
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/72239

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16156716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/72239

R eentrant R eaders-W riters
— a C a s e S tu d y C o m b in in g M o d e l C h e c k in g w i th T h e o r e m P r o v in g —

I C IS T e c h n ic a l R e p o r t R 0 8 0 0 5

Bernard van Gastel, Leonard Lensink, Sjaak Smetsers and Marko van Eekelen

In s titu te for C om puting and In fo rm ation Sciences, R ad b o u d U niversity N ijm egen
H eyendaalsew eg 135, 6525 A J, N ijm egen, T he N etherlands

email: b.vangastel@ student.science.ru.nl,{l.lensink,s.sm etsers,m .vaneekelen}@ cs.ru.nl

A b s t r a c t . T he classic readers-w riters prob lem has been extensively s tu d
ied . T h is holds to a lesser degree for th e re en tran t version, w here it is
allowed to nest locking ac tions. Such nesting is useful w hen a lib rary
is c rea ted w ith various procedures th a t each s ta r t and end w ith a lock.
Allowing nesting m akes it possible for these procedures to call each o th er.
W e considered an existing w idely used ind u s tria l im p lem en ta tion of th e
re e n tra n t readers-w riters p rob lem . W e m odeled it using a m odel checker
revealing a serious error: a possible deadlock s itu a tio n . T h e m odel was
im proved and checked satisfactorily for a fixed num ber of processes. To
achieve a correctness resu lt for an a rb itra ry num ber of processes the
m odel was converted to a theo rem prover w ith w hich it was proven.

1 In trodu ction

It is generally acknowledged tha t the growth in processor speed is reaching a hard
physical limitation. This has led to a revival of interest in concurrent processing.
Also in industrial software, concurrency is increasingly used to improve efficiency
[26]. It is notoriously hard to write correct concurrent software. Finding bugs
in concurrent software and proving the correctness of (parts of) this software is
therefore attracting more and more attention, in particular where the software
is in the core of safety critical or industrial critical applications.

However, it can be incredibly difficult to track concurrent software bugs down.
In concurrent software bugs typically are caused by infrequent 'race conditions'
th a t are hard to reproduce. In such cases, it is necessary to thoroughly investigate
‘suspicious’ parts of the system in order to improve these components in such a
way th a t correctness is guaranteed.

Two commonly used techniques for checking correctness of such system are
form al verification and testing. In practice, testing is widely and successfully
used to discover faulty behavior, but it cannot assure the absence of bugs. In
particular, for concurrent software testing is less suited due to the typical char
acteristics of the bugs (infrequent and hard to reproduce). There are roughly two
approaches to formal verification: model checking and theorem proving. Model
checking [6, 23] has the advantage th a t it can be performed automatically, pro
vided tha t a suitable model of the software (or hardware) component has been

created. Furthermore, in the case a bug is found model checking yields a coun
terexample scenario. A drawback of model checking is th a t it suffers from the
state-space explosion and typically requires a closed system. In principle, theo
rem proving can handle any system. However, creating a proof may be hard and
it generally requires a large investment of time. It is only partially autom ated
and mainly driven by the user’s understanding of the system. Besides, when
theorem proving fails this does not necessarily imply tha t a bug is present. It
may also be tha t the proof could not be found by the user.

In this paper we consider the reentrant readers-writers problem as a formal
verification case study. The classic readers-writers problem [8] considers multiple
processes th a t want to have read and /o r write access to a common resource (a
global variable or a shared object). The problem is to set up an access protocol
such tha t no two writers are writing at the same time and no reader is accessing
the common resource while a writer is accessing it. The classic problem is stud
ied extensively[22]; the reentrant variant (in which locking can be nested) has
received less attention so far although it is used in Java, C # and C + + libraries.

We have chosen a widely used industrial library (Trolltech’s Qt) tha t provides
methods for reentrant readers-writers. For this library a serious bug is revealed
and removed. This case study is performed in a structured manner combining
the use of a model checker with the use of a theorem prover exploiting the
advantages of these methods and avoiding their weaknesses.

In Section 2 we will introduce the case study. Its model will be defined,
improved and checked for a fixed number of processes in Section 3. Using a
theorem prover the model will be fully verified in Section 4. Finally, related
work, future work and concluding remarks are found in Sections 5 and 6.

2 T he readers-w riters problem

If in a concurrent setting two threads are working on the same resource, syn
chronization of operations is often necessary to avoid errors. A test-and-set op
eration is an im portant primitive for protecting common resources. This atomic
(i.e. non-interruptible) instruction is used to both test and (conditionally) write
to a memory location. To ensure th a t only one thread is able to access a resource
at a given time, these processes usually share a global boolean variable tha t is
controlled via test-and-set operations, and if a process is currently performing
a test-and-set, it is guaranteed tha t no other process may begin another test-
and-set until the first process is done. This primitive operation can be used to
implement locks. A lock has two operations: lock and unlock. The lock operation
is done before the critical section is entered, and the unlock operation is per
formed after the critical section is left. The most basic lock can only be locked
one time by a given thread. However, for more sophisticated solutions, just an
atomic test-and-set operation is insufficient. This will require support of the un
derlying OS: threads acquiring a lock already occupied by some thread should
be de-scheduled until the lock is released. A variant of this way of locking is
called condition locking : a thread can wait until a certain condition is satisfied,
and will automatically continue when notified (signalled) tha t the condition has

2

been changed. An extension for both basic and condition locking is reentrancy,
i.e. allowing nested lock operations by the same thread.

A so-called read-write lock functions differently from a normal lock: it either
allows multiple threads to access the resource in a read-only way, or it allows
one, and only one, thread at any given time to have full access (both read
and write) to the resource ([10]). These locks are the standard solution to the
producer/consumer problem in which a buffer has to be shared.

Several kinds of solutions to the classical readers-writers problem exist. Here,
we will consider a read-write locking mechanism with the following properties.

w rite rs p re fe re n ce Read-write locks suffer from two kinds of starvation, one
with each kind of lock operation. Write lock priority results in the possibility
of reader starvation: when constantly there is a thread waiting to acquire a
write lock, threads waiting for a read lock will never be able to proceed. Most
solutions give priority to write locks over read locks because write locks are
assumed to be more im portant, smaller, exclusive, and to occur less.

r e e n tra n t A thread can acquire the lock multiple times, even when the thread
has not fully released the lock. Note tha t this property is im portant for mod
ular programming: a function holding a lock can use other functions which
possibly acquire the same lock. We distinguish two variants of reentrancy:

1. Weakly reentrant : only permit sequences of either read or write locks;
2. Strongly reentrant : permit a thread holding a write lock to acquire a read

lock. This will allow the following sequence of lock operations: w riteJock,
readJock, unlock, unlock. Note th a t the same function is called to unlock
both a write lock and a read lock. The sequence of a read lock followed by
a write lock is not adm itted because of the evident risk of a deadlock (e.g.
when two threads both want to perform the locking sequence readJock,
w riteJock they can both read but none of them can write).

2.1 Im p le m e n ta tio n o f R e a d -W rite locks

In this section we show the C + + implementation of weakly reentrant read/w rite
locks being part of the multi-threading library of the Qt development framework,
version 4.3. The code is not complete; parts tha t are not relevant to this presen
tation are omitted. This implementation uses other parts of the library: threads,
mutexes and conditions. Like e.g. in Java, a c o n d itio n object allows a thread
th a t owns the lock but tha t cannot proceed, to wait until some condition is sat
isfied. When a running thread completes a task and determines th a t a waiting
thread can now continue, it can call a signal on the corresponding condition.
This mechanism is used in the C + + code listed in Figure 1.

The structure QReadW riteLockPrivate contains the attributes of the class.
These attributes are accessible via an indirection named d. The attributes mutex,
readerW ait and w rite rW ait are used to synchronize access to the other admin
istrative attributes, of which accessC ount keeps track of the number of locks (in
cluding reentrant locks) acquired for this lock. A negative value is used for write
access and a positive value for read access. The attributes w aitingR eaders and
w a itin g W rite rs indicate the number of threads requesting a read respectively

3

s t r u c t Q R eadW riteL ockPrivate
{

Q R eadW riteL ockP rivate()
: acce ssC o u n t(O),

c u r r e n tW r i te r (O) ,
w a itin g R e a d e rs (0) ,
w a i t in g W r i te r s (0)

{ }

QMutex m utex;
Q W aitC ondition re a d e rW a it ,

w r i te rW a i t ;

Qt::HANDLE c u r r e n tW r i te r ;
i n t a c c e s s C o u n t ,w a itin g R e a d e rs ,

w a i t in g W r i te r s ;
};

v o id Q R eadW riteL ock ::lockF orR ead()
{

QMutexLocker lo ck (& d -> m u tex);
w h ile (d -> accessC o u n t < 0 | |

d -> w a itin g W rite rs) {
+ + d-> w aitin g R ead ers ;
d -> re a d e rW a it . w a it(& d -> m u tex);
— d -> w a itin g R e a d e rs ;

}
+ + d-> accessC oun t;
Q_ASSERT_X(d->accessCount>0,

}

v o id Q R eadW riteL o ck ::lo ck F o rW rite ()
{

QMutexLocker lo ck (& d -> m u tex);

Q t: : HANDLE s e l f =
Q T h re a d ::c u r re n tT h re a d Id () ;

w h ile (d -> accessC o u n t != 0) {
i f (d -> accessC o u n t < 0 &&

s e l f == d -> c u r re n tW r ite r) {
b re a k ; / / r e c u r s iv e w r i te lo c k

}
+ + d -> w a itin g W rite rs ;
d -> w r i te rW a it . w a it(& d -> m u tex);
— d -> w a i t in g W r ite r s ;

}
d -> c u r re n tW r ite r = s e l f ;
— d -> a c c e ssC o u n t;
Q_ASSERT_X(d->accessCount<0,

}

v o id Q R eadW riteL ock ::un lock ()
{

QMutexLocker lock(& d-> m utex);
Q_ASSERT_X(d->accessCount!=0,

i f ((d -> a c c e ssC o u n t > 0 &&
— d -> accessC o u n t = = 0) | |

(d -> accessC o u n t < 0 &&
+ + d-> accessC oun t = = 0)) {

d -> c u r re n tW r ite r = 0;
i f (d -> w a itin g W rite rs) {

d -> w rite rW a it.w a k e O n e () ;
} e l s e i f (d -> w a itin g R e a d e rs) {

d -> re a d e rW a it .w a k e A ll() ;
}

}
}

F ig . 1. QReadW riteLock class of Q t

write permission, tha t are currently pending. If some thread owns the write lock,
c u rre n tW rite r contains a HANDLE to this thread; otherwise c u r re n tW rite r is
a null pointer.

The code itself is fairly straightforward. The locking of the mutex is done
via the constructor of the wrapper class QMutexLocker. Unlocking this mutex
happens implicitly in the destructor of this wrapper. Observe th a t a write lock
can only be obtained when the lock is completely released (d->accessC ount
== 0), or the thread already has obtained a write lock (a reentrant write lock
request, d -> c u rre n tW rite r == s e lf) .

The code could be polished a bit. E.g. one of the administrative attributes
can be expressed in terms of the others. However, we have chosen not to deviate

4

from the original code, except for the messages in the assertions which were, of
course, more informative.

3 M odel checking read ers/w riters w ith U ppaal

Uppaal [17] is a tool for modeling and verification of real-time systems. The
idea is to model a system using timed autom ata. Timed autom ata are finite
state machines with time. A system consists of a collection of such autom ata.
An autom aton is composed of locations and transitions between these locations
defining how the system behaves. To control when to fire a transition one can
use guarded transitions and synchronized transitions. Guards are just boolean
expressions whereas the synchronization mechanism is based on hand-shakes:
two processes (automata) can take a simultaneous transition, if one does a send,
ch!, and the other a receive, ch?, on the same channel ch. For administration
purposes, but also for communication between processes, one can use global
variables. Moreover, each process can have its own local variables. Assignments
to local or global variables can be attached to transitions as so-called updates.

In this paper we will not make use of time. In Uppaal terminology: we don’t
have c lo ck variables. Despite the absence of this most distinctive feature of
Uppaal, we have still chosen to use Uppaal here because of our local expertise and
the intuitive and easy to use graphical interface which supports understanding
and improving the model in a elegant way. The choice of model checker is however
not essential for the case study. It could also have been performed with any other
model checker such as e.g. SMV [19], mCRL2 [11] or SPIN [14].

C o n s tru c tin g th e U p p a a l m o d e l

Our intention is to model the code from Figure 1 as an abstract Uppaal model,
preferably in a way tha t the distance between code and model is kept as small
as possible. However, instead of trying to model Qt-threads in Uppaal we will
directly use the built-in Uppaal processes to represent these threads. Thread
handles are made explicit by numbering the processes, and using these numbers
as identifications. NT is the to tal number of processes. The identification numbers
are denoted by t i d in the model, ranging 0 to NT - 1. The NT value is also used
to represent the null pointer for the variable c u r re n tW rite r in the C + + code.
Mutexes and conditions directly depend on the thread implementation, so we
cannot model these objects by means of code abstraction. Instead we created an
abstract model in Uppaal tha t essentially simulates the behavior of these objects.
The result is shown in Figure 2. In this basic locking model, method calls are
simulated via synchronization messages. The conditions are represented by two
integer variables, s leep in g R ead ers and s le e p in g W rite rs , tha t maintain the
number of waiting readers and waiting writers, respectively. A running process
can signal such a process which will result in a wake up message. A process
receiving such a message should always immediately try to acquire the lock,
otherwise mutual exclusion is not guaranteed anymore.

5

signalOneWriter? signalAllReaders?

sleepingReaders>0
wakeAll!
sleepingReaders--

Unlocked

F ig .2 . M u tex and cond ition m odel

The RWLock implementation is model checked using the combination of this
basic locking process with a collection of concurrent processes, each continuously
performing either a lockForRead, lockForW rite , or un lock step. The abstract
model (see Figure 3) is obtained basically by translating C + + statements into
transitions.

For convenience of comparison, we have split the model into three parts, cor
responding to lockForRead, w riteL ock and unlock respectively. These parts
can be easily combined into a single model by collapsing the S ta r t states,
and, but not necessarily, the Abort states. The auxiliary functions testR Lock,
testWLock, and testR eentrantW L ock are defined as:

b o o l te s tR L o c k (T h re a d Id t i d)
{ r e t u r n w a itin g W rite rs > 0 | |(c u r re n tW r ite r != N T && c u r r e n tW r i te r ! = t id) ; }

b o o l testW Lock (T h read Id t i d) b o o l tes tR een tran tW L o ck (T h read Id t i d)
{ r e t u r n accessC o u n t != 0 && { r e t u r n accessC o u n t != 0 &&

If a process perform s a lock opera tio n it will en te r a location th a t is labeled w ith
EnterXX. H ere, XX corresponds to th e called operation . T he call is left v ia a LeaveXX lo
cation . For exam ple, if a th re a d invokes lockF orR ead it will en te r th e location EnterRL.
H ereafter, th e possible s ta te tran s itio n s d irectly reflect th e corresponding flow of contro l
in th e original code for th is m ethod . T he call ends a t LeaveRL. T hese special locations
are in troduced to have a k ind of separa tion betw een defin ition and usage of m ethods.
I f th e th re a d was suspended (due to a call to th e w a it m ethod on th e re a d e rW a it
cond ition) th e process in th e ab s tra c t m odel will be w aiting in th e location RWait.
T he w rapper QMutexLocker has been replaced by a call to lo ck . To take th e effect of
th e d e s tru c to r in to account, we added a call to unlock a t th e end of th e scope of th e
w rapper ob jec t. F u rtherm ore , observe th a t assertions are m odeled as a ‘black ho le’: a
s ta te , labeled A bort, from w hich th e re is no escape possible.

C heck ing th e m o d e l

T he m ain purpose of a m odel checker is to verify th e m odel w .r.t. a requirem ent
specification. In U ppaal, requ irem en ts are specified as queries consisting of p a th and
s ta te form ulae. T he la t te r describe ind iv idual s ta te s w hereas th e form er range over
execution p a th s or traces of th e m odel. In U ppaal, th e (s ta te) form ula A[] p expresses

c u r r e n tW r i te r != t i d ; t i d == c u r r e n tW r i te r ;
} }

6

F ig . 3 . U ppaa l m odels of th e locking prim itives

th a t p should be tru e in all reachable s ta tes . d e a d lo c k is a bu ilt- in form ula w hich is
tru e if th e s ta te has no outgoing edges.

In ou r exam ple we w ant to verify th a t th e m odel is deadlock-free, w hich is a s ta te
p roperty . T h is can easily be expressed by m eans of th e following query:

A [] n o t d e a d lo c k

W hen ru nn ing U p p aa l on th is m odel consisting of 2 th read s, th e verifier will alm ost
in s tan tly respond w ith: P ro p e r ty i s n o t s a t i s f i e d . T he trace genera ted by U ppaal
shows a coun ter exam ple of th e p roperty , in th is case a scenario leading to a deadlock.
T he problem is th a t if a th read , w hich is already holding a read lock, does a (reen tran t)
request for an o th e r read lock, it will b e suspended if an o th e r th re a d is pend ing for a
w rite lock (w hich is th e case if th e w rite lock was requested a fter th e first th read
o b ta ined th e lock for th e first tim e). Now b o th th read s are w aiting for each o ther.

3.1 C o rre c tin g th e im p le m e n ta tio n /m o d e l

T he solu tion is to le t a re en tran t lock a tte m p t alw ays succeed. To avoid w riters s ta rv a
tion , new read lock requests should be accepted only if th e re are no w riters w aiting for
th e lock. To d is tingu ish n o n -reen tran t and reen tran t uses, we m ain ta in , p e r th read , th e

7

cu rren t num ber of nested locks m aking no d is tinc tion betw een read and w rite locks.
A dditionally , th is so lu tion allows strongly reen tran t use. In th e im p lem en ta tion th is is
achieved by adding a hash map (nam ed c u r r e n t of ty p e QHash) to th e a ttr ib u te s of
th e class th a t m aps each th read hand le to a counter. To illu s tra te ou r ad ju s tm en ts, we
show th e im plem enta tion of lockF orR ead 1.

v o id Q R eadW riteL ock ::lockF orR ead() {
QMutexLocker lock(& d-> m utex);

Qt::HANDLE s e l f = Q T h re a d ::c u r re n tT h re a d Id () ;

QHash<Qt::HANDLE, i n t > : : i t e r a t o r i t = d - > c u r r e n t . f i n d (s e l f) ;
i f (i t != d - > c u r r e n t .e n d ()) {

+ + it .v a lu e () ;
Q_ASSERT_X(d->numberOfThreads > 0 , " . . . " , " . . . ") ;

r e t u r n ;
}
w h ile (d -> c u r re n tW r i te r != 0 | | d -> w a itin g W rite rs > 0) {

+ + d -> w a itin g R e a d e rs ;
d -> re a d e rW a it.w a it(& d -> m u te x);
— d -> w a itin g R e a d e rs ;

}
d - > c u r r e n t . i n s e r t (s e l f , 1) ;
++d->num berO fThreads;
Q_ASSERT_X(d->numberOfThreads> 0 , " . . . " , " . . . ") ;

}

To verify th is im p lem en ta tion we again converted th e code to U ppaal. Since handles
w here rep resen ted by in tegers ranging from 0 to NT - 1 (w here NT deno tes th e num ber
of th re a d s) , we can use a sim ple in teger array to m a in ta in th e num ber of nested locks per
th read , in s tead of a h ash m ap. In th is array, th e process id is used as an index. F igure
4 shows th e p a r t of th e U ppaa l m odel th a t corresponds to th e im proved lockForR ead.
For th e full U p p aa l m odel, see w w w .c s .ru .n l/~ s ja k ie /p a p e rs /re a d e rsw rite rs /.

BeginRL Read i o c k currentWriter != NT || r W ...
'rurrentrtidi == 0 ReadLock writersWaiting > 0 RWait

readNest <
maxNest

wakeupReader?

unlock!
LeaveRL numberOfThreads > 0 EndRL

RBlocked

F ig . 4 . U p p aa l m odel of th e correct version of lockF orR ead

To lim it th e s ta te space we have added an u p p er bo u n d maxNest to th e nesting
level and a coun ter re a d N e s t ind ica ting th e cu rren t nesting level. T h is variable is
decrem ented in th e unlock p a r t of th e full m odel. R unn ing U ppaa l on th e im proved
m odel will, n o t surprisingly, resu lt in th e message: P ro p e r ty i s s a t i s f i e d . In th is

For th e com plete code, see w w w .c s .ru .n l/~ s ja k ie /p a p e rs /re a d e rsw rite rs /.

EnterRL

1

8

http://www.cs.ru.nl/~sjakie/papers/readerswriters/
http://www.cs.ru.nl/~sjakie/papers/readerswriters/

experim en t we have lim ited th e num ber of processes to 4, and th e m axim um num ber
of re en tran t calls to 5. If we increase these values slightly, th e execu tion tim e worsens
drastically . So, for a com plete correctness resu lt, we have to proceed differently.

4 G eneral reentrant readers-w riters m odel

In th is section we will form alize th e U ppaa l m odel in PV S [21].
W e prove th a t th e re en tran t a lgo rithm is free from deadlock w hen we generalize to any
num ber of processes. W hile explain ing th e form alization we will briefly in troduce PV S.
For th e com plete PV S specification, see w w w .c s .ru .n l/~ s ja k ie /p a p e rs /re a d e rsw rite rs /.

4.1 R e a d e rs -W rite rs m o d e l in P V S

PV S offers an in terac tive env ironm ent for th e developm ent and analysis of form al
specifications. T he system consists of a specification language and a theorem prover.
T he specification language of PV S is based on classic, ty p ed h igher-order logic. I t
resem bles com m on functional p rogram m ing languages, such as Haskell, L IS P or ML.
T he choice of PV S as th e theorem prover to m odel th e readers w riters locking a lgorithm
is purely based up o n th e presence of local expertise . T he p roo f can be reconstruc ted
in any reasonably m odern theo rem prover, for in stance Isabelle [20] or Coq[5]. T here
is no im plicit no tion of s ta te in PV S specifications. So, we explicitly keep tra ck of a
system s ta te th a t basically consists of th e system variables used in th e U ppaa l m odel.

In th e U ppaa l m odel a critica l section s ta r ts w ith a lo c k ! and ends w ith e ither a
u n lo c k ! , re a d e rsW a it ! or w r ite rs W a i t ! synchronization . N ot all th e s ta te tran sitio n s
are m odelled ind iv idually in th e PV S m odel. A ll actions occuring inside a critical section
are m odeled as a single tran sitio n . T h is m akes th e locking m echanism p ro tec ting th e
critical sections superfluous in th e PV S m odel and enables us to reduce th e num ber of
different locations. O nly these locations in th e U ppaa l m odel th a t are ou tside a critical
section are needed and are tracked by th e T h readL oca tion variable. F u rtherm ore , th e
EnterXX and LeaveXX locations are ignored, because th ey are only used as a label for
a function call and have no influence on th e behavior of th e m odeled processes.

W ith NT denoting th e to ta l num ber of processes, we get th e following rep resen ta tion :

ThreadID : TYPE = below(NT) 2
T hreadL oca tion : TYPE = { START, RWAIT, RBLOCKED, WWAIT, WBLOCKED }
T h read In fo : TYPE = [# s t a tu s : T h readL oca tion , c u r r e n t : n a t #]

System : TYPE = [# w a i t in g W r i te r s , w a it in g R e a d e rs ,
numberOfThreads : n a t ,
c u r re n tW rite r : below(NT+1) ,
th r e a d s : ARRAY [ThreadID ^ T h re a d In fo] #]4

T he auxiliary variables re a d N e s t, w r ite N e s t and maxNest re s tr ic t th e U ppaal
m odel to a m axim um num ber of nested reads and w rites. T hey also p reven t unw anted
sequences of lock /un lock operations, e.g. w hen a w rite lock request occurs after a read
lock has already been ob ta ined . In th e PV S m odel we allow for any am oun t of nesting,

2 D enotes th e set of n a tu ra l num bers betw een 0 and NT, exclusive of NT.
3 R ecord types in PV S are su rrounded by [# and #].
4 A rrays in PV S are deno ted as functions.

9

http://www.cs.ru.nl/~sjakie/papers/readerswriters/

so th e variables w r ite N e s t and maxNest in troduced to lim it nesting can be discarded.
T he re a d N e s t variable is used to check w hether th e re already is a read lock presen t
w hen a w rite lock is requested . In th e PV S m odel we have im plem ented th is check by
tes tin g w hether th e lock coun ter for th is p a rticu la r th read is 0 before it s ta r ts w aiting
for a (non -reen tran t) w rite lock. T he logic beh ind it is th a t if, previously, a read lock
h ad been ob ta ined by th is th read , th e coun ter w ould have been unequal to 0 .

B ecause none of th e variable u p d a te s in th e U ppaa l m odel occur ou tside of a critical
section, we can m odel th e concurren t execution of th e different processes ob ta in ing
w ritelocks, readlocks and releasing th em by tre a tin g th em as in terleaved functions.

We first define a step function th a t executes one of th e possible actions for a single
process. T he step function is res tric ted to op e ra te on a subset of th e System d a ta type ,
signified by th e v a l id S ta te ? p red ica te , fu r th e r explained in Section 4.3. T he actions
them selves do n o t deliver ju s t a new s ta te b u t a lifted s ta te . In PV S , th e predefined
l i f t d a ta ty p e , consisting of two construc to rs up and bottom , adds a b o tto m elem ent to
a given base type , in our case v a l id S ta te ? inco rpo ra ting th e s ta te of th e m odel. T h is
is useful for defining p a rtia l functions, pa rticu la rly to ind ica te th e cases th a t ce rta in
ac tions are no t p erm itted .

In essence th e step function corresponds to th e cen ter of th e U ppaa l m odel consist
ing of th e S t a r t and th e EnterXX/LeaveXX sta tes.

s te p (t id :T h r e a d I D , s 1 , s2 : (v a l id S ta te ?)) : b o o l =
w r i t e lo c k (s 1 ,t i d) = u p (s 2) V r e a d l o c k (s 1 , t i d) = u p (s 2) V

u n lo c k (s 1 , t i d) = u p (s 2)

T he p red ica te in t e r l e a v e sim ulates paralle l execu tion of th reads.

in t e r l e a v e (s 1 , s2 :S y stem) : b o o l =
3 (t id :T h re a d ID) : s t e p (t i d , s 1 , s2)A

V (o th e r _ t id : T hreadID) : o th e r _ t id = t i d ^
s 1 ‘th r e a d s (o t h e r _ t id) = s 2 ‘th r e a d s (o t h e r _ t id)

4.2 T ra n s la tio n from U p p a a l to P V S

T he functions th a t perform th e readlock, w ritelock and unlock respectively are essen
tia lly th e sam e as in th e original code. I t is very well possible to derive th e code au to
m atically from th e U ppaa l m odel by identify ing all p a th s th a t s ta r t w ith a lo c k ! action
on its edge and lead to th e first edge w ith an u n lo c k ! , re a d e rsW a it ! or w r ite rs W a i t !
action . T he re a d lo c k function is p rovided as an exam ple of th is tran sla tio n . For in
stance, th e round tr ip in F igure 4 from th e S t a r t location , th ro u g h BeginRL directly
going to EndRL, has g uard c u r r e n t [t i d] > 0, and action c u r r e n t [t id] + + ; associ
a ted w ith it. I t s ta r ts and ends in th e START location of th e PV S m odel. T h is can be
recognized as a p a r t of th e code of th e re a d lo c k function below.

r e a d l o c k (s 1 : (v a l id S ta t e ?) , t id :T h re a d ID) : l i f t [(v a l i d S ta t e ?)] =
LET th r e a d = s 1 ‘th r e a d s (t i d) IN

CASES t h r e a d ‘s t a tu s OF
START:

IF th r e a d ‘ c u r r e n t > 0
THEN u p (s1 WITH [th r e a d s := s1 ‘th r e a d s WITH

[t i d := th r e a d WITH [c u r r e n t := th r e a d ‘ cu rren t+ 1]]])

5 T he ‘ o p e ra to r denotes record selection.

10

ELSIF s 1 ‘c u r r e n tW ri te r = NT V s1 ‘ w a itin g W rite rs > 0
THEN u p (s1 WITH [w a itin g R ead ers := s 1 ‘w a itin g R ead ers + 1,

th r e a d s := s1 ‘ th r e a d s WITH
[t i d := th r e a d WITH [s t a tu s := RWAIT]]])

ELSE u p (s1 WITH [numberOfThreads := s 1 ‘num berOfThreads + 1,
th r e a d s := s1 ‘ th r e a d s WITH
[t i d := th r e a d WITH [c u r r e n t := 1]]])

ENDIF,
RBLOCKED:

IF s 1 ‘c u r r e n tW ri te r = NT V s 1 ‘w a itin g W rite rs > 0
THEN u p (s1)
ELSE u p (s1 WITH [numberOfThreads := s 1 ‘num berOfThreads + 1,

w a itin g R ead ers := s 1 ‘w a itin g R ead ers - 1,
th r e a d s := s1 ‘ th r e a d s WITH
[t i d := th r e a d WITH [c u r r e n t := 1, s t a tu s := START]]])

ENDIF
ELSE:

up (s1)
ENDCASES

4.3 S y stem in v a rian ts

N ot every com bination of variables will be reached during norm al execution of th e
program . A uxiliary variables are m ain ta ined th a t keep tra ck of th e to ta l am ount of
processes th a t are in th e ir c ritical section and of th e num ber of processes th a t are
w aiting for a lock. We express th e consistency of th e values of those variables by using
a v a l id S ta te ? p red icate . T h is is an invarian t on th e global s ta te of all th e processes
and essential in proving th a t th e algo rithm is deadlock free. We w ant to express in th is
invarian t th a t th e global s ta te is sane and safe. S an ity is defined as:

— T he value of th e w a itin g R ead ers should be equal to th e to ta l num ber of processes
w ith a s ta tu s of RWAIT or RBLOCKED.

— T he value of th e w a itin g W rite rs should be equal to th e to ta l num ber of processes
w ith a s ta tu s of WWAIT or WBLOCKED.

— T he value of th e numberOfThreads variable should be equal to th e num ber of p ro
cesses w ith a lock count of 1 or higher.

Besides th e red u n d an t variables having sane values, we also prove th a t th e invarian t
satisfies th a t any w aiting process has a count of zero cu rren t readlocks, sto red in th e
c u r r e n t field of T h read In fo . F u rtherm ore , if a process has o b ta ined a w rite lock, th en
only th a t process can be in its c ritical section:

s : VAR System
c o u n t I n v (s) : b o o l = s ‘numberOfThreads = c o u n t (s ‘th r e a d s)

w a i t in g W r i te r s I n v (s) : boo l = s ‘w a itin g W rite rs = w a it in g W ri te r s (s)
w a it in g R e a d e rs I n v (s) : boo l = s ‘w a itin g R ead ers = w a itin g R e a d e rs (s)

s t a t u s I n v (s) : b o o l = V (tid :T h re a d ID) :
LET t h r = s ‘t h r e a d s (t i d) IN

t h r ‘s t a tu s = WWAIT V t h r ‘s t a tu s = WBLOCKED V

11

thr‘status = RWAIT V thr‘status = RBLOCKED ^ thr‘current = 0

w riteL ockedB yInv (s) : b o o l = LET tw lb = s ‘c u r r e n tW ri te r IN
tw lb = NT ^ s ‘numberOfThreads = 1 A

s ‘th r e a d s (tw lb) ‘s t a tu s = START A s ‘t h r e a d s (t w l b) ‘c u r r e n t > 0 A
V (tid :T h re a d ID) : t i d = tw lb ^ s ‘t h r e a d s (t i d) ‘c u r r e n t = 0))

v a l i d S ta t e ? (s) : b o o l = c o u n tIn v (s)A w a it in g W ri te r s In v (s)A
s ta tu s I n v (s) A w riteL o ck ed B y In v (s)A w a itin g R e a d e rs In v (s)

Before try in g to prove th e invarian t w ith PV S , we have first te s ted th e above p ropertie s
(except for w a it in g W rite rs In v) and w a itin g R ead e rsIn v) in th e U ppaa l m odel to see
if th ey hold in th e fixed size m odel (see F igure 5). T he p ropertie s w a itin g W rite rs In v
and w a itin g R ead e rsIn v canno t be expressed in U ppaa l because one canno t count th e
num ber of processes residing in a specific location . T he inspection of th e above p ro p
erties in U ppaa l enables us to d e tec t any m istakes in th e invarian t before spending
precious tim e on try in g to prove th em in PV S.

— A []c o u n tC u r re n ts () = num berO fThreads (COUNT INV.) 6
— A[] V t G T h read Id : T h re a d (t) .WWait V T h re a d (t) .RWaitV

T h re a d (t) .WBlocked V T h re a d (t) .R Blocked ^ c u r r e n t [t] = 0 (STATUS INV.)
— A [] c u r r e n tW r i te r = NT ^ (w r it e L o o k e d B y INV.)

num berO fThreads = 1 A
—T h re a d (c u r re n tW r ite r) .w r ite L o c k E n d ^ c u r r e n t [c u r r e n tW r i te r] > 0 A
Vt G T h read Id : t = c u r r e n tW r i te r ^ c u r r e n t [t] = 0

F ig . 5 . T he invarian ts checked in U ppaal

T he defin ition of th e re a d lo c k function over th e d ep enden t ty p e v a l id S ta te ? im
plies th a t au tom atica lly ty p e checking conditions are genera ted . T hey oblige us to
prove th a t , if we are in a valid s ta te , th e tran s itio n to an o th e r s ta te will yield a s ta te
for w hich th e invarian t still holds. T he p roo f itself is a stra igh tfo rw ard , a lbeit large
(ab o u t 400 p roo f com m ands), case d is tinc tion w ith th e help of som e auxiliary lem m as.

4.4 N o d ead lo ck

T he theorem -prover PV S does n o t have an in n a te no tion of deadlock. If, however, we
consider th e s ta te -tran s itio n m odel as a d irec ted graph , in w hich th e edges are d e te r
m ined by th e in t e r l e a v e function , deadlock can be de tec ted in th is s ta te tran s itio n
g rap h by identify ing a s ta te for w hich th e re are no outgoing edges. T h is in te rp re ta tio n
of deadlock can be too lim ited . If, for exam ple, th ere is a s itu a tio n w here a process
a lte rs one of th e s ta te variables in a non te rm in a tin g loop, th e s ta te -tran s itio n m odel
will yield an infinite g raph and a deadlock will no t be d e tec ted , because each s ta te
has an outgoing edge. Still, all th e o th er processes will n o t be able to m ake progress.
To o b ta in a m ore refined no tion of deadlock, we define a well founded ordering on th e
system s ta te and show th a t for each s ta te reachable from th e s ta rtin g s ta te (except
for th e s ta rtin g s ta te itself), th e re exists a tran s itio n to a sm aller s ta te according to
th a t ordering. T he sm allest elem ent w ith in th e o rder is th e s ta rtin g s ta te . T h is m eans
th a t each reachable s ta te has a p a th back to th e s ta rtin g s ta te and consequently it is
im possible for any process to rem ain in a such a loop indefinitely. M oreover, th is also

6 c o u n tC u rre n ts de term ines th e num ber of th read s having a c u r r e n t g rea te r th a n 0.

12

covers th e s itu a tio n in w hich we w ould have a local deadlock (i.e. several b u t n o t all
processes are w aiting for each o ther).

t : VAR T hread In fo
s t a r t i n g ? : PRED [ThreadInfo] = { t | t ‘ s t a tu s = START A t ‘ c u r r e n t = 0}

s t a r t i n g S t a t e (s : (v a l id S t a te ?)) : b o o l =
V (tid :T h re a d ID) : s t a r t i n g ? (s ‘t h r e a d s (t i d))

In th e s ta rtin g s ta te all processes are ru nn ing and th ere are no locks.
We crea te a well founded ordering by defining a s ta te to becom e sm aller if th e num

b er of w aiting processes decreases or alternatively , if th e num ber of w aiting processes
rem ains th e sam e and th e to ta l count of th e num ber of processes th a t have ob ta ined a
lock is decreasing. W ell foundedness follows d irec tly from th e well foundedness of th e
lexicographical o rdering on pairs of n a tu ra l num bers.

s m a l l e r S ta t e (s 2 , s1 : (v a l id S t a te ?)) : b o o l =
num berW aiting(s2) < num berW aiting(s1) V

num berW aiting (s2) = n u m berW aiting (s1)A
to ta lC o u n t (s 2) < to ta lC o u n t(s 1)

T he num berW aiting function as well as th e to ta lC o u n t function are recursive functions
on th e array w ith th re a d in fo rm ation yielding th e num ber of processes th a t have either
a RBLOCKED, RWAIT, WBLOCKED or WWAIT s ta tu s , and sum of all c u r r e n t fields respectively.

Once we have estab lished th a t each s ta te tran s itio n m ain ta in s th e invarian t, all we
have to prove is th a t each tran sitio n , except for th e s ta rtin g s ta te will possibly resu lt in
a s ta te th a t is sm aller. T h is is th e noD eadlock theorem . P rov ing th is theo rem is m ainly
a case d is tin c tio n w ith a couple of inductive proofs th row n in for good m easure. T he
in d uc tion is needed to estab lish th a t th e increase and decrease in th e variables can only
h ap p en if ce rta in p reconditions are m et. T he p roof takes ab o u t 300 p roo f com m ands.

noD eadlock: THEOREM
V (s1: (v a l id S t a te ?)) : —s t a r t i n g S ta t e (s1) ^

3 (s 2 : (v a l id S t a te ?)) : i n t e r l e a v e (s 1 , s 2) A s m a l l e r S ta t e (s 2 , s1)

5 R elated and future W ork

Several s tud ies investigated either th e conversion of code to s ta te tran s itio n m odels,
as is done e.g. in [28] w ith m crl2 or th e tran sfo rm atio n of a s ta te tran s itio n m odel
specified in a m odel checker to a s ta te tran s itio n m odel specified in a theo rem prover,
as is done e.g. in [16] using VeriTech. W ith th e too l TA M E one can specify a tim e
au to m ato n d irec tly in th e theo rem prover PV S [3]. For th e pu rpose of developing
consisten t requ irem en t specifications, th e tran sfo rm atio n of specifications in U ppaal
[17] to specifications in PV S has been stud ied in [9].

In [22] m odel checking and theo rem proving are com bined to analyze th e classic
(n o n -reen tran t) R ead ers /W rite rs problem . T he au th o rs do n o t s ta r t w ith ac tu a l source
code b u t w ith a ta b u la r specification th a t can be tran s la ted stra igh tfo rw ard ly in to
SPIN and PV S. Safety and clean com pletion p ropertie s are derived sem i-autom atically .
M odel checking is used to valida te p o ten tia l invariants.

[13] rep o rts on experim en ts in com bing theo rem proving w ith m odel checking for
verifying tran s itio n system s. T he com plexity of system s is reduced ab s trac tin g ou t
sources for unboundedness using theorem proving, resu lting in an bounded system

13

su ited for being m odel checked. O ne of th e m ain difficulties is th a t form al p roo f tech
niques are usually n o t scalable to real sized system s w ith o u t an e x tra effort to ab s trac t
th e system m anually to a su itab le m odel.

T he verification fram ew ork SAL (See [25]) com bines different analysis tools and
techniques for analyzing tran s itio n system s. Besides m odel checking and theorem prov
ing it provides p rogram slicing, ab s trac tio n and invarian t generation .

In [12] p a r t of an aircraft contro l system is analyzed, using a theo rem prover. T h is
experim en t was previously perform ed on a single configuration w ith a m odel checker. A
techn ique called feature-based decomposition is proposed to d eterm ine inductive invari
an ts. I t appears th a t th is app roach adm its increm en ta l extension of an in itia lly sim ple
base m odel m aking it b e tte r scalable th a n trad itio n a l techniques.

Java P a th fin d e r (JP F) [29] opera tes d irec tly on Java m aking a tran sfo rm atio n of
source code superfluous. However, th is too l w orks on a com plete program , such th a t
it is m uch m ore difficult to c rea te abstrac tions. T he extension of J P F w ith sym bolic
execution as discussed by [1] m ight be a so lu tion to th is problem .

A n a lte rn a tiv e for J P F is B an d era [7], w hich tran s la te s Java program s to th e in p u t
languages of SM V and SPIN . Like in JP F , it is difficult to analyse separa te pieces of
code in B andera. T here is an in teresting connection betw een B an d era and PV S. To
express th a t p ropertie s do n o t depend on specific values, B an d era provides a ded ica ted
language for specifying abstrac tions, i.e. concrete values are au tom atica lly replaced by
a b s tra c t values, th u s reducing th e s ta te space. T he in tro d u c tio n of these ab s tra c t values
m ay lead to prove ob ligations w hich can be expressed and proven in PV S.

In [24] a m odel checking m eth o d is given w hich uses an ex tension of JM L [18] to
check p ropertie s of m u lti-th read ed Java program s.

W ith Zing [2] on th e one h an d m odels can be crea ted from source code and on th e
o th e r h an d executab le versions of th e tran s itio n re la tion of a m odel can be generated
from th e m odel. T h is has been used successfully by M icrosoft to m odel check p a rts of
th e ir concurrency libraries.

F u tu re w ork

T he m ethodology used (creating in a s tru c tu re d way a m odel close to th e code, m odel
checking it first and proving it afterw ards) proved to be very valuable. We found a
bug, im proved th e code, ex tended th e capabilities of th e code and proved it correct.
O ne can say th a t th e m odel checker was used to develop th e form al m odel w hich was
proven w ith th e theo rem prover. T h is decreased significantly th e tim e investm ent of
th e use of a theorem prover to enhance reliability. However, every m odel was crea ted
m anually. W e identified several opp o rtu n itie s for too l su p p o rt and fu rth e r research.

M o d e l c h e c k e d r e l a t e d to s o u r c e c o d e Tool su p p o rt could be helpful here: no t
only to ’tra n s la te ’ th e code from th e source language to th e m odel checker’s lan
guage. I t could also be used to record th e abstrac tio n s th a t are m ade. In th is case
th a t were: basic locks ^ lock process m odel, h ash tab les ^ arrays, th read s ^
processes and som e nam e changes. A too l th a t recorded these abstrac tions, could
assist in crea ting tru s te d source code from th e m odel checked m odel.

M o d e l c h e c k e d r e l a t e d to m o d e l p ro v e n I t w ould be in teresting to prove th a t
th e m odel in th e theorem prover is equivalent w ith th e m odel checked. In te re s t
ing m ethods to do th is w ould be using a sem antic com piler, as was done in th e
E u ro p ean R ob in p ro jec t [27], or em ploying a specially designed form al lib ra ry for
m odels crea ted w ith a m odel checker, like e.g. T A M E [3].

14

M o d e l p ro v e n r e l a t e d to s o u r c e c o d e A n o th e r in teresting fu tu re research op tion
is to investigate generating code from th e fully proven m odel. T h is could be
code genera ted from code-carry ing theories [15] or it could be proof-carry ing code
th ro u g h th e use of refinem ent techniques [4].

6 C oncluding rem arks

W e have investigated T ro lltech ’s w idely used in d u s tria l im plem enta tion of th e reen
tr a n t readers-w riters problem . M odel checking revealed an erro r in th e im plem entation .
T rolltech was inform ed ab o u t th e bug. R ecently, T rolltech released a new version of th e
th re a d lib rary (version 4.4) in w hich th e erro r was repaired . However, th e new version
of th e Q t lib rary is still only w eakly reen tran t, n o t a d m ittin g th read s th a t have w rite
access to do a read lock. T h is lim ita tio n unnecessarily ham pers m odu lar p rogram m ing.

T he im proved R eaders-W riters m odel described in th is p ap e r is deadlock free and
strongly reentrant. T he m odel was first developed and checked for a lim ited num ber of
processes using a m odel checker. T hen , th e p ropertie s were proven for any num ber of
processes using a theorem prover.

A ck n o w led g em en ts

W e w ould like to th a n k b o th E rik Poll and th e anonym ous referees of an earlier version
of th is p ap e r for th e ir useful com m ents im proving th e p resen ta tio n of th is work.

R eferences

1. S. A nand , C. S. P asareanu , and W . Visser. Jpf-se: A sym bolic execution extension
to java path finder. In O. G rum berg and M. H u th , ed ito rs, TACAS, volum e 4424
of Lecture N otes in C om puter Science, pages 134-138. Springer, 2007.

2. T . A ndrew s, S. Q adeer, S. K. R a jam an i, J. Rehof, and Y. Xie. Zing: A m odel
checker for concurren t softw are. In R . A lur and D. Peled, ed ito rs, CAV, volum e
3114 of Lecture N otes in C om puter Science, pages 484-487. Springer, 2004.

3. M. A rcher, C. H eitm eyer, and S. Sims. TAM E: A PV S in terface to sim plify proofs
for a u to m a ta m odels. In User Interfaces fo r Theorem Provers, E indhoven, T he
N etherlands, 1998.

4. M. A. B arbosa. A refinem ent calculus for softw are com ponents and arch itectu res.
SIG SO F T Softw. Eng. Notes, 30(5):377-380, 2005.

5. Y. B erto t and P. C asteran . Interactive Theorem Proving and Program D evelop
ment. Coq’A rt: The Calculus of Inductive Constructions. T ex ts in T heore tica l
C o m pu ter Science. Springer Verlag, 2004.

6 . E. M. C larke, E. A. E m erson, and A. P. Sistla. A u tom atic verification of finite
s ta te concurren t system s using tem p o ra l logic specifications: A p rac tica l approach.
In PO PL, pages 117-126, 1983.

7. J. C. C o rb e tt, M. B. D w yer, J. H atcliff, S. L aubach , C. S. P asareanu , Robby,
and H. Zheng. B andera: ex trac tin g fin ite -s ta te m odels from java source code. In
Software Engineering, 2000. Proceedings of the 2000 International Conference on,
pages 439-448, 2000.

8 . P. J. C ourto is, F . H eym ans, and D. L. P arnas. C oncurren t contro l w ith “readers”
and “w riters” . Commun. ACM , 14(10):667-668, 1971.

15

9. A. de G root. Practical A utom aton Proofs in PVS. P hD thesis, R ad b o u d U niversity
N ijm egen, 2008.

10. B. G oetz, T . Peierls, J. B loch, J. B ow beer, D. Holm es, and D. Lea. Java Concur
rency in Practice. A ddison W esley Professional, 2006.

11. J. F . G roote , A. H. J. M ath ijssen , M. A. R eniers, Y. S. Usenko, and M. J. van
W eerdenburg . T he form al specification language m C R L2. In Proc. Methods fo r
M odelling Software S ystem s , num ber 06351 in D agstuh l Sem inar Proceedings, 2007.

12. V. H a, M. R an g ara jan , D. Cofer, H. R ues, and B. D u te rtre . F ea tu re -based decom
position of inductive proofs applied to real-tim e avionics software: A n experience
rep o rt. In IC SE ’04: Proceedings of the 26th International Conference on Soft
ware Engineering, pages 304-313, W ashing ton , D C, U SA, 2004. IE E E C om puter
Society.

13. K. H avelund and N. Shankar. E xperim en ts in T heorem Proving and M odel C heck
ing for P ro to co l V erification. In M .-C. G audel and J. W oodcock, ed ito rs, F M E ’96:
Industrial Benefit and Advances in Formal Methods, pages 662-681. Springer
Verlag, 1996.

14. G. J. H olzm ann. T he m odel checker SPIN . IEEE Transactions on Software Engi
neering, 23(5):279-295, M ay 1997.

15. B. Jacobs, S. Sm etsers, and R. W ichers Schreur. C ode-carrying theories. Formal
A sp. Comput., 19(2):191-203, 2007.

16. S. K atz . F aith fu l tran s la tio n s am ong m odels and specifications. In FM E ’01:
Proceedings of the International Sym posium of Formal Methods Europe on Formal
M ethods fo r Increasing Software Productivity, pages 419-434, London, U K , 2001.
Springer-V erlag.

17. K. G. L arsen, P. P e tte rsson , and W . Yi. U PPA A L in a nutshell. International
Journal on Software Tools fo r Technology Transfer, 1(1-2):134-152, 1997.

18. G. T . Leavens, J. R. K iniry, and E. Poll. A jm l tu to ria l: M odular specification and
verification of functional behavior for java. In W . D am m and H. H erm anns, editors,
CAV, volum e 4590 of Lecture N otes in C om puter Science, page 37. Springer, 2007.

19. K. L. M cM illan. T he SM V System . 1998-2001. C arnegie M ellon U niversity,
w w w .cs.cm u.edu/ m odelcheck/sm v.h tm l.

20. T . Nipkow, L. C. Paulson , and M. W enzel. Isabelle/H O L — A Proof A ssistan t fo r
H igher-O rder Logic, volum e 2283 of LNCS. Springer, 2002.

21. S. O w re, J. M. R ushby, , and N. Shankar. PV S: A p ro to ty p e verification system . In
D. K apu r, ed ito r, 11th International Conference on A utom ated D eduction (CAD E),
volum e 607 of Lecture N otes in A rtificial Intelligence, pages 748-752, S aratoga, NY,
ju n 1992. Springer-V erlag.

22. V. P an telic , X .-H. Jin , M. Lawford, and D. L. P arnas. In spection of concurren t
system s: C om bining tab les, theo rem proving and m odel checking. In H. R. A rabn ia
and H. R eza, ed ito rs, Software Engineering Research and Practice, pages 629-635.
C SR E A Press, 2006.

23. J.-P . Queille and J. Sifakis. Specification and verification of concurren t system s
in cesar. In M. D ezani-C iancaglini and U. M ontanari, ed ito rs, Sym posium on
Programming, volum e 137 of Lecture N otes in C om puter Science, pages 337-351.
Springer, 1982.

24. Robby, E. R odríguez, M. B. Dwyer, and J. H atcliff. C hecking jm l specifications
using an extensib le softw are m odel checking fram ew ork. S T T T , 8(3):280-299, 2006.

25. N. Shankar. C om bining theorem proving and m odel checking th ro u g h sym bolic
analysis. In C. Palam idessi, ed ito r, CON CUR, volum e 1877 of Lecture N otes in
C om puter Science, pages 1-16. Springer, 2000.

26. H. S u tte r. T he free lunch is over: A fundam en ta l tu rn tow ard concurrency in
softw are. Dr. D obb’s Journal, 30(3), M arch 2005.

16

http://www.cs.cmu.edu/

27. H. Tews, T . W eber, M. V olp, E. Poll, M. v. Eekelen, and P. v. R ossum . Nova
M icro -H yperv iso r V erification. Technical R ep o rt IC IS-R 08012, R ad b o u d U niver
sity N ijm egen, M ay 2008. R ob in deliverable D13.

28. M. van Eekelen, S. te n H oedt, R. Schreurs, and Y. S. Usenko. A nalysis of a
session-layer p ro toco l in m crl2. verification of a real-life in d u s tria l im plem entation .
In P. M erino and S. Leue, ed ito rs, Proc. 12th In t ’l Workshop on Formal Methods fo r
Industrial Critical System s (FM ICS 2007), volum e 4916 of Lecture N otes Computer
Science, pages 182-199. Springer, 2008.

29. W . V isser, K. H avelund, G. P. B ra t, S. P ark , and F . Lerda. M odel checking
program s. Autom . Softw. Eng., 10(2):203-232, 2003.

17

A p p en d ix

A C om p lete revised code

s t r u c t Q R eadW riteL ockPrivate
{

QMutex m utex;
Q W aitC ondition re a d e rW a it , w r ite rW a it;

i n t num berO fT hreads, w a itin g R e a d e rs , w a it in g W ri te r s ;

Qt::HANDLE c u r r e n tW r i te r ;
QHash<Qt::HANDLE, in t> c u r re n tR e a d e rs ;

}

v o id Q R eadW riteL ock ::lockF orR ead()
{

QMutexLocker lock(& d-> m utex);

Qt::HANDLE s e l f = Q T h re a d ::c u r re n tT h re a d Id () ;

QHash<Qt::HANDLE, i n t > : : i t e r a t o r i t = d - > c u r r e n tR e a d e r s . f i n d (s e l f) ;
i f (i t != d -> c u r re n tR e a d e r s .e n d ()) {

+ + it .v a lu e () ;
Q_ASSERT_X(d->numberOfThreads > 0 , "Q R ead W riteL o ck ::lo ck F o rR ead ()" ,

"O verflow in num berO fThreads c o u n te r ") ;
r e t u r n ;

}
w h ile (d -> c u r re n tW r i te r != 0 | | d -> w a itin g W rite rs > 0) {

+ + d -> w a itin g R e a d e rs ;
d -> re a d e rW a it.w a it(& d -> m u te x);
- -d -> w a it in g R e a d e rs ;

}
d -> c u r re n tR e a d e r s . i n s e r t (s e l f , 1);
++d->num berO fThreads;
Q_ASSERT_X(d->numberOfThreads> 0 , "Q R ead W riteL o ck ::lo ck F o rR ead ()" ,

"O verflow in num berO fThreads c o u n te r ") ;
}

v o id Q R eadW riteL o ck ::lo ck F o rW rite ()
{

QMutexLocker lock(& d-> m utex);

Qt::HANDLE s e l f = Q T h re a d ::c u r re n tT h re a d Id () ;
QHash<Qt::HANDLE, i n t > : : i t e r a t o r i t = d - > c u r r e n tR e a d e r s . f i n d (s e l f) ;

i f (d -> c u r re n tW r i te r == s e l f && i t != d -> c u r re n tR e a d e r s .e n d ()) {
+ + i t . v a l u e () ;
Q_ASSERT_X(d->numberOfThreads > 0 , "Q R ead W riteL o ck ::lo ck F o rW rite ()" ,

"O verflow in lo c k c o u n te r ") ;
r e t u r n ;

18

}

w h ile (d->num berO fT hreads != 0) {
+ + d -> w a itin g W rite rs ;
d -> w rite rW a it.w a it(& d -> m u te x) ;
- - d -> w a it in g W r i te r s ;

}
d -> c u r re n tW r ite r = s e l f ;
d->num berO fT hreads++;
d -> c u r re n tR e a d e r s . i n s e r t (s e l f , 1);
Q_ASSERT_X(d->numberOfThreads > 0 , "Q R ead W riteL o ck ::lo ck F o rW rite ()" ,

"O verflow in num berO fThreads c o u n te r ") ;
}

v o id Q R eadW riteL ock ::un lock ()
{

QMutexLocker lock(& d-> m utex);

Q_ASSERT_X(d->numberOfThreads != 0 , "Q R ead W riteL o ck ::u n lo ck ()" ,
"C annot u n lo c k an u n lo ck ed l o c k ") ;

Qt::HANDLE s e l f = Q T h re a d ::c u r re n tT h re a d Id () ;
QHash<Qt::HANDLE, i n t > : : i t e r a t o r i t = d - > c u r r e n tR e a d e r s . f i n d (s e l f) ;
i f (i t != d -> c u r re n tR e a d e r s .e n d ()) {

i f (— i t . v a l u e () <= 0) {
d -> c u r re n tR e a d e r s . e r a s e (i t) ;

d -> c u r re n tW r ite r = 0;
d->num berO fT hreads— ;

i f (d -> w a itin g W rite rs) {
d -> w rite rW a it.w a k e O n e () ;

} e l s e i f (d -> w a itin g R e a d e rs) {
d -> re a d e rW a it .w a k e A ll() ;

}
}

}
}

19

20

writersWaiting == 0 && waitingReaders > 0 signalAliReaders!

numberOfThreads >= 0

B
C

om
plete

thread
m

odel
of

the
revised

code

