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 The Journal of Symbolic Logic
 Volume 73. Number 1. March 2008

 THE BOREL HIERARCHY THEOREM
 FROM BROUWER'S INTUITIONISTIC PERSPECTIVE

 WIM VELDMAN

 In memoriam magistri cari
 Johan J. de Iongh (1915-1999)

 Moi ?cpavT) ?aGoc; ti ?x?lv Tiavi?naat yevvoaov
 To me he seemed to have a kind of depth, a wholly noble one

 Plato, Theaet. 183e

 5 Ati5 boa txoJDda xi aie5 ooa efrca va [xf? ?rjTiqaouve va ftpo?\> tcoio? f?[iouv

 From all I did and all I said let them not seek and find out how I was

 C.P Cavafy, KPYMMENA (Hidden Things), 1908

 Abstract. In intuitionistic analysis, Brouwer's Continuity Principle implies, together with an Axiom of

 Countable Choice, that the positively Borel sets form a genuinely growing hierarchy: every level of the

 hierarchy contains sets that do not occur at any lower level.

 ?0. Introduction.
 0.1. ?. Borel, H. Lebesgue, R. Baire, N. Lusin, A. Souslin and others, the

 founding fathers of descriptive set theory, who initiated the study of Borel sets
 and, somewhat later, discovered analytic and projective sets, pursued their subject
 not only out of a mathematician's curiosity but also from a sense of bewilderment
 characteristic of the philosopher. Frowning at some of the notions and arguments
 in Cantorian set theory, they wanted to develop an, in their own words, realist point
 of view. Others, however, have called them semi-intuitionists, see [2].

 These semi-intuitionists doubted, for instance, the existence of the choice set lying
 at the basis of Zermelo's proof of the Well-Ordering Theorem, as no one is able to
 give a description of such a set, and also the existence of Cantor's second number
 class, that is, the first uncountable ordinal Hi, as no one can imagine a point of time
 where the construction of its members would be finished, see [6] and [32], One may
 be surprised that they nevertheless were prepared to accept the continuum, that is,
 the set R of the real numbers, as somehow given by geometric intuition. They did
 not see, however, how to attach a sense to the expression: "all subsets of the set M"

 Received May 15, 2002.
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 2  WIM VELDMAN

 and here we find one of the reasons they decided to concentrate on certain classes
 of definable or nameable subsets of the continuum.

 L.E.J. Brouwer, who, like the semi-intuitionists, denied the possibility of forming
 either Cantor's second number class Ki or power sets, eventually shrinking back
 not only from the power set of R but from the power set of any non-empty set,
 for instance a singleton, obviously had concerns similar to theirs, but he began
 his intuitionistic mathematics on account of an even more penetrating appraisal
 of the state of the mathematical art. As one may learn from his dissertation, his
 first concern was to develop a sensible view of the continuum itself. He then came
 to see the inadequacy of classical logic. The striking lack of constructive content
 of many mathematical "results", and the closely related fluctuating meaning of the
 so-called logical "constants", made him decide to declare the forthright constructive
 interpretation of these constants, in particular of the disjunction and the existential
 quantifier, the canonical one. Mathematical arguments failing to hold under this
 constructive interpretation, were condemned as being false and misleading.

 As Brouwer noticed, however, and has become more and more clear during
 the further development of intuitionistic mathematics, it may happen that, if the
 straightforward constructive reading of a statement fails to be true, a constructively
 different and perhaps in some sense weaker interpretation, also expressible in terms
 of the constructive logical constants, is provable, and even useful.

 Brouwer's criticism of the existing mathematical practice thus resulted in a pro
 posal to refine the language of mathematics. As he started to show by many exam
 ples, the constructive meanings a mathematical statement may have reveal them
 selves if one looks carefully into its various proofs, and, if one does so painstakingly
 and systematically, many distinctions may be made that are commonly ignored.

 Refinement of the language of mathematics, however, is only the first part of
 Brouwer's intuitionistic revolution. His reflection on the idea of the continuum also

 led him to enunciate some new and revolutionary axioms, in particular, Brouwer's
 Continuity Principle and Brouwer's Thesis on bars.

 Later constructivist mathematicians like E. Bishop, sharing Brouwer's dissatis
 faction with much of classical mathematics, agreed with his decision to interpret
 the logical constants and the corresponding set-theoretic operations constructively,
 and therefore, like him, rejected indirect proof and the principle of the excluded
 middle, but they were not convinced that Brouwer's new axioms should be accepted
 and used.
 We want to find out what becomes of the field of study opened up by Borel, Baire

 and Lebesgue if one takes Brouwer's point of view. The logic of our arguments
 will be intuitionistic logic, and we intend to use Brouwer's axioms if there is an
 occasion to do so. It is worthwhile and important to explore the consequences of
 these axioms, even if one hesitates to accept Brouwer's reasons for adopting them.

 In this paper we study the Borel Hierarchy Theorem proved by Borel and Lebesgue
 around 1902. In the next Subsection we describe the content of this theorem.

 0.2. A subset X of the set R of real numbers is basic open if and only if either X is
 empty or there exist rational numbers q, r such that X is the set of all real numbers
 x such that q < x < r. A subset X of R is open if and only if X is a countable union
 of basic open sets. A subset X of R is closed if and only if there is an open subset Y
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 THE BOREL HIERARCHY THEOREM  3

 of R such that X is the set of all real numbers x such that the assumption "x belongs
 to Y" leads to a contradiction. Note that every closed subset of R is a countable
 intersection of open subsets of R.
 A subset of the set R of real numbers will be called positively Borel if and only

 if it is obtained from open subsets of R by the repeated use of the operations of
 countable intersection and countable union.

 We need two infinitary operations on classes of subsets of R, (countable) product
 and (countable) sum.

 Given any infinite sequence 5?o, ?%\, ?^2, of classes of subsets of R, we let its

 product YlneN ^ be the class consisting of all sets of the form f]ieN Xt where each
 set Xi belongs to some J?5 and we let its sum Y^n?n ^n be the class consisting of
 all sets of the form U? gn ^ where each set Xi belongs to some Xn.
 We now introduce the notion of a canonical class of positively Borel subsets ofR.

 The class of the open subsets of R and the class of the closed subsets of R are the
 basic canonical classes and if 5?o, <^i, ^2, is an infinite sequence of canonical

 classes, then also Y[ne^J?n and 12neN<^n are canonical classes of positively Borel
 subsets of R. Every canonical class of positively Borel subsets of R is obtained from
 the class of the open subsets of R and the class of the closed subsets of R by the
 repeated use of the operations of countable product and countable sum.

 Note that the class of all countable intersections of open sets and the class of all
 countable unions of closed sets, baptized G? and Fa by F. Hausdorff, respectively,
 are among the first examples of canonical classes of positively Borel sets.

 The Borel Hierarchy Theorem, first proved, of course, in a non-intuitionistic
 context, by Borel and Lebesgue, is the statement that no canonical class exhausts
 the collection of all positively Borel subsets ofR. We should realize, however, that,
 because of our constructive interpretation of the set-theoretical operations, their
 classical, that is non-intuitionistic reading of this statement seems to differ from
 ours.

 We have to be careful. The intuitionistic mathematician never has an immediate

 understanding of a result from non-intuitionistic mathematics, as, in his ears, the
 statement of the result is imprecise. Studying one or several classical proofs of the
 result and attempting to assess their precise constructive content, he will propose
 one or several constructively unambiguous so-called "translations" and study their
 relative merits and usefulness.

 The first thing the intuitionistic mathematician would like to know, once he
 has heard about the classical Borel Hierarchy Theorem, is: does the statement of
 the classical Borel hierarchy theorem hold under its straightforward constructive
 interpretation:

 Given a canonical class of positively Borel sets, are we able to indicate
 a positively Borel set that does not belong to the class, and can we prove in
 a constructive way that it does not!

 This is the hierarchy problem, the question we want to study in this paper.
 Note that both the notion of a positively Borel subset of R and the notion of

 a canonical class of positively Borel subsets ofR are given by a so-called generalized
 inductive definition. We believe such definitions to be meaningful from our intu
 itionistic point of view. Also Brouwer and the semi-intuitionists, the first without

This content downloaded from 131.174.17.24 on Tue, 15 Aug 2017 07:50:09 UTC
All use subject to http://about.jstor.org/terms



 4  WIM VELDMAN

 spending many words on them, the latter only after long deliberations, see [32],
 eventually accepted them, notwithstanding their negative opinion on Ni.

 0.3. From a classical point of view, the use of the word "positively" in the previous
 subsection would seem superfluous, but, from the intuitionistic point of view we
 take, it is not.

 For every subset X of R, we define the complement X" := R \ X of X to be the
 set all y in R such that the assumption "y belongs to X" leads to a contradiction.
 We did not include the operation of taking the complement of a given set among

 the generating operations of the class of positively Borel sets.
 This economy would be harmless from a classical point of view, but, intuition

 istically, it is not: we can not prove that the complement of a positively subset of
 R is positively Borel. Actually, there are positively Borel subsets X of R such that
 the double complement of X, X", can be shown to be not positively Borel, for
 instance, the set Rat consisting of the real numbers that coincide with a rational
 number. As we shall explain in Section 9, this is a consequence of a result in [52].

 The classical mathematician would understand the definition of the class of the

 positively Borel subsets of R, as given in Subsection 0.2, as one of the many possible
 definitions of the class of the Borel sets. Note that, in his proof of the "fact" that
 the complement of a positively Borel subset of R is itself positively Borel, he has to
 assume:

 (i) For every closed subset X of R, its complement X^ is an open subset of R.

 (ii) For every sequence X$,X\,... of subsets of R, (Pl^X/)-1 coincides with

 (iii) For every open subset X of R, its complement X^ is a closed subset of R.

 (iv) For every sequence X$,X\,... of subsets of R, dJ/GNX/)" coincides with
 \]ieN{XiP.

 The assumptions (iii) and (iv) are valid intuitionistically as well as classically, but
 the assumptions (i) and (ii) are not.
 We thus see that the hierarchy formed by the positively Borel sets, if compared to

 its classical counterpart, is lacking in symmetry. We shall find further corroborations
 of this fact. It turns out, for instance, that the union of two closed subsets of R
 sometimes fails to be a closed subset of R, although the intersection of two open
 subsets of R always is an open subset of R.
 One might think that, for the intuitionistic mathematician, the proper thing to do

 would be to look for an operation of "taking the (positive) complement" on the class
 of the positively Borel sets. The complement of a closed set, for instance, should be
 by definition the open set that is "the" natural candidate. This idea made us study
 the notion of "complementary pairs of positively Borel sets". In Theorem 4.6 we
 discover that, in general, a positively Borel set forms a complementary pair not with
 one but with many different positively Borel sets. There seems to be no reasonable
 general way to pick a canonical one from the many candidates and to define an
 operation of (positive) complement on the class of the positively Borel sets. There
 even is no way of finding canonical complements for closed sets unless we assume
 the doubtful Principle of Markov.
 Another and perhaps more dramatic consequence of the fact that the class of

 the positively Borel subsets of R is not closed under the operation of taking the
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 THE BOREL HIERARCHY THEOREM  5

 complement is the following: we can not use the well-known and beautiful new
 application of Cantor's diagonal argument by which Borel and Lebesgue prove
 their classical Hierarchy Theorem in order to establish the Hierarchy Theorem for
 positively Borel sets constructively.

 Their basic idea, as we find it, for instance, in [32], may be described as follows.
 One first proves that each canonical class of positively Borel sets contains a so
 called universal element. One then takes the diagonal set of the universal element
 and observes that this diagonal set belongs to the class and its complement does
 not.

 In intuitionistic mathematics, however, the complement of the diagonal set is not
 a positively Borel set, except in very special cases. Should we replace the complement
 of the diagonal set by a positive complement of the diagonal set, then we obtain
 a set that is positively Borel indeed, but, unless we make some further assumption
 like Brouwer's Continuity Principle, we have no argument that it does not belong
 to the class we started from. That there is no such argument becomes clear if we
 consider the collapse of the projective hierarchy, as proven in [43] and [53]. Every
 set that might be called a "positive complement" of the diagonal set of the class H\
 belongs to the class H\, like the diagonal set itself.
 We will consider the classical argument given by Borel and Lebesgue and its

 possible meaning for the intuitionistic mathematician more extensively in Section 5.

 0.4. One might question the decision to consider positively Borel sets only and to
 shut out the operation of taking the complement as a generating operation. A reason
 for doing so, however, is that, according to the judgment of many constructive
 mathematicians, the set-theoretical operation of taking the complement and the
 logical operations of negation and implication are perhaps not that well understood.
 Therefore, and also because of the fact that statements in which negation appears
 do not have strong constructive content, a theorem in constructive or intuitionistic
 mathematics is generally judged the more unproblematic, useful and beautiful, the
 fewer negations it contains.
 We may find some support for our decision in the opinion of G. Gentzen,

 who argued that, because of the mysteriousness of implication, the consistency
 of the formal system of intuitionistic arithmetic is not to be accepted without
 further proof, see [18], ?11. Also G.F.C. Griss, see [20], and D. van Dantzig,
 see [15], reflecting on Brouwer's proposals for a reform of mathematics, decided
 to try to do without negation and to build a so-called negationless or affirmative

 mathematics.
 Quite apart from all such considerations, the positively Borel sets form a rich

 world of their own, worthy of serious study. The classical mathematician, reading
 our definition, would scarcely surmise anything missing from this world, because,
 as we saw in Subsection 0.3, he believes every Borel set to be positively Borel.
 We should mention here that J.R. Moschovakis studies the classes of sets one

 obtains by also allowing complements, see [36], comparing "classical" and "con
 structive" hierarchies from a constructive and sometimes semi-constructive point
 of view.

 0.5. In Section 7 we shall see that Brouwer's Continuity Principle enables us to
 solve the hierarchy problem as we formulated it in Subsection 0.2.
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 6  WIM VELDMAN

 It is strange that both P. Martin-L?f, in [33], and E. Bishop and D. Bridges, in [1],
 while evidently believing that, in constructive mathematics, the best Borel sets are
 positively Borel sets, do not mention the hierarchy problem.

 In retrospect, Brouwer himself may be said to have made the first steps towards
 a solution. He did not study the general question but only considered positively
 Borel sets of the second level. He found a countable union of closed sets that is
 not a countable intersection of open sets, and also a countable intersection of open
 sets that is not a countable union of closed sets, see [8] and [14]. When describing
 his examples in detail in Section 2, we shall make a minor correction in Brouwer's
 example of a set of the first kind, and we also explain that, where Brouwer bases
 his proof of the correctness of this example on the Fan Theorem, an elementary
 argument, not involving intuitionistic axioms, suffices.

 The Fan Theorem, to be mentioned in Subsection 1.6.5, is a consequence of
 Brouwer's Thesis on bars, see Subsection 1.6.2. The classical mathematician, when
 reading and interpreting it in his own way, would raise no objection to this principle.
 The Fan Theorem is not considered a valid principle in constructive mathematics
 by, for instance, E.R. Bishop. S.C. Kleene observed that the Fan Theorem does
 not hold in recursive mathematics. Classical mathematicians interpret his result as
 meaning that K?nig's Lemma does not stand a recursive interpretation. K?nig's
 Lemma, a contraposition of the Fan Theorem, is constructively false. Note that
 recursive or computable mathematics may also be studied from the intuitionistic
 point of view, see [7] and [50].

 In his proof of the existence of a set of the second kind, Brouwer makes a classically
 unacceptable and offensive assumption, later to be called Brouwer's Continuity
 Principle, see Subsection 1.3.2. The use of this assumption seems unavoidable, as
 we will see at the end of Subsection 0.9.

 Brouwer did not spend much thought on the economy of his assumptions. He left
 the task of carefully sorting them out for others, notably G. Kreisel and S.C. Kleene,
 see [24] and [27].

 Brouwer's early results on the second level of the hierarchy are formulated in
 a constructively strong way, that is, affirmatively, without using negation. He shows
 the following:

 There exists a subset X o/R that is a countable union of closed sets and has
 the property that, given any subset Y of M. that is a countable intersection
 of open subsets o/R and contains X as a subset, one may construct a real
 number y that belongs to Y but not to X, (actually, y belongs to a positive
 complement of X, and, therefore, y is constructively apart from every
 element ofX).
 Similarly, there exists a subset XofR that is a countable intersection
 of open sets and has the property that, given any subset YofR that is
 a countable union of closed subsets ?/R and contains X as a subset, one
 may construct a real number y that belongs to Y but not to X, (actually, y
 belongs to a positive complement of X, and, therefore, y is constructively
 apart from every element ofX).

 In the same way, the more general Borel Hierarchy Theorem that we are to prove
 in Section 7, is a constructively strong statement, and, when proving it, we resort to
 Brouwer's Continuity Principle, like Brouwer did in the proof of his early results.
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 THE BOREL HIERARCHY THEOREM  7

 0.6. In most of this paper, we study subsets of Baire space JV rather than subsets
 of the set R of real numbers. Results about subsets of JV translate easily into
 corresponding results about subsets ofR. A subset X of JV is basic open if and only

 if either X is empty or there exists a finite sequence s = (s (0), s ( 1 ),..., s (n - 1 ) ) of
 natural numbers such that X is the set of all infinite sequences a = (a (0), a ( 1 ),... )
 in JV such that, for all i < n, a(i) = s(i). A subset X of JV is open if and only if X
 is a countable union of basic open sets. We define closed subsets of JV, positively
 Borel subsets of JV and canonical classes of positively Borel subsets of JV as we
 defined closed subsets of R, positively Borel subsets of R and canonical classes of
 positively Borel subsets ofR in Subsection 0.2.

 Given subsets X, Y of JV we say that X reduces to Y, notation: X ^ Y, if and
 only if there exists a continuous function / from JV to JV such that for every a
 in JV, a belongs to X if and only if / (a) belongs to Y.

 One may prove that every canonical class ?% of positively Borel subsets of JV has
 a so-called complete element, that is, there exists an element P of 3? such that 3? is
 the class of all subsets of JV reducing to P.

 The Borel Hierarchy Theorem now may be formulated as follows: for every
 positively Borel subset P of JV there exists a positively Borel subset Q of JV such
 that Q does not reduce to P.

 In fact, however, the hierarchy theorem that we are to prove in Section 7, is
 a constructively much stronger statement:

 For every positively Borel subset P of JV there exists a positively Borel
 subset Q of JV such that, for every continuous function f from JV to JV
 mapping Q into P, one may construct an element a of JV such that f(cx)
 belongs to P, while a itself does not belong to Q and, in fact, belongs to
 some positive complement of Q, and, therefore, a is constructively apart

 from every element of Q.
 (One might say that Q positively fails to reduce to P).

 In Section 9, we prove that there exist subsets X of Baire space JV such that X
 itself is positively Borel but its double complement Ar_,~n is not. The example we
 intend to give is the set FitJ := {a e JV\3riim > n[a(m) = 0]}. Note that Fin^
 consists of those a in JV that assume only finitely many times a value different
 from 0.

 0.7. Brouwer's Continuity Principle, besides playing a crucial role in the proof of
 the hierarchy theorem, has a host of other consequences. Once we agree to accept
 and use it we enter a new world and discover many facts for which there does not
 exist a classical counterpart, see also [47]. The principle entails for instance that
 the union of the two closed sets [0,1] and [1,2] is not a closed subset of R and not
 a countable intersection of open subsets of R. One may also infer that there are
 unions of three closed sets different from every union of two closed sets. These
 observations are the tip of an iceberg. The intuitionistic Borel Hierarchy shows
 a rich fine structure that is studied more extensively in [53]. In Section 3, we prove
 that the class of the closed sets and also the class of the countable intersections of

 open sets are not closed under the operation of finite union. In Section 8, we extend
 this result to every canonical class of positively Borel sets that is a product class.
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 8  WIM VELDMAN

 (We defined canonical classes of positively Borel sets, product classes as well as sum
 classes, in Subsection 0.2).

 0.8. As is well-known, the early descriptive set theorists were greatly surprised
 by the fact that there exist "definable" subsets of R and JV that are not Borel sets.
 H. Lebesgue, in [29], had stated his conviction that the projection of a Borel set is
 itself Borel but he was discovered to be wrong by M. Souslin, see [40] and [30]. The
 class of th& positively projective sets that properly contains the class of the positively
 Borel sets, is treated in [53].

 0.9. In Subsection 1.4.2 we shall introduce the Second Axiom of Continuous
 Choice. This axiom, an extension of Brouwer's Continuity Principle, claims that,
 for every binary relation R on J?, if, for each a, there exists ? such that aR?, then
 there is a continuous function / from Jf to Jf such that, for every a, aRf(a).
 We let (a, ?) i?? (a, ?) be a strongly one-to-one continuous function from Jf x J\f

 into JV.

 Let Ibea subset of JV. We let Ex(X), the (existential) projection of X, be the
 set of all a such that, for some ?, (a, ?) belongs to X, and Un(X), the universal
 projection ofX,be the set of all a such that, for all ?, (a, ?) belongs to X.

 A subset X of Jf is called (positively) projective if it results from an open or
 a closed subset of JV by the repeated application of the operations of existential and
 universal projection.

 Using the Second Axiom of Continuous Choice, one may prove, see [53], that,
 for every closed subset A of JV, there exists an open subset B of Jf such that the

 sets Un [Ex(A)) and Ex(Un(B)) coincide. This fact causes the collapse of the
 (positive) projective hierarchy.
 We want to come back to a point raised in Subsection 0.5. The fact that the

 Second Axiom of Continuous Choice causes the collapse of the (positive) projective
 hierarchy shows that, as long as we believe the intuitionistic point of view to be
 consistent, we must give up the hope of proving the rise of the positive projective
 hierarchy in constructive mathematics, that is, mathematics where the logic of the
 arguments is restricted to be intuitionistic but no extra assumptions are used. This is
 a consequence of the obvious fact that all results proved in constructive mathematics
 are also provable in intuitionistic mathematics, see also [7].

 It is also not possible to prove the rise of the positive Borel hierarchy in con
 structive mathematics. This becomes clear if we extend the basic assumptions of
 constructive analysis by Church's Thesis, that is, the assumption that every infinite
 sequence of natural numbers is given by means of an algorithm in the sense of
 Church or Turing. As we intend to explain in Subsection 5.6, Church's Thesis,
 together with the so-called First Axiom of Countable Choice, see Subsection 1.2.1,
 causes the collapse of the positive Borel Hierarchy at the third level: every countable
 intersection of countable unions of closed sets in fact coincides with a countable

 union of countable intersections of open sets. This observation essentially is due to
 J.R. Moschovakis, see [35].

 It has been known for a long time that Brouwer's Continuity Principle is incom
 patible with the strong form of Church's Thesis we are considering here, see [42],
 Theorem 6.7, page 211.
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 THE BOREL HIERARCHY THEOREM  9

 We thus see that, if we want to prove the Borel Hierarchy theorem, we have to use
 some axiom that fails in recursive mathematics. In this sense, our use of Brouwer's

 Continuity Principle in proving the Hierarchy Theorem, seems unavoidable.

 0.10. Apart from this introductory section, the paper consists of nine sections.
 Except for Section 9, there is, at the beginning of each section, a short introduction
 giving some information on its contents.

 In the first section, we set out the axioms of intuitionistic analysis. In the second
 section, we discuss the second level of the Borel hierarchy.

 The titles of the remaining sections are as follows.

 1. The axioms and their plausibility.
 2. The second level of the Borel hierarchy.
 3. Some intuitionistic subtleties.

 4. Introducing the class of subsets of JV that are positively Borel.
 5. The constructive content of the classical Borel Hierarchy Theorem.
 6. The intuitionistic Finite Borel Hierarchy Theorem.
 7. The full intuitionistic Borel Hierarchy Theorem.
 8. The never-ending productivity of disjunction.
 9. The complement of a positively Borel set may fail to be positively Borel.

 The reader who is already familiar with intuitionistic mathematics may skip
 Section 1.

 0.11. I dedicate this paper to the memory of Johan J. de Iongh. He introduced me
 to Brouwer's intuitionistic mathematics and asked the question that led to all further
 ones. As much a philosopher as a mathematician, he hoped to gain insight from
 precisely and carefully proved mathematical results and he expected that sensible
 mathematical questions may arise from philosophical reflection. I have learnt much
 from him, enjoying his lectures and taking part in the seminar on intuitionistic

 mathematics he conducted in the seventies in Nijmegen. Wim Gieler?s attempts to
 justify and possibly extend the principles of intuitionistic mathematics touched my
 imagination and now and then resound in Section 1. I am indebted to him and
 also to the other participants of this seminar, among them Harrie de Swart and Jo
 Gielen.

 My later students and, in particular, my Ph.D. students Tonny Hurkens and Frank
 Waaldijk, by their enthusiasm and sometimes critical interest, helped me to sustain
 my belief that intuitionistic mathematics is an enjoyable and enlightening enterprise.

 0.12. This paper has a number of earlier versions. The last one of these earlier
 versions is [53], but the main result of the paper occurs already in [43]. I thank the
 referees of the various earlier versions for their generous efforts. Their comments
 have led to substantial improvements and to the removal of many inaccuracies.

 ?1. The axioms and their plausibility. We explain our point of view and list the
 assumptions to be used.
 We are contributing to intuitionistic analysis. The logical constants have their

 constructive meaning and we follow the rules of intuitionistic logic. In particular,
 a disjunctive statement A V B is considered proven only if either A or B is proven and
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 10  WIM VELDMAN

 a proof of an existential statement 3x e V[A(x)] has to provide one with a particular
 element xo from the set V and a proof of the corresponding statement A(xo).

 1.1. Infinite sequences of natural numbers. Intuitionistic mathematics distinguish
 es itself from other varieties of constructive mathematics by its conception of the
 set of all infinite sequences of natural numbers. This set is not a set in the sense of
 classical set theory. One does not call it into being by bringing together its already
 existing elements. It could be described tentatively as a kind of frame on which
 all kinds of projects for constructing infinite sequences of natural numbers may
 be executed, or, more poetically, as a loom on which all kinds of tapestry may be
 woven.

 The seemingly more simple set of the natural numbers also has to be handled
 with care. The intuitionistic mathematician considers it as a never finished project
 for producing the natural numbers one by one, 0,1,2,_

 Just as the in some sense canonical and exemplary infinite sequence 0,1,2,...
 every infinite sequence a of natural numbers is never complete and always un
 finished, growing step by step as its elements are brought forward one by one,
 a(0),a(l),a(2),....

 The course of the infinite sequence is sometimes dictated by a finitely described
 algorithm that one keeps evaluating, like (<always the value 0" or "the decimal
 expansion ofn", but Brouwer's imagination did go further. He came to think, for
 instance, of the following project a: for each n, a(n) = 0 if at the moment I want
 to decide on the value of a in n I have found a proof of Riemann's hypothesis and
 a(n) = 1 if not. The sequence a is thus made to depend on my future experience
 as a creating mathematical subject. This is a puzzling proposal, and, unlike an
 ordinary definition, it does not settle unambiguously the successive values of the
 sequence. The creating subject still has many decisions to take, for instance, how to
 count its time. Brouwer, not going into such problems, envisaged the perhaps even
 more embarassing possibility of not prescribing anything and allowing the creating
 subject to choose the successive values of a wholly to its own liking. There is then,
 as far as we know, no "rule" or "secret plan" governing the development of the
 sequence. The only thing we know is that the creating subject, that is, we ourselves,
 should keep its/our promise to continue the project and to deliver a next value
 whenever invited to do so. In such circumstances we never have more information

 about the infinite sequence than its first finitely many values.
 Brouwer did not believe that one may distinguish clearly between algorithmic

 sequences and non-algorithmic ones. There are sequences that fall between the
 two stools. One may start building a sequence by free choices and then, at
 some moment, decide to fix its further course by a description in finitely many
 words.

 What is more, we want to consider infinite sequences from the extensional point
 of view and deliberately disregard their origin. Every infinite sequence of nat
 ural numbers comes into being in many different ways and always, even if it is
 given by an algorithm, may be imagined to be the result of a free step-by-step
 construction.

 In the following, we make an attempt to justify some of the axioms of intuitionistic
 analysis from this point of view.
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 THE BOREL HIERARCHY THEOREM  11

 1.2. Four axioms of countable choice. We let N be the set of natural numbers and

 jy the set of all infinite sequences of natural numbers. We use m,n,... as variables
 over N, and a, ?,... as variables over JV. JV is sometimes called Baire space. Cantor
 space <? is the set of all a'mJV that assume no other values than 0,1.

 1.2.1. First Axiom of Countable Choice:

 For every binary relation R on N, if for every m there exists n

 such that mRn, then there exists a such that, for every m, mR (a(m)).
 We accept this axiom for the following reason.
 Suppose we are able to calculate, given any natural number m, a natural number

 n suitable for m, that is, such that mRn. We then are sure to be able to carry through
 the project of constructing step by step an infinite sequence a such that, for every
 m, a(m) is suitable for m. We first choose a(0), then a(\),_We do not feel the
 need to formulate a rule that predicts the choices we will make. Observe that we
 can not, like non-intuitionistic mathematicians, define a by saying: let a(m) be the
 least n such that mRn. One may be unable to find the least such n, for instance, if
 one knows 0R\ but cannot decide if 0R0 or not.

 1.2.2. Before we introduce a second axiom of countable choice we agree on some
 notations. N* is the set of all finite sequences of natural numbers. We let ( ) be
 a fixed bijective mapping from N* onto N. Such a function is called a coding of the
 set of finite sequences of natural numbers: (a0, a\,..., a^-i) is the code number of
 the finite sequence (ao, a\,...,a,k-\). We assume that the empty sequence is coded
 by the number 0 and that for each finite sequence (ao,a\,... ,a/c_i), for every i < k,
 the code number (a?,, a\,..., a^-x) is greater than a?. We let length be the function
 from N to N that associates to any natural number a the length of the finite sequence
 coded by a. We also assume that there is a function a, i i?> a(i) from N x N to N, such
 that, for every k, for every a, if length(a) = k, then a = (a(0),a(\),... a(k ? 1)).
 We let * denote concatenation: * is a function from N x N to N such that, for

 all m, n, m * n is the code number of the finite sequence obtained by putting the
 sequence coded by n behind the sequence coded by m.

 For all m,n,m is an initial part ofn, notation: m C.n, if and only if there exists p
 such that n = ra * p; and n is an immediate successor of m if and only if there exists
 p such that n = m* (p).

 We define another function, called J, from N x N to N: for all m, n : J(m, n) :=
 (m) * n. It is easy to see that / is a bijective mapping from N x N onto N\{0}.
 We let K, L be the inverse functions of /, that is, K and L are functions from

 N\{0} toN and for each m, w/0: j(K(m),L(m)) = m.
 J is a non-suv)QctivQ pairing function on N.

 We define, for all a, for all m,n, am(n) := a(j(m,n)). am is called the m-th
 subsequence of a. We also define, for all a, for all m, n, am-n := (am)n.

 1.2.3. Second Axiom of Countable Choice:

 For every binary relation R ? N x JV, if for every m there exists a such that
 mRa, then there exists a such that, for every m, mR(am).

 We accept this axiom for the following reason.
 Suppose we are able to calculate, given any natural number m, an infinite sequence

 a of natural numbers suitable for m, that is such that mRa. We then form the project
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 12  WIM VELDMAN

 of building an infinite sequence a such that for every m, am will be suitable for m.
 We again construct this a step by step. The difficulty of the construction is only
 slightly greater than in the case of the First Axiom of Countable Choice. We have
 to start and keep going an infinite number of never finished constructions, one for
 a0, one for a1,..., and so on. At each stage exactly one of these constructions is
 brought one step further: at stage n one defines q^("+1) (L(n + 1)).

 1.2.4. First Axiom of Dependent Choices:

 For every subset X of N, for every binary relation R ? X x X, if for every m
 in X there exists n in X such that mRn, then for every m in X there exists a

 such that a(0) = m and, for every n, (a(nf)R(a(n + 1)).
 We accept this axiom for the following reason.
 Suppose we are given at least one element of X, say m. Also assume that for

 every element p of X we are able to calculate an element n of X suitable for p, that
 is, such that pRn. We then start building a sequence a step by step, first defining
 a(0) = m, then finding a(l) suitable for a(0), then finding a(2) suitable for a(l),
 and so on.

 The First Axiom of Dependent Choices will be used in the proof of Lemma 8.5.
 1.2.5. Second Axiom of Dependent Choices:

 For every subset X of JV ,for every binary relation R ? X x X, if for every
 a in X there exists ? in X such that aR?, then for every a in X there exists
 ? such that?0 = a and, for every n, (?n)R(?n+l).

 We accept this axiom for the same reason as the previous one. We do not think it
 important that, this time, the objects to be chosen are infinite sequences of natural
 numbers rather than natural numbers. In Section 8 we will apply this axiom in order
 to derive a special case of the Second Axiom of Continuous Choice from the First
 Axiom of Continuous Choice, see Lemma 8.7. The axioms of continuous choice
 will be discussed in Subsection 1.4.

 1.3. Brouwer's Continuity Principle.
 1.3.1. We define, given any a and any n,a(n) := (a(0),a(l),... ,a(n ? 1)).
 If confusion is unlikely to arise, we sometimes write an for a(n).

 We also define, given any a and any s, s is an initial part of a, or: a passes
 through s, or: s contains a, if and only if, for some n,a~n = s.

 The following axiom is classically false. It makes that formal intuitionistic analysis
 is not a subsystem of formal classical analysis.

 1.3.2. Brouwer's Continuity Principle:

 For every binary relation R ? JV x N, if for every a there exists m such that
 aRm, then for every a there exist m,n such that for every ?, if an = ?n,
 then ?Rm.

 We accept this axiom for the following reason.
 Suppose we are able to calculate, given any infinite sequence a of natural numbers,

 a natural number m suitable for a, that is, such that aRm. We are attaching the
 strongest possible meaning both to the "for every a " and to the "there exists". Given
 any infinite sequence whatsoever from the wildly unsurveyable set JV we know how
 to effectively discover a natural number suitable for it. In particular we can find
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 a suitable number if the sequence is created step by step. A number m, suitable for
 an a that is given step by step will be found at some moment of time, and at that
 moment only finitely many values of a, say a(0), a(l),... ,a(n ? 1) will be known.
 The number m will therefore suit every ? that has its first n values the same as a.

 We repeat the remark we made at the end of Section 1.1: every a, even an
 algorithmically given one, can be thought of as resulting from a free step-by-step
 construction.

 Brouwer's Continuity Principle is a crucial assumption for the main results of this
 paper.

 In spite of our attempt to explain why the intuitionistic mathematician believes
 Brouwer's Continuity Principle to be a sensible proposal, some reader may judge
 the assumption outrageous. We would like to confront him with the following
 quotation:

 A (real) function can be computable only if it is continuous, at least for
 computable arguments.

 ?. Borel, in [4], page 223. Borel compares computable with asymptotic functions.
 The value of a "function" of the latter kind depends on the whole infinite develop
 ment of the argument.

 One of the most important applications of Brouwer's Continuity Principle is the
 theorem that every (total) real function is continuous, see [9] and [47]. It is difficult
 to suppress the thought that Brouwer might have been able to convince Borel of the
 plausibility of his Continuity Principle. One could describe Brouwer's Continuity
 Principle as a remark to the effect that, if we are prepared to assume that every
 constructively defined real function is continuous, we have to be consistent and
 should accept the principle underlying this theorem and its unusual consequences.

 1.3.3. Let X be a subset of JV. We let the sequential closure, or, more simply, the
 closure ofX, notation X, be the set of all ainJV such that for each n there exists ?
 in X passing through an. Note that, by the Second Axiom of Countable Choice,
 for all a in JV, a belongs to X if and only if there exists ?'mJV such that, for each n,
 ?n belongs to X and an = ?nn.

 X is sequentially closed if and only if X coincides with its closure X.
 X is a spreadif and only if X is sequentially closed and, in addition, X is a located

 subset of JV, that is, there exists y such that, for every natural number s, s contains
 an element of X if and only ify(s) = 1.

 Deviating from Brouwer's usage, we also want to call the empty set a spread.

 1.3.4. We let Fun be the set of all y such that, for every a, there exists n such that
 y (an) / 0. For every y in Fun, every a, we let y (a) be the natural number p such
 that there exists n such that y (an) = p + 1 and, for every m < n, y (am) = 0. In
 this way, every y in Fun acts as a code for a continuous function from JV to N.

 Observe that, if y belongs to Fun and y(0) = 0, then for each n, yn belongs to
 Fun. For every y in Fun such that y (0) = 0, for every infinite sequence a we define
 an infinite sequence y\a as follows: for each n, (y\a)(n) := yn(a). In this way,
 every y in Fun such that y (0) = 0 acts as a code for a continuous function from JV
 to jr.

 1.3.5. Let X be a subset of JV and a non-empty spread.
 We intend to define an element rx of Fun with the following two properties:
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 14  WIM VELDMAN

 (i) rx(0) = 0 and for each a, rx \a belongs to X
 (ii) For each a in X, rx \a coincides with a.

 rx will be called the canonical retraction of JV onto X.
 In order to define rx we first define ? such that ?(0) = 0 and for each s,n,

 ?(s * (n)) :? ?(s) * (n) if?(s) * (n) contains an element of X, and<5(s * (?)) :=
 ?(s) * (p) where p is the least natural number q such that ?(s) * (q) contains an
 element of X, if ?(s) * (n) does not contain an element of X. It is easy to see that?
 is well-defined and that (i) for each s,?(s) contains an element of X, (ii) for each s,
 if s contains an element of X, then ?(s) = s, and (iii) for each s, for each n, there
 exists p such that ?(s * (?)) = ?(s) * (p). We now may determine rx in such a way
 that for every a, for every ?, r^ |a passes through ? (an).
 Observe that for every a, ?,n, if an = ?n, then rx\an ? rx\?n.

 1.3.6. Theorem. (Extension of Brouwer's Continuity Principle to spreads):

 Let X be a non-empty spread and R a subset ofX x N.
 If for every a in X there exists m such that aRm, then for every a in X
 there exist m, n such that for every ? in X, if an = ?n, then ?Rm.

 Proof. Observe that for every a in JV there exists m such that (rx\a)Rm, and
 apply Brouwer's Continuity Principle. H

 In Theorem 2.14 we will see that Brouwer's Continuity Principle also generalizes
 to some subsets of JV that are not spreads.

 1.3.7. Let X be a spread. We let Fun^ be the set of all y such that, for every a
 in X, there exists n such that y (aw) ^ 0. For every y in Fun^, every a in X, we let
 y (a) be the natural number p such that there exists n such that y (an) = p + 1, and
 for every m < n, y (am) = 0.
 We let Fun^ be the set of all y such that y (0) =0 and, for each n, yn belongs to

 Fun^. For every y in Fun^, for every a in X, we define the element y\a of JV as
 follows: for each n, (y\a)(n) := yn(a).

 If y belongs to Fun^ we say that y is a function from X to N.
 If y belongs to Fun^ we say that y is a function from X to JV.
 In particular, an element of Fun will be called a function from JV to N, and an

 element y of Fun such that y(0) = 0 will be called a function from JV to JV'.
 Suppose that Z is a subset of JV and y is a function from X to JV such that for

 every a in X, y\a belongs to Z. We then say that y is a function from X to Z.

 1.4. Two axioms of continuous choice. The perception underlying the Continuity
 Principle may be given a more incisive formulation.

 1.4.1. First Axiom of Continuous Choice.

 For every binary relation R ? JV x N,
 if, for every a, there exists m such that aRm,

 then there exists y in Fun such that, for every a, aR(y(a)).
 We accept this axiom for the following reason.
 Suppose we are able to find, for every infinite sequence a a natural number m

 suitable for a, that is, such that aRm. We allow ourselves to construct the promised
 y step by step and consider the (code numbers of the) finite sequences of natural
 numbers one by one.
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 Each time we imagine the finite sequence as beginning an infinite sequence that is
 growing step by step, and we ask ourselves if, as such, it suffices for the determination
 of a natural number that suits this infinite sequence. If it does, we determine such
 a number, call it p, and let the value of y at (the code number of) the finite sequence
 be p + 1, if not, we let that value be 0. We may convince ourselves that for every
 a, whether it is given by an algorithm or is constructed, more or less freely, step by
 step, there will exist n such that y (an) ^ 0, by reasons similar to the ones that made
 us accept Brouwer's Continuity Principle.

 In this paper, the First Axiom of Continuous Choice is used only in the proof the
 Finite Borel Hierarchy Theorem, Theorem 6.5. It is not used in the proof of the
 general Borel Hierarchy Theorem, Theorems 7.9 and 7.10.

 1.4.2. Second Axiom of Continuous Choice:

 For every binary relation R ? JV x JV',
 if, for every a, there exists ? such that aR?,
 then there exists y in Fun such that y (0) = 0 and, for every a, aR(y \a).

 This axiom implies the two Axioms of Countable Choice and the First Axiom of
 Continuous Choice. We accept it for the following reason.

 Suppose we are able to find, for each infinite sequence a, an infinite sequence ?
 suitable for a, that is, such that aR?. We construct the promised y step by step, as
 follows: we require y(0) := 0 and now define, inductively, for each a, the numbers
 yQ(a), yl(a),... simultaneously.

 Our definition will be such that, for each n, a, if yn(a) ^ 0, then n < a. When
 considering the code number a of a finite sequence of natural numbers we look
 for the least n < a with the property that there is no initial part b of a such that
 yn(b) ^ 0. If there is no such n, we define, for each i, yl(a) = 0. If there is one,
 we call this number no. We imagine the finite sequence coded by a as beginning
 an infinite sequence a that we are constructing step by step. Clearly, we managed
 already to determine the first no values of an infinite sequence ? suitable for a and, as
 we are able to continue the project we started earlier, now ask ourselves if a suffices
 to determine the next value. If so, we calculate this next value, call it p and define
 yn?(a) := p + 1, if not, we define yn?(a) := 0. For each/ ^ no, we define y l(a) := 0.

 The argument that this procedure guarantees: y (0) = 0, y belongs to Fun and, for
 all a, aR(y\a), is similar to the argument given for the First Axiom of Continuous
 Choice and we do not spell it out.

 The Second Axiom of Continuous Choice will not be used in this paper. It is
 used in the proof of the collapse of the projective hierarchy, see [53].

 1.4.3. Theorem. (Extension of the Axioms of Continuous Choice to spreads):
 Let X be a spread.

 (i) For every binary relation R ? X x N,
 if, for every a in X, there exists m such that aRm, then there exists a function

 y from X to N such that, for every a in X, aR (y(a)).
 (ii) For every binary relation R ? X x JV,

 if for every a in X there exists ? such that aR?, then there exists a function
 from X to JV such that, for every a in X, aR(y\a).

 Proof. The proof is similar to the proof of Theorem 1.3.6. H
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 1.5. Stumps or: inductively well-founded trees. We need something like countable
 ordinals and introduce stumps, or: inductively well-founded trees. We have taken the
 word "stump" from [12] but are giving it a slightly different meaning.

 For each n, we let n be the element of JV with the constant value n.

 1.5.1. The set Stp of stumps is a subset of Baire space JV and is defined as follows.

 (i) 1 is a stump. We sometimes call I the empty stump.
 (ii) For all ? in JV, if, for each n, ?n is a stump, and ?(0) = 0, then ? itself

 is a stump. We call the stumps ??,?l,... the immediate substumps of the
 stump/?.

 (iii) Clauses (i) and (ii) produce all stumps.

 N. Lusin doubted the legitimacy of introducing a set in this way by an inductive
 definition and Brouwer occasionally expressed similar feelings. We accept the above
 definition, and, as a consequence of (iii), recognize the possibility of giving proofs
 and constructing functions by transfinite induction on Stp.

 Note that for every stump ?, if ?(0) = 1, then ? = 1, and, if ?(0) = 0, then
 ? ^ I, so we may decide if ? is the empty stump or not.

 For every stump ?, we define the successor of ?, notation: ?+ or S(?), by:
 (S(?)) (0) = 0 and for every n, (S(?))n = ?.
 We define a sequence 0*, 1*,... of stumps by induction, as follows. 0* := 1 and,

 for each n, (n + 1)* := S(n*). Thus we obtain a natural embedding of the set N
 into the set Stp.

 1.5.2. First Principle of Induction on the set Stp of stumps:

 For every subset P of the set Stp of stumps, if the empty stump \ belongs
 to P, and every non-empty stump ? belongs to P as soon as each one of its
 immediate substumps ??, ?l,... belongs to P, then P coincides with Stp.

 If one accepts the definition of the set Stp given in Subsection 1.5.1, one will also
 subscribe to this principle of induction. Closely related is the following principle of
 recursion.

 1.5.2.1. Principle of Recursion on the set Stp of stumps:

 For every function F from JV to JV ,for every a in JV, there exists a function
 G from the set Stp of stumps to JV such that
 (i) G (I) = a, and
 (ii) for every non-empty stump ?, G(?) = F (y) where y(()) = 0 and, for

 eachn,yn = G(?n).
 We treat this principle of recursion informally. A proper treatment requires the

 introduction of a new type of objects: functions from the set Stp to JV and has
 to be discussed more fully elsewhere. In the proof of Theorem 4.9 we will see that
 application of this principle of recursion sometimes makes it possible to avoid an
 application of the Second Axiom of Countable Choice.

 1.5.3. For every ?, for every n, we say that n belongs to ? if and only if ?(n) =0.
 (We are interpreting ? as the (inverse) characteristic function of a subset of N).

 Let ? be a stump. The set of all finite sequences of natural numbers whose code
 number belongs to ? is more like a "stump" in the sense given to this word by
 Brouwer. We mention four important properties of this set.
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 (i) We may decide, for every finite sequence of natural numbers, if its code number
 belongs to ? or not.

 (ii) Every initial part of a number belonging to ? belongs to ?.
 (iii) For every y in JV, we may calculate n such that yn does not belong to ?.
 (iv) For every S in JT, if (I) every initial part of a number belonging to S belongs too,

 and (2) every number belonging to ? belongs to ? and (3) for all n, if?(n) ^ 0,
 then?(n) = 1, then ? itself is a stump.

 These properties may be verified by induction on the set Stp of stumps.
 Observe that there is no finite sequence whose code number belongs to 1. This

 explains why 1 is sometimes called the empty stump.
 As we observed in Subsection 1.5.1, we may decide, for every stump ?, if ? = 1

 or not.

 For every ?, for every s, we say that s belongs to the border of ? if and only if s
 is just outside ?, that is, either ? = I and s = ( ) or ? ^ I and there exist t, n such
 that s = t * (n) and t belongs to ? and s does not belong to ?.

 A subset Q of N is called inductive if and only if, for every s, if every immediate
 successor s * (n) of s belongs to Q, then s itself belongs to Q.

 1.5.4. Principle of Stump Induction:
 Let ? be a non-empty stump.

 0 = ( ) belongs to every inductive subset Q ofN containing the border of ?.

 We leave it to the reader to prove this principle by induction on the set Stp.
 1.5.4.1. Principle of Stump Recursion:

 Let ? be a non-empty stump.

 For every function F from JV to JV ,for every a in JV there exists y in JV such
 that
 (i) For every s belonging to the border of ?, ys = as.
 (ii) For every s belonging to ?,ys = F (S), where ?(( )) = 0 and, for each n,

 Sn = F(ys*^).
 Also the proof of this principle is left to the reader.

 1.5.5. From now on we use o, x, ... as variables on the set Stp. We define binary
 relations <, < on the set Stp of stumps as follows:

 (i) for every stump o,\<o and for no stump a, a < I, and
 (ii) for all stumps o, x such that x ^ I, x < a if and only if for each n,xn < a, and

 o < x if and only if, for some n, o < xn.

 One may prove, by straightforward (transfinite) induction on the set of stumps
 that the relations <, < are transitive and that, for all stumps o,x, if a < x, then
 o < x. Another useful fact is that, for all stumps o, x, p, if a < x and x < p, then
 a < p.

 In general, it is impossible, given stumps o, x to decide if a < x or not. The
 relation < also fails to be decidable on Stp. The following example in Brouwer's
 style makes this clear.

 Let d be the decimal expansion of n, that is, d belongs to JV and n =
 3 + J2T=o d(n).\0~n~x. Let o be the element of <? such that, for every s,
 o(s) = 0 if and only if either s = ( ) or there exists n such that s = (n)
 and, for all i < 99, d{n + i) = 9. Note that 1* < a if and only if there
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 exists n such that, for all i < 99, d(n + i) = 9.
 Also note that o < 1* if and only if there is no such n.
 Finally, observe that we are unable to indicate the least element of the set

 A subset P of Stp is called hereditary if and only if for every stump o, o belongs
 to P if every r < o belongs to P.

 1.5.6. Second Principle of Induction on the set Stp of stumps:

 Every hereditary subset of Stp coincides with Stp.

 The proof is straightforward.
 Observe that this principle does not imply that every inhabited set P of stumps

 contains an element o that, for all z in P, o < x. Actually, it is not even true that
 every inhabited subset of {0*, 1*} has a least element. In Subsection 1.5.5, we have
 seen another inhabited set of stumps with at most two elements such that we are
 unable to find its least element.

 In [49] some other principles of induction on stumps are explained and used.

 1.6. Brouwer's Thesis on bars and the Fan Theorem. We now consider the as

 sumption that underlies the famous Bar Theorem.

 1.6.1. A subset P of N will be called a bar in JV if and only if for each a there
 exists n such that an belongs to P.

 1.6.2. Brouwer's Thesis on Bars:

 For every subset P of N, if P is a bar in JV, then there exists a stump ? such
 that the set of all elements ofP belonging to ? is a bar in JV.

 Brouwer thought that his Thesis could be seen to be true by reflection on the
 possible structure of a (canonical) proof of the fact "for every a there exists n such
 that P(?~n)". We shall not discuss his argument at this place.

 The above formulation of Brouwer's Thesis does not literally occur in Brouwer's
 writings. As was discovered by S.C. Kleene, see [27], Brouwer used the fundamental
 assumption underlying his famous bar theorem incorrectly, and we believe the above
 formulation of his ''Thesis", a term we introduced because of its analogy to Church's
 Thesis, comes close to what he really intended, see [54].

 A subset Q of N is called monotone if and only if, for every s, if s belongs to Q,
 then every immediate successor s * (n) of s belongs to Q.

 1.6.3. Principle of Induction on Monotone Bars:
 Let P be a bar in JV.

 (i) 0 = ( ) belongs to every subset Q ofN that is both monotone and inductive and
 contains P as a subset.

 (ii) If P is monotone, then 0 = ( ) belongs to every subset QofN that is inductive
 and contains P as a subset.

 One easily proves these two equivalent statements from Brouwer's Thesis and the
 Principle of Stump Induction 1.5.4. It is observed in [34], see also [54], that the
 principle of induction on monotone bars is equivalent to Brouwer's thesis on bars.
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 1.6.4. The Fan Theorem is the most famous consequence of Brouwer's Thesis.
 A fan or finitary spread is a subset F of Baire space JV such that there exists ?

 with the following two properties:

 (i) for every a, a belongs to F if and only if, for each n, ?(?~n) = 0, and
 (ii) for each ?such that ?(n) = 0 there exists m such that, for all/:, if ? (n*{k)) = 0,

 then/: < m.

 Let X be a subset of JV and let P be a subset of N. P is called a bar in X if for every
 a in X there exists ? such that an belongs to P.

 1.6.5. Unrestricted Fan Theorem:

 Let F ? JV be a fan. For every subset PofN,ifPisa bar in F, then some
 finite subset of P is a bar in F.

 Brouwer used the Fan Theorem for proving that every real function defined on
 [0,1] is uniformly continuous on [0,1], see [9].
 Note that, in the formulation of the Unrestricted Fan Theorem, we do not require

 P to be a decidable subset of N, as one does in the usual (Restricted) Fan theorem.
 More information on various formulations of the Fan Theorem may be found
 in [50].

 The most important example of a fan is Cantor space g\ the set of all a m JV
 that assume no other value than 0,1. Using a weak form of the First Axiom of
 Countable Choice one may derive the (Unrestricted) Fan Theorem for arbitrary
 fans from the (Unrestricted) Fan Theorem for f? only, see [50].

 1.6.6. It is remarkable that Brouwer did not use his Thesis on Bars for stronger
 conclusions than the Fan Theorem. In [43] and [53], several such stronger conclu
 sions are drawn.

 1.7. Real numbers. We now introduce real numbers. There are several ways to
 introduce real numbers into intuitionistic analysis. The treatment chosen starts
 from the idea that, for every real number x, for all rational numbers q, r such that
 q < r, one may decide: either q < x or x < r.

 1.7.1. Let p be an enumeration of the set Q of the rational numbers.
 Let a belong to JV.
 a is called a real number if and only if, for each n,

 p(a(2n)) <p(a(2n + 2)) < p(a(2n + 3)) <p(a(2n + l)),
 and, for every q,r in Q, if q < r, then there exists? such that either/? (a (2n + 1)) < r
 or q < a(2n).

 a is called a canonical real number if, in addition, for each n, if

 p(K(n + l))<p(L(n + l)),
 then either p(K(n + 1)) < p(a(2n)) or p(a(2n + 1)) < p(L(n + l)).
 We denote the set of real numbers by R and the set of canonical real numbers

 by Crn.
 For each rational number q we define a canonical real number q$ as follows.

 (i) We determine mo = the least m such that p(K(m)) < q < p(L(m)), and,
 if p(K(0)) < p(L(0)), then either p(K(0)) < p(K(m)) or p(L(m)) <
 p(L(0)), and we define: q*(0) = K(m0) and^(l) - L(m0).
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 (ii) For each?, wedetermine m i = the least m such that/? (q^ (In) ) < p(K(m)) <
 q < p(L(m)) < p(q\2n + 1)), and, if p(K(n + 1)) < p(L(n + 1)), then
 either p(K(n + 1)) < p(K(m)) or p(L(m)) < p(L(n + 1)), and we define:
 q\2n + 2) = K(mx) and q^(2n + 3) = L(mx).

 We might have followed a different course, by introducing not the set of the
 rational numbers but an elementary binary relation <q on the set N of the natural
 numbers such that <q is a dense linear order of N without endpoints. We then
 would write "m <q n" rather than up(m) < p(n)".

 Note that we use the symbol "<" both for the ordering on N and for the ordering
 on Q. We trust that this ambiguity did not cause confusion until now and will not
 do so in the sequel.

 1.7.2. Let a, ? be real numbers.
 a is really-smaller than ?, notation a <* ?, if and only if there exists n such that

 p(a(2n + 1)) < p(?(2n)). a is really-not-greater than ?, notation a <* ? if and
 only if, for each n, p(a(2n)) < p(?(2n + 1)).

 a is really-apart from ?, notation a #* ?, if and only if either a <* ? or ? <* a.
 a really-coincides with ?, notation a =* ?, if and only if the assumption a #* ?

 leads to a contradiction.

 We let the open real interval (a, ?) be the set of all real numbers y such that
 a <* y <* ?. We let the closed real interval [a, ?] be the set of all real numbers y
 such that a <* y <* ?.

 Let A, B be subsets of R.
 We say that A really coincides with B if and only if every element of A really

 coincides with an element of B and conversely, every element of B really coincides
 with an element of A.

 1.7.3. One may prove that the set R of the real numbers really-coincides with
 the set Crn of the canonical real numbers, and that Crn, viewed as a subset of JV,

 is a spread. Using this fact and applying Brouwer's Continuity Principle one may
 prove the famous result that every real function is continuous, see [9] and [47].

 ?2. The second level of the Borel hierarchy. The notion that something like the
 Borel hierarchy might exist finds its origin in the observation that there is a countable
 union of closed sets that is not a countable intersection of open sets, and also
 a countable intersection of open sets that is not a countable union of closed sets. In
 this section we make this observation three times over.

 We first prove that the examples that first come to mind, the set of the rational
 numbers, and the set of the positively-irrational numbers, satisfy the expectations.
 We then give some comments on the examples given by Brouwer himself. Finally,
 we move to Baire space and prove the theorem in the form that is most suitable
 for the further developments in this paper. In this context, we introduce the very
 important relation of (Wadge-deducibility between subsets of Baire space.
 We thus prove three pairs of theorems. The first theorem of each pair is obtained

 by an elementary argument, whereas the second theorem of each pair requires an
 application of Brouwer's Continuity Principle.
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 2.1. We want to define four classes of subsets of Baire space JV\ ?ls nl9 L2
 andn^.

 Let X be a subset of Baire space jr.
 X is basic open if and only if either X is empty or there exists s in N such that X

 consists of all a passing through s.
 X is open or L? if and only if there exists a sequence Xo,X\,... of basic open sets

 such that X = \JneNXn.
 For every y in JV, we let j?7 be the set of all p in N such that, for some n,

 y(n) = p + 1. We call Ey the subset of N enumerated by y. A subset F of N is called
 enumerable if and only if, for some y, Y coincides with Ey.

 (A subset Y of N is called inhabited if and only if we are able to indicate an
 element of Y. Note that an inhabited subset Y of N is enumerable if and only if
 there exists S such that, for every p, p belongs to Y if and only if, for some n,
 p ?S(n). We then say that? is a strict enumeration of Y.)

 Note that a subset X of JV is open if and only if there exists y'mJV such that, for
 every a, a belongs to X if and only if, for some m, am belongs to Ey, that is, if and
 only if, for some m, n, y(n) = am + 1.

 For every y in JV, we let Dy be the set of all n in N such that y (n ) = 1. We call Dy the
 subset of N decided byy.A subset Y of N is called decidable if and only if, for some
 y, Y coincides with Dy. Every decidable subset of N is an enumerable subset of N.

 Suppose that X is an open subset of JV, and that y is an element of JV such that,
 for all a, a belongs to X if and only if, for some m, am belongs to Ey. Let ? be an
 element of JV such that, for all s, ?(s) = 1 if and only if there exists an initial part /
 of s and a number n < s such that y(n) = t + 1. Note that, for all a, a belongs to
 X if and only if, for some m, am belongs to Ds. We thus see that a subset X of JV
 is open if and only if there exists a decidable subset Y of N such that, for every a,
 a belongs to X if and only if, for some m, am belongs to Y.

 A subset X of JV is closed or U?{ if and only if there exists an open set Y such
 that X consists of all a that do not belong to Y. Equivalently, a subset X of JV is
 closed if and only if there exists a sequence Xo, X\,... of basic open sets such that

 X = OwenC^")""- (Recall that, for each subset Y of JV, Y" is the set of all a'mJT
 such that the assumption: "a belongs to Y" leads to a contradiction.)

 Note that X is closed if and only if there exists y'mJV such that, for every a in JV,
 a belongs to X if and only if, for all m, n, y(n) ^ am + 1.

 Every closed subset of JV is sequentially closed in the sense of Section 1.3.3, but
 not conversely. In general, a closed subset of JV is not a spread in the sense of
 Section 1.3.3, but every spread is a closed subset of JV.

 A subset X of JV is ?j if and only if there exists a sequence Xo,X\,... of closed
 sets such that X = U?gn ^?

 By the Second Axiom of Countable Choice, X is X^ if and only if there exists y
 in JV such that, for every a in JV, a belongs to X if and only if, for some n, for all
 V^,yn(p) ^?q + l.

 A subset X of JV is n^ if and only if there exists a sequence Xo,X\,... of open
 sets such that X = U?en %n

 By the Second Axiom of Countable Choice, X is IT2 if and only if there exists y
 in JV such that, for every a in JV, a belongs to X if and only if, for every n, there
 exist p, q such that yn (p) = ?q + 1.
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 2.2. We want to define four classes of subsets of the set R of the real numbers

 and we give them again the names ??, n?, H\ and I^.
 Let X be a subset of the set R of real numbers.

 X is (really) basic open if and only if either X is empty or there exists rational
 numbers p, q such that X is the open interval (p, q), that is, X consists of all a in R

 for which there exists n such that p < p(a(2n)) < p(a(2n + 1)) < q.
 X is (really) open or (really) ?? if and only if there exists a sequence Xo,X\,...

 of (really) basic open sets such that X = \JneN Xn, that is, if and only if there exists
 y in JV such that, for every a in R, a belongs to X if and only if, for some m, n,

 p(y(2n)) < p(a(2m)) < p(a(2m + 1)) < p(y(2n + 1)).
 The notions of a (really) II?, (really) 1%, (really) iQ subset ofR are defined as

 the corresponding notions for subsets of JV in Section 2.1. Observations similar to
 those made in Subsection 2.1 apply. For instance, X is (really) II2 if and only if there
 exists yinjV such that, for every a in R, a belongs to X if and only if, for every n,

 there exists p,q such that p(yn(2p)) < p(a(2q)) < p(a(2q + 1)) < p(yn(2p + 1)).
 2.3. We let Rat be the set of all real numbers a for which there exists a rational

 number q such that, for every n, p(a(2n)) < q < p(a(2n + 1)).
 We let Poslrr be the set of real numbers a such that for every rational number q

 there exists n such that either q < p(a(2n)) or p(a(2n + 1)) < q.
 Rat is the set of all real numbers coinciding with a rational, and Poslrr is the set

 of &\\ positively irrationalnumbers. Observe that every element of Rat is really-apart
 from every element of Poslrr.

 2.4. Theorem. For every sequence X0,X\,... of open subsets ofR, z/Rat is a subset

 of f\eN Xn, then some element of Poslrr belongs to f]neN Xn.

 Proof. Suppose that Rat is a subset of f]neN Xn. We claim that there exists a real
 number a with the property that, for each n, the open interval

 (p(a(2n)),p(a(2n + \)))

 is a subset of Xn, and either p(n) < p(a(2n)), or p(a(2n + 1)) < p(n).
 We may obtain such a real number as follows. First find y in JV such that, for

 every a in R, a belongs to X if and only if, for every n, there exists p, q such that

 p(yn(2p + 1)) < p(a(2q + 1)) < p(a(2q + 2)) < p(yn(2p + 2)).

 We determine the least s such that p(0) < p(s(0)) or p(s(l)) < p(0) and, for some
 n < s,

 p{y?(2n + 1)) < p(s(0)) < p(s(l)) < p(y\ln + 2))
 and we define a(0) := s{0) and a(l) := s(\). We continue the construction
 of a by induction, as follows. For each p, we search for the least s such that
 p(p + l)<p(s(Q)) or/>0(l)) <p(p + 1) and

 p(a(2p + 1)) < p(s(0)) < p(s(\)) < p{a(2p + 2))
 and, for some n < s,

 p(yP+l(2n + 1)) < p(s{0)) < p(s(l)) < p(y"+l(2n + 2))
 and we define a{2p + 2) := i(0) anda(2/7 + 3) := s(l). H
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 2.5. Theorem. For every sequence Xo, X\,... of closed subsets of R, // Poslrr is

 a subset of IJ^en ^n> tnen some element of Rat belongs to [jneN Xn.

 Proof. We let Pir be the set of all a such that for each n, either p(n) < p (a(2n))
 or p(a(2n + 1)) < p(n). Observe that every element Pir is a positively-irrational
 real number, and that each positively-irrational real number really-coincides with
 an element of Pir. In addition, Pir, viewed as a subset of JV, is a spread. Suppose

 that Poslrr is a subset of [jnm Xn, and let ao be some element of Pir. Applying
 the Continuity Principle, we find m, n such that for all a in Pir, if a~(2m) ? ?~?(2m)
 then a belongs to Xn. We conclude that every positively irrational number in the

 open interval (p(ao(2m - 2)) belongs to the closed set Xn. It follows that also
 every rational number in this interval belongs to Xn. H

 2.6. Corollary. Vi^isl^butnotT^^ndVoslxrisI^butnotl^.
 Proof. Rat is a countable union of singletons. Every singleton is the set of all

 elements of R really-coinciding with a given real number and is a closed subset of R.

 Therefore Rat is E^ whereas, according to Theorem 2.4, Rat is not II2.
 Poslrr is the intersection of countably many sets of the form

 {a G R| for some n, either q < a(2n) or a(2n + 1) < q},

 where q is a given rational number, and every such set is an open subset of R.
 Therefore, Poslrr is II^, whereas, according to Theorem 2.5, Poslrr is not X^- ^

 2.7. The set Rat thus turns out to be a not too difficult example of a set that
 belongs to the class ?2 but not to the class IlSJ.

 Brouwer describes a more complicated example in [14].
 (Brouwer actually studies a subclass of the class X^, namely, the class consisting

 of all subsets of R that we obtain by forming the union of an increasing sequence
 of spreads, that is: located closed sets. Not every closed set is a spread, and not
 every union of two closed sets is a closed set, see Theorem 5.4, and, using these
 observations, one may prove that Brouwer's class is a proper subclass of XJ?j).

 Brouwer considers the set \JneN Kn, where, for each n, Kn is the set of all real
 numbers in [0,1] with a ternary expansion in which the number 1 occurs at most n
 times, that is, for all a in JV, a belongs to Kn if and only if a is a real number in
 [0,1] and there exists ?inJV such that, for each i, ?(i) belongs to {0,1,2}, and, for
 each m, the set {/ < m\?(i) = 1} has at most n members, and a really-coincides
 with ?~o/M-3-'"-1.

 Note that, for each n, Kn is a subset of Kn+\. Brouwer also assumes that every
 set Kn is a closed subset of R, but this is only true if n = 0. Unthinkingly following
 Brouwer, I failed to notice this fact in an earlier version of this paper. I hereby
 express my thanks to the referee ofthat earlier version, who made me attentive to it:

 We prove that, for every positive n, the set Kn is not sequentially closed.
 We shall construct a converging sequence xq,x\,... of elements of K\
 such that we are unable to prove that x := lim^oo xn has a ternary
 expansion. We then also have no proof that x belongs to K\, or to any
 other set from the sequence K\.Ki,_

 Recall that we defined, at the end of Subsection 1.7.1, for each rational

 number q, a corresponding canonical real number qK
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 Note that, for every positive k the numbers (\ + Jr)0 and (| ? Jr)0
 belong to K\. We let J be the decimal expansion of n, that is, d belongs
 to JV, for each i, d(i) < 9 and n = 3 + E^o ^(OlO-'-1- We now define
 the sequence xo, xi,... as follows. For each n, if there exists no / < n
 such that, for each j < 99, d(i + j) = 9, then x? = (^)K and, if there
 exists / < n such that, for each j < 99, d(i + y) = 9, and ?q is the least

 such i, then xn = Q + 2(-^)i0) . Define x := lim?^ooX?. Assume
 that x has a ternary expansion. Find ?inJV such that, for each i, ?(i)
 belongs to {0,1,2} and x = EZo?(i)'3~i~l- If ?(0) = Othenx < (?)?
 and for all k, if /: is the least z such that for all j < 99, d(i + y ) = 9, then

 /: is odd, and if ?(0) = 1 then x > (|)0 and for all k, if k is the least i
 such that for all j < 99, d(i + j) = 9, then /: is even. We are unable to
 prove one of these two statements and must conclude that we are unable
 to prove that x has a ternary expansion.

 The reader may object that we did not show that the assumption
 that K\ is sequentially closed leads to a contradiction. Using Brouwer's
 Continuity Principle we may do so, as follows. Suppose that K\ is
 sequentially closed. Slightly adapting the above example we may prove,
 for every ain JV, either, for all k, if k is the least i such that a(i) =?? 0,
 then k is odd, or, for all k, if k is the least / such that a(i) ^ 0, then k
 is even. Using the Continuity Principle, find m such that either, for all
 a passing through 0m, if there exists / such that a(i) ^ 0, then the first
 such i is odd, or, for all a passing through 0m, if there exists i such that
 a(i) ^ 0, then the first such / is even. Considering the sequences 0m * I
 and ?(m + 1) * I we see that both alternatives are false.

 We may correct Brouwer's example by replacing every set Kn by its closure Kn,
 that is the set of all real numbers a that may be obtained as the limit of a convergent

 sequence xo, x\,... where each xz is a rational number of the form Yl?=o b(i)'3~l~l
 and each b(i) belongs to {0,1,2} and the set {/|/ < m\b(i) = 1} has at most n
 members. In general, an element of Kn does not have a ternary expansion and does
 not belong to Kn.

 In his proof that the set \JneNKn is not II2, Brouwer unnecessarily applies the
 Fan Theorem.

 Here is an elementary argument:

 Suppose that Xo,X\,... is a sequence of open subsets of R such that
 U?eN^" is a subset of p|wGNZ?. We define xo := 0. Note that xo
 belongs to ^0 and find no such that, for every x in [0,1], if \x - xo| < ^,

 then x belongs to Xo. Define x\ := ^+2. Note that x\ belongs to K\ and
 find n\ such that n\ > no and, for every x in [0,1], if |x - x\ \ < ^, then

 x belongs to X\. Define X2 := x\ + ^+7. Continue in this way. Finally
 consider x := lim^oo xn and note that x belongs to every set Xn and to
 none of the sets Kn.

 Brouwer defines the set ^oo as the set of all numbers a in the closed interval [0,1]
 with a ternary expansion in which the number 1 occurs infinitely many times and
 he shows that the set ^oo is an example of a set that is II2 and not H\.
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 In proving this example correct, Brouwer uses the Continuity Principle, as we did
 in the proof of Theorem 2.5. Observe that K^, like R itself, and like the set Poslrr
 of the positively-irrational real numbers, really-coincides with a spread, as we now
 prove:

 Let us call a rational number q a ternary rational number of the first kind

 if and only if there exist m in Z and n in N such that q = ^^.
 Let q, r be ternary rational numbers of the first kind. We say that r is

 a prolongation of q if and only if q < r and r ? q < ^ where n is the
 ternary depth ofq, that is, the least number k such that 3k q is an integer.

 Note that, if r is a prolongation of q, then the ternary expansion of r
 is indeed a prolongation, or if you prefer this term, an extension, of the
 ternary expansion of q and contains at least one more time the number 1.

 Let L be the set of all a'mjV such that, for each n, p (a(2n)) is a ternary
 rational number of the first kind and p(a(2n + 2)) is a prolongation of
 p(a(2n)), and/?(a(2ft + 1)) = p(a(2n)) + ^?. Note that L is a spread,
 and that ^oo really-coincides with L.

 2.8. We return to Baire space jr.
 For all a, ? in JV, we define: a is apart from ?, or: a lies apart from ?, notation:

 a # ?, if and only if there exists n such that a(n) ^ ?(n). This constructive
 inequality relation is co-transitive, that is, for all a, ?, y, if a # ?, then either a # y
 ovytt?.

 Let y belong to jr. Recall from Section 1.3.7 that y is a function from JV to JV if
 and only if y (0) = 0 and y belongs to Fun, that is, for all a, there exists n such that
 y (an) ^ 0.

 Let X, Y be subsets of JV and let y be a function from JV'to JV'.

 y maps X into Y if and only if for every a in X, y\a belongs to Y.
 y reduces X to Y if and only if y maps X and only X into Y, that is for every a,

 a belongs to X if and only \fy\a belongs to Y.
 X is reducible to Y, or X reduces to Y, notation X ^ Y, if and only if some y in

 Fun reduces X XoY.
 If y reduces X to Y, then y can be considered as an effective method to translate

 every question: "does a belong to XT into a question: "does ? belong to 7?"
 This notion is called "Wadge-reducibility" in classical descriptive set theory. Its
 analogue in recursion theory is called "many-one-reducibility" or "m-reducibility".

 We use the unadorned expression "reducible" as no other notion of reducibility
 figures in this paper.

 For all subsets X, Y of JV, we let X ? Y, the disjoint sum ofX and Y, be the set
 ((0)*X)U((1)*7).

 For every infinite sequence Xo,X\,... of subsets of JV, we let 0^eNZ?, the
 countable disjoint sum of the sequence Xo, X\,..., be the set U?gn(w) * ^?

 The following theorem mentions a number of important properties of the re
 ducibility relation.

 2.9. Theorem.

 (i) For every subset X of JV, X 4 X.
 (ii) For all subsets X,Y,Z of JV, ifX ^ Y and Y ^ Z, then X ^ Z.
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 (iii) For all subsets X, Y of JV, X 4 (X 0 Y) and Y 4 (X 0 Y), and, for every
 subset Z ofJV, if both X 4 Z and Y 4 Z, then (X 0 Y) 4 Z.

 (iv) For every sequence Xo, X\,... of subsets of JV, for each i, Xi ^ (0?G^ Xn),
 and, for every subset Z of JV, if, for each i, Xi =^ Z, then (0?GN Xn) ^ Z.

 Proof. We leave the straightforward proof to the reader. When proving (iv), one
 has to use the Second Axiom of Countable Choice. H

 We thus see that the reducibility relation ^ has the properties of a countably
 complete upper semilattice. For all subsets X, Y of JV, we will say that X is of the
 same degree of reducibility as Y if and only if both X reduces to Y and Y reduces
 toZ.

 For all subsets X, Y of JV, we will say that X strictly reduces to Y, notation:
 X < Y, if and only if X reduces to Y but Y does not reduce to X.

 2.10. We define subsets A2 and E2 of JV as follows.
 A2 is the set of all a such that, for every m, there exists n such that am (n) / 0.
 E2 is the set of all a such that, for some m, for every n, am (n) = 0. Observe that

 every element of A2 is apart from every element of E2.
 Because of the following theorem, we sometimes call A2, E2, complete elements,

 or: leading elements of the classes II2, X^, respectively.

 2.11. Theorem.

 (i) For every subset X of JV, X belongs to II2 if and only if X reduces to A2.
 (ii) For every subset X of JV, X belongs to L2 if and only if X reduces to E2.

 Proof, (i) Suppose that X belongs to Ilij. Using the last observation from
 Subsection 2.1, find y in JV such that, for all a, a belongs to X if and only if, for
 every m, there exist p, q such that ym(p) ? ?q + 1. Define a function ? from JV
 to JV such that, for every a, for every m, for every k, (?\a)m(k) ^ 0 if and only if
 ym(k(0)) = a(k(l)) + 1 and observe that y reduces X to A2.

 Conversely, suppose that ? is a function from JV to JV reducing X to Ai. For
 each m, let Xm be the set of all a such that, for some n, (?\a)m(n) ^ 0. Observe
 that, for each m, Xm is an open subset of JV and that X = f]meN Xm, so X belongs

 toII?.
 (ii) Suppose that X belongs to l^- Using the one-but-last observation from

 Subsection 2.1, find y in JV such that, for all a, a belongs to X if and only if,
 for some m, for all p,q, ym(p) i=- aq -f 1. Define a function ? from JV to JV
 such that, for every a, for every m, for every k, (?\a)m(k) ? 0 if and only if
 ym(k(0)) / a(k(\)) + 1 and observe that y reduces X to E2.

 Conversely, suppose that S is a function from JV to JV reducing X to E2. For
 each m, let Xm be the set of all a such that, for all n, (d\a)m(n) = 0. Observe
 that, for each m, Xm is a closed subset of JV and that X = UmeN Xm> so X belongs

 toE^. H
 The following Theorem 2.12 should be compared to Theorem 2.4. The proof is

 elementary and does not use the Continuity Principle. In Subsections 5.4 and 6.6
 we are to provide slightly different elementary arguments with the same conclusion
 as this theorem.
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 2.12. Theorem. Every function from JV to JV that maps E2 into A2 also maps
 some element of A2 into A2.

 Proof. Let y be a function from JVtoJV that maps E2 into A2. We now construct
 a such that both a and y\a belong to A2. First define ao := 0. Then ao belongs to
 E2, and, therefore, y\ao belongs to A2. Calculate no such that (y\a)?(no) ^ 0. Also
 calculate mo such that for every ?, if ?m0 = ??mo, then (y\?)?(no) ? (y\aof(no).
 Now define a\ such that a\((0,mo)) = 1 and a~[mo = ??mo and (ai)1 = 0.
 Then a\ belongs to E2, and, therefore, y\a\ belongs to A2. Calculate n\ such
 that (ylai)1^) ^ 0. Also calculate m\ such that m\ > (0, m0) and for every ?, if
 ?m\ =?~\m\,thcn(y\?)1(n\) = (y\a\)l(n\). Now define 0^2 such that 0,2 m\ = ?fm\
 and ct2((l,m\)) = 1 and (a2)2 = 0. Then o?2 belongs to ?2, and, therefore,
 y|a2 belongs to ^2- Continuing in this way, we find two sequences no,n\,... and
 mo, m\,... of natural numbers and a sequence ao,a\,... of elements of JV such
 that mo < m\ < - - and for each /c, ?^im^ = ?^m/c and for each &, for each ?, if
 /?ra/c = a?mk, then (y\?)k(nk) ^ 0 and,if jSw^+i = ?^Tra^+i, then ^(ra?) = 1.
 Consider the sequence a such that for each k, ?mk = ?kmk and observe: both a
 and y \ a belong to A2. H

 2.13. Theorem. There exists a function f from JV to JV with the following prop
 erties'.

 (i) For every a, f\a belongs to A2.
 (ii) For every ? in A2 there exists a such that f\a = ?.
 (iii) For every n, a, there exists m such that for every ?, if ?m ? (f\a)m and ?

 belongs to A2, then there exists y such that yn = an and? = f\y.

 Proof. Observe that, for every ?, ? belongs to A2 if and only if, for each m,
 there exists n such that ?m(n) ^ 0 if and only if there exists ? such that, for each m,

 ? (?(m))^0.
 We now define a function/ from JV to <#* such that for every a, (/|a)(0) = al(0)

 and for every m, (f\a)m(a?(m)) = Max(l,al'm(a?(m))) and for every m, k, if
 k 7? a?(m), then (f\a)m(k) = aX'm(k). One verifies easily that / has the promised
 properties. H

 2.14. Theorem. (Extension of the Continuity Principle to A2):

 For every binary relation R ? A2 x N, if for every a in A2 there exists m
 such that aRm, then for every a in A2 there exist m, n such that, for every
 ? in A2, if ?n = an, then ?Rm.

 Proof. Let / be a function from JV to JV with the properties mentioned in
 Theorem 2.13. Let R be a subset of A2 x N and suppose that for every a in A2 there
 exists m such that aRm. Observe that for every ? in JV there exists m such that
 (f\?)Rm.

 Let a belong to A2. Find y in JV such that f\y = a. Applying the Continuity
 Principle find m, n such that for every S in JV, if on = yn, then (/ \?)Rm. Determine
 p such that for every ?inA2, if ?p = ?p, then there exists ?inJV such that on = yn
 and f\S = ?. Observe that for every ? in A2, if ?p = ?p, then ?Rm. H

 The following theorem should be compared to Theorem 2.5.
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 2.15. Theorem. Every function from JV to JV that maps A2 into E2, also maps
 some element of E2 into is2.

 Proof. Let y be a function from JV to JV that maps A2 into ?2. Observe that
 for each a in A2 we may calculate n such that (y\a)n = 0. Note that the sequence
 1 belongs to A2. Applying Theorem 2.14, the extension of the Continuity Principle
 to A2, we find m, n such that for every a in A2, if am = ?m then (y\(a))n = 0.
 Now consider ? := ?m * 0 and observe that ? belongs to E2. We claim that

 also y\? belongs to E2, as (y\?)n = 0. We argue this claim as follows. Let p be
 a natural number. Find q such that q > m and, for every ? in JV, if?q = ?q, then
 (y\?)n(p) = (y\?)n(p). Observe that there exists S in A2 passing through ?q, for
 instanced := ?q*\. Choosing such a<5, we conclude (y \?)n(p) = (y\?)n(p) = 0. H

 2.16. Corollary. The set E2 belongs to L? but not to II?, and the set A2 belongs
 toll? but not to E2

 Proof. Obvious. H

 2.17. Let X, Y be subsets of JV. We define: X positively fails to reduce to Y
 if and only if every function from JV to JV that maps X into Y also maps some
 element of JV into Y that is apart from every element of X.

 In many cases where we apply this notion, the sets X, Y will satisfy the condition
 that every element of X is apart from every element of Y, and we are able to prove
 that every function from JV to JV that maps X into Y also maps some element of
 Y into Y.

 Observe that such is the case in Theorems 2.12 and 2.15, where we saw that E2 pos
 itively fails to reduce to A2 and A2 positively fails to reduce to E2. Similar situations
 occur in Theorem 5.4, the Finite Borel Hierarchy theorem, in Theorems 7.9 and
 7.10, the full Intuitionistic Borel Hierarchy Theorem, and also in Theorem 8.1(i).

 ?3. Some intuitionistic subtleties. In this Section, we prove some results that have
 no counterpart in classical descriptive set theory. In particular, we prove that the
 classes II? and II? are not closed under the operation of finite union.

 3.1. We let Inf^ be the set consisting of all a in JV such that, for each n, there
 exists j > n such that a(j) ^ 0.

 An element a of JV belongs to Inp if and only if a assumes a value different
 from 0 infinitely many times. Inf^ is a countable intersection of open sets and thus
 belongs to the class II?. It turns out that Inf^ is a complete element of the class II?:

 3.2. Theorem. Every U2-subset of JV reduces to Inf^.

 Proof. Let Ibea II?-subset of JV and assume that Yo,Y\,... is an infinite
 sequence of open subsets ofjV such that X = f]neN Yn. Let Co, C\,... be a sequence
 of decidable subsets of N such that for each a, for each n, a belongs to Yn if and
 only if some initial part of a belongs to Cn. We define a function y from JV to JV
 such that for each a, for each n, (y\a)(n) belongs to {0,1} and (y\a)(n) = 1 if and
 only if the least i < n + \ such that for every j < i some initial part of a(n + 1)
 belongs to Cj is greater than the least i < n such that for every j < i some initial
 part of an belongs to Cj.

 One verifies without difficulty that y reduces X to InfK H
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 3.3. We let Fin* be the set consisting of all a in JV such that, for some n, for
 all j > n, a(j) / 0. An element a of JV belongs to Fin* if and only if a assumes
 a value different from 0 finitely many times. We shall see soon that the set Fin* is

 not a complete element of the class E?, and thus thwart an expectation one might
 form after Theorem 5.2.

 We define a binary operation D on the class of subsets of Baire space JV. For all
 subsets X, Y of JV we let D(X, Y) be the set of all a such that either a0 belongs to
 X or a1 belongs to Y. We call the set D(X, Y) the disjunction of the sets X and Y.

 Observe that, for all subsets X,Y,Z of JV, Z reduces to D(X, Y) if and only if
 there exist subsets Zo, Z\ ofJV such that Z = Z0 U Z\ and Zo reduces to X and Z\
 reduces to Y.

 For every subset X of JV we denote D(X, X) by D2(X).
 We define a subset A\ ofJV. A\ is the set of all a such that, for every n, a(n) = 0.

 So the sequence 0 is the one and only element of A\.
 Observe that, for every subset X of JV, X reduces to A\ if and only if X is closed

 and X reduces to D2(A\) if and only if there exist closed sets Xo,X\ such that
 X = X0UXi. _

 Observe that the sequential closure D2(A\) of D2(A\) is a spread containing 0.
 The first item of the next theorem implies that the set D2(A\) is not sequentially
 closed, although it is the union of two spreads.

 3.4. Theorem.

 (i) D2(A\) isnot a subset of D2(A\).
 (ii) The closure D2(A\) of D2(A\) coincides with its double complement

 {D\AX))-. _
 (iii) For every open subset G ofN, ifD2{A\) is a subset ofG, then D2(A\) is a subset

 ofG.
 (iv) D2(A\) does not belong to II?.
 (v) D2(A\) belongs to E2 but does not reduce to Fin* , and, therefore, also the set

 E2 does not reduce to Fin*.
 (vi) Fin* does not reduce to D2(A\).

 Proof, (i) Suppose that D2(A\) is a subset of D2(A\). For every a in the spread
 D2(A\) we may decide either a0 = 0 or a1 = 0. Applying the Continuity Principle
 we find m such that, either, for every a in D2(A\) passing through 0m, a0 = 0 or,

 for every a in D2(A\) passing through 0m, a1 = 0. This is absurd, as for each m,
 there exist a, ? in D2(A\) passing through 0m such that a0 is apart from 0 and ?l
 is apart from 0.

 We conclude that D2(A\) is not a subset of D2(A\).
 (ii) Suppose that a belongs to the closure D2(A\) ofD2(A\). Note that, if a0 # 0,

 then a1 = 0, and, therefore, a belongs to D2(A\). Also note that, if a0 = 0, then
 a belongs to D2(A\). As^(a? #0Va? = 0), a belongs to (D2(Ai))^.

 Conversely, suppose that a belongs to [D2(A\))^~1. Note that, for each n, there
 exists ? in D2(A\) passing through an. It follows that a belongs to D2(A\).

 (iii) Let G be an open subset of JV such that D2(A\) is a subset of G. Let a
 belong to D2(A\). Let ? be an element of JV satisfying ?? = 0, and, for all n,
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 if there is no p such that n = (0, p), then ?(n) = a(n). Note that ? belongs to
 D2(A{) and that, if ?#a, then a?#0 and a1 ? 0 and a belongs to D2(A\). Find n
 such that every y passing through ?n belongs to G. Either an ? ?n and a belongs
 to G, or?n ^ ?n and a#? and a belongs to D2(A\) and, therefore, to G.

 (iv) Let Go, G\,... be a sequence of open subsets of JV such that D2(A\) coincides

 withf\eN Gn. Accordingto (iii), alsoD204i) isasubsetoff\eN Gn, and, therefore,
 D2(A\) coincides with D2(A\). This conclusion contradicts (i).

 (v) D2(A\) obviously belongs to L^. Assume now that y is a function from JV to
 JV reducing D2(A\) to Fin*. Let Bo be the set of all a inJV such that a0 = 0 and let
 B\ be the set of all ainJV such that a1 = 0. Observe that Bo, B\ are spreads and
 that D2(A\) = Bo U B\. For every a in D2(A\) there exists m such that, for every
 i > m, (y \a) (i) = 0. Applying the Continuity Principle two times, we find n, m such
 that, for every a from Bo U B\, if an = On, then, for every i > m, (y\a)(i) = 0. We

 now prove that, for every a in the set D2(A\) n On, for every / > m, (y\a)(i) = 0:

 Let a belong to D2(A\) n 0? and suppose i > m. Find p > n such
 that, for every /? in the spread Z>2(^4i), if ? passes through ?p, then
 (y\?)(i) = (y|^)(0- Let ? be an element of D2 (A i) passing through ?p
 and observe: (y\a)(i) = (y|/?)(/) = 0.

 It follows that y maps D2(A\) C\0n into Fwi^.

 Therefore D2(A\) no? and i)2C4i) itself are subsets of D2(,4i), and this contra
 dicts (i).

 The second statement now follows from the first one, as, by Theorem 2.11, the
 set E2 is a complete element of the class X^.

 (vi) Let y be a function from JV to JV reducing Fin* to D2(A\). Note that,
 for each m, \m * 0 belongs to Fin^, and, therefore, y\(Jm * 0) belongs to D2(A\).
 It follows that 7|I belongs to the closure D2(A\) of D2(A\) and therefore, in view
 of (ii), to D2(A\)"^. So 1 belongs to (Firi*)"^. But 1 does not belong to Fin*. H

 3.5. Let X be a subset of JV and n a natural number.

 We define a subset of JV, the n-fold disjunction ofX, notation Dn(X). Dn(X) is
 the set of all ainJV such that, for some k < n, ak belongs to X.
 Note that D?(X) is the empty set 0.
 Observe that, for every subset Z of JV, Z reduces to Dn(X) if and only if

 there exist subsets Z0, Z\,..., Zn_\ of JV, each of them reducing to X, such that
 Z = Zo U Z\ U U Zn-\. It is easily seen that for each subset X of JV, for every
 positive n, Dn(X) reduces to Dn+l(X). _

 Observe that, for each positive n, the closure Dn(A\) of Dn(A\) is a spread
 containing 0. For every a, for each positive n, a belongs to Dn(A\) if and only if,
 for each k, the sequence 0 passes through one of a?k, alk,..., an~xk.
 Note that, for each n, for each a, a belongs to DnJrl (A\) if and only if either a

 belongs to Dn(Ax) or an =0.

 3.6. Theorem.

 (i) For each n, the closure Dn+l(A\) of the set Dn+l(A\) coincides with its double

 complement (Dn+X(A\))^.
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 (ii) For each n, the set Dn(A\) reduces to the set Dn+l(A\), but Dn+l (A\) does not
 reduce to Dn(A\).

 Proof, (i) We use induction. The statement to be proven is true if n = 0, as
 (A\)^~" coincides with A\ and with A\.

 Let n be a natural number and assume Dn+l(A\) coincides with (Dn+l(A\)y.
 We prove that Dn+2(AX) coincides with (Dn+2(Ax)y~[.

 Suppose that a belongs to Dn+2(A\). Let ? be an element of JV such that ?n+l = 0
 and, for each p, if there is no q such that p = (n + 1, q), then ?(p) = a(p). Note
 that, if a # ?, then a belongs to Dn+l(A\), and thus, by the induction hypothesis,

 to (Dn+l(Ai)Y^ and to (Dn+2(Ax)y^. Also note that, if a = ?, then a belongs
 toDn+2(Ax).
 As -.^(a # ?V a = ?),a belongs to Z>n+2Ui)-^.
 Conversely, suppose that a belongs to Dn+2(A\)~'~'. Note that, for each m, there

 exists ? in Dn+2(A\) passing through am. It follows that a belongs to Dn+2(A\).
 (ii) Let n be a natural number and let y be a function from JV to JV such that, for

 every a, for every / < n, (y\a)1 = a1, and (y |a)w = I. Clearly, y reduces Dn(A\) to
 z)"+1Ui).

 Note that Dl (A\) does not reduce to D?(A\) = 0. Now assume that n is positive
 and y is a function from JV to JV reducing Dn+l (A\) to D"(^i). For each / < n + 1,
 let J5? be the set of all a such that a1 ? 0. Observe that each 2?z- is a spread containing

 0 and that y maps U/<?+i ^ into U/<? ^ Applying the Continuity Principle n + 1
 times we find natural numbers po,pi,... ,pn and ko,k\,... ,kn such that for each
 i < n + I, ki < n and for each a in J5? passing through 0/?z,y\a will belong to i?^.

 Without loss of generality we may assume ko = k\ = 0. Let ? be a function from
 JV to JV such that, for every a, (?|a)? = ?/?o * a0 and (?\a)x ? Qp\ * a1 and for
 every / such that 1 < / < n + 1, (?|a)' = 0/?? * 1.

 Observe that a belongs to D2(A\ ) if and only if ?|a belongs to D2(A\) if and only

 if (y|(<5|a:)) = 0. Therefore D2(A\) reduces to A\. But, as we saw in Theorem 3.4,
 D2(A\) is not a sequentially closed set and does not reduce to A\. H

 3.7. One may prove facts about subsets of R similar to the facts about subsets
 of JV we established in this Section. We mention some examples.

 The set [0,1] U [1,2] is an example of a subset ofR that is a union of two closed
 sets and fails to be closed. The assumption: "[0,1] U [1,2] is a closed subset ofR"
 leads to the conclusion: "for every real number x, either x < 1 or 1 < x" and this
 conclusion, in its turn, leads to a contradiction, by Brouwer's Continuity Principle.

 Let po, p\, P2, be the sequence of the prime numbers.
 For each n > 0 let Fn be the closure of the set {-rKk \k G N}. For each m > 0, the

 set (jn<m Fn is an example of a set that is a union of m + 1 closed sets and fails to
 be a union of m closed sets.

 Other facts about the fine structure of the intuitionistic Borel hierarchy may be
 found in [43] and [53].

 ?4. Introducing the class of subsets of JV that are positively Borel. In this Section,
 we introduce positively Borel sets and canonical classes of positively Borel sets.
 In Subsection 4.3, we introduce the notion of a complementary pair of positively
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 Borel sets and we explain that, in the realm of positively Borel sets, there is no
 unicity of complements: most positively Borel sets have many complements. In
 Subsection 4.4, we prove that the canonical classes have so-called universal and
 complete elements.

 4.1. The class Borel of positively Borel subsets of JV is given by the following
 inductive definition.

 (i) Every subset of JV belonging to either IIj or X^ is positively Borel.
 (ii) For any given sequence Xo,X\,... of positively Borel subsets of JV, the sets

 f\eN Xn and (JneN Xn are themselves positively Borel.
 (iii) Clauses (i) and (ii) produce all positively Borel subsets of JV.

 4.2. We define the class of the non-zero stumps by the following inductive def
 inition: a stump a is non-zero if either o coincides with 1* or a is non-empty
 and for each n, on is a non-zero stump. The sequence 1* has been introduced in
 Subsection 1.5.2. For all n, l*(n) = 0 if and only if n = ( ).

 Every non-zero stump is non-empty but the converse is false.
 Observe that we may decide, for every non-zero stump o, if a equals 1* or not.

 For every non-zero stump o we define classes X^ and n? of subsets of JV, by the
 following inductive definition:

 (i) Li* coincides with the class X^ of the open subsets of JV and II?* coincides
 with the class II? of the closed subsets of JV.

 (ii) For every non-zero stump a different from 1*, for every subset X of JV:

 X belongs to lPa if and only if there exist a sequence Xo,X\,... of subsets of
 JT such that, for each n, Xn belongs to 11^ and X coincides with [JneN Xn,
 and:
 X belongs to 11^ if and only if there exist a sequence Xo,X\,... of subsets of

 JV such that, for each n, Xn belongs to X^? and X coincides with f\eN Xn

 The classes X?J, 11^, where a is a hereditarily repetitive non-zero stump are called
 the canonical classes of positively Borel sets. One might call X^ the additive class of

 level o and 11^ the multiplicative class of level a. The idea to introduce classes of
 Borel sets in this way goes back to Hausdorff, see [21]. He also was probably the
 first to build up the Borel sets from the open sets and the closed sets by means of
 the operations of countable union and countable intersection.

 Recall that, in Subsection 1.5.1, we defined, for every stump a, the successor of

 a, notation: S(a), as the stump such that, for each n, (S(o))n = o. Note that, for
 all stumps a, x, o < x if and only if S (a) < x.

 Also observe that, if o is a non-zero stump, than S {a) is a non-zero stump.

 4.3. Theorem.

 (i) For every subset X of JV ,for every non-zero stump o, if X belongs to Y?G or to
 E?, then X is positively Borel.

 (ii) For every subset X of JV, ifX is positively Borel, then there are stumps o, x such

 that X belongs to La and to IIT.

 Proof, (i) is proven by straightforward induction on the set of non-zero stumps.
 (ii) is proven by induction on the set of positively Borel sets. Note that every

 open set belongs to X?* and that every closed set belongs to II?*. Suppose that
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 Xo,X\,... is a sequence of subsets of JV such that, for each n, there exist stumps
 o, r such that Xn belongs to E^ and to II?. Using the Second Axiom of Countable
 Choice, see Subsection 1.2.3, we find non-zero stumps o, z different from 1* such

 that, for each n, Xn belongs to E^? and to II??. Observe that U?gn ^? belongs to E?

 and thus to n^T), and that f)n(EN Xn belongs to Il0a and thus to E^. H

 4.4. We define the class of complementary pairs of positively Borel sets by the
 following definition.

 (i) For every open subset X of JV, the ordered pairs (X,JV\X) and (jV\X, X)
 are complementary pairs of positively Borel sets.

 (ii) For every sequence (Xo, Yo), (X\, Y\),... of complementary pairs of positively

 Borel sets, the ordered pairs ({JneN Xn, f\GN Yn) and (f\eN Xn, |J?eN Yn) are
 complementary pairs of positively Borel sets.

 (iii) Clauses (i) and (ii) produce all complementary pairs of positively Borel sets.

 The fourth item of the next theorem, Theorem 4.6, shows that, in the realm of
 positively Borel sets we do not have unicity of complements.

 The fifth item states that we cannot even prove unicity of complements for sets
 from the first level of the hierarchy.
 Markov's Principle, in its original form, states that, for every infinite sequence a

 that is given by an algoritm in the sense of Markov or Turing, if -i->3n[a(n) = 1],
 then 3n[a(n) = 1].

 The generalized Principle of Markov extends this to every infinite sequence a,
 without requiring that we know an algorithm that determines a.

 Markov believed his principle to be plausible from a constructive point of view,
 but we do not share his considerations and do not want to propose either the
 principle or its generalization as an axiom of intuitionistic analysis.

 4.5. As in Subsections 3.1 and 3.3, we let Inf^ be the set of all ainJV such that,
 for every n, there exists j > n such that a(j) > 0, and we let Fin* be the set of all
 a in JV such that, for some n, for all j > n, a(j) = 0. Note that the set Inf^ is
 the set of all ainJV that assume a value different from 0 infinitely many times, and
 that the set Fin* is the set of all ainJV that assume a value different from 0 finitely

 many times.
 For each stump o, we define a subset ?(a, Fin"*) of JV that we want to call the

 o-thperhapsive extension of Fin*. We do so by induction on the set of stumps, as
 follows:

 (i) ?(\,Fin^) = Finl
 (ii) For every non-empty stump o, F(o, Fin*) is the set of all ainJV such that, for

 some m, for all n > m, if a(n) ^ 0, then there exists p such that a belongs to
 T(oP,Fin*).

 One may verify, by induction on the set of stumps:

 For all stumps o, Fin* is a subset of?(o, Fin*), and P(a, Fin*) is a subset
 of(Fin^)

 The main step in the proof is the following one. Let o be a non-empty stump and
 assume that, for each p, R(op,Fin*) is a subset of (Fin*)"^. Let a be an element of
 P((T, Fin*). Find m such that, for all n > m, if a(n) / 0, then there exists p such that
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 a belongs to F(ap,Fin^). Now distinguish two cases. First Case: For all n > m,
 a(n) = 0. Clearly, a belongs to Fin* and also to (Fin*)^. Second Case'.For some
 n > m, a(n) ^ 0. Now find p such that a belongs to F (a p, Fin*) and conclude:
 a belongs to (Fin^)"". As -i->(V? > m[a(n) = 0] V 3n > m[a(n) ^ 0]), we may
 infer: ?i??(o; belongs to (Fin'*)""), and, therefore, a belongs to (Fin~*)"".
 We need the following result from [52], where it occurs as Theorem 3.17(ix). The

 result is also treated in [53].

 For all stumps a, x, if o < x, then F(a, Fin*) is a proper subset ofF(x, Fin*)

 (Actually, the statement in [52] is slightly different, but easily seen to be equivalent
 to the above one. In [52], the statement is not about the set Fin^ and its perhapsive
 extensions, but about the set Fin and its perhapsive extensions, where Fin is the set
 of all a in Fin^ that assume no other value than 0,1. One may prove that, for each
 stump o, the set F(o. Fin) is the set of all a in P(<r, Fin"*") that assume no other value
 than 0,1.)

 The notion "perhaps" finds its origin in the notion "weak stability" occurring
 in [55]. More information on this notion may be found in [45], [46], [52], [51],
 and [53].

 4.6. Theorem.

 (i) For every positively Borel set X there exists a positively Borel set Y such that
 (X, Y) is a complementary pair of positively Borel sets.

 (ii) For all positively Borel sets X, Y, if(X, Y) is a complementary pair of positively
 Borel sets, then ( Y, X) is a complementary pair of positively Borel sets and every
 element ofX is apart from every element of Y.

 (iii) Inp is the set of all elements of JV apart from every element of Fin*.

 (iv) For every stump a, the ordered pair (F(<r,Fin*),Inf*) is a complementary pair
 of positively Borel sets.

 (v) The statement: for every closed set X, for all open sets Y, Z, if both (X, Y) and
 (X, Z) are complementary pairs, then Y ? Z, is equivalent to the generalized

 Principle of Markov, and thus unprovable intuitionistically.

 Proof. The proofs of (i), (ii) and (iii) are straightforward and left to the reader.
 We prove (iv) by induction on the set Stp of stumps, as follows.
 First, note that (Fin* ,Inf^) is a complementary pair of positively Borel sets. In

 order to see this, let, for each n, Xn be the set of all a in JV such that, for some
 j > n, a(j) > 0, and let Yn be (Xn)", that is, the set of all ainJV such that, for
 all j > n, a(j) = 0. Note that, for each n, X? belongs to X? and Yn belongs to II?,
 and that Inf^ and Fin1 coincide with f]neN Xn and Uhgn ^?> respectively.
 We thus see that the ordered pair (P(I, Fin*),Inf^) is a complementary pair of

 positively Borel sets.
 Secondly, let o be a non-empty stump and assume that, for each p, the pair

 (F(ap,Fin^),Inf^) is a complementary pair of positively Borel sets. Note that
 (F(o,Fin]),Inf]), the set of all a such that 3mVrc > m[If a(n) ^ 0, then 3p[a e
 {F(op ,Fin^),Inf*)] forms a complementary pair with the set of all a such that
 \/m3n > m[a(n) ^ 0 and \/p[a G Inf^]] and that the latter set coincides with Inf^.
 (v) First, assume the generalized Principle of Markov. Let Ibea closed subset
 of JV, and let Y,Z be open subsets of JV such that both (X, Y) and (X, Z) are
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 complementary pairs of positively Borel sets. Find ?,yinJV such that, for every a,
 a belongs to Y if and only if, for some n, ?(?~n) = 1 and a belongs to Z if and only
 if, for some n, y (an) = 1. Suppose that a belongs to Y, then a does not belong to

 X and not( a does not belong to Z), so ~^^3n[y(an) = 1], and, by the generalized
 Principle of Markov, 3n[y(?~n) = 1], so a belongs to Z. Therefore, F is a subset of
 Z, and, similarly, Z is a subset of Y, so Y and Z coincide.

 Secondly, assume that for every closed set X, for all open sets Y Z, if both (X, Y)
 and (X, Z) are complementary pairs, then Y = Z. Let a be an element of JV such
 that-<-Gw[a(?) = 1]. Let F be the set of all ? in JV suchthat, for some?, a (n) = 1,
 and let Z coincide with JV. Note that both Y and Z are open subsets of JV and
 that both (0, Y) and (0, Z) are complementary pairs. Therefore, Y coincides with
 Z and 3n[a(n) = 1].

 Clearly, the generalized Principle of Markov holds. H

 4.7. Complementary pairs of positively Borel sets were studied by Brouwer
 in [14], page 89, line 21-27, although he restricts his attention to the classes IT?
 and E?. The more general notion is considered by P. Martin-L?f in [33], page 80,
 and by E. Bishop and D. Bridges in [1], pages 73-75. At these places, no mention is
 made of the hierarchy problem.

 4.8. We define a function ( ) from JV x JV to JV such that for all a, ?, (a, ?)? = a
 and (a, ?)l = ? and,for each n > 1, (a, ?)n = 0.

 For every subset X of JV, for every a, we let X \a be the set of all ? in JV such
 that (a, ?) belongs to X.
 We introduce, for each non-zero stump o, subsets USG and UPG of JV by means

 of the following definition.

 (i) US\* is the set of all a such that for some m, n, a?(m) = ax(n) + 1.
 UPi* is the set of all a that do not belong to US\*.

 (ii) For every non-zero stump o different from 1 *, USG is the set of all a such that

 for some n, (a?M, a1) belongs to UPGn, and UPa is the set of all a such that
 for all n, (a?M,al) belongs to USGn.

 We call USG and UPG the universal or cataloguing sets of level o.
 We should explain the use of this word. Given a class 9? of subsets of JV and

 a subset X ofJV we say that X is a universal element of 3^ if and only if (i) X belongs
 to 3? and (ii) J? is the class of all subsets of JV that are of the form X \a, where
 a belongs to JV. Theorem 7.4.1 will establish that USG, UPG are indeed universal
 elements of the classes E^, II?J, respectively.

 Y. Moschovakis observes in [38], page 63, note 15, that universal sets were intro
 duced by N. Lusin in [31], although Lusin himself credits Lebesgue for it, see [29].
 The notion has become more familiar since the discovery of the recursion-theoretic
 hierarchy by S.C. Kleene and A. Mostowski, see [26] and [39].

 We also introduce, for each non-zero stump o, subsets EG and AG ofJV by means
 of the following inductive definition:

 (i) E\* is the set of all a such that for some n, a((n)) ^ 0.
 A\* is the set of all a such that for all n, a((n)) = 0.
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 (ii) For every non-zero stump o different from 1 *, Ea is the set of all a such that
 for some n, an belongs to AGn, and Aa is the set of all a such that for all n, an
 belongs to Ean.

 We call E0 and A0 the canonical complete sets of level a, and also the leading sets
 of'the classes X^, 11^, respectively.
 We should explain the use of this word. Given a class Jf of subsets of JV and a

 subset X of JV we say that X is a complete element of' J? if and only if ?% is the
 class of all subsets of JV that reduce to X. Theorem 4.9 will establish that EG, AG

 are indeed complete elements of the classes X^, 11^, respectively.
 We shall make use of these sets in the proof of both the classical hierarchy theorem

 5.2 and the intuitionistic hierarchy theorems 6.5 and 7.9 and 7.10.
 Observe that, for every class Jf of subsets of JV, every universal element of 3? is

 also a complete element of 3Z.
 As in Subsection 0.2, we define, for any sequence JTo, ?%\, ^2,... of classes of

 subsets of JV, its product ELen^? as tne c^ass consisting of all sets of the form
 fl/EN Xi where each set X? belongs to some J?n. We let its sum Y^nen ^ t>e tne c^ass
 consisting of all sets of the form \JieN Xi where each set Xi belongs to some 3?n.

 4.9. Theorem.

 (i) For every non-zero stump a, for every subset X ofjV, X belongs to X^ if and only
 if, for some a, X coincides with US0 \a, and: X belongs to Ti0 if and only if, for
 some a, X coincides with UPa \a. In addition, { USa, UPa} is a complementary
 pair of positively Borel sets.

 (ii) For every non-zero hereditarily repetitive stump a, for every subset X of JV, X
 belongs to Xa if and only if X reduces to E0, and'. X belongs to H0 if and only
 if X reduces to AG. In addition, {Ea,Aa} is a complementary pair of positively

 Borel sets.

 (iii) For every non-zero stump a, for all subsets X, Y of JV, if Y belongs to H0G, and
 X reduces to Y, then X belongs to X^, and: if Y belongs to T\G and X reduces
 to Y, then X belongs to 11^.

 (iv) For every hereditarily repetitive non-zero stump o,for every sequence Xo,X\,...

 of subsets ofjV, if, for each n, Xn belongs to L^, then U?gn Xn belongs to X^,
 and: if for each n, Xn belongs to Wa, then H?gn Xn belongs to Ua.

 (v) For every hereditarily repetitive non-zero stump a different from 1*, the class

 L^ coincides with the sum class X^eN^? and the class 11^ coincides with the
 product class YineN ^o?

 (vi) For all hereditarily repetitive non-zero stumps a, x, if o < x, then X^ is a subclass

 of X? and 11^ is a subclass of II?.
 (vii) For all hereditarily repetitive non-zero stumps o, x, if a < x, then Xff is a subclass

 of IIT and Yla is a subclass of XT.

 Proof, (i) We use induction on the set of non-zero stumps.
 We have seen, in Subsection 2.1, that a subset X of JV belongs to X? if and only

 if there exists y such that, for all a, a belongs to X if and only if, for some m, n,

 y(m) = an + 1. It follows that, for every subset X of JV, X belongs to X)?* if and
 only there exists y such that for all a, a belongs to X if and only if (y, a) belongs to
 t/Si*,thatis, X = USx*\y.

This content downloaded from 131.174.17.24 on Tue, 15 Aug 2017 07:50:09 UTC
All use subject to http://about.jstor.org/terms



 THE BOREL HIERARCHY THEOREM  37

 It is also clear that, for every subset X of JV, X belongs to IT^ if and only there
 exists y such that for all a, a belongs to X if and only if (y, a) belongs to UP\*,
 that is, X = UPi*\y.
 Now let g be a non-zero stump different from 1 * and suppose that the statement

 to be proven has been shown for every one of its immediate substumps. Using the
 Second Axiom of Countable Choice, we observe that, for every subset X of N, X
 belongs to E^ if and only if there exists a sequence X0,X\,... of subsets of JV such
 that, for each n, Xn belongs to E?? and X ? [jneN Xn if and only if there exists y
 such that, for each n, Xn = UPGn \yn and X = [jneN %n if and only if there exists y
 such that X = \JneN UPan \yn if and only if there exists y such that X = USG \y.

 In a similar way we verify that X belongs to n? if and only if there exists y such
 thatZ= UPG\y.

 The statement that, for each non-zero stump o, { USa, UPG] is a complementary
 pair of positively Borel sets, is proven by straightforward induction on the set of
 non-zero stumps.

 (ii) We first show that, for each non-zero stump o, for every subset X of JV, if X

 reduces to EG, X belongs to E^ and, if X reduces to AG, then X belongs to nJJ.
 We use induction on the set of non-zero stumps.
 Assume that X is a subset of JV reducing to E\. Let y be a function from JV to

 JV reducing X to E\. Note that X is the set of all ainJV such that for some m, for

 some n, yn(am) > 1 and, for all j < m, yn(aj) = 0 and thus belongs to E?*.
 Assume that X is a subset of JV reducing to A\. Let y be a function from JV to

 JV reducing X to A\. Note that X is the set of all ainJV such that for every m, for
 every n, ifyn(am) > 0 and, for all j < m, yn(?~j) ? 0, then yn(am) = 1, and thus
 belongs to II?*.

 Now assume that o is a non-zero stump different from 1* and that, for each n,

 for every subset X of JV, if X reduces to EGn, X belongs to E^? and, if X reduces
 to AGn, then X belongs to I?J}*.

 Suppose that X is a subset of JV and that y is a function from JV to JV reducing
 X to EG. Note that, for each a, a belongs to X if and only if y\a belongs to EG.
 For each n, we let Xn be the set of all a such that (y \a)n belongs to AGn. Note that,

 for each n, Xn reduces to AGn and thus belongs to 11^. The set X coincides with
 \JneN Xn and thus belongs to E?}.

 Suppose that X is a subset of JV and that y is a function from JV to JV reducing
 X to AG. Note that, for each a, a belongs to X if and only if y\a belongs to EG.
 For each n, we let Xn be the set of all a such that (y \a)n belongs to EGn. Note that,

 for each n, Xn reduces to AGn and thus belongs to II^7. The set X coincides with
 f\eN Xn and thus belongs to n?.

 Next, we have to show that, for each non-zero stump o, for each y, the set USG \y
 reduces to the set EG and the set UPG \y reduces to the set AG. Note, however, that,
 for each non-zero stump o, for each y, the set USG \y reduces to the set USG and the
 set UPG \y reduces to the set UPG. It thus suffices to show that, for each non-zero
 stump o, USG reduces to EG and UPG reduces to AG. In fact, we prove the stronger
 statement that, for each non-zero stump o, there exists a function from JV to JV
 reducing simultaneously USG to EG and UPG to AG. We do so by induction on the
 set of non-zero stumps.
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 First, let y be a function from JV to JV such that, for each a, for each p, if there

 arem,? such that p ? (m,n) anda?(ra) = aln + 1, then (y\a)(p) ^ 0, and, if not,
 then (y|a)(/?) = 0. Note that y reduces US\* to E\ and UP\* to yli.

 iVexi, suppose that o is a non-zero stump different from 1* and that, for each n,
 there exist a function from JV to JV reducing simultaneously USGn to EGn and t/iV*
 to AGn. Using the Second Axiom of Countable Choice, we find y such that, for each
 n, yn is a function from JV to JV reducing simultaneously t/S^? to EGn and WV to
 AGn. We now let ? be a function from JV to JV such that, for each a, for each ft,

 (<5|a)" = yn\(a?M, a1). One easily verifies that? reduces both [/S^ to Ea and t/i^
 to^.
 We may avoid the use of the Second Axiom of Countable Choice in the just given

 argument. By recursion on the set of non-zero stumps, see Subsection 1.5.2.1, we
 define a function F from the set of stumps to JV such that, for every non-zero
 stump a, F (a) is a function from JV to JV reducing simultaneously USG to EG and
 UPG to AG. We take care that

 (i) F(l*) is a function from from JV to JV reducing simultaneously US\* to E\
 and UPi* toAi.

 (ii) For each non-zero stump a different from 1*, F(o) is a function from JV to

 JV such that, for each a, for each?, (F(o)\a)n = F(o-n)\(a?'n,al).

 (iii) This easily follows from (ii).
 (iv) Let cf be a hereditarily repetitive non-zero stump a.
 Let Xo,X\,... be a sequence of subsets of JV, such that, for each n, Xn belongs

 to X^. Using (ii) and the Second Axiom of Countable Choice, we determine an
 element y of JV such that, for each n, yn is a function from JV to JV reducing Xn
 to EG. We now distinguish two cases:

 Case ( 1 ). o ? 1 *. Let ? be a function from JV to JV such that, for each p, if there
 exist m,n such that p = (m,n) and (yn\a)(m) ^ 0, then (?\a)(p) = 1, and if not,
 then (?\a)(p) = 0. Note that ? reduces U?gn^? to ^1; anc*> therefore, |J77GNZ?
 belongs to X?*.

 Case (2). a ^ 1 *. Using the Second Axiom of Countable Choice we determine
 einJV such that e is strictly increasing and, for each m, n, cr?((m^>) = Gm. We let ?

 be a function from JV to JV such that, for all m, n, (?\a)?^nhn^ = (yn |a)m, and, for
 all /?, if there are no m, n such that p ? e((m,n)), then (?\a)p belongs to EG and
 thus not to Agp. The function ? is easily seen to reduce \JneN Xn to EG. We may

 conclude that [jneN Xn belongs to X^.
 The proof that the class Xa is closed under the operation of countable intersection

 is similar and left to the reader.

 (v) Let o be a hereditarily repetitive non-zero stump different from 1*. Clearly,

 the class X^ is a subclass of the class J2nen ^" ^s to tne converse, suppose that
 X is a subset of JV belonging to the class X^en^"- Using the Second Axiom
 of Countable Choice, find a sequence Xo, X\,... of subsets of JV and an element

 a of JV such that, for each n, Xn belongs to the class n^a(?), and X coincides
 with U?gn Xn- Using the Second Axiom of Countable Choice again, find a strictly

 increasing element ?ofjV such that, for each n, Xn belongs to the class n^(?). Now
 define a sequence Yq, Y\,... of subsets of JV such that, for each n, Y?^ = Xn, and,
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 for each p, if there is no n such that ?(n) = p, then Yp = 0. Note that X coincides

 with Unen Yn and that, for each n, Yn belongs to II?,7, so X belongs to E?. We may
 conclude that the classes E? and X^gn H?? coincide.

 The proof that the classes II? and ELeN^?" c?incide is similar and left to the
 reader.

 (vi) We prove, by induction on the set of hereditarily repetitive non-zero stumps
 that, for every stump z, the following holds true:

 for every stump o, if o < z, then there exist a function y from JV to JV
 reducing simultaneously EG to ET and AG to AT.

 It is immediately clear that this statement holds if z = 1*, as, for every non-zero
 stump o, if o < 1*, then o = 1*.

 Now assume that z is a non-zero hereditarily repetitive stump different from 1 *
 and that the statement has been proven for every one of its immediate substumps.
 Let o be a non-zero hereditarily repetitive stump such that o < z. We distinguish
 two cases.

 Case (1). o ? 1*. Find y,? in JV, such that, for each n,yn belongs to ETn and^"
 belongs to ATn. Let e be a function from JV to JV such that, for each a, for each n,
 if a(n) ^ 0, then (e\a)n =Sn, and, if a(n) = 0, then (e\a)n = yn. Observe that e
 simultaneously reduces E\* to ET and A\* to AT.

 Case (2). o / 1*. Note that for each m, there exists n such that om < zn. Find
 a strictly increasing y in JV such that, for each m, om < zy^m\ Using the Second
 Axiom of Countable Choice, we find ? such that, for each m, dm is a function from

 JV to JV simultaneously reducing EGm to EzV(m) and AGm to Ar7(m). Let e be a function

 from JV to JV such that, for each a, for each m, (e\a)y^ = ?m|aw and, for each
 n, if there is no m such that y(m) = ?, then (e|a)" belongs to ETn. Observe that e
 simultaneously reduces EG to Ez and Aa to AT.

 (vii) One proves easily that, for every hereditarily repetitive non-zero stumps z

 different from 1*, for each n, the class E?? is a subclass of the class II? and the class
 II?? is a subclass of E?. Using (vi), one then concludes that, for all hereditarily
 repetitive non-zero stumps o, z, if o < z, then E? is a subclass of II? and II? is
 a subclass of E?. H

 In Subsection 1.5.5 we have given an example showing that, in general, it is
 impossible, given stumps a, z, to decide on the truth or falsity of the statements
 "a < t" and "o < t". For this reason, it is useful to introduce the following notion.

 Let o be non-empty stump, o is called weakly comparative if and only if,
 for all m, n there exists p such that both om < op and on < op.

 Note that a non-empty stump a that is comparative in the sense that it satisfies the
 (classically empty) condition: for all m,n, either om < on or on < om, is also

 weakly comparative.

 4.10. Theorem. For every non-zero hereditarily repetitive and weakly comparative

 non-zero stump o, for all subsets X, Y of JV, if both X and Y belong to E?, then
 Xn Y belongs to E?.

 Proof. First, let X, Y belong to E?*. Find functions y, ? from N to N reducing
 X, Y, respectively, to E\. Let e be a function from JVtoJV such that, for every a, for
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 every n, (e\a)(n) / 0 if and only if there exist /, j < n such that both (y\a)(i) / 0
 and (?\a)(j) ^r 0. Note that e reduces X n Y to E\ and conclude that X D Y
 belongs to X^.

 Now let a be a non-zero hereditarily repetitive and weakly comparative stump dif

 ferent from 1* and let X, Y belong to X^. Find sequences Xo,X\,... and Yo, Y\,...
 of subsets of JV such that X = Uwgn Xn and Y = U?gn Yn, anc* f?r eacn w> ^n. ^
 belong to H?an. Note that, for each m, for each n, there exists p such that both
 om < op and an <op, and, therefore, in view of Theorem 4.9 (vi), both Xm and Yn
 belong to 11^, and thus, in view of Theorem 4.9(iv), also Xm n Yn belongs to 11^
 and thus, because of Theorem 4.9(vii), to X^. Now observe that X n Y coincides
 with ({JneN Xn) n (\JneN Yn) and thus with \JmneN Xm n Yn. As ?? is closed under
 the operation of countable union, see Theorem 4.9(iv), X n Y belongs to X^. H

 The statement 'dual' to Theorem 4.10 does not hold intuitionistically.
 It follows from Theorem 3.4(i) that the class II? is not closed under the operation

 of (finite) union. In Section 8, Theorem 8.7, we will obtain the much more general

 result that, for every hereditarily repetitive stump o, the class 11^ is not closed under
 the operation of (finite) union.

 ?5. The constructive content of the classical Borel Hierarchy Theorem. We show
 which conclusion the intuitionistic mathematician may draw from the classical
 arguments establishing the hierarchy that use the existence of universal and complete
 elements. It turns out that she can not draw the conclusion she would like to draw.

 5.1. For every a, for every a, we define an infinite sequence aa, as follows, by
 induction on length(a): ^a := a and for all a, n : a*^>a := (aa)n. So for every
 a, a, m one has aa(m) = a (a * m).

 For all a, b we define: a does not compare with b, or a, b are incompatible, notation
 a _L b, if and only if there is no m such that either a *m = b or b ^m ? a.

 Observe that for every non-zero stump o, either o = 1* and no s different from ( )
 belongs to o, or, for every n, (n) belongs to a. As a consequence, one may decide,
 for every a, if there exists n such that a * (n) belongs to a or not. If a belongs to o
 and there is no n such that a * (n) belongs to a, we say that a is & final position in a.

 For every stump o, for every a, we say that a is just outside a if and only if there
 exists b,n such that a = b * (n) and b belongs to o while a does not. For every
 stump o, for every a, one may decide if a is just outside o or not.

 The first version of the next theorem was proven by Borel and Lebesgue, see [3]
 and [29].

 5.2. Theorem. (The Classical Borel Hierarchy Theorem):

 (i) For every non-zero hereditarily repetitive stump o, if either Vp0 forms part ofLa,
 or X^ forms part of Ii?a, then there exists y belonging to neither one of USG,
 UPG.

 (ii) For every function f from JV to JV there exists a in JV such that a belongs to E\
 if and only if f\a belongs to E\. For every decidable subset A ofN consisting of

 mutually incompatible numbers, for every function f from JV to JV there exists
 a such that, for each a in A, aa belongs to E\ if and only ifa(f\a) belongs
 to E\.
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 (iii) For every non-zero stump a, for every function f from JV to JV, there exists a
 such that a belongs to EG if and only if f\a belongs to EG, and: a belongs to
 AG if and only if f\a belongs to AG.

 (iv) For every non-zero hereditarily repetitive stump o, if either AG reduces to EG or
 EG reduces to AG, then there exists a belonging to neither one of AG, EG.

 Proof, (i) For every non-zero hereditarily repetitive stump o, we let DSG be the
 set of all a such that (a, a) belongs to USG, and we let DPG be the set of all a such
 that (a, a) belongs to UPG. We call DSG and DPG the diagonal sets of level o.

 Observe that DSG, DPG belong to E?, II?, respectively.
 Assume that o is a non-zero hereditarily repetitive stump. First assume that II?

 is a subclass of E?. It follows that DPG belongs to E?. We determine ? such that
 DPG coincides with USG \?, and note that, for every a, (a, a) belongs to UPG if and
 only if (?, a) belongs to USa. Define y := (?, ?) and observe that y cannot belong
 to either UPG or USG.

 The assumption that E? is a subclass of of II? is easily seen to lead to the same
 conclusion, namely, that there exists y belonging to neither one of USG, UPG.

 (ii) Let / be a function from JV to JV. Recall that / is an element of JV such
 that, for each a, for each i, (f\a)(i) = fl(?~q) - 1, where q is the least j such
 that fl(aj) t? 0. We define an infinite sequence a, by induction, as follows. Let
 n be a natural number and suppose we decided already on a(0),... ,a(n ? 1).

 We consider the question if there exist /, j < n such that fl (?j) > 1, and, for each
 every q < j, fl(a~q) = 0. If so, we define a(n) := 1, if not, we define a(n) := 0.
 It is not difficult to see that a belongs to E\ if and only if / \a belongs to E\.

 Now let A be a decidable subset of N consisting of mutually incompatible natural
 numbers and let / be a function from jVtoJV. We define an infinite sequence a, by
 induction, as follows. Let ?bea natural number and suppose we decided already
 ona(0),...,a(? - 1). We consider the question if there exist a in A, k in N such
 that n = a * k and for some i,j < n, fa*l(aj) > 1, while, at the same time, for
 every q < j, fa*l(aq) = 0. If so, we define a(n) := 1, if not, we define a(n) := 0.
 Observe that for each a in A, there exists k such that a(a * k) = 1 if and only if
 there exists i such that (f\a)(a * i) ^ 0, that is aa belongs to E\ if and only if
 a(f\a) belongs to E\.

 (iii) Let o be a non-zero stump and let A be the set of all final positions in o. Let
 F be a function from JV to JV'. Using (ii), construct a such that for every a in A,
 aa belongs to E\ if and only if a(f\a) belongs to E\. Using the Principle of Stump
 Induction, see Section 1.5.4, prove that for every a belonging to o, both aa belongs

 to E(aa} if and only if a(f\a) belongs to E^a^ and'. aa belongs to A^a^ if and only if
 a(f\a) belongs to A^l(Jy In particular: a belongs to EG if and only if f\a belongs
 to EG and: a belongs to AG if and only if f\a belongs to AG.

 (iv) Let o be a non-zero hereditarily repetitive stump and let / be a function from
 JV to JV reducing AG to EG, that is, for every a, a belongs to AG if and only if f\a
 belongs to EG. Using (iii), construct a such that a belongs to AG if and only if f\a
 belongs to AG and: a belongs to EG if and only if f\a belongs to EG. If a should
 belong to AG, f\a would belong to both EG and AG, contradiction. If a should
 belong to EG, f\a would belong to EG and therefore a would belong both to AG
 and EG, contradiction. Therefore a belongs to neither one of AG,EG. 3
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 5.3. The third statement of Theorem 5.2 is a kind of fixed point theorem and the
 argument given may be compared to the argument developed by S.C. Kleene for his
 First Recursion Theorem.

 The reader will perhaps be surprised by the careful formulation of the first and
 fourth statement of Theorem 5.2. Does not the assumption that, for some non-zero
 stump a, some a does not belong to either one of AG,EG, immediately lead to
 a contradiction?

 In fact, it does so only in case o = 1*. For every a, -i-i(a belongs to A\ or a
 belongs to E\), and therefore, in view of Theorem 5.2(iv), A\ does not reduce to E\
 and E\ does not reduce to A\.

 One might hope for the conclusion that also the classes n? and L? are not included
 in each other, but this hope realizes only if one makes some unfounded assumption
 like the generalized Principle of Markov: for every a, if -i-i3?[a(?) = 0], then
 3n[a(n) = 0]. This principle has been mentioned before, in Subsection 4.4.

 Using the generalized Markov Principle one easily proves that for every a,
 ->->(a belongs to A2 or a belongs to E2), and therefore, in view of Theorem 5.2(iv),
 A2 does not reduce to E2 and E2 does not reduce to A2. As we have seen in Section 2,
 and shall see again in Subsection 5.4, however, the fact that E2 does not reduce to
 A2 is an elementary fact, that can be proven without any extra assumption.

 It is not true, although stated in [43] and [44], that assuming Markov's Principle
 enables one to climb all further steps of the hierarchy: already the third level is still
 out of reach, as we shall explain in Subsections 5.5 and 5.6.

 One may do so, however, if one assumes Kuroda's Conjecture, also known as the
 Double Negation Shift, see [28]:

 For every subset P ofN, ifVn[->->P{n)], then -i-i\/?[P(?)].

 Using Kuroda's Conjecture, one may prove, by induction on the class of comple
 mentary pairs of positively Borel sets:

 For every complementary pair (X, Y) of positively Borel sets, for every a,
 ->->(a G XV a G Y).

 Proof. First, assume that X is an open subset of JV and that Y = JV \ X. Let C
 be a decidable subset of N such that, for each a, a belongs to X if and only if, for
 some n, an belongs to C. Note that for every a, ~^^(3n[?n belongs to C] V Vn[?n
 does not belong to C]), and therefore, ->-i(a G X V a G Y).

 Next, assume that (Xo, Fo), (X\, Y\),... is an infinite sequence of complementary
 pairs of positively Borel sets, and, for each n, for every a, ~^-^(a G XnV a G Yn).

 Now assume that a is an element of JV not belonging to \JneNXn. Then, for
 each n, a belongs to (Fj"~\ and thus, by Kuroda's Conjecture, to (f\eN ^)"
 Thus we see that -1-1 (a G \jnenXn V a G C\neN ^?)- We may a^so conclude:

 Looking again at Theorem 5.2(iv), we see: Kuroda's Conjecture implies that, for
 every non-zero hereditarily repetitive stump a, AG does not reduce to EG and EG
 does not reduce to AG.

 5.4. The proof of Theorem 2.12 provides an elementary argument showing that
 ?2 positively fails to reduce to A2. Inspired by Theorem 5.2, we now give a slightly
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 different elementary argument. Another elementary proof of the same fact will be
 indicated in Subsection 6.6.

 Let / be a function from JV to JV mapping E2 into A2. Using Theorem 5.2(h),
 find a such that, for each n, an belongs to E\ if and only if (f \a)n belongs to E\.
 We claim that, for each n, both an and (f\a)n belong to E\ and prove this claim as
 follows.

 Let n be a natural number. Let ? be an element of JV such that ?n = 0 and, for
 each m, if there is no j such that m = (n) * j, then ?(m) = a (m). Note that ?
 belongs to E2 and f\? belongs to A2 and find p such that (f\?)n(p) ^ 0. Then
 find q such that, for every y, if yq = ?q, then (f\y)n(p) = f\?)n(p) ^ 0. Now
 distinguish two cases. Either ?q = ?q, and (f\a)n(p) ^ 0, and both (f\a)n and
 an belong to E\, oraq ^ ?q and both an and (f\a)n belong to E\.

 It follows that both a and f\a belong to A2.

 5.5. We add an example showing that in intuitionistic mathematics it is possible
 that statements -i3xVy3z[P(x, y, z)] and ^Vx3yVz[-^P(x, y, z)] and VxVyVz[P(x, y, z) V
 -iP(x, y, z)] are simultaneously true. We claim that

 (i) ->3a\/n3m[a(n) = 0 A a(m) ^ 0] and
 (ii) -Na3riim[a(n) ^OVa(m) =0] and
 (iii) VaV?Vm[(a(w) = 0 A a(m) / 0) V (a(n) ^0V a(m) = 0)].
 We only prove (ii). Assume \Ia3n\lm[a(n) ^ 0 V a(m) = 0]. Note that

 Wa[3n[a(n) / 0] V Vm[a(m) = 0]]. Using the Continuity Principle, we find n, p
 such that for every a passing through Qp either a(n) ^ 0 or a = 0. Now consider
 o? = O*/ * 1 where q is greater than both n, p. Contradiction.

 This example shows that it is impossible to obtain from Theorem 5.2(iv) the
 conclusion that II? is not included in E?, if one only uses the rules of intuitionistic
 logic and no further mathematical assumptions.

 5.6. The fact that we can not prove by an elementary argument that A3* does not
 reduce to E3*, has also been observed by J.R. Moschovakis, see [35]. She showed
 that Church's Thesis implies the collapse of the positive arithmetical hierarchy at
 the third level. We use her argument to show that Church's Thesis also implies the
 collapse of the Borel hierarchy at the third level.

 We take Church's Thesis to be the statement that there exist z, y/ in JV
 such that, for every a, there exists e such that, for every n, a(n) =
 y/ (juz[z((e, n,z)) = 0]). Note that, for every a, a belongs to A3* if and
 only if

 \Jm3nJJp[a((m,n, p)) = 0]

 if and only if

 3/?VmVp[a((m, ?(m), p)) =0]

 if and only if

 3eMm\/u3z[(z((e, m, u)) = 0 ??

 a((m,y/(juz < u[z((e,m,z)) =0]),p))) = 0) f\z((e,m,z)) =0].
 We thus see that A3* reduces to E3*.
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 Combining this result with Theorem 7.5(iv) we find: Church's Thesis, together
 with the First Axiom of Countable Choice, proves that there exists a not belonging
 to either A3* or ?3*, that is, both

 -iVm3n\/p[a((m,n, p)) =0]

 and
 ^3m\/n3p[a({m, n, p)) ^ 0].

 Using a slight extension of the above argument, we see: Church's Thesis, together

 with the First Axiom of Countable Choice, proves that A4* belongs to the class X?
 and thus that every positively Borel set belongs to the class L?.

 It is well-known that Markov's Principle and Church's Thesis, the two axioms that
 together express the point of view of the so-called Russian constructivists, see [16]
 and [7], may be consistently added to the basic axioms of intuitionistic analysis.
 Church's Thesis reduces analysis to arithmetic and, if formal intuitionistic arith
 metic is consistent, it remains so upon the joint addition of Markov's Principle and
 Church's Thesis, see [41] or [16]. (As is emphasized by Troelstra and van Dalen,
 see [42], page 193, one may have doubts if the resulting system has a straightforward
 intuitionistic interpretation, as Church's Thesis influences the meaning of the quan
 tifiers. Moreover, there does not seem to be a good reason for adopting Markov's
 principle.) We may conclude that Markov's Principle on its own does not enable
 one to prove that A3* does not reduce to ?3*.

 Note that, connecting the results of Subsection 5.3 and Subsection 5.6, we find
 a confirmation of the fact that Kuroda's Conjecture, the First Axiom of Countable
 Choice and Church's Thesis together lead to a contradiction. This fact is mentioned,
 for instance, in [16], Section 4.3, page 35.

 ?6. The intuitionistic Finite Borel Hierarchy Theorem. We prove the finite case
 of the Intuitionistic Borel Hierarchy Theorem by a complete induction argument
 using the First Axiom of Continuous Choice. Although the argument is not very
 easy, it does not generalize to the transfinite levels of the hierarchy.

 6.1. Given any subset X of JV we let the infinite disjunction ofX, notation DCD(X),
 be the set of all a such that, for some n, an belongs to X, and we let the infinite
 conjunction ofX, notation C (X), be the set of all a such that, for all n, an belongs
 toZ.
 A subset Y of JV reduces to D (X), C (X), respectively, if and only if there

 exists a sequence Fo, Y\,... of subsets of JV, each of them reducing to X with the
 property that the set Y coincides with the set U?gn Yn, C\neN ^?> respectively.

 Observe that, for each positive n, the set D (An) coincides with the set En+\ and
 the set C0J(En) coincides with the set An+\.

 Let (X, Y) be a pair of sets such that every element of X is apart from every
 element of Y. As in Subsection 2.17, we say that X positively fails to reduce to Y
 if and only if for every function / from JV to JV mapping X into Y there exists a
 in Y such that f\a belongs to Y. We say that X positively and repeatedly fails to
 reduce to Y if and only if for every decidable subset A of N consisting of mutually
 incompatible numbers, (that is, for all a, bin A,if a ^ b, then a J_ b), for every
 function / from JV to JV such that, for every a in A, for every a, if aa belongs
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 to X, then a(f\a) belongs to Y, there exists a such that, for every a in A, both
 aa and a(f\a) belong to Y. Observe that, if X positively and repeatedly fails to
 reduce to Y, then it is also true that for every decidable subset A of N consisting of

 mutually incompatible numbers, for every pinJV, for every function / from JV to

 JV with the property that, for all a in A, for all a, ifaa belongs to X, then p^a\f\a)
 belongs to Y, there exists a such that, for all a in A, both aa and p^(f\a) belong
 to Y. For, given such p and /, we may define a function g from JV to JV such that,

 for all a in A, for all a, a(g\a) = p^(f\a): there exists a such that, for all a in
 A, both aa and a(g\a) belong to Y, and, therefore, both aa and p^(f\a) belong
 to Y.

 For all a, ? in JV, we let (a, ?) be the element y ofjV with the properties: y (0) = 0,
 y? = a, yl = /?, and , for each i > 1, yl = 0. The function (a,/?) \-^ (oi.,?) is
 an example of a pairing function on JV, a strongly one-to-one continuous function
 from JV x JV into yF. Let X be a subset of yF. X is called strictly analytic if and
 only if there exists a function y from JT to JV such that X coincides with the range
 of y, that is, for every a, a belongs to X if and only if, for some ?, a coincides
 with y\?. X is called analytic if and only if there exists a closed subset Y of JV
 such that X coincides with the set of all a such that, for some ?, (a, ?) belongs
 to Y.

 Every strictly analytic subset of JV is analytic and inhabited, but conversely, not
 every inhabited and analytic subset of JV is strictly analytic, see [53].

 6.2. Theorem.

 The set A\ positively and repeatedly fails to reduce to the set E\ and the set
 E\ positively and repeatedly fails to reduce to the set A\.

 Proof. First, let A be a decidable subset of N consisting of mutually incompatible
 numbers and let / be a function from JV to JV such that for all a in A, for all a, if
 aa belongs to A\, then a(f\a) belongs to E\. Using Theorem 5.2(h), find a such
 that for each a in A, aa belongs to E\ if and only if a(f\a) belongs to E\. We
 claim that, for each a in A, both aa and a(f\a) belong to E\. Let a belong to A
 and let ? be such that a? = 0 and, for each /, if there is no j such that / = a * j,

 then ?(i) = a (i). Calculate q such that (a(f\?))(q) ^ 0, and find p such that
 fa*q(?p) > 1 and, for every j < p, fa*^(?j) = 0. Now distinguish two cases.
 Either ?p = ?p, therefore a(f\a) and also aa belong to E\, or ?p ^ ?p and
 therefore aa and also a (f \a) belong to E\.

 Secondly, let A be a decidable subset of N consisting of mutually incompatible
 numbers and let / be a function from JV to JV such that for all a in A, for all a, if
 aa belongs to E\, then a(f\a) belongs to A\. Observe that, for every a, for every
 a in A, a(f\a) belongs to A\.

 Assume we find a such that a(f\a) belongs to E\. Determine p, q such
 that, for every ?, if~?q = ?q, then (a(f\?))(q) = (a(f\a))(q) ? 0,
 and, therefore, a(f\?) belongs to E\. Note that there exists ? passing
 through ?q such thata? belongs to E\. Contradiction.

 It follows that there exists a such that, for every a in A, both aa and a(f\a) belong
 to^i. H
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 6.3. Lemma. (First Continuity Lemma):
 Let X be a strictly analytic subset of JV.

 Let R be a subset ofjVxN and a a natural number such that for every a, ifaa
 belongs to CC0(X), then there exists m such that aRm. Then:

 (i) For every a such that aa belongs to C (X), there exists n, m with the property
 that for every ? such that a ? belongs to CW(X), if an ~ ?n and for all j < n,
 a*(j)a =a*{j)?^ tnen?Rm.

 (ii) For every y in C (X) there exist functions ?i, v from JV toN such that for every
 a such that aa equals y, for every ? such that a ? belongs to C (X), if both
 a~v(a) = ?v(a) and for all j < v(a), a*^ ? = yJ, then ?Rju(a).

 Proof. Let / be a function from JV to JV such that X coincides with the range
 off. Now let g be a function from JV to JV such that for every a, (g\a)(f)) = a(0)
 and for each n, (g\a)n = f\(an). Observe that Cco(X) coincides with the range of
 g. Let h be a function from JV to JV such that for every a, a (h \ a ) ? g \ (al ) and for
 each n, if there is no j such that n = a * j, then (h\a)(n) = a?(n). Observe that
 the set of all a such that aa belongs to CW(X) coincides with the range of h.
 Assume that for every a such that aa belongs to C (X) there exists m such that

 aRm. Then for every ? there exists m such that (h\?)Rm.
 (i) Assume that we have some a such that aa belongs to C0J(X). Find y such that
 a = h\y, and, using the Continuity Principle, find m,n such that for every ?, if
 yn = on, then (h\S)Rm. Observe that for every ? such that a? belongs to CW(X)
 and an = ?n and for all j < n, a*^ a = a*0> ? there exists ? such that ? = h \? and
 yn =?n, and, therefore, ?Rm.
 (ii) Using the First Axiom of Continuous Choice, determine functions n, p from JV
 to N such that for every ?,(h \?)Rn(?) and p(?) := jun[n(?n) ^ 0] + l. Observe that

 for every ?, for every a, ifaa belongs to C (X) and both ?(p(?)) = (h\?)(p(?))
 and for each j < />(/?), a*^a ? a*(J\h\?), there will exist ? passing through
 ?(p(?)) such that a = h\?, and, therefore, n(?) = n(?) and aRn(?). Let y belong
 to C(D(X). Construct a function n from JV to JV such that for each a such that
 aa = y, the sequence h\(n\a) coincides with a. Define functions ju, v from JV to
 N by: for all a, p(a) := n(n\a) and v(a) := p(n\a). One easily verifies that p, v
 satisfy the requirements. H

 6.4. Theorem. Let X, Y be strictly analytic subsets of JV such that every element
 of X is apart from every element of Y.

 (i) If X positively and repeatedly fails to reduce to Y, then D (X) positively and
 repeatedly fails to reduce to CC0(Y).

 (ii) If X positively and repeatedly fails to reduce to Y, then CC?(X) positively and
 repeatedly fails to reduce to D0J(Y).

 Proof, (i) Let A be a decidable subset of N consisting of mutually incompatible
 numbers and let / be a function from JV to JV such that for every a in A, for every
 a, ifaa belongs to D(X)(X), thena(/|o;) belongs to C (Y). It follows that for every
 a in A, for every n, for every a, if a*^a belongs to X, then a*^(f\a) belongs to
 Y. Observe that the set of all numbers a * (n), where a belongs to A and n to N is
 a decidable set of mutually incompatible numbers. We use the fact that X positively
 and repeatedly fails to reduce to Y and find some a such that for all a in A, for all

This content downloaded from 131.174.17.24 on Tue, 15 Aug 2017 07:50:09 UTC
All use subject to http://about.jstor.org/terms



 the borel hierarchy theorem  47

 n, both fl*<">a and a*^(f\a) belong to Y, and therefore, for all a in A, both aa
 and fl (/\a) belong to CC0(F).

 (ii) Let yl be a decidable subset of N consisting of mutually incompatible numbers
 and let / be a function from JV to JV such that for every a in A, for every a, if aa
 belongs to C (X), then fl(/|a) belongs to D0J(Y). Let y be an element of CC0(X).
 Using Lemma 6.3(h) and the Second Axiom of Countable Choice we find, for each
 a in A, functions jua and va from JV to N such that, for every a such that aa equals
 y, for every ? such thata? belongs to C (X), if both?va(a) = ?va(a) and for all
 j < va(a), a*^? equals yf then fl*<^(Q!))(/|iff) belongs to Y.
 We now define a sequence go,g\,... of functions from JV to JV such that, for

 each ?, the sequence go\?,g\\?,... is a convergent sequence of elements of JV.
 We let ao be an element of JV with the property that for each a in A, a (ao) equals

 y, and define, for each ?, go\? := ao. Now assume that a belongs to N and that ga
 has been defined. If a does not belong to A, we define: ga+\ := ga.

 If a belongs to A we let pa be the largest of all numbers Vb(gb\?), b in A, b < a.
 We then define the function ga+\ from JV to JV such that, for every ?, the sequence
 a*(pa}ga+i (?) equals a? and for all j, if there is no i such that j = a * (/?fl) * /, then

 (?a+i(/f))(y) = (^(/?))0-).
 It will be clear that, for each ?, the sequence g$\?, g\ \?,... converges. We define

 the function g from JV to JV by: for each ?, g\? :? Lim^oo^ \?.
 Observe that for each ?, for each a in A,

 (i) for all /, if i j^ Pa, then a*^ (g\?) equals yl and thus belongs to X, and
 (ii) if a? belongs to X, then a*{Pa)(g\?) belongs to X, and a(g\?) belongs to

 Cf?(X), and?*^(^>(/|(g|/?)) belongs to 7.
 Using the fact that X positively and repeatedly fails to reduce to Y, we determine ?

 such that, for all a in A, both fl*<^> (g|?) and a*^^\?)) (/|(g|/?)) belong to 7, and,
 we observe that, for all a in ^, both a(g\?) and a (/|(g|jff)) belong to D(D(Y). H

 6.5. Theorem. (Finite Borel Hierarchy Theorem):

 (i) For each n, the set An positively fails to reduce to the set En, as, for every function

 f from JV to JV mapping An into En, there exists a such that both a and f\a
 belong to En.

 (ii) For each n, the set En positively fails to reduce to the set An, as, for every function

 f from JV to JV mapping En into An, there exists a such that both a and f\a
 belong to An.

 Proof. Observe that, for each n, (An,En) is a complementary pair of positively
 Borel and strictly analytic sets. The fact that An and En are strictly analytic subsets
 of JV will be shown in the next Subsection: it is a consequence of Theorem 7.2. By
 an inductive argument using Theorems 5.2 and 5.4 we conclude that, for each n, the
 set An positively fails to reduce to the set En and the set En positively fails to reduce
 to the set ^U. H

 6.6. Note that the proofs of Theorem 5.2(h), Theorem 6.2 and Theorem 6.4(i)
 are elementary in the sense that they avoid the Continuity Principle and the axioms
 of Countable and Continuous Choice. Combining them, we find an elementary
 proof of the fact that the set E2 positively fails to reduce to the set A2, as we did
 earlier in the proof of Theorem 2.12 and in Subsection 5.4.
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 ?7. The full intuitionistic Borel Hierarchy theorem. First, we introduce a game
 theoretic approach to positively Borel sets. We then prove the full intuitionistic
 Borel Hierarchy Theorem.

 7.1. For every non-zero stump o, for every a, we introduce a game <&(o,a)
 for players I, II. It is a game of perfect information. Player I starts and chooses
 a natural number no, then player II chooses a natural number n\, and so they
 continue choosing alternately a natural number. The play ends as soon as the
 number (no,..., rik-\) is just outside o. Player I is the winner if and only if either
 k is odd and a ((no,..., w^-i)) differs from 0, or k is even and a((no,...,nk-\))
 equals 0. We then say that the number (no,... , %_i) is a win for player I in the game
 &(o, a). Player II is the winner if and only if player I is not. In that case the number
 (no,..., nj?-i) is called a win for player II in the game *?(o,a).
 An element yofJV may be thought of as a strategy for either player I or player II,

 as follows. For every s = (s(0),..., s(k ? 1)) where k = length^), for every y,
 we define: s Yobeys y, or y Ygoverns s, if and only if, for every /, if 2i < k, then
 s(2i) = y((s(l),s(3),... ,s(2i ? 1))) and: s U-obeysy, or y ?l-governs s, if and only
 if, for every i, if 2/01 < k, then s(2i + l) = y ((s (0), s (2),... ,s(2i))). Suppose that
 for some non-zero stump o, for some y, a, every position just outside o I-obeying to
 y is a win for player I in the game ^(o,a). We then say that y is a winning strategy

 for player I in the game &(o,ol). Also, if every position just outside o Il-obeying to
 y is a win for player II in the game (&(o,a), we say that y is a winning strategy for
 player II in the game ^(o,a).

 For every y,a, for every non-zero stump o, we define two elements of JV,
 Corr?l(y,a) and Corr?u(y,a), as follows. For every s, if s is not a position just
 outside o I-obeying y, then (Corr?j(y, a))(s) equals a(s), but if s is a position just
 outside o I-obeying y, then, if length^) is odd, (Corr?j(y, a)) (s) equals the larger
 one of the numbers \,a(s), andiflength(s)iseven, (Corraj(y, a)) (s) equals 0. Also,
 for every s, if s is not a position just outside o Il-obeying y, then (Corran(y, a)) (s)
 equals a(s), but if s is a position just outside o Il-obeying y, then, if length(s) is
 odd, (Corrn(y,a))(s) equals 0, and if length(s) is even, (Corr n(y,a))(s) equals
 the larger one of the numbers 1, a(s).
 We might pronounce "Corral(y, a)" as: "the result of making a correct according

 to y as a strategy for player I in the game ^ (a, a)", and "Corr(TII(y, a)" as: "the result
 of making a correct according to y as a strategy for player II in the game &(o, a)".

 7.2. Theorem. For every non-zero stump o,

 (i) for every a, EG(a) if and only if there exists y such that y is a winning strategy
 for player I in the game ^(o, a) and a equals Corraj(y, a), and

 (ii) for every a, AG(a) if and only if there exists y such that y is a winning strategy
 for player II in the game &(o, a) and a equals Corr?u (y, a), and

 (iii) the sets EG and AG are strictly analytic subsets of JV.

 Proof, (i) and (ii) : We use induction on the set of non-zero stumps.
 First, note that, for all a, a belongs to E\* if and only if, for some n, a((n)) ^ 0

 if and only if there exists y such that a((y(( )))) ^ 0 if and only if there exists y
 such that a = Corr) (y, a). Also note that, for all a, a belongs to A\* if and only
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 if, for all n, a((n)) = 0 if and only there exists y such that, for all n, a((n)) = 0 if
 and only if there exists y such that a = Corrxu (y, a).

 Next, assume that a is a non-zero stump different from 1 *, and that the statements
 have been shown to hold for every immediate substump on of a. We observe that,
 for each a, a belongs to EG if and only if, for some n, an belongs to AGn if and
 only if there exists n, y such that an equals Corr?u (y, an) if and only if there exists

 y, n such that y(( )) = n and an equals CorrGu (yn,an) if and only if there exists y
 such that a equals Corr??(y, a). Using the Second Axiom of Countable Choice, we
 observe that also, for each a, a belongs to AG if and only if, for all n, an belongs
 to EGn if and only if, for all n, there exists y such that an equals Corr?n (y, an) if
 and only if there exists y such that, for all n, an equals Corraj (yn ,an) if and only if
 there exists y such that a equals Corr?u(y, a). (The last step uses the fact that, for
 all 5, for all m, s, ym(s) = y((m) * s). This fact implies that, for all ?, for all ?, ?
 equals Corr?u(?,?) if and only if, for all n, ?n equals Corrf (?n, ?n)).

 (iii) Let g be a non-zero stump. Let f,g be functions from JV to JV such that,
 for each a, f\a = Corraj(a?,al) and g\a = Corran(a?,al). Observe that EG
 coincides with the range of / and AG coincides with the range of g. H

 7.3. Let a be a non-zero hereditarily repetitive stump and / a function from
 JV to JT. We have seen, in Theorem 5.2(iii) that there exists a such that (i) a
 belongs to AG if and only if f\a belongs to AG and (ii) a belongs to EG if and
 only if f\ a belongs to EG. Suppose now that / maps AG into EG. In that case, we
 may conclude that there exists a such that neither a nor f\a belong to AG. The
 classical mathematician would conclude, heavily using classical logic, that there
 exists a such that both a and f\a belong to EG. His argument is of course
 unacceptable for an intuitionistic mathematician, and she will strongly doubt his
 conclusion.

 Nevertheless, there is an intuitionistic argument showing that, for every non-zero
 hereditarily repetitive stump o, for every function / from JV to JV mapping AG
 into EG, there exists a such that both a itself and its image f\a belong to EG, that
 is, there exist y,? such that a = Corra?(y, a) and f\a ? Corr?j(?, f\a), and in the
 remaining part of this Subsection we provide such an argument.

 Let C be a spread. We say that C is a value-dictating spread if there exist
 a decidable subset A of N and an element a of JV such that for every ?, ? belongs
 to C if and only if for each n in A, ?(n) = a(n).

 For every spread C, for all m, n, we say that C dictates the value n in m if and
 only if, for all a in C, a(m) = n. We say that m is without choice in C if, for some
 n, C dictates the value n in m. We say that m is free in C if and only if, for all a
 in C, for all ?, if for every j ^ m, a(j) = ?(j), then also ? belongs to C. We say
 that m is completely free in C if and only if, for all p, the number m * p is free in C.

 We say that m is almost completely free in C if and only if for all but finitely many
 numbers p, the number m * p is free in C, and, for all p, either m * p is free in C,
 or C dictates the value 0 in m * p.

 Let C be a spread. We define the minimal element of C, notation Min(C), as
 follows: for each n, (Min(C)) (n) := the least k such that some element of C passes
 through Min(C)n * (k).
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 7.4. Lemma. (First Basic Lemma):
 Let C be a value-dictating spread and s a natural number such that s is almost
 completely free in C.

 Let f be a function from JV to JV such that, for all a in C, ifsa belongs
 to A\*, then f\a belongs to E\*.

 There exist natural numbers m, p and a value-dictating subspread D of C
 such that for alia in D, both (s a)(n) ^ 0 and (f\a)(p) ^ 0, and, therefore,
 both sa and f\a belong to E\*, and, moreover, for all t such that t J_ s, if t
 is almost completely free in C then t is almost completely free in D.

 Proof. Let Min(C) be the minimal element of C. Observe that ?(Min(C))
 belongs to A\ and find p such that (/|Min(C)) ((/?)) ^ 0. Calculate m such that,

 for every a in C, if am = Min(C)m, then (f\a)((p)) = (f\Min(C))((p)). LetD
 be the set of all a in C such that am = Min(C)m and sa = Om * L

 It is easy to see that m, p and D satisfy the requirements. H

 7.5. Lemma. (Second Basic Lemma):
 Let C be a value-dictating spread and s a natural number such that s is almost
 completely free in C.

 Let f be a function from JV to JV such that, for all a in C, ifsa belongs
 to E\*, then f\a belongs to A\*.

 There exists a value-dictating subspread D of C such that for all a in D,
 both sa and f\a belong to A\*, and for all t such that t _L s, if t is almost
 completely free in C, then t is almost completely free in D.

 Proof. Let D be the set of all a in C such that sa = 0. Note that, for every a
 in D, for every n, there exists ? in D such that ?n = an and s? belongs to E\*,
 and, therefore, f\? belongs to A\*. As / is a continuous function, it follows that,
 for every a in D, f\a belong to A\*. It is easy to see that D also satisfies the other
 requirements. H

 7.6. Lemma. (Second Continuity Lemma):

 Let C be a value-dictating spread and s a natural number such that s is almost
 completely free in C.

 Let zbea non-zero stump different from 1 * and let Rbea subset of JV x N,
 such that for every a in C, ifsa belongs to AT, then there exists m such that
 aRm.

 Then, given any a in C such that sa belongs to AT we may calculate m, n
 such that for every ? in C such thats ? belongs to AT, if an ? ?n and for
 every j < n, S*Wa = s*^?, then ?Rm.

 Proof. Assume a belongs to C and sa belongs to AT. We calculate y such that
 sa coincides with CorrTn(y, sa), and p such that, for every q > p, s * q is free in
 C. We let X be the set of all ? such that for every q < p, Sq = yq. We define
 a function h from X x C to C, such that, for every ? in X, for every ? in C,
 s (h(?, /?)) equals CorrTn(S,s ?), and, for every t, if there is no j such that t = s * j,
 then (h(S,?))(t) = ?(t). Observe that both X and C are spreads. Applying the
 Continuity Principle we find m, n such that n > p and for all ? in X, for all ? in C,

 if ?n ? an and?n ? yn, then (h(?, ?))Rm.
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 Now assume that ? belongs to C, and s ? belongs to AG, and ?n =?n, and for
 all j < n, s*(-ri? coincides with s*^a. Calculate ? in X such that ? = h(?, ?) and
 Sn ? yn, and conclude ?Rm. H

 7.7. Lemma. (Main Lemma):

 Let Cbea value-dictating spread and s a natural numb er such that s is almost
 completely free in C.

 Let x be a non-zero hereditarily repetitive stump different from 1*, and let
 g be a function from JV to JV such that for all a in C, ifsa belongs to AT,
 then g\a belongs to ET.

 There exist m, p anda value-dictating subspreadD ofC such that xm ? xp,
 and s * (m) is completely free in D, and for all a in D, ifs*^a belongs to
 Exm, then sa belongs to AT and (g\a)p belong to ATP = Axm, and for all t such
 that t _L s, if t is almost completely free in C, then t is almost completely

 free in D.

 Proof. Let a be some element of C such that sa belongs to AT.
 Applying the previous Lemma, we find p,n such that for every ? in C, if s?

 belongs to AG and ?n = an and for all y < n, s*^? coincides with s*^a, then
 (g\?)p belongs to AxP. We now determine m such that m > n and xp = xm and
 s * (m) is completely free in C and let D be the set of all ? in C such that ?m = am
 and for all j, if j =? m, then s*?) ? = s*^a. D is easily seen to be a spread satisfying
 all our requirements. H

 7.8. Let s, c be natural numbers, s l-obeys c if and only if, for each i, if 2/ <
 length(s), then m := (^(1), ^(3),... ,s(2i - 1)) is smaller than length(c) and s(2i)
 equals c(m).

 Let s, t be natural numbers of equal length. We say that s is ll-similar to t if and
 only if for each odd i < length(s), s(i) = t(i). If s is ll-similar to t, then player
 II made the same moves in the course of reaching the position s as he made in the
 course of reaching the position t.

 Let s, n be natural numbers. We say that n codes the moves of player II in s if and
 only if, for each /, if 2/ + 1 < length(s), then i < length(rc) and n(i) = s(2i + 1).

 For each natural numbers s we define Pd(s), the predecessor of s, as follows:
 Pd(()) = () =0, and, for all?, for all n,Pd(t*(n)) = t.

 7.9. Theorem. (Intuitionistic Borel Hierarchy Theorem, First Part):

 For each non-zero hereditarily repetitive stump o, the set AG positively fails
 to reduce to the set EG, as, for every function f from JV to JV mapping AG
 into EG, there exists a in JV such that both a itself and f\a belong to EG.

 Proof. Let a be a non-zero hereditarily repetitive stump and let / be a function
 from JV to JV mapping AG into EG. We are going to construct a, y,? such that a
 coincides with Corr?(y, a) and f\a coincides with Corr?(?, f\a)\ we then will be
 sure that both a itself and f\a belong to EG.
 We define the sequences y,? step by step, first y(0),o(0), then y(l),?(l),..., and

 at the same time we define a sequence Co, C\,... of value-dictating spreads such
 that the following conditions are satisfied:
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 (1) for each n, for each pair (s, t) of Il-similar positions of equal length, if s
 I-obeys yn and t Yobeys On and s belongs to o, then also t belongs to o and
 sg ? to, and, if s I-obeys yn and t I-obeys On and s is just outside a, then t is
 just outside o. In addition, the following six conditions are satisfied:
 (i) if s is a position in o of even length, then, for all ? in Cn, ifs ? belongs to

 A{sGy then !(f\?) belongs to E{t(r) = E{,a).
 (ii) if s is a position in a of odd length, then, for all ? in Cn, if?/? belongs to

 E{sa), then '(/|jff) belongs to A{t(j) = ^(.?(t).
 (iii) if Pd(s) is a final position in o of even length, then for all ? in Cn,

 ?(s) ? 0 and (f\?)(t) + 0 and, therefore, both Fd^? and pd{t)(f\?)
 belong to E\*.

 (iv) if 51 is a final position in o of odd length, then, for all ? inCn, both s/? and
 r(f\?) belong to A\*, and, therefore, for all j, both s * (y) and t * (y ) are
 positions just outside o &nd ?(s * (j)) = (f\?)(t * (7)) = 0.

 (v) if s is a position just outside a of even length, then a(s) = 0 and a(t) = 0.
 (vi) if s is a position just outside o of odd length, then a(s) ^ 0 and a(t) ^ 0.

 (2) For each n, each non-final position s of o obeying yn is almost free in Cn.
 (3) For each n, Cn+\ is a subspread of Cn and each z < n is without choice in Cn.

 We define Co ? JV. Observe that the empty position 0 = ( ) is the only position
 I-obeying 0 = yO = ?0. Remark that for all a in Co, if ?a belongs to AG, then
 ?(f\a) belongs to EG.
 Now assume that, for some n, Cn,yn,Sn have been defined and the conditions

 (l)-(3) are satisfied so far. We determine k = length(n) and consider the finite
 sequence coded by n, n = (n(0),..., (n(k ? 1)). The elements of this sequence have
 to be thought of as moves by player II. We consider

 s:=(y(Q),n(Q),y((n(0))),...,y((n(0),...,n(k-2))),n(k-l)).
 Observe that length(s) = 2k. We also consider

 t := (0(0), (n(0),o((n(0))),... ,S((n(0),... ,n(k - 2))),n(k - 1)).

 Observe that s is Il-similar to t, and s obeys yn, and t obeys ?n.
 We now distinguish several cases.

 (*) s is a non-final position in o.
 Note that, as s I-obeys yn and t I-obeys on and s, t are Il-similar, we are sure

 that, for all/? in Cn,ifs? belongs to A (S(7), then l(f\?) belongs to E^t^ = E^Gy
 Also,s o is a non-zero hereditarily repetitive stump different from 1 *. We apply
 our Main Lemma 7.7 and determine m, p and a value-dictating subspread D
 of Cn such that s*^a = r*^a and s * (m) is completely free in D, and for

 all ? in D, if s*^? belongs to E(r<m)ay then T^p)(f\?) belongs to A{t+{P)a)
 and for every u, if u _L 5 and 1/ is almost completely free in C?, then u is
 almost completely free in D. We now define y(n) := m and^(^) := p and we
 distinguish two subcases.

 (*y 5* (}>(?)) is a final position in a and, therefore, also t*(S(n)) is a final position
 in o. We let D' be the set of all ? in D such that s*Wn))? belongs to A\*.

 We let C^+i be the set of all ? in D' passing through Min(Z>')(w + 1). As
 we saw in the proof of the Second Basic Lemma 7.5, for all ? in Cw+i, both
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 s*(yW)a and r*^(n)>(/|jS) belong to Ax*. It then follows that, for each j, the
 positions s * (y(n),j) and t * (S(n),j) have even length and are just outside o
 and ?(s * (y(n),j)) = ?(t * (?(w),;)) = 0.

 (*)" 5* * (y(n)) and therefore also ? * (S(n)) are non-final positions in a. We let C?+i

 be the set of all ? in D passing through Min(Z>)(? + 1).
 Note that the finite sequence s * (y(n)) I-obeys y (n + 1) and that the finite

 sequence t * (?(n)) I-obeys ?(n + 1) and t * (?(n)) is ll-similar to t * (S(n))
 and condition (l)(ii) is satisfied for the pair s * (y(n)), t * (S(n)). Also
 observe that, for all ? in Cn+\, for all j, ifs*(y(n)<J)? belongs to A^*{m.j)G) then
 s*(yW)a belongs to E{x*{m)(j), and , therefore, '*Ww))(/|jff) belongs to ^*<?))a
 and t+iaWJ) (f\?) belongs to E^*(P.j)Gy We thus see that, for every j, the finite
 sequence s * (y(n),j) I-obeys y(n + 1), and the finite sequence t * (S(n),j)
 I-obeys ?(n + 1) and s * (y(n),j) is ll-similar to ? * (?(n),j), and, for all /?
 in Cn+l, ]fs*(yW<J)a belongs to ^(.v*<?,,)fj) then J*<yM>a belongs to ^w-W),
 and , therefore, '*W>(/|?) belongs to A{t*{s{n)))(J and '^"^(fl?) belongs
 to E(t*{P.j)a), that is, condition (l)(i) is satisfied for the pair s * (y(n),j),
 t*(?(n),j).

 (**) s is a final position in <j.
 Observe that length^) is even. Observe that, for all ? in Cn, ifs? belongs

 to A\*, then l(f\?) belongs to E\*. We apply our first Basic Lemma 7.4 and
 determine natural numbers m, p and a value-dictating subspread D of Cn,
 such that for all ? in D both sa(m) ^ 0 and ('(/|/?)) (/?) ^ 0, and, for all u,
 if u L s and w is almost completely free in Cn, then u is almost completely
 free in D. We define y(n) := m and ?(?) := p. Note that s * (y(n)) and
 ? * (S(n)) are positions just outside cr of odd length and, for all ? in D, both
 /?(> * (y(n))) + 0 and (f\?)(t * (?(h)? ^ 0) and, therefore, both s? and
 l(f\?) belongs to E\*. We let Cn+\ be the set of all a in D passing through

 min(D)(n + 1).
 (***) s does not belong to o.

 We now define: y(n) := 0 and <5(?) := 0 and Cn+\ is the set of all a in Cn
 passing through Min(C?)(? + 1).

 This completes the description of the construction. Let a be the unique element of
 JV that belongs to every Cn. Observe that, for every position s that is just outside
 a and I-obeys y, if length(s) is even, then a(s) = 0, and, if length(5) is odd, then
 a(s) jT 0. Therefore a belongs to EG. Observe that, for every position t that is just
 outside g and I-obeys ?, if length(i) is even, then (f\a)(t) = 0, and, if length(i) is
 odd, then (f\a)(t) ^ 0. Therefore (f\a) belongs to EG. H

 7.10. Theorem. (Intuitionistic Borel Hierarchy Theorem, Second Part):

 For each non-zero hereditarily repetitive stump g , the set EG positively fails
 to reduce to the set AG, as, for every function f from JV to JV mapping EG
 into AG, there exists a in JV such that both a itself and f\a belong to AG.

 Proof. We know from Theorem 4.9(iv) that the class U?a is closed under the
 operation of countable intersection and construct a function h from JV to JV such
 that for every a, h\a belongs to AG if and only if, for each n, an belongs to AG. Let
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 t be the non-empty stump such that, for each n, zn equals o. z is sometimes called
 the successor of o. We let g be a function from JV to JV such that, for each a, for

 each n, (g\a)n = f\(an). Finally, we let k be a function from JV to JV such that,
 for each a, for each n, (k\a)n = h\(g\a). Observe that, for each a, if a belongs to
 AT, then for each n, an belongs to EG, and (g\a)n belongs to AG, therefore h\(g\a)
 belongs to AG and k\a belongs to Ez. Using Theorem 7.7.9 we find ? such that
 both ? itself and k\? belong to ET. Now find n such that ?n belongs to AG, and
 observe: h\(g\?) belongs to AG, therefore (g\?)n = f\(?n) belongs to AG. Defining
 a := ?n, we find: both a itself and f\a belong to AG. 3

 ?8. The never-ending productivity of disjunction. We show that, for every non
 zero hereditarily repetitive stump o, the set D(A\,AG) does not reduce to the set
 AS(a) and that, for each n, the set Dn+X (AG) does not reduce to the set Dn(AG). We
 thus answer a question asked but not answered in [43]. A special case of this result
 has been shown in [48].

 8.1. Let T be the set {0} U {On * (1) * 0\n e N}. Note that the closure T of
 T coincides with a spread. We now prove a simple fact that we want to use in
 establishing the main result of this Section.

 8.2. Lemma.

 For all subsets A,B of the closure T ofT, if T forms part of AU B, then
 there exists n such that either for all p, if p > n, then Op * (1) * 0 belongs to

 A, or for all p, if p > n, then Op * (1) * 0 belongs to B.

 Proof. Applying the Continuity Principle we find n such that either every a in
 T passing through On belongs to A, or every a in T passing through On belongs to
 B. The conclusion follows easily. 3

 8.3. Lemma.

 Let o be a weakly comparative non-zero hereditarily repetitive stump.
 (i) Let X be a subset of JV reducing to EG, and let f be a function from JV

 to JV mapping AG into X.
 There exists a in JV such that a belongs to EG and f\a belongs to X.

 (ii) For every non-zero hereditarily repetitive stump z,for every n, if for each

 i < n,zl < o, then C?l~0l(ATi) reduces to EG.
 Proof, (i) Let g be a function from JV to JV reducing X to EG and let / be

 a function from JV to JV mapping AG into X. Let h be the function from JV to JV
 such that, for every a, h\a = g\(f\a). Observe that h maps AG into EG, and using
 Theorem 7.9, find a such that both a and h\a belong to EG, therefore f\a belongs
 toX.

 (ii) Note that, according to Theorem 5.1(h) and Theorem 5.1 (vii), each set ATi

 reduces to EG and then use the fact that, according to Theorem 5.2, the class E? is
 closed under the operation of intersection of sets. 3

 We have seen, in Theorem 5.2(h), that, for every non-zero hereditarily repetitive
 stump o, for every a, if a belongs to Aa, then there exists y such that y is a winning

 strategy for player II in the game &(a,a) and a equals Corrun(y,a). The next
 Lemma shows that, in some cases, we can prescribe an initial part of y.
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 8.4. Lemma.

 Let g be a non-zero hereditarily repetitive stump.
 Let a be an element of AG and let c be a natural number such that for every t

 Il-obeying c, ift belongs to g and length(i) is even, then {a belongs to A^Gy
 Then there exists y passing through c such that a coincides with Corr ?u (y,a).

 Proof. Let H be the set of all numbers t of even length that belong to g
 and Il-obey c. Observe that H is a finite set and calculate k such that 2k =
 max{length(/)|? G H). We wish to prove, for every / < k, for every t in H, if
 length(?) = 2k - 2i, then there exists y passing through c such that ra coincides

 with t (Corr?n (y, a)). We use induction.
 First, assume t belongs to H and length(?) = 2k. Find m such that length(m) = k

 and/ = (m(0),c((m(0))),m(l),c((m(0),m(l))),... ,m(k - 1), c(m)). Find^such
 that ?(( )) = c(m) and Corr j?(S, la) coincides with la and let y be an element of
 JV passing through c such that my = ?. Note thatl(CorrGn(y, a)) coincides with
 la.
 Next, assume t belongs to H, and length(?) < 2k and, for every s in H such that

 length^) > length(i), there exists y such that sa coincides with s (CorraH(y,a)).
 Calculate j such that length(i) = 2j and find m such that length(m) = j and

 t = (m(0),c((m(0)}),m(l),c((m(0),m(l))),...,m(j - \),c(m)).
 We list the finitely many elements of H such that length(w) = 2j -f 2 and t

 is an initial part of u, calling them u$,...,u?-\. We may assume that for each
 p < t, up = t * (p,c(m * (p))). For each p < t we determine ep passing through

 c such that ^u^(Corr(?I(ep,a)) coincides with Wa. We also determine ? such
 that?>(( )) = c(m) and Corr j?(o,{a) coincides with la. We then define y passing
 through c such that, for each p, if p < t, then m*(^y coincides with m*(p) (ep) and,
 if p > ?, then m*(p}y coincides with ^d, and observe thatt (Corr?u(y, a)) coincides
 with la.

 After k steps we obtain the conclusion that there exists y passing through c such
 that a coincides with Corr Gn(y,a). H

 Let R be a binary relation on JV. R is called (sequentially) closed if and only
 if the set of all a such that a?Ral is a (sequentially) closed subset of JV. The
 observations contained in Lemma 8.5 and Corollary 8.6 will be used in the proof of
 the main results of this Section, Lemma 8.8 and Theorem 8.9.

 8.5. Lemma.

 (i) Let R be a binary relation on JV and let a, b be natural numbers such that, for
 every a, there exists y with the property (a * a)R(b * y). Then, for every a,
 there exist n, p such that, for every ?, there exists y with the property (a * ?p *
 ?)R(b*(n)*y).

 (ii) Let Rbe a sequentially closed binary relation on JV such that, for every a, there
 exists y with the property aRy. Then, for every a, there exist y, e such that, for
 every n,for every ?, if ?(e(n)) = ?(e(n)), then there exists ? passing through
 yn with the property ?R?.

 Proof, (i) This statement is an immediate conclusion of Brouwer's Continuity
 Principle.
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 (ii) Let R be a closed binary relation on JV such that, for every a, there exists y
 with the property aRy. Let a belong to JV. We consider the set X of all pairs (m,c)
 such that for every ? passing through am there exists S passing through c with the
 property ?RS. Note that (0, ( )} belongs to X. Applying (i), we see that, given any
 (m,c) inZ, one may find (p,d) in X such that p > m and length(d) = length(c) + l
 and c is an initial part of d. Applying the First Axiom of Dependent Choices we
 find eX'vnJV such that s(0) = 0 and C(0) = ( ) and, for each p, length (?(?)) = n,
 and CM is an initial part of C(n + 1), and for each ?, if ? passes through a(e(n)),
 then there exists S passing through CM with the property ?RS. We now let y be
 the element of JV such that for each n, yn = CM- Observe that, for every n,
 there exist ?, S passing through an,yn, respectively, with the property ?Ro. As R is
 sequentially closed, we may conclude aRy. 3

 8.6. Corollary.

 Let o be a non-zero hereditarily repetitive stump.
 Let g be a function from JV to JV such that, for every a, g\a belongs to AG.
 Then for every a there exists y, e such that g\a coincides with Corrau(y,g\a)

 and for every n,for every ?, if ? passes through a(e(n)), then there exists S
 passing through yn such that g\? coincides with Corrau(S,g\?).

 Proof. Observe that, under the given circumstances, for every a, there exists y
 such that CorrGu(y,g\a) coincides with g\a. Let R be the binary relation on JV
 such that, for all a, for all y, aRy if and only if Corr?u(y,g\a) coincides with g\a.

 Note that R is a sequentially closed binary relation on JV and apply Lemma 7.5. 3

 Although we do not need the result, we now observe that a special case of the
 Second Axiom of Continuous Choice, see 1.4.2, may be derived from the First
 Axiom of Continuous Choice 1.4.1 by means of the Second Axiom of Dependent
 Choices, see 1.2.5.

 8.7. Lemma. (Using only the First Axiom of Continuous Choice and the Second
 Axiom of Dependent Choices):

 Let R be a closed binary relation on JV such that, for every a, there exists y
 with the property aRy. Then there exists C in Fun such that C(( )) = 0 and,
 for alia, aR(C\a).

 Proof. Let R be a closed binary relation on JV such that, for every a, there exists
 y with the property aRy. Let X be the set of all n in JV such that n belongs to Fun

 and, for all a, ?, length(//(a)) = length (?z(/?)), and, for all a, there exists S passing
 through n(a) with the property aRS. Define a binary relation T on X such that,
 for all n, X in X, rjTX if and only if, for all a, length(/1(a)) = length(77(a)) + 1.
 Using the First Axiom of Continuous Choice, one may prove that, for every n in X,
 there exists X in X such that rjRX. Using the Second Axiom of Dependent Choices,
 we find pin JV such that, for every a, p?(a) = ( ) and, for every n, pn belongs
 to X and pnTpn+l. Let ( be a function from JV to JV such that, for every a, for
 every n, C\& passes through pn(a). Note that, for every a, for every n, there exist

 ?,S passing through an, (C\a)n, respectively, such that ?RS. Therefore, as R is
 sequentially closed, for every a, aR(?\a). 3
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 8.8. Lemma.

 Let g be a weakly comparative non-zero hereditarily repetitive stump. The
 set D(A\,AG) does not reduce to the set AS(ay

 Proof. Assume that / is a function from JV to JV reducing D(A\,AG) to As^ay
 We want to obtain a contradiction.

 We define a function h from JV to JV such that, for every a, (h\a)1 coincides
 with Corran(al,a0A) and, for every t, if there is no j such that t = (1) * j, then
 (h\a)(t):=a?(t).

 Observe that, for each a, the sequence (h\a)x belongs to AG and, therefore, the
 sequence f\(h\a) belongs to AS(ay Observe that (A|0)? belongs to A\ and that
 (h\0)1 belongs to AG. We apply Corollary 8.6 and determine y,e such that the

 sequence /1 (h |0) coincides with Corr jj [y, f \ (h |0)) and for every n, for every a, if
 a passes through ~?(e(n)), then there exists S passing through yn such that f\(h\a)

 coincides with Corr jj (?, f\(h\a)). We may assume that e is strictly increasing,
 that is, for each n, e(n) < e(n + 1). We now want to define elements ?,oofjV with
 the following properties:

 (i) for each n, ?2nA belongs to EG and, therefore, not to AG, and ?2n+l-? belongs
 to E\ and, therefore, not to A\._

 (ii) for each n, ?n passes through (h|0) (e(n)) and the sequence ?n passes through

 yn 2inaf\?n coincides with Corrsn{(T)(Sn,f\?n).
 Let n belong to N. We show how to define ?2n and ?2n+l, and also ?2n and ?2n+l.

 We let C be the set of all a such that a passes through (h\0)e(2n) and, for all
 j, if j < e(2n) then aLj = (h\0)hJ. Let X be the set of a in C such that for
 each j > e(2n), al-J belongs to E(aJy Observe that for each a, if a belongs to X,
 then there exists { passing through ~0e(2n) such that h\? = a, and, therefore, there

 exists ? passing through y(2n) such that f\a coincides with CorrSjj'(?, f\a) and,
 in particular, for every t of even length belonging to S (a) and Il-obeying y(2n),
 the sequence f(f\a) belongs to A/ \. We now define a function g from JV to

 JV mapping AG into X. We first construct p in N such that p is strictly increasing,
 e(2n) < p(0) and for each/, g1 equals gp^ . We then define: for every a, for every/,

 (g\a)1^ ;= a1 and for each p, if there do not exist i,s such that p = (1, p(i)) * s,
 then (g\a)(p) := (h\0)(p). We now consider the function k from JV to JV such
 that for every a, k\a = f\(g\a). Observe that for every a, if a belongs to AG, then
 (g\a)1 belongs to AG and, for every t of positive even length belonging to S (a) and
 Il-obeying y(2n), the sequence *(k\a) belongs to A/ \ and, for every such t,

 r(S(a)) < g . Also note that, for every a, if a belongs to EG, then (gla)1 belongs to
 EG. Let Y be the set consisting of all ( such that, for every / of positive even length
 belonging to S (g) and Il-obeying y (2n), X belongs to At . . ,,\. The set F reduces

 to the set EG, as there are only finitely many such t and g is weakly comparative,
 see Theorem 4.10. Note that k maps AG into Y. We apply Lemma 8.3 and find a in
 EG such that k\a belongs to Y. We define ?2n := g\a. Observe that ?2nA belongs
 to EG, as a does so. Observe that ?2nS) belongs to A\, and, therefore, f\(?2n)
 belongs to As^y Also k\a belongs to Y, that is, for every t of positive even length
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 belonging to S (o) and Il-obeying y (2n), the sequence l(f\(?2n)) = r(k\a) belongs
 to A/ \. Applying Lemma 8.4, we may defineS2n passing through y(2n) such

 that/|(?2") coincides with CorrsH{a) (S2n, f\(?2n)).
 This completes the definition of ?2n and S2n.

 We also define: ?2n+l := h\(?(e(2n + 1)) * 1). Observe that ?2n+h0 belongs
 to E\ and ?2n+lA belongs to AG, and, therefore, f\(?2n+l) belongs to As^ and

 we may define S2n+l passing through y(2n + 1) such that f\(?2n+x) coincides with

 Corrsn{a)(S2n+\f\(?2n+l)).
 Let T be the set {0} U {On * (1) * 0\n e N}.
 We build functions b and d from the closure T of T to JV such that for ev

 ery n, b\(Qn * (1) * 0) equals ?n and d\(Qn * (1) * 0) equals Sn. Observe that
 b\0 coincides with h\0 and d\0 coincides with y, therefore f\(b\ff) coincides with

 Corrs^a)(d\0,f\(b\0)). We claim that for every a in T, the sequence f\(b\a)
 coincides with the sequence Corr jj (d\a,f\(b\a)).

 For suppose that for some a, p, the value of the sequence f\(b\a)aXp differs from

 the value of Corr jj (d\a, f\(b\a)) at p. Then the sequence a must be different
 from every sequence On * (1) * 0, therefore a = 0. But the sequence b\0 coincides

 with the sequence Corrsn{a) (d\0, f\(b\0)). Contradiction.
 We conclude that for every a in T, f\(b\a) belongs to As^, therefore b\a belongs
 toDUi,^).

 Applying Lemma 8.1 we find n such that either for every p, if p > n, then
 b\(?p * (1) * 0) = ?p-? belongs to A\, or for every p, if p > n, then ?pA belongs to
 AG.

 As, for every p, ?2P+l<? belongs to E\ and ?2pA belongs to EG, we have a contra
 diction. 3

 8.9. Theorem.

 Let o be a weakly comparative non-zero hereditarily repetitive stump.

 For each positive n, the set D(A\,Dn(AG)") does not reduce to the set
 Dn(As{a)).

 Proof. Assume that n is a positive natural number and / is a function from JV

 to JV reducing D (Ax,Dn(AG)) to Dn(As{o)). We let X be the set of all a such that
 a0 = 0 belongs to A\, and for each i < n,we let hi be the function from JV to JV such

 that for every a, the sequence (/z/|a)Lz coincides with the sequence CorraH(al,a0Aj)
 and for every t, if there is no j such that t = (0,1, i) * j, then (h\a)(t) = a?(t).
 Note that, for every a, for every i < n, h?\a belongs to D(A\, Dn(AG)). Applying
 the Continuity Principle we first calculate p, q such that q < n and, for every a in

 X, if a passes through 0/?, then (f\a)q belongs to As^ay Applying the Continuity
 Principle again, we find for each i < n numbers pt, q? such that q\ < n and, for every

 a, if a passes through 0/7/ then (f\(hi\a))q' belongs to AS(ay We now distinguish
 two cases.

 First Case. We find i such that q? = q. We then consider the zet Z consisting
 of all a such that a passes through 0/7 and through 0/7, and for each / < /?,-, a1 J J
 coincides with (hi\0)lj-J. Observe that for every a in Z, if a11 belongs to AG, there
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 exists ? passing through 0/?z such that a = h{\? and therefore (f\a)q belongs to
 A $ fay Also if a0 belongs to A\, (f\a)q belongs to ASfay We leave it to the reader
 to conclude from this that the set D (A\, AG) reduces to the set ASfa). We now have
 a contradiction, according to Theorem 8.6.

 Second Case. We find i,j < n such that i ^ j and q? = qj. We now let p be
 the greatest of p?, pj, and let Z be the set of all a passing through Op such that for

 every k < p, both aLl-k coincides with (hi \0)1A-k and a1 -J-k coincides with (h? \0)lj-k.
 Observe that for every a in Z, if a11 belongs to AG or al-J belongs to AG, (f\a)q'
 belongs to AG. We may conclude from this that the set D (AG, AG ) reduces to the set

 Asfay therefore D(A\, AG) reduces to ASfay and this contradicts Theorem 8.8. H

 8.10. Corollary.

 Let g be a weakly comparative non-zero hereditarily repetitive stump.
 For each positive n, the set Dn+l (AG) does not reduce to the set Dn(AG).

 Proof. The statement easily follows from Theorem 8.9. H

 ?9. The complement of a positively Borel set may fail to be positively Borel.

 9.1. The discovery of the fact that the class of the positively Borel sets is not
 closed under the operation of taking complements was preceded by the discovery
 of "simple" analytic and co-analytic sets that fail to be positively Borel.

 A subset X of JV is called analytic if and only if there exists a closed subset X of
 JV such that X is the set of all ainJV such that, for some ?inJV, (a, ?) belongs to
 Y. The class of the analytic subsets ofjV is denoted by XlJ. It turns out that the set
 E\ := {a G JV\3y\/n[a(yn) ? 0]} is a complete element of the class X}, see [53].

 A subset X of JV is called co-analytic if and only if there exists an open subset X
 ofJT such that X is the set of all ainJV such that, for all ? in JV, (a, ?) belongs to

 Y. The class of the co-analytic subsets of JV is denoted by n}. It turns out that the
 setv4} := {a G JV \Vy3n[a(yn) ^ 0]} is a complete element of the class II}, see [53].

 One may prove that every positively Borel subset of JV is analytic. The Borel
 Hierarchy Theorem then leads to the conclusion that the set E\ is not positively
 Borel.

 The corresponding question about A\ is more difficult to answer. It is not true
 that every positively Borel subset of JV is co-analytic. A slight extension of the
 argument for Theorem 3.4(iii) and (iv) gives the result that the set D2(A\) is not
 co-analytic. Like the class U^, the class of the co-analytic subsets of JV is not closed
 under the operation of finite union.Therefore, it is impossible to prove the fact that

 A\ is not positively Borel in the same way as the fact that the set E\ is not positively
 Borel.

 In [43], the question how to prove that A\ is not positively Borel was asked but
 not answered. There is a proof, however, in [53].

 In [52] it is shown that there exist analytic and co-analytic subsets of JV much
 "simpler" than E\, A\, respectively, that fail to be positively Borel. The "simple"
 analytic set mentioned in [52] is the set MonPathox consisting of all a in JV such
 that, for every n, a(n) < 1, and, for some y in JV, for all n, y(n) < y(n + 1) < 1
 and a(yn) = 0. It is is not positively Borel, although, from a classical point of view,
 it is a closed subset of JV. The "simple" co-analytic set mentioned in [52] is the set
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 Almost Finite consisting of all a in JV such that, for every n, a(n) < 1, and, for
 every strictly increasing y, there exists n such that a(y(n)) ? 0. It is not positively
 Borel, although, from a classical point of view, it is E^.

 9.2. We now want to fulfill a promise made in Subsection 0.6 and explain why
 the set (Fin*)"" is not positively Borel. It follows that the class of the positively
 Borel subsets of JV is not closed under the operation of taking complements.
 We first have to quote a result from [52]. In that paper, one defines, for each

 stump o a subset K(o) of JV such that:

 (i) [52, Theorem 3.13(iii)] For each positively Borel set X there exists o such that
 X reduces toK(o).

 (ii) [52, Theorem 3.15] For every stump o ,for every function y from JV to JV, if y
 maps the set F(o, Fin*) into ~K(o), then y maps some element oflny into ?J\o).

 The following fact was mentioned in Subsection 4.5.

 For every stump o, Fin* is a subset of F (a, Fin*) and F (a, Fin*) is a subset
 of(FinJ*)"".

 Now assume that the set (Fin'*)""1 is positively Borel. Find o such that (Fin*)""
 reduces to K(o). Find a function y from JV to JV reducing (Fin*)"" to K(o). Note
 that P(a, Fin*) is a subset of (Fin*)""1. It follows that y maps F (a, Fin*) into K(o).
 Therefore, y maps some element a of Iny into K(o). Now a will belong both to
 Inf^ and to (Fin^*)"". Contradiction.

 It is a pity the author of [52] forgot to make this important observation .
 One may also prove that the set Rat" is not a positively Borel subset ofR, as we

 announced in Subsection 0.3. We give a sketch of the argument.
 Recall that Rat is the set of all real numbers coinciding with a rational number.
 For each stump o, we define a subset P(<r, Rat) ofR that we want to call the o-th

 perhapsive extension of Rat. We do so by induction on the set of stumps, as follows:

 (i) P(l, Rat) = Rat.
 (ii) For every non-empty stump o, F(o, Rat) is the set of all x in R such that, for

 some rational number q, if q # x, then there exists p such that x belongs to
 P(?^,Rat).

 First, one should define a (continuous) function g from JV to R such that, for all a

 in %, (i) a belongs to Fin* if and only if g\a belongs to Rat and (ii) a belongs to Inf^
 if and only if g \ a belongs to Poslrr. One then should verify that, for every stump o, g

 maps P(cr, Fin*) into F(o, Rat), and also, that g maps (Fin'*)"" into Rat"1". Suppose
 that Rat" is positively Borel. It follows that the set X := {a e JV\g\a e Rat"}
 is positively Borel. Using the argument just given one finds a in Inf^ such that a
 belongs to X. Note that g\a belongs to both Poslrr and Rat". Contradiction.

 The fact that the set F/w" is not positively Borel reminds one of Brouwer's search
 for essentially negative properties. Brouwer sought for such properties as he wanted
 to show that the attempts made by G.F.C. Griss, see [20], to develop mathematics

 without negation would lead to an intolerable impoverishment of mathematics. As is
 observed in [17] by M. Franchella, this is a very strange line of defense to take against
 Griss for Brouwer, who certainly would not accept the argument that intuitionistic
 mathematics itself is wrong as it leads to an an intolerable impoverishment of
 classical mathematics.

This content downloaded from 131.174.17.24 on Tue, 15 Aug 2017 07:50:09 UTC
All use subject to http://about.jstor.org/terms



 THE BOREL HIERARCHY THEOREM  61

 In [10], Brouwer proposed the relation {(x,y) G M|^^(x < y)} as an essentially
 negative property. He might as well have suggested to consider the set (2si)~,~l and
 have claimed that (?'i)~,~l is an essentially negative subset of JV. We will describe
 his argument as if he had made this second choice.

 In [11], Brouwer derives a contradiction from the statement that the sets (E\)^
 and E\ coincide, that is, from Markov's Principle as we formulated it in Subsec
 tion 4.4. (The use of the expression "Markov's Principle" is a bit anachronistic).

 His argument may be paraphrased as follows. Using a creating subject argument he
 claims:

 Va3?[(\/n[a(n) = 0] <- 3n[?(2n) ? 0]) A (3n[a(n) ? 0] <-> 3n[?(2n + 1) ^ 0])].

 He then observes that, for every a, -i-i(V?[a(?) = 0] V 3n[a(n) ^ 0]), and
 concludes:

 \/a3?[(yn[a(n) = 0] <->

 3n[?(2n) ? 0]) A (3n[a(n) ? 0] <-> 3n[?(2n + 1) ^ 0]) A ^3n[?(n) ? 0]].

 Applying Markov's Principle, he finds:

 \/a3?[(Vn[a(n) = 0] <
 3/i[jS(2/i) ^ 0]) A (3/i[a(#i) ^ 0] <-> 3n[?(2n + 1) ^ 0]) A 3/i[jS(/i) ? 0]].

 It then follows:

 Va[V?[a(?) = 0] V 3w[a(?) ^ 0].
 Brouwer's Continuity Principle now enforces the absurd conclusion:
 For some m, either every a passing through 0m coincides with 0, or every a

 passing through Ora is apart from 0.
 In [13], page 603, footnote 6, A. Heyting, the editor of the first volume of

 Brouwer's Collected Works, makes an objection to this argument. His intention is
 not very clear, but he seems to dislike the application of the Continuity Principle.
 Explaining Brouwer's argument on page 118 of [23], Heyting, like Brouwer himself,
 unnecessarily applies the Fan Theorem.

 Let us now compare Brouwer's observation with our result. We have seen that
 Brouwer's Continuity Principle implies that the set (Fin'*)"" is not positively Borel.
 Three remarks seem to be appropriate:

 (i) We do not use a creating subject argument.
 (ii) Brouwer concludes: "(E\)"" is essentially negative" after having verified only

 that E\ does not coincide with (E\)"". This seems a bit hasty. Brouwer did not
 prove "(E\)"" is not positively Borel", a result that would be a better justification
 of "(E\)"" is essentially negative".

 (iii) Let Almost* Fin^ be the set of all ainJV such that, for every strictly increasing

 y in JV, there exists n such that a(y(n)) = 0]. The Generalized Principle of
 Markov is equivalent to the statement that the set (Fin-*)"" coincides with the set
 Almost*Fin*, as we prove now. The argument given in [52] is less direct.

 First, assume the generalized Principle of Markov. Note that, for every a, a does
 not belong to (Fin~*)" if and only if ->3n\/m > n[a(m) = 0] if and only if Vrc^Vra >
 n[a(m) = 0] if and only if V??^^ Elm > n[a(m) ^ 0]ifandonlyifV?3m > n[a(m) ^
 0]. It follows that the set (Fin*)" coincides with the set InfK Also note that, for
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 every a, a belongs to Inf^ if and only if 3S\fn[S(n) > n A a(S(n)) ^ 0] if and only
 if 3y\/n[y(n + 1) > y(n) A a(y(n)) ^ 0]. Finally, note that a belongs to (Inf^)" if
 andonlyif-i(3yVft[y(ft-hl) > y(n) A a(y(n)) ^ 0]) if and only if Vy-Vrc [7(77 + 1) >
 y(n)Aa(y(n)) ^ 0]if and only ifVy[ If \/n[y(n + Y) > y(n)], then -^-^3p[a(y(p)) =
 0]] if and only if Vy[ If \/n[y(n + 1) > y(?)], then 3p[a(y(p)) = 0]] if and only
 if a belongs to Almost*Fin*. It follows that the set (Fin*)"" coincides with the set
 Almost*Fin*.

 Next, assume that the set (Fin*)"" coincides with the set Almost*Fin*. Let a be
 an element of JV belonging to (E\)"", that is, such that -^-J3n[a(n) ^ 0]. Let ? be
 an element of JV such that, for each n, ?(n) = 0 if and only if, for some m < n,
 a(m) ^ 0. Note that ? belongs to (Fin"*)"" and thus to Almost*Fin*. Find n such
 that ?(n) = 0. Note that there exists m < n such that a(m) ^ 0, so a belongs to
 E\. Clearly, the sets (E\)"" and E\ coincide.

 (One may prove the fact that Almost*Fin* is a subset of (Fin*)"" without using
 the generalized Principle of Markov. It also is a consequence of Brouwer's Thesis
 on Bars, see [52].)

 Observe that the generalized Principle of Markov denies Brouwer's conclusion
 that E\ does not coincide with (E\)"" and implies that the set (E\)"" is posi
 tively Borel. The very same principle, although not denying our conclusion that
 (Fin*)"" is not positively Borel, would nevertheless make the conclusion u(Fin*)""
 is essentially negative" a wrong one. We just saw, that the principle also implies
 the statement that the sets (Fin*)"" and Almost*Fin* coincide and the latter set is
 defined without negation.
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