-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Radboud Repository

Radboud Repository Radboud University Nijmegen ;@r

S

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/72720

Please be advised that this information was generated on 2017-12-06 and may be subject to
change.

https://core.ac.uk/display/16157197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/72720

Modelling Embedded Systems by
Non-Monotonic Refinement

A Mader, J. Marincic*, and H.Wupper

! University of Twente, Department of Computer Science, Enschede, The
Netherlands, mader@cs.utwente.nl
2 University of Twente, Department of Computer Science, Enschede, The
Netherlands, j.marincic@cs.utwente.nl
3 Radboud University Nijmegen, Institute for Computing and Information Sciences
Nijmegen, The Netherlands, Hanno . Wupper@cs.ru.nl

Abstract. This paper addresses the process of modelling embedded sys-
tems for formal verification. We propose a modelling process built on
non-monotonic refinement and a number of guidelines. The outcome of
the modelling process is a model, together with a correctness argument
that justifies our modelling decisions. After explaining the method, we
demonstrate it on a small example.

1 Introduction

Many descriptions of modeling methods and introduction to modelling start
at a point where the requirements are clear, and the relevant knowledge about
a system is present. At this point formalisation is an important issue, as well as
representation, transformation of models, and integration. This paper addresses
the earlier stage: the requirements are only roughly known, when we do not know
which parts and properties of the system are relevant to satisfy the requirements.

We understand modelling as the process that accumulates knowledge that
is necessary to satisfy a certain purpose. The model is then a representation of
that knowledge. The purpose of the models we construct is verification.

In this paper we suggest a top-down approach that guides the compilation
of knowledge about a system that must be included in the model. It shares with
classical refinement approaches the stepwise decomposition and detailing. The
main difference to classical refinement is the growth of knowledge, built into
the modelling process, where a more refined version of the model can invali-
date earlier versions. Therefore, our modelling approach is called non-monotonic
refinement.

The systems we consider are embedded systems. We do not focus on cor-
rectness of the embedded software alone with respect to a given specification.
Rather, we follow an approach similar to the one of Jackson [5] and consider the
correctness of the software or, if available, its specification with respect to the

* Supported by the Netherlands Organisation for Scientific Research (NWO), project
600 065 120 241420, Modelling Control Aspects of Embedded Systems

system in which it is embedded, i.e., we describe the whole system - the software,
the plant controlled by it and the requirement for the overall system.

Software in itself is already a formal object. Modelling software, in prin-
ciple, can therefore rely on formal manipulation. This does not hold for the
physical part of an embedded system, the plant. There modelling has to bridge
between the real world and a formal world. According to this bridge-function
modelling cannot live only in the formal world, but necessarily involves also non-
formal elements. The formal elements of modelling can be supported by tools
and languages, that are developed in a great number. The non-formal elements
of model construction are often considered as purely creative, where the spark
of inspiration is something that cannot be captured. We, however, claim that
the non-formal aspects of modelling are not only creative, but are to a great
extent rational, derived from a modellers education and experience. Our goal is
to develop a modelling method, where the systematics behind the non-formal
aspects is made explicit. We do this by providing modelling guidelines and non-
monotonic refinement. Accordingly, the reader should not expect a formalism
that describes the modelling process or a modelling language. Our contribution
is in covering the non-formal steps that are inevitable part of the modelling
process.

When constructing a model we also want to build a correctness argument
- a formal, non-formal or semi-formal argument that convinces us and other
stakeholders that the model is adequate. The correctness argument captures
the rationale of our modelling decisions. We claim that having the rationale
documented increases our trust in the model as well as reusability, evolvability,
and tracability of the model.

In this paper we suggest a modelling process built on non-monotonic refine-
ment and a number of guidelines. The outcome of the modelling process is a
model, together with a correctness argument that justifies our modelling deci-
sions. Note, that in AI the term “nonmonotonic refinement” is used differently.
What we do not suggest here is an algorithm that constructs a model, nor do
we suggest a modelling language - for the paper here we use logic, any other
language could be used, textual or graphical.

The paper is organised as follows. A tiny example in section 2 is intended to
provide the basic intuition. Section 3 describes the formal steps of non-monotonic
refinement. In section 4 we give guidelines for our modlling method. A more
elaborated example can be found in section 5. In section 6 we discuss related
work. The paper concludes with section 7.

2 A small example.

This example is intended to provide intuition how the method works, pre-
sented step by step. We will use a washing machine as running example. We hope
that the reader sees how the informal specifications we suggest can be formalised
in her favourite language.

Each physical part of the washing machine is required to perform its task
(" commitment”) only as long as its environment guarantees certain conditions
like power supply, and the necessary input (”assumption”). The specific notation
of such (assumption, commitment) pairs will depend on the languages used. Here,
we shall use the notation a; — c¢;.

Start from Cj - a simple, general version of the property to be verified.

A formula (depending on the language used) that says: "I want clean clothes,
at any time, immediately!”. We know that we mean ”as soon as possible”, but
that will not be expressible in most specification languages.

Use expert knowledge about the artefact to identify a sub-process that
somehow contributes to this goal. An obvious choice is: move the clothes in
warm water with a detergent.

For that process, find a component in the physical artefact that is used to
perform it. In our example, this will be a tumbler together with its engine.

For this component, write a formula a; — ¢; that contributes to Cy but does
not contain more knowledge than necessary to contribute to the overall goal.
If clothes, warm water and a detergent are in the tumbler in the beginning, and
if the engine is powered for a certain period, the clothes will be rather clean -
and wet - in the end. At this moment we may realise that we forgot to require
sufficiently dry clean clothes in Cj.

Obtain knowledge about the quantities the component requires and can
handle; incorporate these in a; — c;. This is the moment to decide whether
we are modelling a household washing machine of a professional one. In casu,
no more clothes than 4.5 kg can be handled, and the process will require 301
of water of 60C and last one hour if it has to remove 99% of the dirt. The ¢;
will also tell us that there is a lot of dirty water te be disposed of, and that the
clothes are wet.

Decide what of the a; will be ensured by another component of the artefact
and what has to be provided by the environment of that artefact. In our
example the warm water will be provided by a built-in heater, while electricity
and detergent will have to be provided by the environment.

Decide what of the ¢; will have to be dealt with by another component. As
we want rather dry clothes, we need some kind of spin-dryer and a pump. The
necessary drain we shall require form the envorinment.

Replace Cy by a weaker A; — () that reflects the new state of knowledge.
Ay will require a certain amount of electricity and detergent as well as drains.
C1 will contain the quantities 4.5 kg, 1 hour, and 99%.

Now look at one of the processes that were discovered during the previous
step to decrease the “difference” between a1 — ¢; and A; — C;. Specify it in
the same way as az — ca. For example, we will find a heater that provides warm
water provided it gets cold water and a certain amount of electrical energy.

Adapt A; — C; accordingly, which gives us Az — Cs. Ay is stronger than Aj:
cold water and more electricity is required. Cy, however, is weaker: even more

time is taken. A2 — (4 is therefore weaker than A; — C1.

Continue this method, adding new processes and their system components
until you arrive at a provable a1 — ci,a2 — ¢2,...,an — ¢n E Ay — Cy In our
example, only a pump has to be added. The tumbler, together with its engine
powered with a higher voltage and with the pump will do the job.

Not before we have obtained this complete picture, we start with the difficult
part of conflicting resources. The specification of one of the processes in our
example requires that the water stays in the tumbler for a certain period, while
the specification of another one requires it to be pumped out while no new water
streams in. A physical tumbler cannot implement both specifications unless it
has valves that can be opened and closed. Likewise, engines and pumps must
have switches to activate and deactivate them. Adapt the a; of all processes so
that they inlude the settings of the necessary valves and switches, giving a;.
The process pumping the water out of the tumbler, for example, will require
the tap to be closed, the drain to be pened and the pump to be switched on.
From these adapted specifications, A,, — C,, can no longer be proved. This
is where the control program comes in: Either take a given control program
or specification of the control pogram X (if we do a posteriori verification),
or find a suitable specification X, and prove: ai — c1,a5 — c2,...,a;, — ¢cn, X E
A, — Cy

3 Non-Monotonic Refinement

In order to understand the contribution and purpose of Non-Monotonic Re-
finement it is useful to contrast it to the classical refinement approach (see, e.g.
[7] that we call here Monotonic Refinement. Monotonic Refinement was devel-
oped for programming languages that are anyway already formal. It works under
the following preconditions:

The specification

- Is given and cannot be changed, at least not considerably,
is complete (specifies all relevant properties),

- is consistent (contradiction-free),

- is realisable in the solution domain.

Examples are mathematical functions to be impemented as programs for a
universal machine. Monotonic refinement is efficient, theoretically sound, and
works very well. But only if a definitive, implementable specification is given in
the beginning.

Assuming that such a specification is not given we choose the approach of
non-monotonic refinement, which is described here in a formal way.a

Whichever languages, methods and tools are used for formal verification, the
essence of the formal part of verification of embedded systems consists in finding
out by means of computer support whether

PAXES (1)

where S = (A — C), the specification of the goal, is a formula defining a desired
property of the artefact under discussion, X is a specification of the control
program, and P = (a3 — ¢1,as — ¢g, ..., 4, — ¢y) s a set of formulae specifying
the behaviour of the physical parts of the artefact that are to be controlled.
Typically, we have also a number of domain properties and physical laws that
are necessary to prove 1 which are collected in a formalisation N and we get the
form:
NAPAX ES (2)

In order to achieve a provable representation of 2 we start with a general
form of 2, choose a decomposition of P and :

— weaken C, when seeing that the system can only realise weaker overall re-
quirements;

— strengthen A, when recognising that stronger assumption about the overall
environment are needed;

— strengthen ¢;, when understanding that the components meet stronger re-
quirements;

— weaken a;, when understanding that the component has to work in a less
co-operative environment.

— strengthen N, when more domain properties and physical laws are identified
that are necessary to prove 2

We iterate the steps above, and, recursively apply it to the components, until
we can prove 2

4 Guidelines

The more formal description of non-monotonic refinement in the previous
section needs a number of guidelines for applying it practically.

4.1 How to start NMR

We try to start with the most general statement we can think of, e.g., the
Lego sorter sorts all blocks, the coffee machine makes coffee, the batch plant
produces batches, the airplane can brake. It is important not to think of possible
restrictions right in the beginning. The danger is that by focussing on a certain
solution and restriction we reduce the space of possible solutions before we have
understood the problem properly. When we go down the decomposition into the
details of components the restrictions weakening our requirement will appear in
a natural way.

Often, we know that there are timing aspects in the requirement, and we
would like to express something like “the coffee machine produces coffee as soon
as possible”. The way we deal with such vague timing requirements is that we
formulate it in the strongest possible way: “the coffee machine produces coffee
immediately”. During the refinement steps this requirement will be weakened,

when we learn, e.g., that the steam boiler needs a warming up phase of 15
seconds, and therefore we will weaken the requirement to “the coffee machine
produces coffee 15 seconds after the request button was pushed.” This allows to
trace precisely at which point and from which component a restriction came in.

4.2 Decomposition

The goal of decomposition is to identify the appropriate components, their
interfaces, and requirements. In the standard case we will model a system of
a type that we are familiar with, i.e. we are doing incremental design in the
sense that we design a model which is a variation on known models. Based on
experience and education we observe a structure of the artefact and decompose
it into components defined by the structure. When we are exposed to radical
design, i.e. we have to model a system that we are not experienced with, the
appropriate decomposition has to be detected. In this kind of model design, the
strategy to follow is to first choose one component and model it according to the
other steps discussed in full detail. When having identified the assumptions and
requirements for one component, we can choose another one, and in this way
build the model. The washingmachine example from section 2 is performed in
this way.

4.3 Interfaces

When decomposing we fix the components and their interaction. Typically,
interaction is described at the interfaces of the components: which inputs do they
get from other components and which outputs do they produce for other com-
ponents. Of course, also the description of interfaces depends on the description
language. We often use as description language first order logic. The interfaces
are here only shared variables that are used by different components. By con-
junction of components the shared variables identify the same phenomena, and
hence the interfaces remain somewhat implicit. An explicit representation of in-
terfaces, like e.g. in problem diagrams, may have the advantage of more clarity.

4.4 Focussing on a component

Typically, after decomposing we elaborate the components. This might be in
cooperation with a domain specialist. We start with a component that has to
satisfy a requirement. Often, when elaborating one component, we notice that
we cannot make true the original requirement, but due to new knowledge and
insights we see that (only) a different requirement can be made true. This is a
normal phenomenon in system design and modelling, and a practical method
should cope with this phenomenon. The new requirement has to be shifted back
to the revious decomposition level and the effect on other components has to be
addressed.

4.5 Weakening

Typically, weakening comes in by physical properties of the components. Ex-
amples here are the washing machine and the coffee machine from above, and
the computation of a function that we will elaborate here. The essence of this
example is the difference between a function in the mathematical world, and a
machine implementing this function in the physical world. Assume we have to
model a part Sy of a bigger system that has to calculate the function f. We
also assume that the machine Sy has an interface consisting of input points and
output points where we can observe values at all possible moments. Formally,
we define a predicate obs stating that at a certain moment (here: ¢) at a certain
interface point a certain value occurs and can be observed. As a first specification
of the machine Sy we get:

DEF Sy :=Vt: TIME.Yv : Robs(t,input,v) — obs(t, output, f(v))

Saying, at all moments of time t, if we can observe a real number v at the
input, then we can observe the value f(v) at the output of Sf, immediately. When
we want to realize this machine we will come across the following restrictions:

— The computer will sample its input with a period 4.
— The machine can only handle input values in the range [minreal..maxreal].
— Using the machine arithmetic, the result will be inaccurate.

Therefore we cannot really implement specification S¢. We can only imple-
ment a part Py where:

— Time is only considered in a multiple of the sampling period §.
— Input values have to be in the range [minreal..maxreal].
— We get only a value g in an e-interval of the intended value f(v).

DEF Pf:= t: N*. v:[minreal..maxreal]. obs(t, input, v) (g:[f(v)-..f(v)+]. obs(t+,
output, g))

4.6 Assumptions

An assumption is any statement that we take for granted without further
proof. Assumptions can be, e.g., about the environment, about physical laws,
or about the behaviour of parts of the system. Some of the assumptions go into
the model, some not. In [6], we classified the assumptions according to different
criteria.

4.7 Stopping Refinement

We stop with refinement when:

— the control phenomena between control and plant (signals of sensors and
actuators) are addressed. It is the (checkable) real interface between plant
and control.

— asufficient level of detail describing the plant is reached. This is an argument
that domain experts have to decide on. An example is a valve, where a valve
can be modelled as a boolean variable, or a continuous process where flow
decrease (increase) is described by a function over time. Which of the both
possibilities is the adequate one depends on how relevant little amounts of
fluid are in the process.

— we agree on that we we can take all preconditions, assumptions and laws
appearing in the theorem for granted, and do not require further proof of
these.

5 Example

In this section we give a more detailed example. We assume that the plant —in
this case a coffee machine (Fig.1) — is given in reality, but not accompanied by a
complete formal model. We assume that the control software has to be designed.
We will explain how a formal model of the ”plant” and a control specification
can be developed in such a way that one can prove that they together satisfy
the requirement.

Cold water inlet to make

coffee
Heat exchange

unit.
(Steam heats up Hot water outlet for
the cold water\ coffee

To steam wards [> Hot water for

1 coffee

—— Filter

Vapour

Heating element
Hot water,

Cold water inlet into
boiler

Fig. 1. The coffee machine blueprint.

For formal verification the descriptions should be written in a suitable formal
language. If we choose to use a theorem prover to verify the system, the choice
would be propositional logic. If we use a model checker we might use process
algebra or automata.

We first have to translate a customer’s wish into a system requirement. It is
necessary to start with the most general form of the requirement that we can
think of, in order not to restrict the solution space too early. In this case the
requirement is:

Ry := "When a user pushes the ’coffee’ button, a cup of coffee is poured out
as soon as possible.”,

and the first instance of the correctness argument is:
Coffee_machine — Ry,

where Coffee_machine is the desired behaviour of our coffee machine.

At this moment, we know that the coffee machine does two things: it heats
certain amount of water and draws it through the filter with grounded coffee.
Therefore we have the following atomic propositions in the model of the coffee
machine behaviour:

Heat := ”Heat water”
Draw := ”Draw water through the filter with grounded coffee”

The new instance of the correctness requirement is:
Heat A Draw = Ry

Let’s look closer at the Heat process. There are three (sub)processes that
contribute to it. Water is heated in the heat exchange unit (HEU) with steam
(Heat-Water). In the boiler, water is heated to provide steam (Provide_Steam).
Water for the HEU is taken from the cold water reservoir (Provide -Water).
When necessary, the user has to pour water into the boiler and in the cold water
reservoir.

Provide_Steam := ”Assuming there is hot water in the boiler, the water is
heated in the boiler”
Provide_ Water := ”Get 50-60ml water from the reservoir into the heat ex-

change unit (HEU)”
Heat_Water := "Heat the 50-60ml water in the HEU to 92-96°C”

The new instance of our correctness requirement is now:
Provide_Steam N Provide W ater AN Heat_W ater A Draw = R

We continue describing the three subprocesses with more details. If the water
in the boiler is kept at the temperature just below the boiling temperature
(represented with the Boiler_Hot proposition), then, when the user starts the
process of making coffee, i.e. when he pushes the coffee button (represented
with the Push_Button proposition), the steam will be provided in 6 seconds
(Steam_6s proposition). The Provide_Steam process is refined as follows:

Provide_Steam := Boiler _Hot = (Push_Button = Steam_6s)

Water for the coffee is taken from the cold water reservoir with a pump.
If there is enough water in the reservoir (Res_-Water), after the pump P1 is
turned on (Pump_P;_On), after 2.5 seconds, 50-60 ml of water will be in the
HEU (HEU _5060ml_W ater_2.5sec):
Provide_-Water :=
Res_ Water A Pump_P;_On = HEU _5060ml_Water_2.5sec

From the domain expert we found out that if the HEU is provided with steam
(HEU _Steam) and if there is 50-60ml of water in the HEU (H EU -5060ml_W ater),
after 11 seconds, the water will be heated to the temperature of 92-96°C.

Heat Water :=

HEU_Steam N HEU _5060ml_Water = HFEU_9296C _W ater_11sec

Let’s look now at the Draw process. If there is a 50-60 ml water of tem-
perature 92-96°C in the HEU (50_60_ml_water 9296 C_HEU) and if there is
a grounded coffee in the filter (grounded_coffee_filter) and if the valve is open
(valve_open) and if the pump P is on (pump_Ps_on), then after 6 seconds —
the coffee will be poured out (coffee_out_6sec) and there will be old coffee in the
coffee filter (old_coffee_filter_6sec).

Draw :=

50_60_ml_water_92_96_C_HEU A grounded_coffee_filter
A valve_open A pump_Ps_on
= coffee_out_6sec A old_coffee_filter_6sec.

The processes described above take time and they take place in different
physical components. Providing steam and taking water from the reservoir can
be done in parallel. (This is the decision on how we will design the control.)
After steam and water are provided, the heating and drawing water continue
sequentially. The new requirement is:

Ry := "When the user requests coffee, a cup of coffee is poured out in 23
seconds.”.

The Control. Now that we described the desired plant behaviour, we write
the specification for the control that will ensure it. The control will ensure that
pumps are turned on and off and that valves are open and closed in appropriate
times. The correctness argument becomes:

Provide_Steam A Provide_Water A Heat_Water AN Draw A Control — Ry,

When the process is started, in this case when the button is pushed, the
control should enable that there is a steam in the HEU. If the control keeps the
valve open, there will be steam in the HEU after 6 seconds. We will use here the
operator () where ()**¢¢ means “after x seconds” and interpret the statements
below with an implicit “always”.

push_button = (O%steam_in_HEU
A pump_Pl_on = ()?5%¢¢50 — 60_ml_cold_water_H EU
A steam_in_H EU A 5060m!_cold_water . H EU
= Osee50 — 60mi_water_92 — 96C_HEU
A 50—60ml_water_92—960°C _in_H EU A fresh_coffee_in_filter Nvalve_V; _open/A

pump_P;_on = (0% coffee_poured_out A O)*¢“old_coffee_in_filter)
A Control
= (Boiler_hot A\ Res_water \ Push_Button_coffee = ()?3* coffee)

The previous expression can be simplified by choosing the right timing in-
stantiations into:

push_button A
03.5550 pump—Pl _on_2.5_sec

10

A OYse¢(fresh_coffee_in_filter A valve_open_6sec A Pump_Py_on_6sec)
= (O*s¢¢(coffee_poured_out A old_coffee_in_filter)
A Control
= (boiler_is_hot A Res_Water A Push_Button = ()?3*¢“coffee)

We can continue now adding process of removing the old coffee from the filter
and bringing the new, freshly grounded coffee to it. Further on, we refine our
correctness argument, until we can prove the statement.

By writing down all the instances of the correctness theorem, we also doc-
ument modelling decisions made. In this small example we documented every
refinement step, but it is up to the modeller to decide what he will document
and what refinement steps he will leave undocumented.

6 NMR Related Work

Zave and Jackson [12] pointed out that requirements are about the environ-
ment, not the software. Starting from this idea, Jackson proposed the problem
frames technique [5]. With the problem frames technique, one starts looking at
the system with regard to the combination of the machine (software) and the
plant that together have to satisfy the requirements. Instead of designing the ma-
chine immediately, the software designer has to first formulate the requirement
for the plant,decompose the plant to the domains, and identify the phenomena
on the domain interfaces, relevant for the requirement.

Heissel addressed the problem of modelling method and proposed agendas [4],
a list of modelling steps. The transition from informal to formal is performed in
one of the first steps of the requirements elicitation, while we formalize only the
last steps when the complete knowledge about the system is available.

Seater and Jackson propose the requirement progression [9] — a technique for
obtaining software specifications from the requirements. It extends the problem
frames (PF) technique [5] by adding the means to write down the correctness ar-
gument formally. Here, the correctness argument justifies re-formulations of the
requirement stepwise, until it becomes the requirement for the machine interface.

Goal-oriented requirements acquisition in the KAOS (Knowledge Acquisition
in autOmated Specification) method [10] starts from high-level goals and refine
them to subgoals that have to be achieved by a composite system. This method-
ology also views the system as combination of the software and its environment
(although here, different terms are used for the plant and its components [11].)
This method is designed for requirements elicitation and refinement, so it ends
before the phase of formal specification and verification.

Tropos methodology is used to support software development in early require-
ments, late requirements, architectural design and detailed design phases [8].
Again, the system here is described through goals to be achieved by it. The i*
model used here describes actors (agents, roles or position.) In ”Formal Tro-
pos” [1], one can define the circumstances under which a given dependency
among two actors arises, as well as the conditions that permit to consider the
dependency fulfilled.

11

The idea to formally describe some modelling process aspects was proposed
by Gunter et al. in [2]. They defined a reference model for requirements and
specifications that consists of domain knowledge, requirements, specifications,
programming platform, and the phenomena in the system, its environment, and
on their interfaces.

Hall, Rapanotti and Jackson developed a formal conceptual network based on
problem-oriented perspective [3] where they described formally (in sequent cal-
culus) the following steps: the identification and clarification of system require-
ments; the understanding and structuring of the problem world; the structuring
and specification of a hardware/software machine that can ensure satisfaction of
the requirements in the problem world; and the construction of adequacy argu-
ments that show the system will satisfy its requirements. Their aim is twofold - to
provide structure to modelling process and to give foundations for accompanying
tool.

Zowghi and Offen [14] described the logical framework for modelling and rea-
soning about the evolution of requirements, from high-level and imprecise wishes
of stakeholders to a more complete requirements model. The requirements en-
gineering consists of the steps that can be described with monotonic reasoning
(classical logic), and the steps where new information about the requirements,
machine and the plant is added, which can be described using nonmonotonic
methods for reasoning. With their work, the authors give basis for defining meth-
ods and tools for management of changing requirements. In later work Zowghi
and Gervasi [13] investigated the non-monotonic refinement when eliciting re-
quirements and checking their consistency, correctness, and completeness. They
also described which kind of proofs must be carried out at each step during the
evolution of requirements to ensure that the final specification of software system
satisfies the business goals of the customer.

7 Discussion and Conclusion

We suggested a modelling process that starts at a very early point of model
construction, when the requirements are only roughly known, and we do not
know which parts and properties of the system are relevant to satisfy the re-
quirements.

The purpose of models we construct is verification, the class of artefacts that
we are interested in is embedded systems.

Our method is a top-down approach that guides the compilation of knowledge
about a system that must be included in the model, based on non-monotonic
refinement (NMR). What we did not suggest here is an algorithm that constructs
a model, nor a modelling language - for the paper here we use logic, any other
language could be used, textual or graphical.

We conclude with the discussion of a few features of the method.

12

Growth of Knowledge

One of the key properties of NMR is that the growth of knowledge is built
into the process of modelling. We believe that in this way the “natural” way of
modelling is supported by a method. We start with the most general form of
a verification requirement, saying Plant and Control have to satisfy a Require-
ment. For the Requirement we take the most general thing that we can think of,
avoiding unnecessary restrictions before we have understood the problem suffi-
ciently. In a refinement step we learn more about components and the additional
assumptions and constraints that come with these components.

Top-Down vs Bottom-Up Thinking

In the first place, we consider an artefact and a model of the artefact, and
the modelling process that leads from the first to the latter. However, if we look
closer at the process, there is another model involved, our epistemological model
of the system. This is our perception of the system and how it is working, and it
is possibly distributed among a number of domain experts. The epistemological
model is built up by looking at the system, watching it, playing with it, reading
documentation, talking to domain experts, etc. We claim that the epistemological
model is gained by mainly bottom-up thinking. We cannot say much about this
process, apart from that is personal, depends on experience, but also a number of
non-rational aspects as association and thinking with analogies. Moreover, this
epistemological model remains in the first place implicit. When we construct a
model, we take our epistemological model as basis. i.e., in the end we do not
model the artefact, but our insight how it works and how it is composed. Non-
monotonic refinement is organized in a top-down manner. We need a fragment
of a epistemological model to start: otherwise we cannot say anything about a
system, if we do not know what it does at all. The top-down development helps to
shape the modelling process. We stepwise take more details into account that are
relevant to prove the requirement, which makes the process goal-driven. On the
way it can be the case that we have to enlarge the epistemological model: when
we see that more knowledge about a component or process is necessary. In this
way we make use of the knowledge that is relevant to satisfy the requirements,
and leave the rest. Our conjecture here is that NMR helps to find “minimal”
models (without diving into the formal details of metrics of model size).

Modelling vs. Design, Fragment vs. Overall System

NMR is a very general approach and can be used for both, design and modelling.
In design we have a goal what an artefact should do, and we stepwise take
decisions how this goal can be realized. After each decision, e.g. use component
uvw from supplier xyz, we collect the restrictions and assumptions coming with
this component, include it in the next refinement of our verification requirement,
and continue. In the modelling process, we do not take a design decision, but
we observe that component uvw from supplier xyz is used, and for the rest we

13

continue as above. However, we use the approach typically for two settings of
embedded systems: in the first, we assume both, plant and control are given,
in the second we assume the plant is given and we have to design a control.
In the first case we can use NMR to derive a plant model, we can use formal
methods to transform the control code (that is already a formal object) into
a model, and verify the composition of both. In the second case, we construct
a model of the plant, and try to find the control model that allows to prove
the verification requirement. The second version fits perfectly in the approach
of model based design: after having proven the verification requirement, we can
take the control model to automatically derive control code. There will be a
difference in the size of the models, depending on in which setting we are: for
the first one (everything is given) the requirement to prove typically is more
restricted, and the models needed are smaller. If we want to design the control,
we need some sort of completeness of the model, which typically requires models
of bigger size.

Vagueness One of the problems in the modelling process is to deal with
vagueness. When the process is finished and we have derived a formal model
all vagueness should be eliminated - this is why we want formal models. In
the beginning of the modelling process, vagueness is present: we do not know
precisely the requirement that we will be able to prove, we do not know about
the details of the system, or what details are at all relevant for our requirement.

There are two dangers when dealing with vague and incomplete information,
hidden ambiguity and too early formalization. The first leads to unintended
interpretations, the other one forces preciseness at a point when the system and
requirements are not yet precisely understood.

NMR uses two strategies to deal with vagueness. On one hand phenomena are
addressed only when they are understood, which is supported by the top-down
approach. On the other hand, the iterative weakening of requirements describes
the narrowing of the solution space as we get more information.

Acknowledgement. The authors thank Roel Wieringa for useful discussions
and comment.

References

1. Tropos project homepage. hitp://www.troposproject.org/.

2. C.A. Gunter, E.L. Gunter, M.A. Jackson, and P. Zave. A reference model for
requirements and specifications. IEEE Software, 17(3):37-43, May/June 2000.

3. Jon G. Hall, Lucia Rapanotti, and Michael Jackson. Problem oriented software
engineering: A design-theoretic framework for software engineering. sefm, 0:15-24,
2007.

4. Maritta Heisel and Jeanine Souquiéres. A method for requirements elicitation
and formal specification. In Jacky Akoka, Mokrane Bouzeghoub, Isabelle Comyn-
Wattiau, and Elisabeth Métais, editors, Proc. of the 18th International Conference

14

10.

11.

12.

13.

14.

on Conceptual Modeling, volume 1728 of Lecture Notes in Computer Science, pages
309-324. Springer, 1999.

M.A. Jackson. Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, 2000.

J.Marincic, A.Mader, and R.Wieringa. Classifying assumptions made during re-
quirements verification of embedded systems. (accepted for publication in the pro-
ceedings of the International Working Conference on Requirements Engineering
(REFSQ) 2008).

G. Rozenberg J.W De Bakker, W.P de Roever, editor. Stepwise Refinement of
Distributed Systems: Models, Formalisms, Correctness. Number 430 in LNCS.
Springer Verlag, 1989.

Roberto Sebastiani Paolo Giorgini, John Mylopoulos. Goal-oriented requirements
analysis and reasoning in the tropos methodology. Engineering Applications of
Artifcial Intelligence, 18/2, march 2005.

R. Seater, D. Jackson, and R. Gheyi. Requirement progression in problem frames:
deriving specifications from requirements. Requir. Eng., 12(2):77-102, 2007.

Axel van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In
RE ’01: Proceedings of the 5th IEEE International Symposium on Requirements
Engineering, page 249, Washington, DC, USA, 2001. IEEE Computer Society.
Axel van Lamsweerde and Emmanuel Letier. From object orientation to goal
orientation: A paradigm shift for requirements engineering. In Radical Innovations
of Software and Systems Engineering in the Future, pages 325—-340, 2002.

Pamela Zave and Michael Jackson. Four dark corners of requirements engineering.
ACM Trans. Softw. Eng. Methodol., 6(1):1-30, 1997.

Didar Zowghi and Vincenzo Gervasi. On the interplay between consistency, com-
pleteness, and correctness in requirements evolution. Information € Software Tech-
nology, 45(14):993-1009, 2003.

Didar Zowghi and Ray Offen. A logical framework for modeling and reasoning
about the evolution of requirements. re, 00:247, 1997.

15

