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Abstract

Model-based diagnosis is the field of research concerned with the problem of finding faults
in systems by reasoning with abstract models of the systems. Typically, such models
offer a description of the structure of the system in terms of a collection of interacting
components. For each of these components it is described how they are expected to behave
when functioning normally or abnormally. The model can then be used to determine which
combination of components is possibly faulty in the face of observations derived from the
actual system. There have been various proposals in literature to incorporate uncertainty
into the diagnostic reasoning process about the structure and behaviour of systems, since
much of what goes on in a system cannot be observed. This paper proposes a method to
decompose the probability distribution in probabilistic model-based diagnosis, partly in
terms of the Poisson-binomial probability distribution.

1 Introduction

Almost from the inception of the field of prob-
abilistic graphical models, Bayesian networks
have been popular as formalisms to built model-
based, diagnostic systems (Pearl, 1988). An al-
ternative theory of model-based diagnosis was
developed at approximately the same time,
founded on techniques from logical reasoning
(Reiter, 1987; de Kleer et al., 1992). The Gen-
eral Diagnostic Engine, GDE for short, is a
well-known implementation of the logical the-
ory; however, it also includes a restricted form
of uncertainty reasoning to focus the diagnos-
tic reasoning process (de Kleer and Williams,
1987). Previous research by Geffner and Pearl
proved that the GDE approach to model-based
diagnosis can be equally well dealt with by
Bayesian networks (Geffner and Pearl, 1987;
Pearl, 1988). Geffner and Pearl’s results is basi-
cally a mapping from the logical representation
as traditionally used within the logical diagnosis
community to a specific Bayesian-network rep-
resentation. The theory of model-based diag-
nosis supports multiple-fault diagnoses, which

are similar to maximum a posteriori hypothe-
ses, MAP hypotheses for short, in Bayesian net-
works (Gámez, 2004). Thus, although the logi-
cal and the probabilistic theory of model-based
diagnosis have different origins, they are closely
related.

Any theory of model-based diagnosis should
consist of two parts: (i) a theory of how to con-
struct models that can be used for diagnosing
problems; (ii) a theory of how to use models
to compute diagnoses. Whereas in both logic-
based and probabilistic diagnosis issues con-
cerning representation are clear—basically, logi-
cal expressions versus Bayesian networks—there
is less clarity with regard to computing diag-
noses. In logical model-based diagnosis there is
a huge amount of literature investigating logi-
cal properties of diagnoses. In contrast, in lit-
erature on probabilistic diagnosis the emphasis
is mostly on algorithmic properties of comput-
ing MAP diagnoses, rather then on probabilistic
properties.

This paper proposes a new way to look at
model-based diagnosis, taking the Bayesian-
network representation by Geffner and Pearl as



the point of departure (Geffner and Pearl, 1987;
Pearl, 1988). It is shown that by adding proba-
bilistic information to a model of a system, the
predictions that can be made by the model can
be decomposed into a logical and a probabilistic
part. The logical specifications are determined
by the system components that are assumed to
behave normally, constituting part of the sys-
tem behaviour. This is complemented by uncer-
tainty about behaviour for components that are
assumed to behave abnormally. In addition, it
is shown that the Poisson-binomial distribution
plays a central role in determining model-based
diagnoses. The results of this paper establish
new links between traditional logic-based diag-
nosis, Bayesian networks and probability the-
ory.

2 Poisson-binomial Distribution

First, we begin by summarising some of the rele-
vant theory of discrete probability distributions
(cf. (Cam, 1960; Darroch, 1964)).

Let s = (s1, . . . , sn) be a Boolean vector with
elements sk ∈ {0, 1}, k = 1, . . . , n, where sk is a
Bernoulli discrete random variable and is equal
to the outcome of trial k being either success
(1) or failure (0). Let the probability of success
of trial k be indicated by pk ∈ [0, 1] and the
probability of failure be set to 1−pk. Then, the
probability of obtaining vector s as outcome is
equal to

P (s) =

n
∏

k=1

p
sk

k (1 − pk)
1−sk . (1)

This probability distribution acts as the ba-
sis for the Poisson-binomial distribution. The
Poisson binomial distribution is employed to de-
scribe the outcomes of n independent Bernoulli
distributed random variables, where only the
number of success and failure are counted. The
probability that there are m, m ≤ n, success-
ful outcomes amongst the n trials performed is
then defined as:

f(m;n) =
∑

s1+···+sn=m

n
∏

k=1

p
sk

k (1 − pk)
1−sk , (2)

where f is a probability function. Here, the
summation means that we sum over all the pos-
sible values of elements of the vector s, where
the sum of the values of the elements must be
equal to m.

It is easy to check that when all probabilities
pk are equal, i.e. p1 = · · · = pn = p, where p de-
notes this identical probability, then the proba-
bility function f(m;n) becomes that of the well-
known binomial distribution:

g(m;n) =

(

n

m

)

pm(1 − p)n−m. (3)

Finally, suppose that we model interactions
between the outcomes of the trials by means of a
Boolean function b. This means that we have an
oracle that is able to observe the outcomes, and
then gives a verdict whether the overall outcome
is successful. The expectation or mean of this
Boolean function is then equal to:

EP (b(S)) =
∑

s

b(s)P (s). (4)

with P defined according to Equation (1). This
expectation also acts as the basis for the the-
ory of causal independence, where a causal pro-
cess is modelled in terms of interacting indepen-
dent processes (cf. (Lucas, 2005)). Note that
for b(s) = bm(s) ≡ s1 + · · · + sn = m (i.e., the
Boolean function that checks whether the num-
ber of successful trials is equal to m), we have
that EP (bm(S)) = f(m;n). Thus, Equation (4)
can be looked on as a generic way to combine
the outcome of independent trials.

In the theory of model-based diagnosis, it
is common to represent models of systems by
means of logical specifications, which are equiv-
alent to Boolean functions. Below, it will be-
come clear that if we interpret the success prob-
abilities pk as the probability of observing the
expected output of a system’s component under
the assumption that the component is faulty,
then the theory of Poisson-binomial distribu-
tions can be used to describe part of probabilis-
tic model-based diagnosis. However, first the
necessary background to model-based diagnosis
research is reviewed.



3 Uncertainty in Model-based

Diagnosis

3.1 Model-based Diagnosis

In the theory of model-based diagnosis (Reiter,
1987), the structure and behaviour of a sys-
tem is represented by a logical diagnostic system
SL = (SD,COMPS), where

• SD denotes the system description, which
is a finite set of logical formulae, specifying
structure and behaviour;

• COMPS is a finite set of constants, corre-
sponding to the components of the system;
these components can be faulty.

The system description consists of behaviour de-
scriptions and connections. A behavioural de-
scription is a formula specifying normal and ab-
normal (faulty) functionalities of the compo-
nents. A connection is a formula of the form
ic = oc′ , where ic and oc′ denote the input
and output of components c and c′, respectively.
This way an equivalence relation on the inputs
and outputs is defined, denoted by IO\≡. The
class representatives from this set are denoted
by [r].

A logical diagnostic problem is defined as a
pair PL = (SL,OBS), where SL is a logical di-
agnostic system and OBS is a finite set of logical
formulae, representing observations.

Adopting the definition from (de Kleer et al.,
1992), a diagnosis in the theory of consistency-
based diagnosis is defined as follows. Let ∆
be the assignment of either a normal or an ab-
normal behavioural assumption to each compo-
nent. Then, ∆ is a consistency-based diagnosis
of the logical diagnostic problem PL iff the ob-
servations are consistent with both the system
description and the diagnosis:

SD ∪ ∆ ∪ OBS 2 ⊥. (5)

Here, 2 stands for the negation of the logical
entailment relation, and ⊥ represents a contra-
diction.

EXAMPLE 1 Consider the logical circuit de-
picted in Figure 1, which represents a full adder,

X1

A1
A2

X2

R1

1
0

1

0 predicted
[1] observed

1 predicted
[0] observed

Figure 1: Full adder with inputs {i1, ı̄2, i3} and
observed and predicted outputs.

i.e. a circuit that can be used for the addition
of two bits with carry-in and carry-out bits. It
is an example frequently used to illustrate con-
cepts from model-based diagnosis. This circuit
consists of two AND gates (A1 andA2), one OR
gate (R1) and two exclusive-or (XOR) gates
(X1 and X2). These are the components that
can be either faulty (abnormal) or normal. 2

3.2 Probabilistic Model-based

Diagnosis

In this section, we will map logical diagnos-
tic problems onto probabilistic representations,
called Bayesian diagnostic problems, using the
Bayesian-network representation proposed by
Geffner and Pearl (Geffner and Pearl, 1987;
Pearl, 1988). As will become clear, a Bayesian
diagnostic problem is defined as (i) a Bayesian
diagnostic system representing the components,
including their behaviour and interaction, based
on information from the logical diagnostic sys-
tem of concern, and (ii) a set of observations.

3.2.1 Graphical Representation

First the graphical structure used to repre-
sent the structural information from a logical
diagnostic system is defined. It has the form of
an acyclic directed graph G = (V,E), where V
is the set of vertices and E ⊆ (V × V ) the set
of directed edges, or arcs as we shall say.

Definition 1 (diagnostic mapping) Let
SL = (SD,COMPS) be a logical diagnostic
system. The diagnostic mapping md maps SL

onto an acyclic directed graph G = md(SL), as
follows (see Figure 2):

• The vertices V of graph G are created ac-
cording to the following rules:



– Each component c ∈ COMPS yields a
vertex Ac used to represent its normal
and abnormal behaviour;

– Each class representative of an input
or output [r] ∈ IO\≡ yields an associ-
ated vertex [r].

The set of all abnormality vertices Ac is
denoted by ∆, i.e. ∆ = {Ac | c ∈ COMPS}.
The vertices of graph G are, thus, obtained
as follows:

V = ∆ ∪ IO\≡,

where IO\≡ = I ∪O, with disjoint sets I of
input vertices and O of output vertices.

• The arcs E of G are constructed as follows:

– There is an arc from each each input
of a component c to each output of the
component;

– There is an arc for each component c
from Ac ∈ V to the corresponding out-
put of the component.

An example of this diagnostic mapping is shown
in the following example.

EXAMPLE 2 Figure 3 shows the graphical
representation of the full-adder circuit from Fig-
ure 1. The set V of vertices is:

V = ∆ ∪O ∪ I

= {AX1, AX2, AA1, AA2, AR1}

∪ {OX1, OX2, OA1, OA2, OR1}

∪ {I1, I2, I3}.

The arcs from E connect (i) outputs of two
components such as OX1 → OX2, (ii) an ab-
normality vertex with an output vertex such as
AA2 → OA2 and (iii) an input vertex with an
output vertex such as I3 → OX2. 2

3.2.2 Bayesian Diagnostic Problems

Recall that Bayesian networks that act as the
basis for diagnostic Bayesian networks consist of
two parts: a joint probability distribution and a
graphical representation of the relations among
the random variables defined by the joint prob-
ability distribution. Based on the definition of
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Figure 2: The diagnostic mapping.

Bayesian networks, particular parts of a logical
diagnostic system will be related to the graphi-
cal structure of a diagnostic Bayesian network,
whereas other parts will have a bearing on the
content of the probability table of the Bayesian
network.

Having introduced the mapping of a logical
diagnostic system to its associated graph struc-
ture, we next introduce the full concept of a
Bayesian diagnostic system.

Definition 2 (Bayesian diagnostic sys-

tem) Let SL = (SD,COMPS) be a logical di-
agnostic system, and G = md(SL) be obtained
by applying the diagnostic mapping. Let P be
a joint probability distribution of the vertices
of G, interpreted as random variables. Then,
SB = (G,P ) is the associated Bayesian diag-
nostic system.

Recall that by the definition of a Bayesian net-
work, the joint probability distribution P of a
Bayesian diagnostic system can be factorised as
follows:

P (I,O,∆) =
∏

c

P (Oc | π(Oc))P (I)P (∆), (6)

where Oc is an output variable associated to
component c ∈ COMPS, and π(Oc) are the ran-
dom variables corresponding to the parents of
Oc. The parents will normally consist of inputs
Ic and an abnormality variable Ac.

To simplify notation, in the following, (sets
of) random variables of a Bayesian diagnos-
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Figure 3: A Bayesian diagnostic system corre-
sponding to the circuit in Figure 1.

tic problem have the same names as the cor-
responding vertices. By ac is indicated that
abnormality variable Ac takes the value ‘true’,
whereas by āc it is indicated that Ac takes the
value ‘false’. A similar notation will be used
for the other random variables. Finally, a spe-
cific abnormality assumption concerning all ab-
normality variables is denoted by δC , which is
defined as follows:

δC = {ac | c ∈ C} ∪ {āc | c ∈ COMPS − C},

with C ⊆ COMPS. There are some sensible
constraints on the joint probability distribution
P of a Bayesian diagnosis system that can be
derived from the specification of the logical di-
agnostic system. These will be discussed later.

As with logical diagnostic problems, we need
to add observations to Bayesian diagnostic sys-
tems in order to be able to solve diagnostic prob-
lems. In logical diagnostic systems, observa-
tions are the inputs and outputs of a system.
It is generally not the case that the entire set
of inputs and outputs of a system is observed.
The set of input and output variables that have
been observed, are referred to by Iω and Oω,
respectively. The unobserved input and output
variables will be referred to as Iu and Ou, re-
spectively. We will use the notation iω to denote
the values of the observed inputs, and oω for the

observed output values. The set of observations
is then denoted as ω = iω ∪ oω.

Now, we are ready to define the notion
of Bayesian diagnostic problem, which is a
Bayesian diagnostic system augmented by a set
of observations.

Definition 3 (Bayesian diagnostic prob-

lem) A Bayesian diagnostic problem, denoted
by PB, is defined as the pair PB = (SB , ω),
where SB is a Bayesian diagnostic system and
ω the set of observations of this system.

Determining the diagnoses of a Bayesian diag-
nostic problem amounts to computing P (δC |
ω), and then finding the δC which maximises
P (δC | ω), i.e.

δ∗C = argmax
δC

P (δC | ω).

This problem is NP-hard (Gámez, 2004). The
probability P (δC | ω) can be computed by
Bayes’ rule, using the probabilities from the
specification of a Bayesian diagnostic system:

P (δC | ω) =
P (ω | δC)P (δC )

P (ω)
. (7)

As a consequence of the independences that
hold for a Bayesian diagnostic system, it is pos-
sible to simplify the computation of the condi-
tional probability distribution P (ω | δC). Ac-
cording to the definition of a Bayesian diagnos-
tic system it holds that

P (i | δC) = P (i) ,

for each i ⊆ (iω ∪ iu), as the input variables
and abnormality variables are independent. In
addition, it is assumed that the input variables
are independent.

Using these results, basic probability theory
and the definition of a Bayesian diagnostic prob-
lem yields the following derivation:

P (ω | δC) = P (iω, oω | δC)

=
∑

iu

P (iu)P (iω, oω | iu, δC)

= P (iω)
∑

iu

P (iu)

×
∑

ou

∏

c

P (Oc | π(Oc)), (8)



since it holds by the axioms of probability the-
ory that

P (iω, oω | iu, δC) =
∑

ou

P (iω)
∏

c

P (Oc | π(Oc)) .

To emphasise that the set of parents π(Oc) in-
cludes an abnormality variable that is assumed
to be true, i.e. the component is assumed to be-
have abnormally, the following notation is used
P (Oc | π(Oc) : ac); similar, for the situation
where the component c is assumed to behave
normally the notation P (Oc | π(Oc) : āc) is
employed. Finally, the following assumptions,
which will be used in the remainder of this pa-
per, are made:

• P (Oc | π(Oc) : ac) = P (Oc | ac), i.e.
the probabilistic behaviour of a component
that is faulty is independent of its inputs;

• P (Oc | π(Oc) : āc) ∈ {0, 1}, i.e. normal
components behave deterministically.

The probability P (oc | ac) will be abbreviated
in the following section as pc; thus P (ōc | ac) =
1−pc These are realistic assumptions, as it is un-
likely that detailed functional behaviour will be
known for a component that is faulty, whereas
when the component is not faulty, it is certain
it will behave as intended.

4 Decomposition of Probability

Distribution

To establish that probabilistic model-based di-
agnosis can be partly interpreted in terms of a
Poisson-binomial distribution, it is necessary to
decompose Equation (8) into various parts. The
first part will represent the probabilities that
components c produce the right, oc, or wrong,
ōc, output, which correspond to the success and
failure probabilities, respectively, of a Poisson-
binomial distribution. The second part repre-
sents a normally functioning system fragment,
which will be represented by a Boolean func-
tion. There is also a third part, which concerns
the observed and unobserved inputs. We start
by distinguishing between various types of com-
ponents, inputs and outputs, in order to make
the necessary distinction:

• The sets of components assumed to func-
tion normally and abnormally will be de-
noted by C ā and Ca, respectively, with
C ā, Ca ⊆ COMPS;

• The sets C ā and Ca are partitioned into
sets of components, for observed and unob-
served outputs, indicated by the sets C ā

ω,
C ā

u, Ca
ω and Ca

u, respectively.

Thus, C ā = C ā
ω ∪ C ā

u and Ca = Ca
ω ∪ Ca

u. In
addition, we will sometimes make a distinction
between components c for which oc has been
observed, and components c for which ōc has
been observed. These sets will be denoted by
Co

ω and C ō
ω, respectively. It holds that Co

ω and
C ō

ω constitute a partition of Cω. The nota-
tions can also be combined, e.g., as Ca,o

ω and
C

a,ō
ω . Furthermore, we will sometimes use a sim-

ilar notation for sets of output variables, e.g.,
Oā

u = {Oc | c ∈ C ā
u} and Oā

ω = {Oc | c ∈ C ā
ω},

and input variables, e.g., I ā
u =

⋃

c∈Cā
u
Ic indi-

cates unobserved inputs of components that are
assumed to behave normally and I ā

ω =
⋃

c∈Cā
ω
Ic

are observed inputs of components that are as-
sumed to behave normally, with Ic the set of
input variables of component c ∈ COMPS and
I ā = I ā

ω ∪ I ā
u .

The following lemma shows that it is possible
to decompose part of the joint probability dis-
tribution of Equation (6) using the component
sets defined above.

Lemma 1 The following statements hold:

• The joint probability distribution of the out-
puts of the set of assumed normally func-
tioning components C ā, can be decomposed
into two products as follows:

∏

c∈Cā

P (Oc | π(Oc) : āc)

=
∏

c∈Cā
u

P (Oc | π(Oc) : āc)

×
∏

c∈Cā
ω

P (Oc | π(Oc) : āc).

• Similarly, the joint probability distribution
of the outputs of the set of assumed abnor-
mally functioning components Ca, can be



decomposed into two products as follows:
∏

c∈Ca

P (Oc | π(Oc) : ac)

=
∏

c∈Ca
u

P (Oc | ac)
∏

c∈Ca
ω

P (Oc | ac).

Proof : The decompositions follows from the
definitions of the sets Ca, Ca

ω, Ca
u, C ā

u and C ā
ω,

and the independence assumptions underlying
the distribution P . 2

Now, based on Lemma 1, we can also decompose
the product of the entire set of components, as
follows:
∏

c

P (Oc | π(Oc))

=
∏

c∈Cā
u

P (Oc | π(Oc) : āc)
∏

c∈Cā
ω

P (Oc | π(Oc) : āc)

×
∏

c∈Ca
u

P (Oc | ac)
∏

c∈Ca
ω

P (Oc | ac).

Next, we show that the outputs of the set of
observed abnormal components Ca

ω only depend
on probabilities pc = P (oc | ac), c ∈ Ca

ω.

Lemma 2 The joint probability of observed
outputs of the abnormally assumed components
can be written as:
∏

c∈Ca
ω

P (Oc | π(Oc) : ac)=
∏

c∈C
a,o
ω

pc

∏

c∈C
a,ō
ω

(1 − pc).

Proof : This follows straight from the defini-
tions of Ca

ω, Ca,o
ω and Ca,ō

ω . 2

Recall that the probability of an output of a nor-
mally functioning component was assumed to
be either 0 or 1, i.e. P (Oc | π(Oc) : āc) ∈ {0, 1}.
Clearly, these probabilities yield, when multi-
plied, Boolean functions. One of these Boolean
functions, denoted by ϕ, is defined as follows:
ϕ(oā

u, o
a
u, i

ā) =
∏

c∈Cā
u
P (Oc | π(Oc) : āc), where

the set of parents π(Oc) may, but need not, con-
tain variables from the sets of variables Oa

u and
I ā. However, π(Oc) does not contain variables
from the set Ia, as these only condition variables
that are assumed to behave abnormally and are
then ignored, as mentioned at the end of the
previous section. Similarly, we define Boolean
functions ψ(ou, o

ā
ω, i

ā) =
∏

c∈Cā
ω
P (Oc | π(Oc) :

āc).

Lemma 3 For each value oa
u and iā, there ex-

ists exactly one value oā
u of the set of variables

Oā
u = {Oc | c ∈ C ā

u} for which it holds that
ϕ(oa

u, o
ā
u, i

ā) = 1; similarly, for each value ou

and iā there exists one value oā
ω of the set of

variables Oā
ω = {Oc | c ∈ C

ā
ω} for which it holds

that ψ(ou, o
ā
ω, i

ā) = 1.

Proof : As both the functions ϕ and ψ are
defined as products of conditional probability
distributions P (Oc | π(Oc) : āc), for which
we have that P (oc | π(Oc) : āc) ∈ {0, 1},
there is, due to the axioms of probability the-
ory, for any value of the variables corresponding
to the parents of the variables Oc at most one
value for each Oc for which the joint probability
∏

c P (Oc | π(Oc) : āc) = 1. 2

The following lemma, which is used later, is
a consequence of the definition of these Boolean
functions.

Lemma 4 Let the Boolean functions ϕ and ψ

be as defined above, then:

∑

ou

ϕ(oa
u, o

ā
u, i

ā)ψ(ou, o
ā
ω, i

ā)
∏

c∈Ca

P (Oc | ac) =

∑

oa
u

b(oa
u, i

ā)
∏

c∈Ca,o

pc

∏

c∈Ca,ō

(1 − pc),

with Boolean function b and pc = P (oc | ac).

Proof : For a fixed set of observed outputs oω

let b(ou, i
ā) = ϕ(oa

u, o
ā
u, i

ā)ψ(ou, o
ā
ω, i

ā), then,

∑

ou

ϕ(oa
u, o

ā
u, i

ā)ψ(ou, o
ā
ω, i

ā)
∏

c∈Ca

P (Oc | ac) =

∑

ou

b(ou, i
ā)

∏

c∈Ca

P (Oc | ac).

Furthermore, due to Lemma 3, it suffices to only
consider the restriction of the function b to the
variables Oa

u and I ā, as for given values oa
u and

iā, b(oa
u, o

ā
u, i

ā) = 0 for all but one value of Oā
u.

This function is denoted by b(oa
u, i

ā). The prod-
uct term results from application of a slight gen-
eralisation of Lemma 2. 2

We are now ready to establish that P (ω | δC)
can be written as the sum of weighted products
of the form

∏

c pc

∏

c′(1 − pc′).



Theorem 1 Let PB = (SB , ω) be a Bayesian
diagnostic problem. Then, P (ω | δC) can be
expressed as follows:

P (ω | δC) = P (iω)
∑

iāu

P (iāu)
∑

oa
u

b(oa
u, i

ā)

×
∏

c∈Ca,o

pc

∏

c∈Ca,ō

(1 − pc)

where b(oa
u, i

ā) ∈ {0, 1} and pc = P (oc | ac).

Proof : The result follows from the above lem-
mas and the fact that we sum over (part of) the
input variables I. Note that only the variables
I ā are used as conditioning variables, which fol-
lows from the assumption that P (Oc | π(Oc) :
ac) = P (Oc | ac). As only the input vari-
ables iāu are assumed to be dependent of out-
put variables, we obtain:

∑

iu,oa
u
P (iu) · · · =

∑

iāu,oa
u
P (iāu) · · ·. The Boolean function b(oa

u, i
ā)

is as above. 2

An alternative version of the theorem can be ob-
tained in terms of expectations using Equation
(4) for the Poisson-binomial distribution:

P (iω)
∑

iāu

P (iāu)
∑

oa
u

b(oa
u, i

ā)
∏

c∈Ca,o

pc

∏

c∈Ca,ō

(1 − pc)

= P (iω)
∏

c∈Ca
ω

P (Oc | ac)
∑

iāu

P (iāu)EP (biā(Oa
u)),

i.e. the sum of the mean of the Boolean func-
tions biā , which are functions of the unobserved
inputs iāu, in terms of the probability function
P (Equation (4)), weighed by the prior proba-
bility of unobserved inputs iāu. Combining this
with Equation (7) yields P (δC | ω). Thus, to
probabilistically rank diagnoses δC it is neces-
sary to compute: (i) EP (biā(Oa

u)), the Poisson-
binomial distribution mean of the behaviour of
the normally assumed components, (ii) P (iāu),
(iii)

∏

c∈Ca
ω
P (Oc | ac), the observed abnormal

components, and (iv) the prior P (δc). Note that
both P (iω) and P (ω) can be ignored.

5 Conclusions

We have shown that probabilistic model-based
diagnosis, which is an extension of traditional
GDE-like model-based diagnosis, can be decom-
posed into computation of various probabilities,

in which a central role is played by the Poisson-
binomial distribution. When all probabilities
pc = P (oc | ac) are assumed to be equal, a com-
mon simplifying assumption in model-based di-
agnosis, the analysis reduces to the use of the
standard binomial distribution.

So far, most other research on integrating
probabilistic reasoning with logic-based model-
based diagnosis took probabilistic reasoning as
adding some sort of uncertain, abductive rea-
soning to logical reasoning. No attempts were
made in related research to look inside what
happens in the diagnostic process, as was done
in this paper. We expect that it becomes
thus possible to investigate further variations
in probabilistic model-based diagnosis, for ex-
ample, by adopting assumptions different from
those in this paper with regard to fault be-
haviour in systems.
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