm a r / . Olmar was mainly
developed to ease the development of the semantics compiler. However, after the first
release it attracted attention as the only OCaml solution for C + + parsing. The Mozilla
foundation plans to use Olmar for their analysis tools for the sources of the Mozilla web
browser [Gle07].

3.2 Semantics compiler

The semantics compiler translates the C + + kernel sources into their semantics in higher­
order logic, as defined in PVS. It takes a pre-processed C + + source file (created e.g.
with the GCC -E option) and yields a PVS theory file that contains the corresponding
semantics in our shallow C + + embedding (see Section 4.7).

The semantics compiler is implemented in approximately 3,200 lines of OCaml code,
not including the Elsa parser and the Olmar front-end. Elsa is used to parse the C + +
input file, and Olmar generates an abstract syntax tree of the C + + sources as an OCaml
data structure. The translation of this syntax tree into PVS definitions is mostly straight­
forward. Therefore the semantics compiler is relatively simple, which increases our con­
fidence in its correctness. This is important because the correctness of the semantics
compiler is one of the top-level assumptions on our verification results.

Not surprisingly, the translation performed by the semantics compiler proceeds by
recursion over the structure of the syntax tree. Only a few cases require special care.
The translation of a switch statement, for instance, requires the semantics compiler to
collect all case labels that occur in the statement’s body (so that when the statement is
“executed” in PVS, we can determine at the point of the switch whether the body will
be entered with a Case or with a Default state). Likewise, all variables declared in a block
need to be collected, so that they can be allocated in our memory model in PVS when
the block is entered, and deallocated upon block exit. The semantics compiler makes
explicit all type information on (overloaded) operations, as well as all C + + conversions.

C + + is a quite complex programming language; the standard alone (including a de­
scription of the C + + Standard Library) consist of almost 800 pages. Developing a
compiler for all of C + + is therefore a tremendous task that was well beyond the scope
of the Robin project. For our current implementation of the semantics compiler, we have
focused on the subset of C + + that is actually used in the Nova sources. No attem pt has
been made to specify this subset more formally. The semantics compiler currently can­

15

http://www.cs.ru.nl/~tews/olmar/

3 Translating C++ into PVS

not handle templates, virtual functions, or multiple inheritance. Also other, more basic
language features (e.g. variable declarations) are restricted to the syntactic forms that
they have in the Nova sources, and support for compiler-specific language extensions is
incomplete at present.

We assume that the semantics compiler is applied to valid C + + sources only, that
were preprocessed with GCC or some other C + + compiler/pre-processor. The semantics
compiler is written quite defensively though, in the sense that unsupported language
constructs will either raise an assertion in the semantics compiler itself (thereby aborting
the translation to PVS), or be translated to a syntactically invalid theory that will not
be accepted by PVS. In either case, illegal or unsupported language constructs in the
C + + sources will not lead to provable proof obligations in our verification environment.

Aside from the supported language subset, which should eventually be extended, there
are other directions for possible future improvement of the semantics compiler. Pretty-
printing of the generated PVS theories currently ignores the layout of the C + + program.
To obtain more readable output, one might want to preserve whitespace, certain com­
ments etc. Furthermore, the verification goal (e.g. a pre- and postcondition, and possibly
loop invariants as well) should eventually be taken from annotations in the C + + pro­
gram. Currently, the properties that one wants to prove need to be stated in PVS
directly.

16

4 Verification environment in PVS

In this chapter we present our PVS formalization. It consists of the following parts:

• our formalization of the IA32 hardware,

• the semantic combinators used to build the semantics of C + + programs in PVS,

• the formalization of C + + data types,

• and finally our example verifications.

During the project our level of knowledge increased of course a lot. Certain parts
of the PVS source code are therefore obsolete. Other parts of the formalization are
currently not used because of changes in our plans and priorities. These obsolete and
unused parts are still contained in the sources, either because they might be useful in
a successor project, or because cleaning up the sources would incur inappropriate costs.
We silently omit these obsolete and unused parts in the description in this chapter.

The complete PVS formalization is spread over about 220 theories1 in 33 files. The
PVS sources (without the proofs) are about 16,500 lines of code. They contain more than
860 handwritten theorems and almost 850 automatically generated type-check conditions
(TCCs). Altogether they have been proved with more than 17,500 interactive proof
commands.2 A validation run to automatically check all the proofs takes about 25
minutes on a 2.4 GHz CPU. A detailed description of the complete material would fill
several hundred pages. In this chapter we give an overview of the material, with a
description of the contents of each file. Figure 4.1 shows the (transitive reduction) of
the dependency graph of all source files. (And, just for illustration, Figure 4.2 shows all
theories with their dependencies.)

4.1 General concepts
Every theorem-proving project bigger than a student exercise inevitably contains formal­
izations of standard notions, because they are either not available in the chosen theorem
prover or they are available only in an unsuitable form. In this section we describe our
formalizations of general notions or properties that are not included in the PVS prelude
or the standard libraries. The first subsection (especially the part on lists) is much

1PVS sources are organized in theories. A theory has a unique name and can contain definitions,
axioms, theorems and proofs.

2The most frequent proof command is expand (about 3,000 occurrences) followed by use (1,970) and
smash (1,940). grind is on place 7 with 870 occurrences.

17

18

result.pvs v fiasco-prelude. pv s

i
gi=
l - i<TD
4

i
e
d
<TD

<TDP
<TDPO

<TD
P
<œ
soi=i-jo<TDcc

4
Verification

environm
ent

in
P

V
S

4.1 General concepts

19

4 Verification environment in PVS

more detailed than necessary. It thereby serves as a gentle introduction to PVS for the
uninitiated reader.

4.1.1 File vfiasco-prelude.pvs

The file v fia sco -p re lu d e .p v s contains stuff that we felt is missing from the PVS
prelude.

4.1.1.1 Unit: the one element type

The logic of PVS provides finite product and coproduct (disjoint union) types, but
surprisingly the empty product and coproduct types are missing. We formalize the
empty product, which is a one-element type as follows:
Unit : D ata type
% the unit type (aka semantic o f void)
Begin

unit : unit?
End Unit

This defines Unit as a type with precisely one element unit. The recognizer predicate
unit?3 is useless here, but syntactically required. The Unit type is used as result type for
state transformers that perform only side effects on the state but do not yield an actual
result (such as the semantics of assignment in the hardware model).

4.1.1.2 Additional list function and properties

The PVS prelude defines the data type list[T] of lists over a base type T together with
null (the empty list), cons (adding an element), car and cdr (accessing head and tail of
non-empty lists), length, append (list concatenation) and nth (returning the n-th element
of a list). Most of these functions are defined by recursion and, when needed, exploiting
predicate subtyping for the arguments. For instance, the prelude defines nth as follows:
nth(l : list[T], n : below(length(l))) : Recursive T =

IF n = 0 Then car(l) Else nth(cdr(l), n —1) Endif
Measure length(l)

Here below(n) denotes the finite subtype of natural numbers strictly less than n. This
predicate subtype formalizes the natural requirement that one can only extract elements
up to the length of the list. Every use of nth is associated with a type-check condition
(TCC) that requires the user to prove that the second argument is within the bounds.
Many of those TCC’s can be proven automatically, some are so simple that the type-
checker can already discharge them. However, there are also some that require a lot
of effort. The measure in the last line of the definition of nth is required for recursive
definitions in order to prove that they are total. For each recursive call the type checker

3In PVS the question mark is a letter and perm itted in identifiers. It is usually used as last letter of
predicates, though this is not mandatory.

20

4.1 General concepts

generates a termination TCC, in which one must prove that the measure strictly de­
creases for the recursive call. This ensures that the recursive function is well-defined for
all argument values.

In addition to the list functions from the prelude we need head (extracting the first n
elements of a list), tail (deleting the first n elements), list_remove (deleting one element
in a list, regardless of its position) and flatten. As an illustration, here are the definitions
of head and tail:
head(l : list[T], n : upto(length(l))) : Recursive list[T] =

I f n = 0 Then null
Else cons(car(l), head(cdr(l), n — 1)) Endif

Measure n

ta il(l : list[T], n : upto(length(l))) : Recursive list[T] =
I f n = 0 Then l
Else ta il(cdr(l), n — 1) Endif

Measure n

Here, upto(n) is the subtype of natural numbers less than or equal to n. The definition
of head requires 3 TCCs to be proven. The first one is about taking the car in the Else
branch, which requires l to be a nonempty list. This is indeed the case because we reach
the Else branch only if n and therefore also the length of l is greater than zero. The
second TCC requires us to prove that the second argument n — 1 of the recursive call
is less than or equal to the length of the first argument cdr(l). The third TCC is the
termination TCC for the recursive call.

For the definition of tail the type checker of PVS notices that the necessary TCCs
are trivially subsumed by the TCCs of head. Therefore the generation of these TCCs is
suppressed.

The main contents of the formalization are however not these function definitions,
but the properties we proved about them. We proved about 20 lemmas about functions
on lists. The formulation of these 20 lemmas requires another 13 TCCs to be proven
(this TCC ratio is very typical, in the whole repository 40% of all proven statements are
TCCs).

None of our proven list lemmas expresses a complicated fact. On the contrary, some
of them are completely trivial:
consJength : Lemma Forall(l : (cons?[T])) : length(l) > 0

The lemma consJength states that a list, which is build using cons and which is therefore
not the empty list, has a length greater than zero. In a theorem-proving environment it
makes sense to state such trivialities, because (1) they might be needed very often and
(2) they are required for discharging preconditions during automated proving.

Most of the proven list lemmas are simplification rules, such as the following.
nth_tail : Lemma Forall(l : list[T], n, i : nat) :

n < = length(l) And i + n < length(l) Implies
nth(ta il(l, n), i) = nth(l, n + i)

Other simplification rules are about applying length, car or cdr to the result of head and
tail.

21

4 Verification environment in PVS

Perhaps the most involved lemma about lists (which is still rather shallow) is the
following.
list_extensionality : Lemma F ora ll(ll, 12 : list[T]) :

l1 = l2 IFF
(leng th (ll) = length(l2) A N D

Forall(i : below(length(l1))) : nth(l 1,i) = nth(l2,i))

It makes it possible to derive the equality of two lists from the equality of their elements
without induction (the lemma list_extensionality itself is of course proven by induction).

In every complex formalization one needs some results that only deal with peculiarities
of the theorem prover. A very typical example is the following.

every_extend : Lemma
Forall (l : list[S], P : PRED[T]) :

every(Lambda (t : T) : P (t))(l) Implies every(Lambda (s : S) : P(s))(l)

Here S is an arbitrary subtype of T and every(P)(l), which is defined internally in PVS,
expresses that the predicate P holds on all elements of the list l. The function every is in
principle polymorphic in the type of the list elements. However, in PVS types cannot be
truly polymorphic. Instead they can contain type parameters, declared for the enclosing
theory. When such pseudo-polymorphic functions are used, the type checker must find
instantiations for all type parameters.

The lemma every_extend speaks about a list I, containing only elements of S, and an
arbitrary predicate P over T. Because S is a subtype of T, PVS knows that the list l
can also be considered to be of type list[T]. Because of the predicate argument the type
checker derives that the left-hand side every in the assumption works on elements of type
T. Thus the type parameter of the left-hand side every is instantiated with T, written in
angle brackets as every[T]. At the right-hand side every, in the conclusion, the predicate
P is restricted to the subtype S, therefore the right-hand side every is instantiated with
S.

The lemma states that if a predicate P holds on all elements of a list (expressed via
every[T]), then you can restrict the predicate to any subtype that covers the elements of
the list (expressed via every[S]).

The lemma every_extend is used in the proof that linear memory (memory with page-
table based address translation) is a plain memory (see Section 4.5.5 below). There, a
predicate on a list of arbitrary large addresses must be restricted to addresses within the
4 gigabyte virtual memory.

4.1.1.3 Additional results on numbers

Our underlying memory is organized byte-wise (see Sections 4.4 and 4.5 below). As in
reality most data must be encoded into several bytes in order to be stored in memory. For
the encoding into bytes we use ndiv (integer division, usually by 28 or multiples thereof),
rem (remainder or modulo) and expt (rn for a real r and a natural n). These three
functions are defined in the PVS prelude. However, we need many more properties than
the prelude provides. In the theories More_Divides, Expt_Lemmas and Number_Props we

22

4.1 General concepts

state about 40 properties of these functions. Many of them are basic facts about integer
division and modulus. For example:
ndiv_times_2 : Lemma Forall(a : int, b, c : posnat) :

ndiv(a, b * c) = ndiv(ndiv(a, b), c)

This says that the familiar law a/(b * c) = (a /b)/c does also hold for integer division. A
second example is
ndiv_rem_divisible : Lemma Forall(a, c : posnat, b : int) :

divides(c, a) And c < = a Implies
ndiv(rem(a)(b), c) = rem(ndiv(a, c))(ndiv(b,c))

Here we first come across rem, where rem(d)(i) is the nonnegative remainder of the
division of integer i by a positive divisor d.

The lemma ndiv_rem_d¡visible is best understood in terms of a positional number sys­
tem. Think of c as the divisor to separate the last digit (e.g., c = 101), and a as the
divisor to separate the last two digits (e.g., a = 102) of a number b. The lemma then
states two equivalent ways to obtain the second last digit of b. On the left-hand side
one first takes the last two digits of b (by taking the remainder of b modulo a) and shifts
the result one digit to the right. On the right-hand side one first shifts the whole b one
digit to the right and then separates the last digit.

The lemmas about ndiv and rem are used in our formalization of bit vectors (see
Section 4.1.2), which in turn is used in the formalization of C + + and hardware data
types (such as 32 bit unsigned integers or page-table entries).

4.1.1.4 Additional lemmas about sets

Sets are formalized in PVS (as usual in higher-order logic) with their characteristic
functions. A set or predicate over type T is a function that maps the elements in the set
or predicate to true:

PRED: TY P E = [T —> bool]
setof: T Y P E = [T — > bool]

The PVS prelude defines the usual set operations in the obvious way. For instance
member(x : T, a : setof[T]): bool = a(x)
subset?(a, b : setof[T]): bool = Forall x: member(x, a) Implies member(x, b)
union(a, b : setof[T]): setof[T] = Lam bda(x : T) : member(x, a) OR member(x, b)

To enable the automatic simplification of proof obligations (called automatic rewriting
in PVS) we need about 15 additional, mostly trivial properties of sets. The PVS prelude
contains for instance the following lemma.
subset_reflexive: L E M M A subset?(a, a)

However, in automatic rewriting one needs the completely equivalent form
subset_equal : Lemma a = b Implies subset?(a, b)

The difference between the two forms is that subset_reflexive is only applicable if the
two subsets are syntactically identical (because otherwise no substitution can be found).

23

4 Verification environment in PVS

In contrast subset_equal is applicable even if a and b are syntactically different and the
equality of a and b can only be established with the help of the decision procedures and
the database of known facts.

Another example is a property of disjointness of sets.
disjoint_mono : Lemma Fora ll(a l, a2, b l, b2 : set[T]) :

subset?(a1, a2) And subset?(b1, b2) And
disjoint?(a2, b2) Implies

disjoint?(a 1, b1)

It says that two sets a1 and b1 are disjoint if there are two disjoint supersets of a1 and
b1, respectively.

4.1.1.5 Converting finite sets to lists

In the formalization of memory allocators (see Section 4.6 below) it is necessary to com­
pute the list of allocated memory blocks from a finite set of allocators (by querying the
allocated memory blocks from each allocator and concatenating these lists). Somewhere
in this computation a finite set has to be converted into a list, where the order of the
resulting list is totally irrelevant.

Finite sets are formalized in the PVS prelude as those sets for which an injection into a
set of the form below(n) exists. The smallest such n is then defined to be the cardinality
of the finite set, denoted by card(S)4. The conversion from finite sets to lists is done by
the following function.
list_of_finite_set(S : finite_set[T]) : Recursive list[T] =

IF empty?(S) Then null
Else cons(choose(S), list_of_finite_set(rest(S)))
Endif

Measure card(S)

The function choose uses the Axiom of Choice to select an arbitrary (but constant)
element from a set, and rest(S), which is defined in the PVS prelude, removes the chosen
element from S:
rest(a : setof[T]): setof[T] = I f empty?(a) Then a Else remove(choose(a), a) Endif

As results for Iist_of_fi n ite_set we proved that the length of the resulting list equals the
cardinality of the original set, and that each element in the list is unique.

4.1.1.6 Alignment

Alignment denotes the requirement of many computer architectures that the addresses
of certain operands must be divisible by a certain power of 2. Sparc, for instance requires
that 4-byte integers are aligned on a 4-byte boundary, i.e. that the address is divisible
by 4. Our target architecture, IA32, has no hard alignment requirements for normal
instructions (though alignment checks can be performed in user mode by setting the
AM and AC bits). Page tables are however required to be 212-aligned.

Here we define alignment as a property of natural numbers:

4PVS defines card(S) only for fin ite sets S, there is no predefined ca rd ina lity for in fin ite sets.

24

4.1 General concepts

aligned?(n) : PRED[nat] = { a : nat | divides(expt(2,n), a) }
aligned(n) : Type = (aligned?(n))

The first line defines aligned?(n) as predicate recognizing n-aligned numbers. The brace
notation { a : nat | ... } is syntactic sugar for Lambda(a : nat) : ... and comes handy for
defining sets. The second line defines the type of n-aligned numbers. In PVS parenthesis
around a predicate (P) turn the predicate into a type, containing just the elements for
which the predicate holds.

For alignment we proved a number of properties, for instance that bigger alignment
implies smaller alignment, and that the alignment of the sum of two numbers equals
the minimum of the alignment of the operands. The proofs of these properties rely of
course on certain properties of ndiv and rem, see Section 4.1.1.3 (on page 22). This
formalization of alignment is used in the hardware data types for page tables.

4.1.1.7 Zorn’s Lemma

For the termination proof of while loops using variants on a well-founded order we need
one direction of Zorn’s Lemma.
zornJr : Lemma Forall(R : PRED [[T ,T]]) :

well_founded?(R) Implies
N ot Exists (f : [nat —> T]) : Forall (n : nat) : R (f(n+1), f(n))

A relation in PVS is simply a predicate on the Cartesian product T x T, in PVS denoted
by [T, T]. The definition of well-founded? in the prelude is the standard one (every non­
empty subset of the relation contains a minimal element). The lemma zornJr expresses
that in a well-founded order there is no infinite descending chain. (The converse, namely
that an order is well-founded if there are no infinite descending chains, holds as well.
However, its proof requires unbounded ordinals, because it proceeds by ordinal induction
up to the size of R. PVS currently contains only ordinals up to e0.)

4.1.1.8 Turning an injective function into a bijection

With the predicative sub-typing of PVS every function can be given a type such that it
is surjective. If the original function was injective one of course obtains a bijection. The
restriction of the type is done with the following function.
restrict_toJmage(f : [Domain —> Range]) : [Domain —> (image(f, fullset[Domain]))] = f

Here Domain and Range are type parameters, fullset[Domain] gives the predicate contain­
ing all inhabitants of Domain, and image yields the image of a function as a predicate.

The whole purpose of this exercise is to prove the following.
bijective_restrict_toJmage : Lemma

injective?(f) Implies bijective?(restrict_toJmage(f))

This lemma is used in order to prove that the length of a list in which all elements are
unique is bound by the cardinality of the set from which the elements are drawn. This
latter result is needed in turn to prove that cycle free paths in finite graphs are bound
in size, which again is needed to discharge a TCC in the definition of the unique path
from an arbitrary node to a root node in a finite tree.

25

4 Verification environment in PVS

4.1.2 File bits.pvs

PVS is distributed with a library of bit vectors. The type of those bit vectors is a finite
sequence of bits of fixed size:
bvec : T Y P E = [below(N) —> bit]

Here, the natural number N is a theory parameter, encoding the length of the bit vector
and bit is a type alias for bool. With this definition the length of the bit vector is
encoded in its type. When concatenating two bit vectors of length 5 the result has type
bvec[5 + 5]. W ith several cuts and concats those length expression on the type level
can get quite long. In PVS, arithmetic expressions on the type level are not simplified,
instead they require special treatment. In our experience this m atter complicates proofs
about standard PVS bit vectors a lot.

Another complication of the standard PVS bit vectors is that for the formalization of
hardware, as we intended in this project, a lot of conversions from bit vectors to natural
numbers and back are needed.

In Robin we therefore decided to develop an alternative formalization of bit vectors,
where no length information is present on the type level. We just use natural numbers as
bit vectors of arbitrary length. The representation of bits is not explicit, but we assume
a standard representation of naturals to the base 2. With this assumption operations
for cutting, shifting and extraction of single bits are defined. For instance
% cut k bits out o f n, starting at i
cut_bits(n, i, k : nat) : nat = rem(expt(2, k))(ndiv(n, expt(2, i)))

% return true i f the i—th b it in n is 1
cut_bit(n, i) : bool = rem(2)(ndiv(n, expt(2, i))) = 1

% shift n i bits to the le ft
shift_bits_left(n, i) : nat = n * expt(2, i)

Intuitively our bit vectors are all infinitely long (filled with leading zeros). Therefore
there is no operation for concatenation, instead we define replacement:
% replaces k bits starting from i in word n w ith k bits starting at i in word m
overwrite_bits(n, m, i, k : nat) : nat =

n — rem(expt(2, i + k))(n)
+ shift_bits_left(cut_bits(m, i, k), i)
+ rem(expt(2, i))(n)

% replaces b it i in n w ith the one o fm
overwrite_bit(n, m, i : nat) : nat = overwrite_bits(n, m, i, 1)

% overwrites b it i in n w ith boolean b
overwrite_bool_bit(n : nat, b : bool, i : nat) : nat =

overwrite_bit(n, shift_bits_left(bool_to_nat(b), i), i)

Our formalization of bit vectors is certainly less elegant and less precise from a mod­
elling perspective. However, we believe, it is more efficient in proofs, at least for us.

The additionally required effort for developing this formalization is less than it sounds
because of two reasons. Firstly, reusing an existing library of proofs requires much more

26

4.1 General concepts

effort than reusing a software library, especially proofs must be planned with respect to
the properties the library provides. Secondly, in order to get good automation support
from the library in the form of automatic rewrites one has to understand and then use
the usage pattern that the library developer had in mind.

In our evaluation the alternative bit-vector formalization payed off. The consistency
proofs for the data-type formalization of page-table types is almost fully automatic,
when it comes to bit manipulations. This hinges admittedly on a special usage pattern,
including a certain ordering or bit operations. The following lemma plays a key role in
the obtained automation:
cut_bit_overwrite_bool_bit : Lemma

Forall(n : nat, b : bool, i, j : nat) :
cut_bit(overwrite_bool_bit(n, b, i), j) =

IF i = j Then b
Else cut_bit(n, j)
Endif

The overwrite_bool_bit stems from encoding various page-table bits into a list of bytes.
The cut_bit comes from the corresponding decoding operation. This rewrite rule is the
work horse for proving that encoding into bytes and then decoding gives the original
value back.

4.1.3 File graph.pvs

In this file we formalize those pieces of graph theory that are needed to define finite trees,
to express the function that gives the unique path of a node to the root above it and
finally to prove a certain proof principle over such trees. Strictly speaking, we formalize
finite forests (i.e., finite sets of finite trees) however, we sloppily stick to the term finite
tree. These trees are used to formalize dependencies between different memory allocators.
The proof principle for trees, we develop here, is used to prove many of the interesting
properties of memory allocators, see Section4.6.

4.1.3.1 Utility notions and results

Before we can define graphs and trees we need some utility notions and properties. The
first result has already been pointed to.
list_pred_card : Lemma

Forall(l : list[T], P : PRED[T]) :
is_finite(P) And every(P)(l) And length(l) > card(P) Implies

Exists(n1, n2 : below(length(l))) :
N o t n1 = n2 And
nth(l, n1) = nth(l, n2)

It says that a list in which all elements are drawn from a finite predicate P and whose
length is greater than the cardinality of P must contain two identical elements. This
lemma could probably be proven by induction. However, we preferred indirect reason­
ing: If all elements in the list were unique then nth on that list would be injective.
Restricting nth to a bijection (using restrict_to_image from Section 4.1.1.8, on page 25)

27

4 Verification environment in PVS

and inverting it gives a bijection from a subset of P (those elements which occur in l) into
below(length(l)), which would prove that the cardinality of P must be at least length(l).

We continue with the definition of the base type for paths in graphs together with
operations to select the first and the last element of a path.
path_list?(l : Iist[T]) : bool = length(l) > = 1
path_start(l : (pathJist?)) : T = car(l)
path_end(l : (pathJist?)) : T = nth(l, length(l) —1)

The type of nodes of the graph will later instantiate the type parameter T. Path lists
are lists of nodes of at least length one.

A number of results will later be proved by induction on paths lists. Using ordinary
list induction works, but is cumbersome, because our base case, a path list of length one,
must always be split of manually. We therefore prove the following induction theorem
for paths.
pathJistJnduction: Lemma

Forall(p: [(pathJist?) —> boolean]):
(Fora ll(t : T) : p(cons(t, null))) And
(Forall(t : T, tail : (pathJist?)): p(tail) Implies p(cons(t, ta il)))

Implies
Forall (I : (pathJist?)): p(l)

We finally define concatenation of path lists.
concatable?(left, right : lis t[T]) : bool =

pathJist?(left) And pathJist?(right) And
path_end(left) = path_start(right)

concat_path(lr : (concatable?)) : (pathJist?) =
append(Proj_l(lr), cdr(Proj_2(lr)))

The argument for concat_path must be a pair of path lists that are concatable. Two path
are concatable if the last node of the first path is identical to the first node of the second
path. We use the projections Proj_l and Proj_2 to extract the first and the second path
from the pair lr.

For our definition of cycle-freeness we need the transitive closure of an arbitrary rela­
tion, for which we exploit the usual higher-order definition.
transitive_closure(R : PRED[[T, T]]) : PRED[[T, T]] = Lambda(x, y : T) :

Forall(Q : PRED[[T, T]]) : subset?(R, Q) And transitive?(Q) Implies
Q(x,y)

The use of the universal quantifier blurs it a bit, but transitive_closure(R) is really the
intersection of all transitive relations bigger than R. For proofs we need a characterization
result that says that two elements are in the transitive closure of some relation R if and
only if there is a finite path in R between these two elements.
trans_closure_char : Lemma

Forall(R : PRED[[T, T]], x, y : T) :
transitive_closure(R)(x,y) IFF
Exists(l : list[T]) :

length(l) > = 2 And

28

4.1 General concepts

path_start(l) = x And path_end(l) = y and
Forall(i : below(length(l) —1)) : R(nth(l, i), nth(l, i+ 1))

4.1.3.2 Graphs and Trees

We can now define a (directed) graph as a record consisting of the set of nodes and the
edge relation.
graph_type : Type = [#

nodes : PRED[T],
edges : PRED[[(nodes), (nodes)]]

]

Note that the type of the second record field depends on the first field. This kind of
dependent types is fully supported in PVS.

A path in a directed graph is a path list such that adjacent nodes are connected with
an edge.
path?(g : graph_type)(l : (path_list?[T])) : bool =

(Forall(i : below(length(l))) : g'nodes(nth(l, i))) And
(Forall(i : below(length(l) —1)) : g'edges(nth(l,i), nth(l, i+ 1)))

Note that the first line, requiring that all elements of l are nodes of g is necessary for
discharging a TCC in line two. There, the edges relation can only be tested on actual
nodes. We need a few lemmas saying that paths are closed under some list operations
such as concatenation or taking the head and tail, but they are excluded here.

The set of root nodes of a graph g is defined straightforwardly.
roots(g : graph_type) : PRED[(g'nodes)] =

{y : (g'nodes) | Forall(x : (g'nodes)) : N o t g'edges(x,y) }

We define freeness of cycles with the transitive closure of the edges relation
cycle_free?(g : graph_type) : bool =

Forall(x : T) : g'nodes(x) Implies
N o t transitive_closure(g'edges)(x, x)

A tree is then a cycle-free graph in which all nodes have at most one predecessor.
tree?(g : graph_type) : bool =

cycle_free?(g) And
Forall(x, y, z : (g'nodes)) :

g'edges(x,z) And g'edges(y,z) Implies x = y

A tree is finite if its set of nodes is finite.
finite?(g : graph_type) : bool = is_finite(g'nodes)
finite_tree?(g : graph_type) : bool = finite?(g) and tree?(g)

Note, that we are not requiring a unique root. Structures fulfilling finite_tree? can contain
several (disjoint) trees with separate root nodes.

We restrict ourselves to finite trees, because the reasoning we want to carry out in
the context of memory allocators (see Section 4.6 on page 47) crucially depends on the
property that from each node in a tree there is a unique path upwards to a root node.

29

4 Verification environment in PVS

It turns out to be a nontrivial exercise to define a function that yields the unique root
path for each node. First, we define a predicate to recognize the root path for each node.
root_path(g : graph_type, n : (g'nodes)) : PRED[(path?(g))] =

Lam bda(p : (path?(g))) :
roots(g)(path_start(p)) And path_end(p) = n

Because in a finite tree, there is precisely one path from each node to a root, we can
simply define:
path_to_root(g : (finite_tree?), n : (g'nodes)) : (root_path(g, n)) =

the(root_path(g, n))

Here the function the returns the only element of a singleton set. However, it takes 9
proofs and about 160 PVS proof commands to discharge the TCC that root_path(g, n)
contains indeed precisely one element for every node n. Our reasoning consists of the
following steps

• The length of every path in a finite, cycle free graph is bound by the number of
nodes (Lemma path_length_bound).

• For any non-root node there exists a path of at least length 2 going upward (Lemma
non_root_path).

• Every path not starting in a root can be extended at the front (Lemma
non_root_path_extend).

• For every node there exists a root path (Lemma tree_path_to_root).

• Every two root paths for a given node are identical (Lemma tree_unique_path_to_root).

4.1.3.3 A path based proof principle for finite trees

In the context of memory allocators we prove important properties for two nodes (which
are memory allocators then) by considering both their path to a root node. We therefore
device the following proof principle.

T h eo rem 1 Consider a symmetric predicate P on two nodes of a finite tree tr. In order
to prove P for all pairs of nodes of tr it is sufficient to prove P for two nodes n i and n 2
in each of the following cases:

• Ui = U2

• There exists a path p in tr starting at n i and ending in u2.

• There exists a node n 3 and two path p i ,p2 such that p i and p2 both start in n 3 and
p i ends in n i and p2 ends in u2. Further, p i and p2 have at least length 2 and
their second nodes are not equal.

• There exist two disjoint root path ending in n i and n 2, respectively.

30

4.2 Hardware details

Our PVS version of this theorem is slightly optimized for interactive proof: It makes
all the cases disjoint (such that, for instance, for case 2 one can assume n i = n2).
symmetric_node_pair_distinction : Lemma

Forall(P : PRED[[(g'nodes), (g'nodes)]]) :
finite_tree?(g) And
symmetric?(P) And
(Forall(n : (g'nodes)) : P(n, n)) And
(Forall(n1, n2 : (g'nodes), p : (path?(g))) :

N O T n1 = n2 And
path_start(p) = n2 And path_end(p) = n l And length(p) > = 2 Implies

P(n1, n2))
And
(Forall(n1, n2 : (g'nodes), p1, p2 : (path?(g))):

N O T n l = n2 And root_path(g, n l) (p l) And root_path(g, n2)(p2) And
N O T path_start(pl) = path_start(p2) Implies

P(n1, n2))
And
(Forall(n1, n2, n3 : (g'nodes), p1, p2 : (path?(g))):

N O T n1 = n2 And N O T n1 = n3 And N O T n2 = n3 And
g'edges(n3, path_start(pl)) And g'edges(n3, path_start(p2)) And
path_end(pl) = n l And path_end(p2) = n2 And
N O T path_start(pl) = path_start(p2) Implies

P(n1, n2))
Implies

Forall(n1, n2 : (g'nodes)) : P(n1, n2)

4.1.4 File hoare.pvs

This file defines the notion of validity of Hoare triples for our verification environment,
both with respect to partial and total correctness. The definition depends on state
transformers, which are only introduced in Section 4.3.2 below. A Hoare triple consists
of a precondition P , a program (i.e., a state transformer) c, and a postcondition Q.
Informally the triple { P } c {Q} is valid (with respect to partial correctness) iff all states
reachable by executing the program c in any state that satisfies P satisfy Q . Total
correctness additionally requires that c, whenever executed in a state that satisfies P ,
terminates normally (i.e., without an error, and without an infinite loop or infinite
recursion).

4.2 Hardware details

This section discusses the formalization of some hardware details of the IA32 architec­
ture, such as registers and address sizes. These hardware details form the basis of the
IA32 hardware model.

4.2.1 File constants.pvs

This file defines bytes, registers and addresses.

31

4 Verification environment in PVS

4.2.1.1 Bytes

In principle our formalization works with bytes of eight bits, where each byte can store
one of 256 different values. The C + + standard imposes that bytes must contain at least
8 bits (by including the part of the C Standard which requires that CHAFLBITS is at
least 8). The C + + standard further requires that all bits in a byte are visible at the
C + + level. For every bit combination one gets a different char object.

For certain aspects of the C + + data type formalization (see Section 4.4.2 below) it
would however be beneficial to be able to associate additional data with each byte, that
can not be accessed or changed from C ++. As laid out in the introduction, one of
our main goals is that every concrete IA32 system should give rise to a model of our
hardware formalization in a direct way. We therefore exploit under-specification for the
formalization of bytes:

bits_per_byte : posnat
min_bits_per_byte : nat = 8
bits_per_byte_minimum : Axiom bits_per_byte > = min_bits_per_byte
max_byte : nat = expt(2, bits_per_byte)
Byte : Nonempty_Type = below(max_byte) Conta in ing 0

We declare a constant bits_per_byte, which we require to be at least 8, but whose precise
value remains unknown. Bytes are then required to store at least 2blts-per-byte different
values. Obviously, any IA32 system meets these conditions. In proofs one can only rely
on the axiom bits_per_byte_minimum, therefore no fact can be derived that requires bytes
to contain precisely 8 bits.

Currently, our formalization does not exploit the possibility of invisible bits in bytes.
However, future extensions of the data type formalization might exploit this feature in
order to catch certain obscure error patterns.

4.2.1.2 Registers and addresses

Our hardware model provides access to memory and registers. We achieve big simplifica­
tions by formalizing memory as a special (rather big) register. This way many functions
can treat memory and registers uniformly without making a case distinction.

Each IA32 register gets an identifier in an enumeration data type:

RegisterJd : D ata type
Begin

Mem_ : Mem? % ordinary memory
E A X _: EAX?
E B X _: EBX?

PDBR_ : PDBR? % (CR3)
End Register Jd

A generalized memory/register address is a tuple of a register identifier and an offset.

Address : Type = [# type_of : RegisterJd, offset : int #]

32

4.3 State transformers

For real registers the possible values for the offset will of course be severely limited. The
register identifiers above end in an underscore to leave the register name free for an
address constant, for instance
PDBR : Address = (# type_of:= PDBR_, offset := 0 #)

4.3 State transformers

State transformers are a particular type of functions that are used as semantic domain for
C + + expressions and statements. In addition, various other kinds of internal actions of
our hardware model are formalized as state transformers. State transformers come in two
flavors, statement state transformers and expression state transformers. Statement state
transformers are used as semantics for C + + statements, expressions state transformers
are used for the remainder (C ++ expressions and internal actions). Statement state
transformers cannot yield a value, they can only perform side effects in memory. Further,
both flavors of state transformers differ in the kind of abnormal termination conditions
they permit.

In order to formulate state-transformer invariants in a uniform way we invented a kind
of super type for both variants of state transformers: super state transformers. Statement
and expression state transformers can be converted into super state transformers by
dropping any possible yielded values and details about abnormalities.

For certain manipulations of the control flow (such as in the semantics of the loops or
the case statement) yet another variation of state transformers is needed: complex state
transformers. To minimize the confusion complex state transformers are only introduced
in Subsection 4.3.2.2 on the composition of state transformers on page 35 below.

4.3.1 File result.pvs

The formalization starts with expression state transformers.
ExprResult[State, Data : Type] : D ata type
Begin

OK(state: State, data: Data) : OK?
Hang : Hang?
Fatal : Fatal?

End ExprResult

The type parameter State gets later instantiated with a state space of one of the memory
models. It captures the relevant parts of the state of an IA32 system. Data describes
the data the state transformer can yield.

An expression state transformer can terminate normally with OK and yield a result
of type Data. Alternatively, it can diverge, which is modeled with a result of Hang or it
can produce a fatal error condition. Divergence can occur because of non-terminating
while loops or page faults that keep occurring at the same position. Fatal is reserved for
conditions that we consider an unrecoverable programming error.

33

4 Verification environment in PVS

The PVS sources currently contain already one field for modelling arbitrary hardware
interrupts and exceptions (such as page faults, real interrupts). However, this is not
used yet, so we don’t describe it here.

An expression state transformer is a function of type

State — ► ExprResult[State, Data]

Next, we formalize statement state transformers.
StmtResult[State : Type] : D ata type
Begin

OK(state : State) : OK?
Break(state : State) : Break?
Continue(state : State) : Continue?
Return(state : State) : Return?
Switch(state : State, case : int) : Switch?
Default(state : State) : Default?
Hang : Hang?
Fatal : Fatal?

End StmtResult

Statement state transformers do not yield a result. They do have a greater variety of
abnormalities. Break, Continue and Return are used to model jumps in the control flow
for the respective C + + statements. Switch selects a case label inside a switch statement
and Default selects the default branch in a switch. The state that these abnormalities
carry is the last state before the abnormality occurred and in which the execution is to
be continued.

A statement state transformer is a function of type

State — ► StmtResult[State, Data]

SuperResult[State : Type] : D ATATYPE
Begin

OK(state : State) : OK?
Abnormal(state : State) : abnormal?
Bottom : bottom?

End SuperResult

SuperResult is the common denominator of ExprResult and StmtResult. Bottom combines
Hang and Fatal, because their distinction is not of interest at the level of super state
transformers.

The conversion into super state transformers is done in the obvious way, for instance:
stmt_2_super_res(stmt : StmtResult[State]) : SuperResult[State] =

IF OK?(stmt) Then OK(state(stmt))
Elsif h as_next_state(stmt) Then Abnormal(state(stmt))
Else Bottom
Endif

stmt_2_super(stmt : [State —> StmtResult[State]])(s : State) : SuperResult[State] =
stmt_2_super_res(stmt(s))

34

4.3 State transformers

There are similar functions expr_2_super_res and expr_2_super for expression state trans­
formers.

In proofs and preconditions it is often necessary to distinguish state transformers
whose result carries a successor state.
has_next_state(res : SuperResult[State]) : bool =

Cases res OF
OK(state) : true,
Abnormal(state) : true,
Bottom : false

EndCases

This function is overloaded in the obvious way for ExprResult and StmtResult.

4.3.2 File state-transformer.pvs

This file contains the sequential composition of state transformers and state-transformer
invariants. Further it contains a huge number more or less trivial lemmas that are needed
to get automatic simplification of C + + statements working.

4.3.2.1 State transformer trivialities

One of the many trivial results needed for automatic rewriting is the following.
ok_stmt_2_super : Lemma 0K?(stmt_2_super(stmt)(s)) = OK?(stmt(s))

Such trivialities are needed because otherwise one would have to unfold the definition of
stmt_2_super and do a case split according to the contained Cases expression. As one can
not control the order of rewriting such a case split has usually a big performance cost.
Moreover, often rewrite rules that require case splits are disabled, because automatic
case splits can easily produces hundreds of subgoals.

Another triviality are empty state transformers that are needed in certain circum­
stances.
ok_result(data : Data)(s : State) : ExprResult[State, Data] = OK(s, data)
fatal_result(s : State) : ExprResult[State, Data] = Fatal

Of course they come each with their own bunch of trivial results, such as that OK? does
always hold on the result of ok_result.

4.3.2.2 Composition

The basic case for composition of state transformers is as follows.
lift(s tm t : [State —> StmtResult[State]])(sres : StmtResult[State]) : StmtResult[State] =

Cases sres OF
OK(state) : stmt(state)
Else sres

EndCases

(s tm t_ l, stmt_2 : [State —> StmtResult[State]])(s : State) : StmtResult[State] =
lift(stm t_2)(stm t_ l(s))

35

4 Verification environment in PVS

In a composition (stmtl # # stmt2)(s) the start state s is first applied to stm tl and if
this terminates with OK, the possibly modified successor state is passed to stmt2. If
stm tl terminates with something else stmt2 is dropped. This way, a break abnormality,
raised by a break statement will skip all subsequent statements until the end of the loop.
At the end of the loop a special complex state transformer is inserted, for instance
catch_break(res : StmtResult[State]) : StmtResult[State] =

CASES res OF
Break(state): OK(state)
ELSE res

ENDCASES

(Which is actually defined in s ta tem en ts .pvs, see Section 4.7.2 below.)
Composition between normal and complex state transformers is simply function com­

position. For two expression state transformers we define a variant of the composition
that permits binding the result value of the first expression state transformer in a con­
venient way.
(e x p r : [State —> ExprResult[State, Datal]],

fexpr : [D ata l —> [State —> ExprResult[State, Data2]]])(s : State) : ExprResult[State, Data2] =
Cases expr(s) OF

OK(state, data) : fexpr(data)(state),
Fatal : Fatal,
Hang : Hang

EndCases

This way we can write
expr_l # # Lam bda(r : ...) : expr_2 ...

to bind the result of expr_l to r in expr_2.
For the other combinations of expression and statement state transformers with and

without argument binding we overload the ##-operato r in a very similar way. Each
overloaded ##-operator has its own theory, to make it easier to distinguish the differ­
ent # # instances, if necessary. Associativity of composition is proved in a number of
separate lemmas.

4.3.2.3 State transformer invariants

The notion of invariance plays an important role to describe certain well-formed states
and well-behaved operations on them. Given a set transformers of super state transform­
ers, a predicate states is an invariant (with respect to the transformers in transformers)
if it is closed under all state transformers in transformers.
result_pred(states : PRED[State]) : PRED[SuperResult[State]] =

Lambda(res : SuperResult[State]) :
has_next_state(res) Implies states(state(res))

transformerJnvariant?(states : PRED[State], transformers : PRED[[State —> SuperResult[State]]]) : bool =
Forall(s : State, q : [State —> SuperResult[State]]) :

states(s) A N D transformers(q) IM PLIES
result_pred(states)(q(s))

36

4.4 Abstract memory interface

Note, that a state transformer invariant does not ensure normal termination. Normal
termination is captured in the following definition.

transformers_ok?(states : PRED[State], transformers : PRED[[State —> SuperResult[State]]]) : bool =
Forall(s : State, q : [State —> SuperResult[State]]) :

states(s) A N D transformers(q) Implies
OK?(q(s))

Invariance and normal termination are very well-behaved notions: They are stable under
union and enjoy certain monotonicity predicates. All this is expressed in about 20
lemmas. For example:

transformerJnvariant_mono_transformers : Lemma
Forall(transformers_l, transformers_2 : PRED[[State —> SuperResult[State]]]) :

subset?(transformers_l, transformers_2) A N D
transformerJnvariant?(states, transformers_2) Implies

transformerJnvariant?(states, transformers.!)

4.4 Abstract memory interface

For maintainability, different features of the real hardware are modelled in separate
memory layers. Each such memory layer implements the same abstract interface. This
abstract interface consists of the following:

• a set of memory states

• an operation for reading one byte

• an operation for writing one byte

• an operation for performing read side effects for a memory region

• an operation for performing write side effects for a memory region

The operation for side effects are for the formalization of memory-mapped devices (where
access to registers of those devices can have arbitrary effects) and for the formalization
of alignment and reserved bit checks. In the latter case the side effect functions will not
really perform a side effect, they will check the requirements and, if not fulfilled, yield a
Fatal result.

Block-wise memory access and reading/writing C + + data from/to memory is imple­
mented on top of the abstract memory interface. Further a large number of properties
for block-wise memory access is proven with respect to the abstract memory interface.

4.4.1 File memory.pvs

4.4.1.1 Address blocks

Blocks of addresses are formalized as a start address and a size.

37

4 Verification environment in PVS

% the set o f addresses addr < = a < addr + size
address_block(addr : Address, size : nat) : PRED[Address] =

Lambda(a : Address) :
type_of(addr) = type_of(a) And
offiset(addr) < = offset(a) And
offiset(a) < offset(addr) + size

This definition permits address blocks of size zero, which is rather inconvenient at various
other places. The only reason this has not been fixed yet is that the change will break
a large number of proofs.

Address blocks are disjoint, if they do not overlap.
blocks_disjoint?(addrl : Address, sizel : nat, addr2 : Address, size2 : nat) : bool =

N ot type_of(addrl) = type_of(addr2) Or
addrl + sizel < = addr2 OR

addr2 + size2 < = addrl

There are one additional definitions for address blocks that we explain in the section on
memory allocators (see Section 4.6 on page 47 below).

4.4.1.2 Abstract memory structure

The abstract memory interface is formalized as a structure of four operations, where the
set of states State is a type parameter.
Memory_struct : Type = [#

memory_read : [Address —> [State —> ExprResult[State, Byte]]],
memory_write : [Address, Byte —> [State —> ExprResult[State, Unit]]],
memory_read_side_effect : [Address, list[Byte], bool —> [State —> ExprResult[State, list[Byte]]]],
memory_write_side_effect : [Address, list[Byte], bool —> [State —> ExprResult[State, list[Byte]]]]

#]
All four operations are curried functions that first take additional arguments and yield
then an expression state transformer. In general, the side effects are permitted to change
the data read or to be written. They therefore receive the data as argument and return
it as result in the form of list[Byte]. The additional boolean argument for the side
effects is the cross-page flag. It is usually false, but set to true if a contiguous memory
access is split into two or more blocks during address translation. This way a side-effect
formalization can see if the memory block was specified in the program or only formed
during address translation.

On top of the abstract interface we define access to memory blocks recursively using
the single byte interface and by combining the side effect.
% side effect free list write
memory_write_list_nse(pm : Memory_struct)(addr : Address, bl : Iist[Byte]) :

Recursive [State —> ExprResult[State, Unit]] =
Cases bl o f

null : ok_result(unit),
cons(b, rl) : (memory_write(pm)(addr, b) # # memory_write_list_nse(pm)(addr + 1, cdr(bl)))

EndCases
Measure length(bl)

38

4.4 Abstract memory interface

% apply write side effect before register is modified
memory_writeJist(pm : Memory_struct)(addr : Address, bl : Iist[Byte]) : [State —> ExprResult[State, Unit]] =

memory_write_side_effect(pm)(addr, bl, false) # #
Lambda (b ll : list[Byte]) : memory_write_list_nse(pm)(addr, bl 1)

For writing, the side effect is applied before the actual memory access. This way the side
effect can check the data to be written for consistency and/or change it. The definition of
memory_read_list is very similar, only that the side effect is done after the actual memory
access.

For the use with transformer invariants, sets of memory read and write state trans­
formers are defined as follows.
% the set o f state transformers that read at addresses
memory_read_transformers(pm : Memory_struct, addresses : PRED[Address]) :

PRED[[State —> SuperResult[State]]] =
Lambda(q : [State —> SuperResult[State]]) :

Exists(a : Address) : addresses(a) AN D
q = expr_2_super(memory_read(pm)(a))

Similarly for writing and for the side effects.
Side effects have been introduced for the formalization of memory mapped devices,

alignment and reserved bit checks. In the case of an ordinary memory access the side
effects do nothing. This is captured in part with the following definition.
% side effect transformers do not change the data read or to be written
side_effect_content_unchanged(addresses : PRED[Address], states : PRED[State],

se_transformer : [Address, list[Byte], bool —> [State —> ExprResult[State, list[Byte]]]]) : bool =
Forall(s : State, a : Address, bl : list[Byte], cp : bool) :

states(s) And
subset?(address_block(a, length(bl)), addresses) And
OK?(se_transformer(a, bl, cp)(s)) Implies

data(se_transformer(a, bl, cp)(s)) = bl

4.4.1.3 Localizing memory changes

Virtual memory and memory-mapped devices make memory in general a non-
deterministic device. Outside of page tables and memory-mapped devices there is
however lots of well-behaved memory. In order to capture this well-behaved memory we
developed the following formalisms.

The following definition expresses that a set of state transformers (typically stemming
from memory reads) does not change a certain set of addresses.
unchanged_memory_invariant?(pm : Memory_struct[State], states : PRED[State],

transformers : PRED[[State —> SuperResult[State]]], addresses : PRED[Address]) : bool =
transformer_invariant?(states, transformers) AN D
Forall(s : State, q : [State —> SuperResult[State]], a : Address) :

states(s) A N D transformers(q) A N D addresses(a) AN D
OK?(q(s)) AN D
OK?(memory_read(pm)(a)(s)) AN D
OK?(memory_read(pm)(a)(state(q(s))))
IM PLIES

39

4 Verification environment in PVS

data(memory_read(pm)(a)(state(q(s)))) =
data(memory_read(pm)(a)(s))

For write access to memory we have the following variation, which states that all
addresses stay constant, except the one which is actually written.
unchanged_memory_writeJnvariant?(pm : Memory_struct[State], states : PRED[State],

addresses : PRED[Address]) : bool =
Forall(waddr : Address, b : Byte) :

addresses(waddr) IM PLIES
unchanged_memoryJnvariant?(pm, states,

singleton(expr_2_super(memory_write(pm)(waddr,b))),
remove(waddr, addresses))

To describe that the memory contents changes in the expected way we use the following.
changed_memory_invariant?(pm : Memory_struct[State],

states : PRED[State], addresses : PRED[Address]) : bool =
transformerJnvariant?(states, memory_read_transformers(pm, addresses)) And
transformerJnvariant?(states, memory_write_transformers(pm, addresses)) And
Forall(s : State, a : Address, b : Byte) :

states(s) And addresses(a) And
OK?(memory_write(pm)(a,b)(s)) And
OK?(memory_read(pm)(a)(state(memory_write(pm)(a,b)(s))))

Implies
data(memory_read(pm)(a)(state(memory_write(pm)(a,b)(s)))) = b

The preceding three definitions enjoy various monotonicity properties and are stable
under union in different respects. This is expressed in a number of lemmas, which are
not discussed here.

We can now precisely describe what parts of the memory must be well-behaved such
that memory block access behaves as expected. There are a number of lemmas that say
under which preconditions memory_read_list and memory_write_list terminate normally
and return the right results. These lemmas form the heart of the proofs of the plain-
memory rewrites, see Section 4.7.3 (on page 52) below. As example, we only show the fol­
lowing lemma that lists the preconditions that are necessary for memory_read_list to yield
the same byte list that has just before been written to memory with memory_write_list.
unchanged_memory_read_list_write_list : Lemma

Forall(pm : Memory_struct[State], states : PRED[State], waddr : Address, bl : list[Byte], s : State) :
unchanged_memoryJnvariant?(pm, states, union(

memory_read_transformers(pm, address_block(waddr, length(bl))),
union(

memory_read_side_effect_super_transformers(pm, address_block(waddr, length(bl))),
memory_write_side_effect_super_transformers(pm, address_block(waddr, length(bl))))),

address_block(waddr, length(bl)))
AN D
unchanged_memory_writeJnvariant?(pm, states, address_block(waddr, length(bl)))
AN D
changed_memoryJnvariant?(pm, states, address_block(waddr, length(bl)))
AND
transformers_ok?(states,

union(

40

4.4 Abstract memory interface

memory_read_transformers(pm, address_block(waddr, length(bl))),
memory_read_side_effect_super_transformers(pm, address_block(waddr, length(bl)))))

AN D
transformers_ok?(states,

union(
memory_write_transformers(pm, address_block(waddr, length(bl))),
memory_write_side_effect_super_transformers(pm, address_block(waddr, length(bl)))))

A N D
side_effect_content_unchanged(address_block(waddr, length(bl)), states, memory_read_side_effect(pm))
A N D
side_effect_content_unchanged(address_block(waddr, length(bl)), states, memory_write_side_effect(pm))
A N D
states(s)
IM PLIES

data(memory_read_list(pm)(waddr, length(bl))(state(memory_write_list(pm)(waddr, b l)(s)))) = bl

4.4.2 File abstract_data.pvs

This file contains the framework for the semantics of C + + data types. Intuitively every
C + + data type describes a set of values. However, compounds such as structures, unions
and classes can be partially initialized. Therefore, the simple approach of describing,
for instance, the values of a structure as the Cartesian product of their ingredients does
not work. Moreover, there are no operations on whole compounds. The C + + standard
specifies that assignment and copying of compounds is done element-wise.

For these reasons we avoid the difficulties of modelling all possible values of compound
types. For the semantics of C + + data types we distinguish between compound types,
which are modelled without a semantics of their values, and fundamental types (such
as char and unsigned in t) whose possible values are formalized as a type in PVS.
Diverging from the C + + standard, we treat pointer and reference types as fundamental
types.

The formalization of compound types is as follows.
Uninterpreted_data_type : Type = [#

size : nat,
valid? : [list[Byte], Address —> bool]

]

uninterpreted_data_type? : PRED[Uninterpreted_data_type] =
Lam bda(uidt : Uninterpreted_data_type) :

Forall(l : list[Byte], a : Address) :
N O T length(l) = size(uidt) Implies valid?(uidt)(l,a) = False

A compound type consists of a size (identical to s izeo f) and a validity predicate. The
validity predicate determines whether a list of bytes, found at a particular address in
memory, forms a valid object representation of that compound type. The only property
required is that valid? must not be true on object representations of the wrong size. For
a non-POD class5 the valid? predicate might check it the hidden type information stored

5Plain Old Data (POD) comprises all those data (types) of C + + that are present in C too. A non-

41

4 Verification environment in PVS

in any object (typically the vtable pointer) has not been tampered with.
The semantics of a particular structure or class consist of additional elements, which

will be generated by the semantics compiler. The additional elements are offsets and
sizes of the structure elements together with axioms that ensure that the elements do
not overlap.

The semantics of fundamental types is based on uninterpreted_data_type?.

Interpreted_data_type : Type = [#
uidt : Uninterpreted_data_type,
to_byte : [Data, Address — > list[Byte]],
from_byte : [Iist[Byte], Address —> lift[Data]]

]

In addition to size and valid? an interpreted data type consists of a type of all possible
values, which is represented as type parameter Data here, and two function that convert
any value into their object representation and back.

For historic reasons there exists an intermediate level in the formalization (called
interpreted_data_type?) that is not used for any C + + type currently. The semantics of
fundamental C + + types is formalized as pod_data_type? (which was originally intended
for POD structures and unions as well before we dropped that idea because of the
problem with partial initializations).

interpreted_data_type? : PRED[lnterpreted_data_type] =
Lam bda(idt : lnterpreted_data_type) :

unmterpreted_data_type?(idt'uidt) AN D
% result o f to-byte is valid (and has length size)

(Forall(d : Data, a : Address) :
va I id ?(uidt(idt))(to_byte(idt)(d ,a), a)) A N D

% from-byte fails on invalid s tu ff
(Forall(l : list[Byte], a : Address) :

va lid?(uidt(idt))(l, a) IFF
up?(from_byte(idt)(l, a))) And

% 2. the result is the same
(Forall(d : Data, a : Address) :

down(from_byte(idt)(to_byte(idt)(d,a), a)) = d)

pod_data_type? : PRED[lnterpreted_data_type] =
Lam bda(idt : lnterpreted_data_type) :

interpreted_data_type?(idt) A N D
(Forall(l : list[Byte], a1, a2 : Address) :

valid?(uidt(idt))(l, a1) IFF valid?(uidt(idt))(l, a2)) And
size(uidt(idt)) > 0

Note, that for the semantics of fundamental types the valid? predicate is superfluous.
The axiomatization says that from_byte is a left inverse of to_byte, that from_byte suc-

POD class contains at least one nontrivial constructor, copy constructor, destructor or a virtual
function. Downcasts are only possible on non-POD classes, because only they contain runtime type
information, typically in the form of a vtable pointer.

42

4.4 Abstract memory interface

ceeds precisely if the object representation is valid and that the object representation is
independent from the address on which the data is stored.

A typical formalization of a fundamental type (see Section 4.7.1) will define the type of
values, but leave to_byte and from_byte underspecified. This way the verification results
do not depend on a particular object representation of a particular compiler (like for
instance the endianness). Moreover, similarly to the C + + standard our formalization
leaves the possibility open that the object representation contains runtime type infor­
mation. Therefore our verification will find all type errors, because it is impossible to
derive anything about the result of from_byte on a object representation of a different
type.

Finally we define functions to read and write values of arbitrary C + + types from and
to memory.
read_data(pm : Memory_struct[State], dt : (interpreted_data_type?[Data]))

(addr : Address) : [State —> ExprResult[State, Data]] =
(memory_read_list(pm)(addr, size(uidt(dt))) # #

Lambda(bl : list[Byte]) : ok_lift(from_byte(dt)(bl, addr)))

write_data(pm : Memory_struct[State], dt : (interpreted_data_type?[Data]))
(addr : Address, data : Data) : [State —> ExprResult[State, Unit]] =

memory_write_list(pm)(addr, to_byte(dt)(data, addr))

The utility function okJift converts from_byte into an expression state transformer.
ok_lift(d : lift[Data])(s : State) : ExprResult[State, Data] =

CASES d OF
bottom : Fatal,
up(b) : OK(s, b)

ENDCASES

4.4.3 File plain_memory.pvs

The memory in an IA32 system is a sophisticated device: segments and page tables
specify access rights, a given piece of memory might be visible in different virtual-address
ranges, the address translation in the CPU from virtual to physical addresses might differ
from what is specified in the page table because of bogus TLB entries, and much more.
We cannot ignore all these effects, not even for most innocent kernel code, because of
the errors that they might cause.

As a consequence we designed the plain-memory abstraction for the verification of
those parts of the kernel that require only the standard C + + memory model. It deals
with the following issues.

• Writing or reading a single byte in memory can have devastating effects if one
hits a memory-mapped device, a page table or simply an unmapped address. For
correctness, the verification must therefore be carried out against a faithful model
of IA32 memory. Plain memory provides a (comparatively) simple abstraction that
can be used for those parts of the sources that only need well-behaved memory
without special effects.

43

4 Verification environment in PVS

• The IA32 hardware provides several memory configurations: real-address mode,
protected mode with and without paging. Our hardware model multiplies the
number of different memories because we prefer to model different memory features
in different memory models. Most of the code does not depend on a concrete
memory model and should consequently be verified against a suitable set of memory
models. Plain memory permits precisely this because every memory model of
interest will give rise to a model of plain memory.

Technically plain memory is a specification that provides byte-wise read and write ac­
cess to memory, where special properties are guaranteed for read-blessed and read/write-
blessed address regions. The general idea is simple. Memory at blessed addresses is sane:
read access does not change anything in the blessed address range, and write access only
changes the bytes written (in the expected way). Moreover, these special properties
are maintained as long as only blessed addresses are accessed. No guarantees are made
however for a memory access outside the blessed address regions. We have shown in
PVS that these properties are satisfied under suitable preconditions by physical memory
and also by normal virtual memory outside of memory-mapped devices.

We want the plain-memory specification to be usable with all concrete memory models
(including physical real-address memory). Therefore the specification must describe all
properties only with the observations that can be made by reading and writing single
bytes. In PVS the specification is split into a record of functions (capturing the plain-
memory signature) and a predicate for the required properties. With this technique
the axioms of the plain-memory specification do not show up as axioms in the PVS
formalization, hence they do not affect consistency. Instead, any use of a plain-memory
property in a proof will spawn a subgoal requiring the proof of the plain-memory axioms.
The plain-memory signature is defined as follows:
Plain_Memory : Type = [#

mem : Memory_struct[State]
states : PRED[State],
ro_addr : PRED[Address],
rw_addr : PRED[Address]

#]

The properties of plain memory are specified as follows.
plain_memory?(pm : Plain_Memory) : bool =

unchanged_memoryJnvariant?(pm'mem, pm'states,
union(

union(pm'other_actions, memory_read_transformers(pm'mem, union(pm'ro_addr, pm'rw_addr))),
umon(memory_read_side_effect_super_transformers(pm'mem, union(pm'ro_addr, pm'rw_addr)),

memory_write_side_effect_super_transformers(pm'mem, pm'rw_addr))),
union(pm'ro_addr, pm'rw_addr))

A N D
unchanged_memoryJnvariant?(pm'mem, pm'states,

memory_write_transformers(pm'mem, pm'rw_addr),
pm'ro_addr)

A N D
unchanged_memory_writeJnvariant?(pm'mem, pm'states, pm'rw_addr)

% see Section 4.4.1.2 on page 38
% states fulfilling the plain memory properties
% read—blessed addresses
% write—blessed addresses

44

4.4 Abstract memory interface

A N D
changed_memoryJnvariant?(pm'mem, pm'states, pm'rw_addr)
A N D
transformers_ok?(pm 'states,

union(
umon(memory_read_transformers(pm'mem, union(pm'ro_addr, pm'rw_addr)),

memory_write_transformers(pm'mem, pm'rw_addr)),
umon(memory_read_side_effect_super_transformers(pm'mem, union(pm'ro_addr, pm'rw_addr)),

memory_write_side_effect_super_transformers(pm'mem, pm'rw_addr))))
And
side_effect_content_unchanged(union(pm'ro_addr, pm'rw_addr), pm'states,

memory_read_side_effect(pm'mem))
And
side_effect_content_unchanged(pm'rw_addr, pm'states, memory_write_side_effect(pm'mem))

The first clause states that read accesses to blessed addresses and all possible side effects
do not change the contents of any of the blessed addresses. The second clause expresses
the same for write accesses and the read-blessed addresses. The third clause requires that
a write access to one address leaves all other read/write-blessed addresses intact. The
fourth clause states that write accesses actually change the written address in the right
way. The utility predicates used in the first four clauses additionally require that the
set of states forms an invariant with respect to the respective set of state transformers.
This makes the plain-memory property an invariant: permitted state transformers must
stay in the set of plain-memory states, in which all the nice properties hold. The fifth
clause makes all memory accesses terminate with OK (which prohibits e.g. unhandled
page-faults). The last two clauses require that side effects do not change the data read
or written.

The plain-memory specification entails that only explicit writes change a memory cell.
This property enables us to prove the following lemma.

plain_memory_read_write_other_res : Lemma
plain_memory?(pm) A N D
pm'states(s) AN D
in_blessed_memory?(dtl, addrl, pm'rw_addr) A N D
in_blessed_memory?(dt2, addr2, union(pm'ro_addr, pm'rw_addr)) AN D
blocks_disjoint?(addrl, s ize(u id t(dtl)), addr2, size(uidt(dt2))) A N D
valid_in_mem(pm,dt2)(addr2)(s)

IM PLIES
data((write_data(pm ,dtl)(addrl, data l)

read_data(pm,dt2)(addr2))(s))

data(read_data(pm,dt2)(addr2)(s))

This lemma expresses that for two variables of type dt1 and dt2 that lie disjoint in
blessed memory, writing the first one does not change the contents of the second. There
are similar lemmas for the other combinations of read_data and write_data. These lemma
are used in a rewrite engine that enables PVS to symbolically compute the value of a
variable by going back to the last write access to that variable.

45

4 Verification environment in PVS

4.5 Concrete memories

Based on the abstract memory interface described in Section 4.4.1.2, we have defined
several concrete memory instances: physical memory (RAM), linear memory with page-
table based address translation, device memory, etc. For these memories, we have shown
that they satisfy (under suitable assumptions) the plain memory conditions explained
in Section 4.4.3 (on page 43 above).

4.5.1 File physicaLmemory.pvs

Our hardware model contains physical memory (RAM) as a base of all memory models.
Physical memory provides one byte of storage for every address up to a certain maximum.
Accesses above the maximum yield Fatal as result.

4.5.2 File challenge-phymem.pvs

Unsurprisingly we can prove that (under suitable assumptions about the possible side
effects) all states of physical memory form a plain memory, with all addresses below the
maximum read/write-blessed.
phy_mem_plain_memory : Lemma

unchanged_memoryJnvariant?(phy_mem,
fullset[Physical_memory], oact, ¡n_memory(min, max))

Implies
plain_memory?(phy_pm(oact))

This theorem and the necessary lemmas for its proof are contained in this file.

4.5.3 Files paging-data.pvs and paging-data-models.pvs

These two files contain the formalization of those hardware data types that are impor­
tant for page-table traversal. This are in particular the page-table base register (CR3),
first level 4K and 4M page-table entries and second level page-table entries. For these
hardware types a PVS type is defined and then to_byte and from_byte functions are
axiomatically introduced.

In order to exclude the possibilities of inconsistencies introduced with those axioms
the file paging-data-m odels defines concrete to_byte and from_byte functions and proves
all axioms as theorems (in particular that those functions fulfill pod_data_type?). These
to_byte and from_byte functions convert records of booleans and addresses into lists of
four bytes and vice versa. For that they use our own formalization of bit vectors from
b its .p v s , see Section 4.1.2. The proofs are almost fully automatic.

4.5.4 File linear_memory.pvs

Our model of linear memory contains page-table based address translation, but no TLB
or page-fault handler yet. The linear memory is stacked on top of a plain memory using

46

4.6 Allocation, File allocators.pvs

the general memory-structure interface. This plain memory is typically instantiated
with physical memory (possibly containing devices). The formalization follows closely
the hardware manuals, but is far from trivial.

4.5.5 File challenge-linear.pvs

We have shown in PVS that the plain-memory properties are obtained for linear memory
under the following preconditions:

• The code segment register (CS), determining the code privilege level, the page-
table base register, and the page tables themselves remain unchanged (with the
exception of access bits).

• Any translation for read or execute accesses succeeds for the entire blessed range
of virtual addresses. Translations for writes succeed for the writable subset.

• Blessed writable virtual addresses map to blessed writable physical addresses,
blessed read-only addresses map to blessed readable or writable physical addresses.

• Page tables reside in a memory area that is disjoint from the targets of the above
mappings.

• There is no blessed shared-memory alias to a writable virtual address. (Virtual
read-only regions may be shared arbitrarily.)

One point to highlight is that we only have to require those page-table entries to remain
unchanged that are used in the translation of the virtual blessed address range. This
allows us to modify unrelated page-table entries without loosing the blessing properties.
We achieve this by requiring
disjomt?(virt_to_phys_range(s, union(pm'ro_addr, pm'rw_addr)),

address_in_pt_range?(s, union(pm'ro_addr, pm'rw_addr))),

where virt_to_phys_range translates all addresses in the virtual blessed address range,
and address_in_pt_range? returns the corresponding physical addresses containing the
page-table entries for this range.

4.6 Allocation, File allocators.pvs

In the running Nova kernel several memory allocators will be active at the same time.
One for global and static variables (that actually have been allocated at link time), one
for local variables on the stack (where allocation is in-lined by the compiler), a buddy
allocator managing all dynamic memory and several allocators (typically slab-allocators)
optimized for a certain use that obtain their memory from the buddy allocator.

All together these allocators maintain a simple looking kernel invariant: Correctly
allocated variables are disjoint. The aim of the formalization in this file is to derive this
kernel invariant from an abstract formalization of a set of allocators. (This differs from

47

4 Verification environment in PVS

a complete axiomatization or characterization of memory allocators, which we do not
try to achieve here.)

We formalize a single memory allocator as a record of six functions.
Allocator : Type = [#

memory_pool : [(plain_memory?) —> [State —> PRED[Address]]],
allocated : [(plain_memory?) —> [State —> PRED[Address]]],
private_mem : [(plain_memory?) —> PRED[Address]],
freed_size : [(plain_memory?) —> [Address —> [State —> lift[posnat]]]],

alloc: [(plain_memory?) —> [posnat —> [State —> ExprResult[State, Address]]]],
free: [(plain_memory?) —> [Address —> [State —> ExprResult[State, Unit]]]]

]

The first four are model functions, which means that they do not appear explicitly in
the source code of the allocator. The last two are the semantics of the alloc and free
functions of the allocator source code. The information that the first four function
provide is somewhere implicit in the source code of the allocator. The formalization of
allocators builds on plain memory, therefore all these functions take a plain memory as
argument.

The function memory_pool gives the address range that the allocator controls, allocated
gives the part of the memory_pool that has already been allocated, private_mem describes
the memory area that contains the state variables of the allocator and freed_size tells
the size of a memory block that will be freed by a call to free. The state variables of the
allocator (private_mem) are typically outside of the memory pool of the allocator itself
and are possibly allocated in a different allocator. Dynamic memory allocators (such
as a buddy or slab allocator) can internally associate the size of a memory block to
every allocated address. However, this is not the case in a stack allocator, which simply
increases and decreases a stack pointer. But even in a stack allocator one can tell the
size of the memory block that will be freed (everything up to the top of the stack).

The required properties are rather lengthy (about 80 lines of PVS code). For an
allocator we require

• private_mem is inside the plain memory and alloc and free stay in the states invariant
of the plain memory.

• allocated is a subset of memory_pool

• If alloc terminates normally and does not return the null pointer, then the newly
allocated region is disjoint from allocated in the pre-state and the allocated predicate
changes accordingly. Further the memory pool does not change.

• free is successful precisely if freed_size is

• If free is successful than allocated changes accordingly and the memory_pool stays
constant.

• allocated and memory_pool do not change as long as the private_mem stays constant.

48

4.6 Allocation, File allocators.pvs

• alloc and free do only change writable private_mem.

What is really of interest for us is the list of allocation points of an allocator. An
allocation point is a pair of an address and a size that comes from a successful allocation
which has not been freed since. Typically an allocation point precisely describes the
memory region of a correctly allocated variable. While some allocators contain enough
internal state to compute the list of their allocation points, others, most notably stack
allocators, do not. For this reason there is no model function returning the allocation
points. Instead we formalize allocation points independently of allocators and define a
consistency criterion between a list of allocation points and a memory allocator.

A list of allocation points is captured with the type AllocatorJnfo.
AllocatorJnfo : Type = list[[Address, posnat]]
allocatorJnfo? : PRED[Allocator_lnfo] = Lambda(ai : A llocatorJnfo) :

blocks_pairwise_disjoint(ai)

Note that in the context of allocators all memory blocks are nonempty. Here,
blocks_pairwise_disjoint is a utility function, coming from memory.pvs, compare Sec­
tion 4.4.1 (on page 37).

blocks_pairwise_disjoint(blocks : list[[Address, posnat]]) : bool =
Forall(addr_l, addr_2 : Address, size_l, size_2 : posnat) :

member((addr_l, size_l), blocks) And
member((addr_2, size_2), list_remove((addr_l, size_l), blocks))

Implies
blocks_disjoint?(addr_l, size_l, addr_2, size_2)

The consistency criterion simply states that all allocation points are inside the allocated
part.
consistent_allocator?(pm : (plain_memory?))(ac : (allocator?(pm)), ai : Allocator)(s : State) : bool =

allocatorJnfo?(ai) And
Forall(addr : Address, size : posnat) : member((addr, size), ai) Implies

subset?(address_block(addr, size), ac'allocated(pm)(s))

The set of allocators that are active in a certain state are described as a finite forest
(i.e., a finite tree with multiple root nodes) of memory allocators. If allocator a2 is a
child of allocator ai (there is an edge from ai to a2) then a2 obtained its memory pool
by allocating a suitable block in a1. For instance, a slab allocator obtains its memory
pool by allocating unstructured memory somewhere else.

The formalization of active allocators, called Allocation_Table is based on our formal­
ization of graph theory, see Section 4.1.3 (on page 27).
Allocation_Table(pm) : Type = [#

hierarchy : (finite_tree?[(allocator?(pm))]),
info : [(hierarchy1 nodes) —> AllocatorJnfo]

#]

An allocation table consists of a finite forest of allocators together with a list of allocation
points for every allocator. We call an allocation table consistent (in PVS allocation_ok?)
if it fulfills the following properties.

49

4 Verification environment in PVS

• The memory pool of a child must be allocated in the parent. Further, the memory
pool of a child must not be listed as allocation point of the parent (it must be
disjoint from all allocation points of the parent).

• The memory pools of two children of the same parent must be disjoint.

• The memory pools of two root allocator nodes must be disjoint.

• The private memory of any two allocators must be disjoint.

• Any allocator in the tree must be consistent with its list of allocation points.

W ith Theorem 1 (on page 30) we can proof the following theorem, which forms the
basis of the other results on allocation tables.

T h e o re m 2 (L em m a allocation_m em ory_pools) For two allocators o f an consistent
allocation table precisely one o f the following is true.

• The two allocators are equal.

• Their m em ory pools are disjoint.

• The m em ory pool o f one allocator, say a \, is allocated in the other, say a2, such
that the allocation points o f a2 are disjoint from the m em ory pool o f a \.

So far we proved the following two top level theorems about allocation tables. We first
consider the list of all allocation points of an allocation table. This list of all allocation
points is not so easy to define.
allocation_mfo(pm : (plain_memory?))(at : Allocation_Table(pm)) : A llocatorJnfo =

flatten(ma p(at‘ i nfo)(l ist_of_f in ite_set(at‘ hierarchy' nodes)))

We first convert the finite set of allocators in an allocation table into a list, substitute
each allocator with its list of allocation points (using conventional list map) and flatten
the resulting list of lists.

T h e o re m 3 (L em m a allocation_consistent) A ll allocation points o f a consistent al­
location table are pairwise disjoint (fulfilling allocatorJnfo?).

Assuming th a t the allocation points are maintained during the proof, the preceding
theorem precisely matches the before-mentioned invariant th a t all correctly allocated
variables are disjoint.

The second result considers a successful allocation. It facilitates maintaining a con­
sistent allocation table during the symbolic evaluation of the program.

T h e o re m 4 (L em m a allocation_alloc) Consider a consistent allocation table a t and
assume that alloc fo r one o f its allocators a is successful, not returning the null pointer.
Let the allocation table at! be identical to a t except that the newly allocated block is added
to the allocation points o f a. Then a t is consistent.

50

4.7 C++ Semantics

4.7 C + + Semantics

Our C + + semantics is based on a shallow embedding of C + + expressions and C + +
statem ents as state transformers (see Section 4.3) in PVS. The development of the se­
mantics was driven by two design goals: standard compliance and modularity. Standard
compliance means th a t in general we only want to be able to prove those C + + programs
correct th a t run on any C + + implementation, based only on the guarantees th a t are
provided by the C + + standard. The correctness of verified programs should not hinge
on certain compiler- or architecture-specific assumptions, say about memory layout or
data-type sizes. On the other hand, the Nova sources cannot be verified w ithout rely­
ing on such assumptions to some extend. Therefore our C + + semantics needs to be
modular, in the sense th a t additional guarantees (provided e.g. by the compiler and /or
hardware architecture) should be easy to add as additional axioms.

The shallow embedding of statem ents and expressions is complemented by a deep
embedding of C + + types. This deep embedding is necessary because types with o th­
erwise identical behavior may still give rise to different compound types: e.g. pointers
to signed char and char could differ, even on architectures where these two types are o th­
erwise identical. The details of our formal C + + semantics are briefly discussed in the
following subsections.

4.7.1 File types.pvs

This file contains PVS definitions for the various C + + types and type constructors,
as defined in Clauses 3, 7, 8, and 9 of the C + + standard. Our model of C + + types
is based on a generic data-type formalization; data types are given by records tha t
contain a size value, encoding and decoding functions th a t transform between semantic
values and their bit representation in memory, and more (see Section 4.4.2 (on page 41)
for details). In ty p e s .p v s , we provide (uninterpreted, but axiomatically restricted)
records for all fundam enta l types: unsigned char, signed char, char, short, int, long, long long,
unsigned short, unsigned in t, unsigned long, unsigned long long, wchar_t, bool, and void. In
addition, we provide (parameterized) records to construct pointer and reference types.
For this, the file contains a deep embedding of C + + types as a recursive data type in
PVS.

4.7.2 File statements.pvs

This file contains PVS definitions for various C + + statements, as defined in Clause 6 of
the C + + standard: labeled statem ents (case, default) (6.1), expression statem ents (6.2),
selection statem ents (if, switch) (6.4), iteration statem ents (while, do ... while, for) (6.5),
jum p statem ents (break, continue, return) (6.6), and declaration statem ents (6.7). Com­
pound statem ents (blocks) (6.3) do not need to be modeled explicitly in our shallow
embedding. A notable omission is the goto statem ent (6.6.4), which would complicate
the formalization of other statem ents, compare [Tew04]. Similarly case and default labels
are perm itted at top-level statem ents only, th a t is, we do not allow jumps into loop

51

4 Verification environment in PVS

bodys or other nested sub-statements. Although such jumps would not be difficult to
add in principle, they would complicate the formalization of all other statements.

4.7.3 File plain_memory_rewrites.pvs

This file contains several rewrite lemmas to simplify expressions of the form
f(q # # rwl # # fw2), where f is either OK? or data, q is a state transformer, and
rwl and rw2 are read or write accesses to a plain memory. For instance, the following
lemma states th a t a previous write access can be ignored when reading from a disjoint
address range:
plain_memory_read_write_other_q_data_expr : Lemma %(P: 6)

Forall (q : [State —> ExprResult[State, Data_q]]) :
plain_memory?(pm) And
in_blessed_memory?(dtl, addrl, union(pm'ro_addr, pm'rw_addr)) And
in_blessed_memory?(dt2, addr2, pm'rw_addr) And
blocks_disjoint?(addrl, s ize(u id t(dtl)), addr2, size(uidt(dt2))) And
pm_q_prop_read(pm, d t l, addrl)(q(s))

Implies
data((q write_data(pm, dt2)(addr2, data2) read_data(pm, d tl)(a d d r l)) (s)) =

data((q read_data(pm, d tl)(a d d rl))(s))

Similar lemmas are stated and proved for other combinations of read and write oper­
ations.

4.7.4 File datatype_model.pvs

In this file, it is shown th a t our generic da ta type model for POD (“plain old da ta”)
types permits type tags, which can be used to implement dynamic type checking: for
instance read_data(pm, pod_2)(addr) after write_data(pm, pod_l)(addr) fails, where pod_l
and pod_2 are PODs tha t use different type tags.

The data types defined in this file are merely examples, and are not used anywhere
else in our verification environment. They do not coincide with actual C + + types.

4.7.5 File conversions.pvs

This file contains PVS definitions for various C + + conversions, as defined in Clause 4 of
the C + + standard: lvalue-to-rvalue conversions (4.1), various integral promotions (4.5)
and integral conversions (4.7), and Boolean conversions (4.12).

4.7.6 File expressions.pvs

This file contains PVS definitions for various C + + expressions, as defined in Clause 5 of
the C + + standard. Expressions are modeled as (shallowly embedded) expression state
transformers. We have defined state transformers for primary expressions (5.1), post­
fix expressions (5.2), unary expressions (5.3), explicit type conversion (5.4), pointer-to-
member operators (5.5), multiplicative operators (5.6), additive operators (5.7), shift op­

52

4.8 Verification examples

erators (5.8), relational operators (5.9), equality operators (5.10), bitwise operators (5.11­
5.13), logical operators (5.14, 5.15), the conditional operator (5.16), assignment opera­
tors (5.17), and the comma operator (5.18).

Two notable deviations from the C + + standard are the evaluation order of subexpres­
sions, and our treatm ent of modulo arithmetic. For subexpressions, the C + + standard
says th a t the behavior is undefined unless a (somewhat obscure) side condition is satis­
fied (cf. 5.4) which implies th a t the evaluation order is actually irrelevant. We have not
modeled this undefinedness; instead, we have chosen some fixed evaluation strategy. A
simple pre-processing step could be applied to the Nova C + + sources to ensure th a t the
code meets the side condition of 5.4.

The C + + standard requires th a t unsigned integer types implement arithm etic mod­
ulo their first unrepresentable value, for instance, 32-bit integers implement arithm etic
modulo 232. The Nova code rarely relies on this guarantee. In most cases an arithm etic
overflow at runtime, even if perm itted by the C + + standard, indicates a programming
error, and should be visible in the verification environment. Therefore an underspecified
function is used to implement arithm etic on unsigned integer types. This function can
be defined to implement modulo arithm etic (as the standard requires), or to yield an
error in case of an overflow (as we believe is reasonable in most cases).

Another issue is the treatm ent of function calls. The C + + standard does not specify
just where exactly function arguments or return values are stored in memory. (This
is usually defined in the ABI documents for an architecture, e.g. in Section 3.9 of the
“System V ABI Intel 386 Architecture Processor Supplement”.) To implement function
calls on our hardware model, we made some (hopefully reasonable) choices here.

4.7.7 File statement-rewrites.pvs

This file contains rewriting rules for C + + statements. These rules simplify code by sym­
bolic simplification of the control flow constructs. For example a break will remove all
following statem ents until it reaches a catch_break, in which case break # # catch_break
is eliminated from the code. Statements are simplified right to left. Here one expression
transformer (respectively one transformer of type StmtResult ^ ExprResult) is allowed to
occur after the simplification point. The forward rules simplify these two cases plus those
cases with a leading statem ent automatically with the help of the respective rules for the
standalone case. Because of the requirement on rewriting rules these lemmas have to be
defined for any form a standalone simplifcation may assume. The forms are denoted by
the s -c -> s , . . . sequence which stands for “statement! # # complex_statement simpli­
fies to s ta tem en t!’.

4.8 Verification examples

Our C + + semantics, defined on top of a generic hardware and memory model, forms the
basis of a versatile verification environment for C + + programs in PVS. We have used

53

4 Verification environment in PVS

th is v e r i f ic a t io n e n v iro n m e n t fo r severa l case s tu d ie s , sh o w in g co rrec tne ss o f (re la t iv e ly

s m a ll a n d s im p le) C + + im p le m e n ta t io n s o f v a r io u s a lg o r ith m s .

4.8.1 File cpp-examples.pvs

T h is f i le c o n ta in s th e P V S se m a n tics o f som e (ra th e r s im p le) C + + p ro g ra m s a n d p ro ­

g ra m fra g m e n ts , to g e th e r w i th s u ita b le H o a re s p e c ific a tio n s . T hese p ro g ra m s serve as

e xa m p le s a n d b e n c h m a rk s fo r o u r C + + se m a n tics , th e H o a re lo g ic , th e v e r i f ic a t io n en­

v iro n m e n t, a n d th e degree o f a u to m a t io n a ch ieved in v e r if ic a t io n p ro o fs .

4.8.2 File search-example.pvs

T h is f ile c o n ta in s a co rrec tne ss p ro o f fo r a s im p le l in e a r search a lg o r i th m , im p le m e n te d

in C + + :

/ * *
* search the array element whose value is val
*
* @param val the value to search for
* @param firs t po in te r to the firs t element o f the array (from which
* to s ta rt the search)
* @param last po in te r beyond the last element o f the array
* @return po in te r to the firs t occurrence o f val a fte r (including) firs t
* /

in t const * search(int const val, in t const * const first,
in t const * const last) {

assert(first);
assert(last);

in t const * current = first;

while(current < last) {
i f (*current = = val)

break;

current++;

}

re tu rn current;

}

I t is sh ow n th a t th is a lg o r i th m (u n d e r s u ita b le p re c o n d it io n s) te rm in a te s n o rm a lly ,

t h a t i t re tu rn s a p o in te r to th e f i r s t o c c u rre n c e o f val in th e a r ra y lo c a te d a t base address

first, a n d th a t i t re tu rn s last i f val is n o t c o n ta in e d in th e a r ra y (p ro v id e d first < = last).

4.8.3 File device_memory.pvs

T h is f ile de fines a g e n e ric w a y to e x te n d a g iv e n m e m o ry s tru c tu re w i th a n a d d it io n a l

s ta te c o m p o n e n t, e.g. to a d d dev ice s ta te to th e (m e m o ry) s ta te o f th e h a rd w a re . W e

54

4.8 Verification examples

model the (possibly concurrent) behavior of devices by using state transformers tha t
can update both the device state and the other state of the hardware upon memory
(including device memory) access.

The main result th a t is established is the following. The extension of a plain memory
structure with a sufficiently well-behaved device (i.e. without side effects th a t modify
the memory at blessed addresses) forms a plain memory again:
Device_memory : Type = Expand_state[Physical_memory, Device_state]

pm : Var Plain_Memory[Device_memory]

device_memory_plain_memory : Lemma
Forall (pm) :

i s_d evi ce_p I a i n_m e m ory? (d e vi ce_rea d_si d e_ef feet,
device_write_side_effect)(pm)

Implies plain_memory?(pm)

4.8.4 File random_device.pvs

This file contains the formalization of a random number generator as a memory-mapped
device. The device state consists of a seed value, a counter for memory accesses, and a
“random ” (underspecified) value. It is shown th a t integrating this device with a plain
memory again establishes a plain memory (with suitable assumptions about the blessed
address ranges).

4.8.5 File cpp-verification.pvs

This file is merely a top-level wrapper theory. It imports all other theories th a t together
form our generic verification environment for C + + programs in PVS.

4.8.6 File ptab-sync-master-defs.pvs

This file contains hand-translated semantics for parts of the Nova C + + implementation
of Ptab::sync_master. It is necessary for a verification of Ptab::sync_master because the im ­

plementation of this function, either directly or through calls to other functions, uses
some C + + constructs th a t our semantics compiler cannot (yet) translate to PVS auto­
matically. If the semantics compiler was extended to handle a sufficiently rich subset of
C + + , the file p ta b -sy n c -m a s te r-d e fs .p v s should eventually become unnecessary.

4.8.7 File ptab-sync-master.pvs

This file is generated by the semantics compiler. It contains the semantics of the method
Ptab::sync_master from the Nova sources. We are currently working on first verification
goals for this Nova method.

55

5 Conclusion

This document describes the Robin verification environment for systems-level C + + pro­
grams th a t we have developed in work package 4 (kernel specification and verification)
of the Robin project. An im portant part of the verification environment is the formal­
ization of the IA32 hardware and the semantics of C + + in PVS. The PVS sources can
also be downloaded from h ttp :/ /w w w .c s .ru .n l/~ te w s /R o b in .

The Robin verification environment can be used for the verification of systems-level
C or C + + code, especially for operating-system kernel code. The formalization closely
follows the standard documents, in particular the IA32 manuals [Int07a] and the C + +
standard [Int07b]. However, compiler specific assumptions and /o r best practices (which
are known to work, although not backed up by the standard) can be added in an or­
thogonal way if necessary.

Even with the verification environment presented here, the formal verification of
systems-level code remains challenging. Our verification environment contains several
solutions to achieve a reasonable level of abstraction and automation; most notably the
plain memory specification presented in Section 4.4.3. The case studies th a t were car­
ried out show tha t our approach is promising, and th a t the implemented solutions can
greatly reduce the human effort required to reason about systems-level code fragments
in an interactive theorem prover.

57

http://www.cs.ru.nl/~tews/Robin

A Bibliography

[Chi]

[Chi93]

[CW]

[FHJ+07]

[Gle07]

[Gra]

[HT]

[HT05]

[Int07a]

[Int07b]

[lon]

[McP]

Shigeru Chiba. Open C + + Website. http://opencxx.sourceforge.net/.

Shigeru Chiba. Open C + + Program m er’s Guide. Technical Report 93-3,
Departm ent of Information Science, University of Tokyo, 1993.

Karl Chen and Daniel S. Wilkerson. Oink: a Collaboration of C + + Static
Analysis Tools. http://w w w .cubew ano.org/oink.

Ansgar Fehnker, Ralf Huuck, Patrick Jayet, Michel Lussenburg, and Felix
Rauch. Goanna - A Static Model Checker. In L. Brim, B. Haverkort,
M. Leuker, and J. van de Pol, editors, Formal Methods: Application and
Technology, volume 4346 of Lecture Notes in Com puter Science, pages 297­
300. Springer Verlag, 2007.

T. Glek. Dehydra source analysis tool. In H. Tews, editor, Proceedings of
the C /C + + Verification Workshop, pages 81-93, July 2007. Technical report
ICIS-R07015, Radboud University Nijmegen.

Graphviz - graph visualization software. available from www.graphviz.org.

M. Hohmuth and H. Tews. The vfiasco project. Website www.vfiasco.org.

M. Hohmuth and H. Tews. The VFiasco approach for a verified operating sys­
tem. In Proceedings o f the 2nd E C O O P Workshop on Programm Languages
and Operating System s, Glasgow, 2005.

Intel Corporation, Denver, CO. In tel 64 and IA -32 Architectures Software
D eveloper's M anual, May 2007. Order Number: 25366[5-9]-023US.

International C + + Committee of the Organization for Standardization. The
C++ Standard, Incorporating Technical Corrigendum 1. John Wiley & Sons
Ltd, Chichester, England, 2007.

longjmp, siglongjmp — non-local jum p to a saved stack context. Linux m an­
ual page.

Scott McPeak. Elsa: An Elkhound-based C + + Parser.
http://ww w .cs.berkeley.edu/ sm cpeak/elkhound/.

59

http://opencxx.sourceforge.net/
http://www.cubewano.org/oink
http://www.graphviz.org
http://www.vfiasco.org
http://www.cs.berkeley.edu/

A Bibliography

[ORR+96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T.A. Hen-
zinger, editors, Com puter Aided Verification, volume 1102 of Lecture Notes
in Com puter Science, pages 411-414. Springer, Berlin, 1996.

[Tew04] H. Tews. Verifying Duff’s device: A simple compositional denotational
semantics for Goto and computed jumps. Draft, 2004. Available from
wwwtcs . in f . tu -d r e s d e n .d e /~ te w s /s c ie n c e .html.

[Vel] T. L. Veldhuizen. C + + templates are turing complete. Available at cite-
seer.ist.psu.edu/581150.html.

60

This is the technical report version of this document. The 3000 page
appendix is only contained in the real deliverable, see

h t t p : / / www. c s . r u . nl/~tews/Robin.

61

http://www.cs.ru.nl/~tews/Robin

