
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/72204

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/72204

Draft Proceedings of the Sixth

Advanced Functional

Programming school

(AFP 2008)

May 19-24 2008

Center Parcs “Het Heijderbos”

The Netherlands

Edited by

Pieter Koopman

Rinus Plasmeijer

Doaitse Swierstra

Technical report: ICIS- R08008, May, Radboud University Nijmegen, 2008

i

Preface

The 6
th
 Advanced Functional Programming school (AFP 2008) is being held in Center Parcs “Het

Heijderbos,” The Netherlands near the city of Nijmegen on May 19-24, 2008. It is co-located with

the 9th Symposium on Trends in Functional Programming (TFP 2008). The co-location of these two

events is intended to attract new researchers to the exciting area of functional programming. TFP

2008 is organized by the Computer Science Department of the Radboud University Nijmegen and

Utrecht University.

The goals of the Advanced Functional Programming schools are:

• Bring computer scientists, in particular young researchers and programmers, up to date with the

latest functional programming techniques.

• Use advanced functional programming techniques in "programming in the real world".

• Bridge the gap between results presented at programming conferences and material from

introductory textbooks on functional programming.

The approach we take to achieve these goals in the schools is:

• In depth lectures about a selected number of advanced functional programming techniques that

emerged or established recently. The lectures are taught by experts in the field that actively

contribute to research and application of the techniques.

• Lectures are accompanied by practical problems to be solved by the students at the school. The

problems guide the students' learning to a great extent. This implies that there has to be a lab at

the school site. After the popularization of the laptop and WiFi, this can be almost anywhere.

• Group work is stimulated, especially because the practical problems will typically be too large

for a single person.

By functional programming we mean programming in a style that emphasizes the evaluation of

expressions rather than the execution of commands.

This proceedings represents the papers associated with the lectures presented at AFP 2008. As in

previous versions of AFP it is called the draft proceedings to distinguish it from the formal peer-

reviewed post- proceedings that will be published as a LNCS volume by Springer.

AFP 2008 gratefully acknowledges the generous support of Getronics Pink Roccade, The

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands Defence

Academy and the Radboud University Nijmegen. We are particularly grateful to the lectures of this

summer school.

Peter Achten, Pieter Koopman, Simone Meeuwsen, Rinus Plasmeijer, and Doaitse Swierstra.

Nijmegen, The Netherlands

May 2008

ii

School Organisation

Editors: Pieter Koopman, Rinus Plasmeijer (both Radboud University Nijmegen, NL), Doaitse

Swierstra (Utrecht University, NL)

Local arrangements: Peter Achten, Pieter Koopman, Simone Meeuwsen (all Radboud University

Nijmegen, NL)

Support

www.getronics.com www.nwo.nl www.nlda.nl www.cs.ru.nl

iii

Program
 Monday Tuesday Wednesday Thursday Friday Saturday

Morning 1

8:30-10:15

Mark Jones Richard Bird Ulf Norell Johan Jeuring Simon Peyton

Jones &

Satnam Singh

Umut Acar

Morning 2

10:45-12:30

Rinus

Plasmeijer

Ulf Norell Richard Bird Olivier Danvy Umut Acar Simon Peyton

Jones &

Satnam Singh

Lunch

12:30-14:00

Afternoon 1

14:00-15:45

Mark Jones Mark Jones Ulf Norell Johan Jeuring Olivier Danvy Umut Acar

Afternoon 2

16:15-18:00

Rinus

Plasmeijer

Rinus

Plasmeijer

Richard Bird Olivier Danvy Johan Jeuring Simon Peyton

Jones &

Satnam Singh

Table of contents

I. Rinus Plasmeijer .. 7

Specifying interactive workflows for the web

II. Richard Bird .. 48

Spider spinning for dummies

III. Ulf Norell .. 73

Dependently typed programming in Agda

IV. Johan Jeuring .. 106

Libraries for Generic Programming in Haskell

V. Olivier Danvy .. 171

From reduction-based to reduction-free normalization

VI. Umut Acar... 197

Self-Adjusting Computation

VII. Simon Peyton Jones & Satnam Singh .. 212

Parallel Functional Programming

iv

Specifying Interactive Work Flows for the Web

Rinus Plasmeijer, Peter Achten, Pieter Koopman, Bas Lijnse, and Thomas van
Noort

Radboud University Nijmegen, Netherlands
{rinus,P.Achten,pieter,b.lijnse,thomas}@cs.ru.nl

Abstract. In these lecture notes we present the iTask system: a set
of combinators to specify workflows in a pure functional language at a
very high level of abstraction. Workflow systems are automated systems
in which tasks are coordinated that have to be executed by either hu-
mans or computers. The combinators that we propose support workflow
patterns commonly found in commercial workflow systems. In addition,
we introduce novel workflow patterns that capture real world require-
ments, but that can not be dealt with by current systems. Compared
with most of these commercial systems, the iTask system offers several
further advantages: tasks are statically typed, tasks can be higher order,
the combinators are fully compositional, dynamic and recursive work-
flows can be specified, and last but not least, the specification is used to
generate an executable web-based multi-user workflow application. With
the iTask system, useful workflows can be defined which cannot be ex-
pressed in other systems: a work can be interrupted and subsequently
directed to other workers for further processing. The iTask system has
been constructed in the programming language Clean, making use of its
generic programming facilities, and its iData toolkit with which inter-
active, thin-client, form-based web applications can be created. In all,
iTasks are an excellent case of the expressive power of functional and
generic programming.

1 Introduction

Workflow systems are automated systems that coordinate tasks. Parts of these
tasks need to be performed by humans, other parts by computers. Automation
of tasks in this way can increase the quality of the process, as the system keeps
track of tasks, who is performing them, and in what order they should be per-
formed. For this reason, there are many commercial workflow systems (such as
Business Process Manager, COSA Workflow, FLOWer, i-Flow 6.0, Staffware,
Websphere MQ Workflow, and YAWL) that are used in industry. If we investi-
gate contemporary workflow systems from the perspective of a modern functional
programming language such as Clean and Haskell, then there are a number of
salient features that functional programmers are accustomed to that appear to
be missing in workflow systems:

– Workflow situations are typically specified in a graphical language, instead of
a textual language as typically used in programming languages. Functional

7

programmers are keen on abstraction using higher order functions, generic
programming techniques, rich type systems, and so on. Although experi-
ments have been conducted to express these key features graphically (Vital
[11], Eros [7]), functional programs are typically specified textually.

– Workflow systems mainly deal with control flow rather than data flow as in
functional languages. As a result, they have focussed less on expressive type
systems and analysis as has been done in functional language research.

– Within workflow systems, the data typically is globally known and accessi-
ble, and resides in databases. In functional languages, data is passed around
between function arguments and results, and is therefore much more local-
ized.

Given the above observations, we have posed the question if, and which, func-
tional programming techniques can contribute to the expressiveness of workflow
systems. In these lecture notes we show how web-applications with complex
control flows can be constructed by presenting the iTask system: a set of combi-
nators for the specification of interactive multi-user web-based workflows. It is
built on top of the iData toolkit, and both can be used within the same program.
The library covers all known workflow patterns that are found in contemporary
commercial workflow tools [21]. The iTask toolkit extends these patterns with
strong typing, higher-order functions and tasks, lazy evaluation, and a monadic
style of programming. Its foundation upon the generic [13, 1] features of the iData
toolkit yields compact, robust, reusable and understandable code. Workflows are
defined on a very high level of abstraction. It truly is an executable specification,
as much is done and generated automatically.

As a running example, we will study the architecture of a conference manage-
ment (CM) systems, and implement a small prototype. CM is a good case study
of a workflow because it controls the activities of people with various roles, such
as program chairs and program committee members. It is also challenging be-
cause many of these activities run in parallel, and the system should not hamper
the activities of the workers of the system.

In these lecture notes, we assume that the reader is familiar with the func-
tional programming language Clean1 that is used in this paper.

The major part of this tutorial is devoted to presenting the iTask toolkit by
means of a range of examples and exercises that demonstrate its major concepts
in Sect. 2. We briefly discuss its implementation in Sect. 3. We end with related
work in Sect. 4 and conclusions in Sect. 5. Appendix A gives the complete api
of the iTask toolkit.

2 Programming Workflows with iTasks

In this section we present the main concepts of the iTasks toolkit by means of a
number of examples.
1 See http://www.st.cs.ru.nl/papers/2007/CleanHaskellQuickGuide.pdf for the main

differences between Clean and Haskell.

8

2.1 A simple example

With the iTask system, the workflow engineer specifies a workflow situation using
combinators. This specification is interpreted by the iTask system. It presents to
the workflow user a web browser interface that implements the given task. As a
starter, we give the complete code of an extremely simple workflow, viz. that of
a single, elementary, task in which the user is requested to fill in an integer form
(see also Fig. 1):

module example 1.

2.

import StdEnv, StdiTasks 3.

4.

Start :: *World→*World 5.

Start world = singleUserTask [] simple world 6.

7.

simple :: Task Int 8.

simple = editTask "Done" createDefault 9.

Fig. 1. An elementary Int iTask when started.

In line 3, the required modules are imported. StdEnv contains the standard func-
tions, data structures, and type classes of Clean. StdiTasks imports the iTask sys-
tem. The expression to be reduced as the main function is always given by the
Start function. Because it has an effect on the external world, it is a function of
type *World→*World. In Clean, effects on an environment of some type T are usu-
ally modeled with environment transformer functions of type (. . .*T→ (. . . ,*T)).
The uniqueness attribute * indicates that the environment is to be passed along
in a single threaded way. This effect is similar to using the IO monad in Haskell,
but uniquely attributed states are passed around explicitly. Violations against
single threading are captured by the type system. In the iTask toolkit, tasks that
produce values of some type a have type Task a:

:: Task a :== *TSt→ (a,*TSt)

Here, *TSt is the unique and opaque environment that is passed along all tasks.

9

The library function singleUserTask takes a workflow specification (here simple),
provides it with a single worker infrastructure, and computes the correspond-
ing HTML page that reflects the current state of the workflow system. In Sect.
2.8 we encounter the multiUserTask function that dresses up multi-user workflow
specifications. The infrastructure is a tracing option at the top of the window.
It displays for each user her main tasks in a column. The selected main task is
displayed next to this column.

The example workflow is given by simple (lines 8–9). It creates a single task
with the library function editTask which has the following type:

editTask :: String a2→Task a |3 iData a

Its first argument is the label of the push button that the user can press to tell
the system that this task is finished. Its second argument is the initial value
that the task will display. When the user is done editing, hence after pressing
the push button, the edited value is emitted by editTask. The type of editTask is
overloaded. The type class iData collects all generic functions that are required
for the iTask library to derive the proper instances.

class iData a | gForm {|?|}, iCreateAndPrint, iParse, iSpecialStore a

class iCreateAndPrint a | iCreate, iPrint a

class iCreate a | gUpd {|?|} a

class iPrint a | gPrint{|?|} a

class iParse a | gParse{|?|} a

class iSpecialStore a | TC a

They can be used for values of any type to automatically create an HTML
form (gForm), to handle the effect of any edit action with the browser including
the creation of default values (gUpd), to print or serialize any value (gPrint), to
parse or de-serialize any value (gParse), or to serialize and de-serialize values and
functions in a Dynamic (using the compiler generated TC class).

Note that the type of simple is more restrictive than that of editTask. This is
because it uses the createDefault function which has signature:

createDefault :: a | gUpd{|?|} a

This function can generate a value for any type for which an instance of the
generic gUpd function has been derived. Consequently, the most general type of
simple is:

simple :: Task a | iData a

which is an overloaded type. Using this type makes the type of Start also over-
loaded, which is not allowed in Clean. There are basically two ways to deal with
this: the first way is to replace createDefault with a concrete integer value, say 0:

2 Note that in Clean the arity of functions is denoted explicitly by white-space between
the arguments, hence the arity of editTask is two.

3 Type class restrictions always occur at the end of a type signature, after a | sym-
bol. The equivalent Haskell definition reads editTask :: (iData a) => String ->

a -> Task a.

10

simple = editTask "Done" 0

In that case, its type is :: Task Int. However, this is not very flexible: simple

is now restricted to being an integer editing task. The second way, which was
used in the original solution, is much more general: by only modifying the type
signature of simple, but not its implementation, we can alter its editing task.

In the remainder of this tutorial, we skip the first three overhead lines of the
examples, and show only the Start function.

Exercises

1. Getting started
To get started quickly we have compiled a convenient distribution package which
contains the latest Clean system for windows, all the additional iTask libraries
and the examples and exercises for AFP2008.

Download this distribution at:

http://clean.cs.ru.nl/download/clean22/
windows/Clean2.2-iTasks-AFP2008.zip

Unpack this zip archive and follow the instructions in the “iTasks - Do Read
This Read Me.doc” file that can be found in the root folder of the archive.

When done, start the Clean IDE. Open the project file of the CM system case
study, CM.prj. The project window should now be filled with all module names
that the CM system uses. Compile and run the application. If everything is well,
you should see a console window that asks you to open your browser and direct
it to the given address. Follow this instruction, and you should be presented with
the login screen of the CM system.

2.2 Playing with types

In this example we exploit the general purpose code of the previous example.
The only modification we make is in line 8:

simple :: Task (Int,Real) 8.

Compiling and running this example results in a simple task for filling in a form
of a pair of an Int and Real input field (see Fig. 2).

In the CM case study, users are populated with program chairs (Chair) and
program members (PC). We can define a record type, User, defined as:

:: User = { login :: Login

, email :: TextInput

, role :: Role

}
:: Role = Chair | PC

11

Fig. 2. An (Int,Real) iTask.

Login is a predefined algebraic data type for which an editor is created that allows
the user to use a standard login input box for entering the account name and
hidden password entry box. In order to use it, you need to include iTaskUtil to
the import list at line 3. TextInput is also a predefined type for entering basic data
(integers, reals, strings), and give the input box a desired width. In order to
obtain an editor for User values we need to change the signature of simple into:

simple :: Task User 8.

We intend to obtain an application such as the one displayed in Fig. 3.

Fig. 3. A User iTask in action.

Unfortunately, this does not compile successfully. A range of error messages
is generated that complain that there are no instances of type User, Role, and
Login for the generic iData class functions. The reason that the (Int,Real) example
does compile, and the User example does not, is that for all basic types and basic

12

type constructors such as (,), instances for these generic functions have already
been asked to be derived. To allow this for User, Role, and Login values as well,
we only need to be polite and ask for them:

derive gForm User, Role, Login

derive gUpd User, Role, Login

derive gPrint User, Role, Login

derive gParse User, Role, Login

This example demonstrates that the code is very general purpose, and can be
customized by introducing the desired type definitions, and politely asking the
generic system to derive instance functions for the new types.

Exercises

2. Playing with a type of your own
Create a new directory. Copy the “exercise1.icl” file into the new directory, and
rename it to “exercise2.icl”. Within the Clean IDE, open “exercise2.icl” and
create a new project. Set the Environment to “iTasks”.

Define a new (set of) type(s), such as the User and Role given in Sect. 2.2,
and create a simple editing task for it.

2.3 Playing with attributes

In the previous examples an extremely simple, single-user, workflow was created.
Even for such simple systems, we need to decide were to store the state of the
application, and whether it should respond to every user editing action or only
after an explicit submit action of the user. These aspects are attributes of tasks,
and they can be set with the overloaded infix operator <<@:

class (<<@) infixl 3 b :: (Task a) b→Task a

instance <<@ Lifespan // default: Session
, Mode // default: Edit
, GarbageCollect // default: Collect
, StorageFormat // default: PlainString

:: Lifespan = Session | Page | Database | TxtFile | TxtFileRO | DataFile

| Client | Temp

:: Mode = Edit | Submit | Display | NoForm

:: GarbageCollect = Collect | NoCollect

:: StorageFormat = PlainString | StaticDynamic

The Lifespan attribute controls the storage of the value of the iTasks: it can be
stored persistently on the server side on disk in a relational database (Database)
or in a file (TxtFile with RO read-only), it can be stored locally at the client side
in the web page (Session, Page (default)), or one can decide not to store it at

13

all (Temp). A novel attribute is to enforce client side evaluation, with the Client

attribute. Storage and retrieval of data is done automatically by the system.
The Mode attribute controls the rendering of the iTask: by default it can be
Edited which means that every change made in the form is communicated to
the server, one can choose for the more traditional handling of forms where
local changes can be made that are all communicated when the Submit button
is pressed, but it can also be Displayed as a constant, or it is not rendered at
all (NoForm). The GarbageCollect attribute controls whether the task tree should
be garbage collected. This issue is described in more detail in Sect. 3.6. Finally,
the StorageFormat attribute determines the way data is stored: either as a string
(PlainString) or as a dynamic (StaticDynamic).

As an example, consider attributing the simple function of Sect. 2.1 in the
following way (see Fig. 4):

simple :: Task User 8.

simple = editTask "Done" createDefault <<@ Submit <<@ TxtFile 9.

With these attributes, the application only responds to user actions after she has
pressed the “Submit” button, and the value is stored in a text based database.

Fig. 4. A User iTask attributed to be a ‘classic’ form editor.

Editor tasks created with editTask allow the worker to enter any value, pro-
vided it is of the corresponding type of the editor. For many cases, this is suffi-
cient. However, sometimes you wish to impose constraints on the edited values
that cannot be expressed via the type system of Clean. Examples are editor tasks
for even Int values, User values in which sensible values have been entered, and
so on. For this purpose a predicate of type (a→ (Bool, HtmlCode)) can be used to
test the value of type a that is produced by the worker. If the value is correct,

14

then the predicate returns True, otherwise it returns False and some explanation
in the form of HtmlCode. The function editTaskPred does this:

editTaskPred :: !a !(a→ (Bool, HtmlCode))→Task a | iData a

The worker can edit values as usual, but these are checked with the predicate
when the user submits the value. If the predicate does not hold, then the error
message is displayed. Only if it holds, then then the editor task is finished, and
the new value is propagated. Consider the following example from the CM case
study:

simple :: Task User

simple = editTaskPred {createDefault & User.email = emptyTextInput} checkUser

checkUser :: User→ (Bool, HtmlCode)
checkUser {User | login={loginName,password},email}
| loginName == "" = (False, [Txt "You need to enter a login name"])
| password == PasswordBox "" = (False, [Txt "You need to enter a password"])
| fromTextInput email == "" = (False, [Txt "You need to enter an email address"])
| otherwise = (True, [])

In this example, the predicate check checks a few simple properties of User values.
Fig. 5 shows this editor task in action.

Fig. 5. A User iTask, now validating entered values.

Exercises

3. A persistent type of your own
Create a new project for “exercise3.icl” as instructed in exercise 2.

15

Modify the code in such a way that it creates an application in which the
most recently entered data is displayed, regardless whether the browser has been
closed or not.

2.4 Simple database access

In the previous section we have shown that the programmer can decide where
the state of a task editor is stored. This feature of editors can also be used to
create a module for simple database access, which is named iTasksDB.dcl. We
summarize the key ingredients of this module:

definition module iTasksDB

:: DBid a

mkDBid :: !String !Lifespan→DBid a

readDB :: !(DBid a) →Task a | iData a

writeDB :: !(DBid a) !a →Task a | iData a

(mkDBid name Database) returns a database identifier only if name is a proper file
name, because the read and write operations will be performed on disk. (mkDBid
name lifespan) (with lifespan 6= Database) accepts any name. (readDB name) reads
the current content of the identified database, and returns createDefault other-
wise. (writeDB name v) sets the current content of the identified database to v
and returns that value as well.

Suppose we wish to set up a User administration in the CM case study. We
can introduce the following functions for that purpose (these are very similar to
those in module CMDatabase.icl):

usersId :: DBid [User]
usersId = mkDBid "Users" TxtFile

readUsersDB :: Task [User]
readUsersDB = readDB usersId

writeUsersDB :: ([User] →Task [User])
writeUsersDB = writeDB usersId

We use them in the following section.

2.5 Sequencing with monads

In the previous examples, the workflow consisted of a single task. One obvi-
ous combination of workflows is sequential composition. This has been realized
within the iTask toolkit by providing it with appropriate instances of the monadic
combinator functions:

(=>>) infix 1 :: (Task a) (a→Task b)→Task b | iCreateAndPrint b

(]>>) infixl 1 :: (Task a) (Task b)→Task b

return_V :: b →Task b | iCreateAndPrint b

16

where=>> is the bind combinator, and return_V the return combinator. Hence, (m
=>>λx → n) performs task m if it should be activated, and passes its result value
to n, which is only activated when required. The only task of (return_V v) is to
emit value v. As usual, the shorthand combinator]>>that is defined immediately
in terms of =>> (m]>>n ≡ m =>> λ _→ n) is provided as well.

As an example, we can extend the User adminstration that was given in Sect.
2.4 with a function to prepend a single user to the administration:

addUserDB :: User→Task [User]
addUserDB user = readUsersDB =>> λusers→

writeUsersDB [user:users]

It is convenient to have a few alternative return-like combinators:

return_VF :: b [BodyTag] →Task b | iCreateAndPrint b

return_D :: b →Task b | iCreateAndPrint, gForm{|?|} b

With (return_VF v info), customized information info given as HTML is shown to
the application user. The algebraic type BodyTag maps one-to-one to the HTML-
grammar. With (return_D v) the standard generic output of v is used instead.
It should be noted that unlike return_V these combinators are not true return
combinators, as they do have an effect. Hence, the monad law m=>>λv→return v
= m is invalid when return is constructed with either return_VF or return_D.

When a task is in progress, it is useful to provide feedback to the user what
she is supposed to be doing. For this purpose two combinators are introduced.
(p ?>>t) is a task that displays prompt p while task t is running, whereas (p !>>t)
displays prompt p from the moment task t is activated. Hence, a message dis-
played with !>> stays displayed once it has appeared, and a message displayed
with ?>> disappears as soon as its argument task has finished.

(?>>) infix 5 :: [BodyTag] (Task a)→Task a | iCreate a

(!>>) infix 5 :: [BodyTag] (Task a)→Task a | iCreate a

The prompt is defined as a piece of HTML.
The example at the end of Sect. 2.3 defined a User editor task with the predicate

checkUser. With a minor change, it also checks whether the entered user value
has a fresh name:

checkUser :: [User] User→ (Bool, HtmlCode)
checkUser users {User | login={loginName,password},email}
| loginName == "" = (False, [Txt "You need to enter a login name"])
| password == PasswordBox "" = (False, [Txt "You need to enter a password"])
| fromTextInput email == "" = (False, [Txt "You need to enter an email address"])
| isMember loginName userNames = (False, [Txt "This login name already exists"]) // new
| otherwise = (True, [])
where

userNames = [n \\ {User | login={loginName=n}}←users]

With this predicate we can create a User editor task that tests for existing user
names:

17

addUserForm :: Task User

addUserForm = readUsersDB =>> λusers→
msg ?>> editTaskPred {createDefault & User.email = emptyTextInput}

(checkUser users)
where msg = [Txt "Please enter a username and password for the new user:"]

A sensible task for the program chair is to add users to the CM system. This
can be expressed as:

addUser :: Task Void

addUser = addUserForm =>> λuser→
addUserDB user]>>
endMsg ?>> button "Ok"

where endMsg = [Txt "A new user has been added"]

Exercises

4. Hello!
Create a workflow that first asks the name of a user, and then replies with
“Hello” and the name of the user.

5. To !>> or to ?>>

Open the CM system project file, and find the function addUser (in the main
module CM.icl). Alter the ?>> combinator into !>>. Compile and re-run the ap-
plication. What is the effect of this change?

6. Enter a prime number
Create a workflow that uses the <| combinator (see Appendix A) to force the
user to enter a prime number. A prime number p is a positive integral number
that can be divided only by 1 and p.

7. Tearing User apart
In Sect. 2.2, a User editor task was created with which complete User values can
be edited. Create a new workflow in which the user has to enter values for the
fields one by one, i.e. starting with the login name, and subsequently asking the
password, email and role. Finally, the workflow should return the corresponding
User value.

8. Adding users
Create a workflow that first asks the user a positive (but not too great) integer
number n, and subsequently have him enter n values of type User (use the seqTasks
combinator for this purpose – see Appendix A). When done, the workflow should
display the names of these users.

18

2.6 Sequence and choice: breakable work

The monadic combinators presented in the previous section are useful for se-
quential composition. Obviously, realistic workflows also require choice, and this
is provided by the iTask system with the following basic combinator:

(-||-) infixr 3 :: !(Task a) !(Task a)→Task a | iData a

(t1 -||- t2) is a task that terminates as soon as either t1 or t2 has terminated,
or both.

The combination of monadic composition and choice leads to a number of use-
ful derived combinators. Some of them have been defined in module CMCombinators.icl
in the case study. Here we discuss some of them.

Tasks constructed with the monadic combinators rigidly force the worker to
perform the given tasks in the prescribed order, and terminate only when the
very last task has been performed. For real world cases, this is sometimes to
restrictive: we want to model the fact that a worker can choose to abort her
work. The break combinator models this behavior:

break :: (Task a)→Task (Maybe a) | iData a

break taska = (taska =>> return_V o Just)
-||-

(cancel]>> return_V Nothing)

(break t) is a task that performs t, and if that has terminated and yielded a value
v yields (Just v). However, at any time before finishing t, the worker also has the
choice to perform the cancel task, and return Nothing instead.

Together with button, ok, and void, cancel forms another group of tiny, but
useful combinators:

button :: String→Task Void

button label = editTask label Void

ok :: Task Void

ok = button "Ok"

cancel :: Task Void

cancel = button "Cancel" Void

void :: Task Void

void = return_V Void

Void is similar to Haskell’s () value, and is defined as :: Void = Void.
The use of Maybe values, as done by break, is a common functional program-

ming idiom. Because many tasks yield these values, it is useful to define an
alternative =>> combinator:

try :: (Task (Maybe a)) (a→Task b) (Task b)→Task b | iData b

try taska taskfa taskb = taska =>> λx→
case x of
Nothing→taskb

Just x‘ →taskfa x‘

19

(try t succeed fail) is a task that first performs t. If t succeeds, and yields (Just
v), then the task proceeds as (succeed v). If t fails, and yields Nothing, then the
task proceeds as fail. Another useful alternative =>> combinator is breakable:

breakable :: (Task a) (a→Task Void)→Task Void | iData a

breakable taska taskfa = try (break taska)
taskfa

void

(breakable t succeed) is a task that first performs t, while at the same time
allowing the worker to abort t. If the worker chooses to finish t and yield a value
v, then the task proceeds as (succeed v). If the worker chooses to abort t at any
stage, the whole task returns Void.

As an example of this combinator, we can turn the addUser task for the pro-
gram chair (defined at the end of Sect. 2.5) into a task that can be aborted:

addUser :: Task Void

addUser = breakable addUserForm

(λuser→addUserDB user]>>
endMsg ?>> ok)

where endMsg = [Txt "A new user has been added"]

2.7 Recursive tasks

So far we have introduced sequential, monadic, composition and choice. The
next key ingredient is to allow recursive workflow specifications. Recursion is
fundamental to define computations that may run arbitrarily long. First we
start with a useful combinator that can be found in the iTask api, foreverTask:

main :: User→Task Void

main user=:{User | login={loginName},role}
= welcomeMsg ?>> foreverTask (chooseTask homeMsg userTasks)

where
welcomeMsg = [H1 [] ("Welcome "+++loginName) , Br]
homeMsg = [Txt "Choose one of the tasks below or select a task that has been "

, Txt "assigned to you from the list on the left"

, Br, Br

]
userTasks = case role of

Chair = [("Show users" , showUsers)
, ("Add user" , addUser)
, ("Show papers" , showPapers)
, ("Assign reviewers" , assignReviewers)
, ("Judge papers" , judgePapers)
]

PC = [("Show papers" , showPapers)
, ("Mark papers" , markPapers user)
]

(foreverTask t) repeats task t infinitely many times in sequence. It is used in this
code fragment of the CM system to define the main part of the possible actions

20

of a user, once he has successfully logged in. Because we do not know how long
the user will keep logged in, she is offered a choice between several tasks infinitely
many times. The userTasks function defines the possible tasks, depending on the
role of the particular user.

2.8 Multi-User Workflows

So far the examples that have been shown are single user applications. Workflow
systems usually involve arbitrarily many users. This is supported by the iTask
system. The simplest way is to use the multiUserTask function, which has exactly
the same type as the function singleUserTask that we have used so far. You can
try this on any of your previous exercises and study the difference. However,
most applications require some login ritual to allow only known users access to
the application. Of course, the CM system is an example of such an application.
For this purpose, a more elaborate function has been provided:

workFlowTask :: ![StartUpOptions]
!(Task ((Bool,UserId) ,a))
!(UserId a→LabeledTask b)
!*HSt→ (!Bool,Html,*HSt) | iData b

The second argument of workFlowTask is to determine whether the person who
is attempting to log in is a known user, and return a True boolean value if so
(as well as the user’s UserId which is an integer value, and the initial data that
that user requires). The third argument is the actual task that the user can
continue to work on once successfully logged in. In the CM system case study,
you can find this function right at the top at the Start function. The action that
determines whether the user is known is called public, and the action that the
user can continue with is called main, which we have already encountered in Sect.
2.7.

By default, tasks store their information on the client side of the HTML
interface. If one wants to use the system with multiple users over the net, one
has to store iTask information persistently on the server side. To conveniently
control this, we use the attribute setting operator <<@ that was introduced in
Sect. 2.3.

Assigning a task t to user i with some motivation m is done by i@:(m ,t). If
there is no motivation, then one uses i@::t.

(@:) infix 3 :: !UserId !(LabeledTask a)→Task a | iData a

(@::) infix 3 :: !UserId !(Task a) →Task a | iData a

Exercises

9. orTasks versus andTasks

Create a workflow that first asks the user to enter a positive integral value n,

21

and that subsequently creates n tasks with orTasks and andTasks. The tasks are
simple button tasks. Study the different behavior of orTasks and andTasks.

10. Number guessing
Create a 2-person workflow in which person 1 enters an integer value 1 ≤ N ≤
100, and who has person 2 guess this number. At every guess, the workflow
should give feedback to person 2 whether the number guessed is too low, too
high, or just right. In the latter case, the workflow returns JustN . Person 2 can
also give up, in which case the workflow should return Nothing.
Optional: Person 1 is given the result of person 2, and has a chance to respond
with a ‘personal’ message.

11. Tic-tac-toe
Create a 2-person workflow for playing the classic ‘tic-tac-toe’ game. The tic-
tac-toe game consists of a 3× 3 matrix. Player 1 places × marks in this matrix,
and player 2 places ◦ marks. The first person to create a (horizontal, vertical,
or diagonal) line of three identical marks wins. The workflow has to ensure that
players enter marks only when it is their turn to do so.

2.9 Speculative tasks and multiple users: deadlines

Workflow systems need to handle time-related tasks: for instance, some task t
has to be finished before a given time T or it is canceled. In this example we
show how this is expressed with the iTasks toolkit. The time related combinators
are the following:

waitForDateTask :: HtmlDate→Task HtmlDate

waitForTimeTask :: HtmlTime→Task HtmlTime

waitForTimerTask :: HtmlTime→Task HtmlTime

The algebraic types HtmlDate and HtmlTime are elements of the iData toolkit that
have been specialized to show user convenient date and time editors. waitForDate-
(Time)Task terminates in case the given date (time of day) has passed; waitForTimer-
Task terminates after a given time interval.

In our example, we use the latter combinator to delegate work:

delegateTask who time t 1.

= ("Timed Task" ,who)@: 2.

@:((waitForTimerTask time]>> return_V Nothing) 3.

-||- 4.

([Txt ("Please finish task within" <+ time)] 5.

?>> (t =>> λv→return_V (Just v))) 6.

) 7.

(delegateTask i dt t) assigns a task t to user i that needs to be finished before
dt time (line 5–6) is passed. If the user does not complete the task on time,
delegation fails, and should also terminate (line 3).

The main workflow situation is modeled as follows:

22

deadline :: (Task a)→Task a | iData a 1.

deadline t 2.

= [Txt "Choose person you want to delegate work to:"] 3.

?>> editTask "Set" (PullDown size (0,map toString [1..n])) =>> λwho→ 4.

[Txt "How long do you want to wait?"] 5.

?>> editTask "SetTime" createDefault =>> λtime→ 6.

[Txt "Cancel delegated work if you get impatient:"] 7.

?>> delegateTask who time t 8.

-||- 9.

buttonTask "Cancel" (return_V Nothing) =>> check 10.

check (Just v) 11.

= [Txt ("Result of task: " <+ v)] ?>> buttonTask "OK" (return_V v) 12.

check Nothing 13.

= [Txt "Task expired/canceled; do it yourself!"] ?>> buttonTask "OK" t 14.

The main task consists of selecting a user to whom a task t should be delegated
(lines 3–4), deciding how much time this user is given for this exercise (lines
5–6), and then delegating the task (line 8). We also model the situation that the
current user gets impatient, and decides to abandon the delegated task (line 10).
Either way, we know whether the task has succeeded and display the result and
terminate (lines 11–12), or the current user has to do it herself (lines 13–14).

The workflow described by (deadline t) defines a single delegation. It can be
transformed into an iteration with the foreverTask combinator that we have also
used in Sect. 2.7. We are obviously creating a multi-user system, and hence use
the multiUserTask wrapper function for some constant n > 0. As example task we
reuse the simple task from Sect. 2.1 with a concrete, non-overloaded type. This
finalizes the example:

Start world

= doHtmlServer (multiUserTask n True (foreverTask (deadline simple) <<@ Database))
world

23

Exercises

12. Delayed task
Create a workflow in which first an integral value n is asked, and that subse-
quently waits n seconds before it is finished. Use the waitForTimerTask combinator
for this purpose.

13. Number guessing with deadline
Use the delegation example of Sect. 2.9 in such a way that the number guessing
game of exercise 10 can be created with it.

14. Tic-tac-toe with deadline
Use the delegation example of Sect. 2.9 in such a way that the tic-tac-toe game
of exercise 11 can be created with it.

2.10 Parameterized tasks: a reviewing process

In this example we show that iTasks and iData cooperate in close harmony. We
present a reviewing process in which the product of a user is judged by a reviewer
who can either approve, reject, or demand rework of the product. The latter is
described with an algebraic data type:

:: Review = Approved

| Rejected

| NeedsRework TextArea

TextArea is an algebraic data type that is specialized by the iData toolkit as a
multi-line text edit box that can be used by the reviewer to enter comments, as
shown above.

A reviewer inspects the product v that needs to be judged, and makes a
decision. This is defined concisely as:

review :: a→Task Review | iData a

review v = [toHtml v]
?>> chooseTask

[("Rework" , editTask "Done" (NeedsRework createDefault) <<@ Submit)
,("Approved" ,return_V Approved)
,("Reject" , return_V Rejected)
]

Any task result that can be displayed, can also be subject to reviewing, hence
the restriction to the generic iData class. The rendering is done with the iData
toolkit function toHtml, which has signature:

toHtml :: a→BodyTag | gForm{|?|} a

24

Hence, (review v) displays v in the browser. The reviewer subsequently has to
choose whether v should be reworked, and can comment on her decision, or v
can be approved or rejected.

The main task is to produce a product v according to some task t that can
be judged by a reviewer u. If the reviewer demands rework of v, the task should
be restarted with that particular v, because the user would have to completely
recreate a new product otherwise. Therefore, the product and the task to produce
it are given as a pair (a, a→Task a), and the result of the main task is to return
a product and its review (a,Review). This is done as follows:

taskToReview :: UserID (a,a→Task a)→Task (a,Review) | iData a 1.

taskToReview reviewer (v,task) 2.

= newTask "taskToReview" 3.

(task v =>> λnv→ 4.

reviewer @:: review nv =>> λr→ 5.

[Txt ("Reviewer " <+ reviewer <+ " says ") ,toHtml r] 6.

?>> buttonTask "OK" 7.

case r of 8.

(NeedsRework _)→taskToReview reviewer (nv,task) 9.

else →return_V (nv,r) 10.

)

The task is performed to return a product (line 4), which is reviewed by the
given reviewer (line 5). Her decision is reported (line 6), and only in case of a
demanded rework, this has to be repeated (line 9).

For the example, we select a two-user system (multiUserTask 2) in which user
0 creates the product, and user 1 reviews it:

Start world

= doHtmlServer (multiUserTask 2 True (foreverTask reviewtask <<@ TxtFile)) world

reviewtask :: Task (Person,Review)
reviewtask = taskToReview 1 (createDefault, t)

t :: a→Task a | iData a

t v = [Txt "Fill in Form:"] ?>> editTask "TaskDone" v <<@ Submit

Note the high degree of parameterization and therefore re-useability of the
code: taskToReview handles any task, and by providing only a type signature
to reviewtask above, we get a form task for values of that type for free. Above,
we have chosen the Person type. This is similar to the simple example that we
started with in Sect. 2.1.

2.11 Spawning tasks and controlling them

A novel feature of the iTask toolkit is the ability to spawn and delete arbitrarily
complex new tasks. Existing tasks can use a number of functions to check or wait
for completion of such a spawned task. Tasks can get suspended and activated
again, and tasks can suspend or delete themselves. These functions can be found
in the module iTasksProcessHandling.dcl. We show the main definitions here:

25

definition module iTasksProcessHandling

:: Wid a

:: WorkflowStatus = WflActive UserId

| WflSuspended UserId

| WflFinished

| WflDeleted

spawnWorkflow :: !UserId !Bool !(LabeledTask a)→Task (Wid a) | iData a

waitForWorkflow :: !(Wid a) →Task (Maybe a) | iData a

getWorkflowStatus :: !(Wid a) →Task WorkflowStatus

activateWorkflow :: !(Wid a) →Task Bool

suspendWorkflow :: !(Wid a) →Task Bool

deleteWorkflow :: !(Wid a) →Task Bool

changeWorkflowUser :: !UserId !(Wid a) →Task Bool

suspendMe :: (Task Void)
deleteMe :: (Task Void)

A spawned task t of type (Task a) is identified and manipulated by means of
an identification value of type (Wid a). Now (spawnWorkflow uid active (label ,t))
creates a new task t that runs in parallel to the currently existing tasks. This
new task t is handled by user uid, and if active holds, it will be an active task
the user can engage in immediately. If active does not hold, then the task is
initially suspended. spawnWorkflow returns the handle ht to the spawned task.

It should be noted that the behavior described above is very similar to the use
of @: and @:: combinators that have described in Sect. 2.8. However, because we
now have a handle to such a spawned task, we can create more complicated, and
more realistic, workflow cases. Consider for instance the need of the program
chair in the case study to assign reviewing tasks to program members. Only
after every review task has been finished, the program chair can proceed to
collect the information and make a decision on the papers. This can be expressed
as a single andTasks expression, sequentially followed by the task to make the
decision. Unfortunately, real life is usually less structured: for a subset of papers
it becomes rapidly clear that they should be accepted, and another subset gets
rejected; some papers require additional reviewing; and some reviewers may fail
to deliver before the deadline. Hence, it makes more sense to structure this
workflow as a set of spawned tasks. In the case study, this is done in the function
assignReviewersForm.

The functions mentioned above are fairly self-explanatory. One interesting
function is changeWorkflowUser, which, when given a user identification, transfers
the indicated task to the given user. This is of course a useful construct that
occurs many times in the real world: workers may get ill, change jobs, have
holidays, but the work remains to be done. For these cases new resources need
to found and work has to be reallocated.

26

Exercises

15. Number guessing in a group
In this exercise you extend the number guessing game of exercises 10 and 13 to
a fixed set of persons 1 . . . N in which user 0 determines who of 1 . . . N is the
next person to try to guess the number.

2.12 Summary

In this section we have given a range of examples to illustrate the expressive
power of the iTask toolkit. We have not covered all of the available combinators.
They can be found in Appendix A.

3 The iTasks Core System

The examples that have been given in Sect. 2 illustrate that iTask applications
are multi-user applications that use mainly forms to communicate with end
users, have various options to store data (client side and server side), and are
highly dynamic. In general, implementing such kind of web applications is quite
a challenge, especially when compared with desktop applications. One reason
for this complication is that desktop applications can directly interact with the
environment at any point in time because they are directly connected with that
environment. Due to the client-server architecture, web applications cannot do
this. A web application emits an HTML page and terminates. It has to store in-
formation somewhere to handle the next request from the user in an appropriate
way. It has to recover the relevant states, find out what it was doing and what
it has to do next. The resulting code is hard to understand.

A conceivable alternative is to adopt the Seaside approach [6]. If the appli-
cation can automatically remember where it was, programs become easier to
write and read. Since a Clean application is compiled to native code, suspending
execution, as Seaside does, involves creating core dumps of the run-time system.
However, a workflow system needs to support several users that work together.
The action of one user can influence the work of others. A core dump only reflects
the work of one user. For this reason, we propose a simpler set-up of the system:
we start the same application from scratch, as we already did, and use iData
elements to remember the state for all users. For a programmer, the application
still appears to behave as if it continues evaluation after an I/O request from a
browser.

In this section we introduce the main implementation principles of the iTasks
system. For didactic reasons we restrain ourselves to a strongly simplified iTask
core system. This core system is single user and has limited possibilities to ma-
nipulate tasks. The core system is already sufficient to create the solution to
Wadler’s exercise that was shown in Sect. 2.5. The full iTask toolkit that has
been shown in Sect. 2 is built according to these principles.

27

3.1 iData as Primitive iTask in the Core System

In this section we describe how to lift iData elements to become iTasks. The
iData library function mkIData creates an iData element. mkIData is an explicit *HSt
environment transformer function. Its signature is:

mkIData :: (InIDataId d)→HStIO d | iData d

:: HStIO d :== *HSt→ (Form d,*HSt)

*HSt contains the internal administration that is required for creating HTML
pages and handling forms. Please consult [17] for details. mkIData is applied to an
(InIDataId d) argument that describes the type and value of the iData element
that is to be created:

:: InIDataId d :== (Init, FormId d)
:: Init = Const | Init | Set

mkFormId :: String d→FormId d

The function mkFormId creates a default (FormId d) value, given a unique identifier
string4 and the value of the iData element. The Init value describes the use of
that value: it is either a Constant or it can be edited by the user. In case of Init,
it concerns the initial value of the editor. Finally, it can be Set to a new value
by the program. A (FormId d) value is a record that identifies and describes the
use of the iData element:

:: FormId d = { id :: String, ival :: d, lifespan :: Lifespan, mode :: Mode }

The Lifespan and Mode types were introduced in Sect. 2.3. They have the same
meaning in the context of iData. To facilitate the creation of non-default (FormId d)

values, the following straightforward type classes have been defined:

class (<@) infixl 4 att :: (FormId d) att→FormId d

class (>@) infixr 4 att :: att (FormId d)→FormId d

instance <@ String, Lifespan, Mode

instance >@ String, Lifespan, Mode

When evaluated, (mkIData (init, iDataId)) basically performs the following
actions: it first checks whether an earlier incarnation of the iData element (iden-
tified by iDataId.id, i.e. the name of the iData element) exists. If this is not the
case, or init equals Set, then iDataId.ival is used as the current value of the iData
element. If it already existed, then it contains a possibly user-edited value, which
is used subsequently. Hence, the final iData element is always up-to-date. This
is kept track of in the (Form d) record:

:: Form d = { changed :: Bool, value :: d, form :: [BodyTag] }
4 The use of strings for form identification is an artifact of the iData toolkit. It can be

a source of (hard to locate) errors. The iTask system eliminates these issues by an
automated systematic identification system.

28

The changed field records the fact whether the application user has previously
edited the value of the iData element; the value is the up-to-date value; form is
the HTML rendering of this iData element that can be used within an arbitrary
HTML page.

If we want to lift iData elements to the iTask domain, we need to include a
concept of termination because this is absent in the iData framework: an iData
application behaves as a set of iData elements that can be edited over and over
again by the application user without predetermining some evaluation order.
We ‘enhance’ iData elements with a concept of termination. We define a special
function to make such a taskEditor. It is an ‘ordinary’ editor extended with a
Boolean iData state in which we record whether the editor task is finished. It is
not up to an iData editor to decide whether a task is finished, but this is indicated
by the user by pressing an additional button. Hence, a standard iData editor is
extended with a button and a boolean storage. These elements are created by
the functions simpleButton and mkStoreForm:

simpleButton :: String String (d→d)→HStIO (d→d)
mkStoreForm :: (InIDataId d) (d→d)→HStIO d | iData d

(simpleButton name l f) creates an iData element whose appearance is that of a
push button labeled l. It is identified with name. When pressed (which is an edit
operation by the user), its value is the function f, otherwise it is the identity
function. (mkStoreForm iD f) creates an iData element that applies f to its current
state.

With these two standard functions from the iData toolkit we can enhance
any iData editor with a button and boolean storage:

taskEditor :: String String a *HSt→ (Bool,a, [BodyTag] ,*HSt) | iData a 1.

taskEditor btnName label v hst 2.

] (btn, hst) = simpleButton btnLabel btnName (const True) hst 3.

] (done, hst) = mkStoreForm (Init,mkFormId storeLabel False) btn.value hst 4.

] (f, btnF) = if done.value ((>@) Display,Br) (id,btn.form) 5.

] (idata,hst) = mkIData (Init,f (mkFormId editLabel v)) hst 6.

= (done.value,idata.value,idata.form ++ [btnF] ,hst) 7.

where editLabel = label +> "_Editor" 8.

btnLabel = label +> "_Button" 9.

storeLabel = label +> "_Store" 10.

In the function taskEditor we create, as usual, an iData element for the value v

(line 6). The label argument is used to create three additional identifiers for the
value (editLabel), the button element (btnLabel), and the boolean storage element
(storeLabel).

The trigger button (line 3) is a simple button that, when pressed, has the
function value (const True), and which is the identity function id otherwise. The
boolean storage is created as an iData storage (line 4). It is interconnected with
the trigger button by its value: it applies the function value of the button to
its boolean value (initially False). Therefore, the value of the boolean storage
becomes True only if the user presses the trigger button. If the user has indicated
that the editor has terminated, then the trigger button should not appear, and

29

the iData element should be in Display mode, and otherwise the trigger button
should be shown and the iData element should still be editable (line 5). In this
way, the user is forced to continue with whatever user interface is created after
pressing the trigger button.

The definition of taskEditor suggests that we need to extend the *HSt with
some administration to keep track of the generated HTML, and identification
labels for the editors that are lifted. This is what *TSt is for. It extends the *HSt

environment with a boolean value activated to indicate the status of a task (when
a task is called it tells whether it has to be activated or not, when a task has
been evaluated it tells whether it is finished or not), a tasknr for the automatic
generation of fresh task identifier values, and html which accumulates all HTML
output. For each of these fields, we introduce corresponding update functions
(set_activated, set_tasknr, and set_html):

:: *TSt = { hst :: *HSt, activated :: Bool, tasknr :: TaskID, html :: [BodyTag] }
:: TaskID :== [Int]
set_activated :: Bool *TSt→*TSt

set_tasknr :: TaskID *TSt→*TSt

set_html :: [BodyTag] *TSt→*TSt

With this administration in place, we can use taskEditor to lift iData elements
to elemental iTasks, viz. ones that allow the user to edit data and indicate ter-
mination of this elemental task. Recall that Task a was defined as (Sect. 2.1)
*TSt→ (a,*TSt):

editTask :: String a→Task a | iData a

editTask label a = doTask editTask‘
where
editTask‘ tst=:{tasknr,hst,html}
] (done,na,nhtml,hst) = taskEditor label (toString tasknr) a hst

= (na,{tst & activated = done, hst = hst, html = html ++ nhtml})
editTask takes an initial value of any type and delivers an iTask of that type. When
the task is activated, an extended iData element is created by calling taskEditor. A
unique identifier is generated by this system (function doTask, which is explained
below), which eliminates the shortcoming that was mentioned above. Any iData
element automatically remembers the state of any edit action, no matter how
complicated the editor is. The HTML code produced by taskEditor is added to
the accumulator of the iTask state. In the end all HTML code of all iTasks can
be displayed by showing the HTML of the top-task. There can be many active
iTasks, so in practice this is probably not what we want. However, for the core
system this will do.

The function doTask is an internal wrapper function that is used within the
iTasks toolkit for every iTask.

doTask :: (Task a)→Task a | iCreate a

doTask mytask = doTask‘ o incTaskNr

where doTask‘ tst=:{activated, tasknr}
| not activated = (createDefault, tst)
] (val, tst) = mytask tst

30

= (val,{tst & tasknr = tasknr})
doTask first ensures that the task number is incremented. In this way, each task
obtains a unique number. Tasks are numbered systematically, in the same way as
chapters, sections and subsections are numbered in a book or in this paper: tasks
on the same level are numbered subsequently with incTaskNr below, whereas a
subtask j of task i is numbered i.j with subTaskNr below. Fresh subtask numbers
are generated with newSubTaskNr. We represent the numbering with an integer list,
in reversed order.

incTaskNr tst = {tst & tasknr = case tst.tasknr of
[] = [0]
[i:is] = [i+1:is]

}
subTaskNr i tst = {tst & tasknr = [i:tst.tasknr]}
newSubTaskNr tst = {tst & tasknr = [-1:tst.tasknr]}
The systematic numbering is important because it is also used for garbage col-
lection of subtasks (see Sect. 3.6).

Next doTask checks whether the task indeed is the next task to be activated
by inspecting the value of tst.activated:

– If not activated, the createDefault value is returned. This explains the over-
loading context restriction of doTask. As a consequence, an iTask always has
a value, just as an iData element.

– If activated, the task can be executed. This means that the user can select
this task via the web interface, and proceed by generating an input event for
this task. Task definitions are fully compositional, so the started tasks may
actually consist of many subtasks of arbitrary complexity. When a task is
started, it is either activated (or re-activated for further evaluation) or, the
task has already been finished in the past, its result is stored as an iData
object and is retrieved. In any of these cases, the result of a task (either
finished or not yet finished) is returned to the caller of doTask and the task
number is reset to its original value.
It is assumed that any task sets activated to True if the task is finished
(indicating that the next task can be activated), and to False otherwise. In
the latter case the user still has to do more work on it in the newly created
web page.

3.2 Basic Combinators of the Core System

As we have discussed in Sect. 2.5, sequential composition within the iTask toolkit
is based on monads. Thanks to uniqueness typing we can freely choose how to
thread the unique iTask state *TSt: either in explicit environment passing style
or in implicit monadic style. In the implementation of the iTask system we have
chosen for the explicit style: it gives more flexibility because we have direct access
to both the unique iTask state *TSt and the unique iData state *HSt as is shown
in the definition of editTask. However, to the application programmer *TSt should

31

be opaque, and for her we provide a monadic interface. In the core system, their
implementation is simply that of a state transformer function. Therefore, we do
not include their code.

The implementation of the alternative return_D function is straightforward:
return_D :: a→Task a | gForm{|?|}, iCreateAndPrint a

return_D a = doTask (λtst→ (a,{tst & html = tst.html ++ toHtml a})
The implementation of the prompting combinators ?>> and !>> is also not

very difficult:
(?>>) infix 5 :: [BodyTag] (Task a)→Task a | iCreate a

(?>>) prompt task = prompt_task

where
prompt_task tst=:{html = ohtml,activated}
| not activated = (createDefault,tst)
] (a,tst=:{activated,html = nhtml}) = task {tst & html = []}
| activated = (a,{tst & html = ohtml})
| otherwise = (a,{tst & html = ohtml ++ prompt ++ nhtml})

(!>>) infix 5 :: [BodyTag] (Task a)→Task a | iCreate a

(!>>) prompt task = prompt_task

where
prompt_task tst=:{html = ohtml,activated}
| not activated = (createDefault,tst)
] (a,tst=:{html = nhtml}) = task {tst & html = []}
= (a,{tst & html = ohtml ++ prompt ++ nhtml})

3.3 Reflection (Part I)

The behavior of the described core system is a combination of re-evaluating
the application and having the enhanced iData elements retrieve their previous
states that are possibly updated with the latest changes done by the application
user. The Clean application is still restarted from scratch when a new page is
requested from the browser. However, the application now automatically finds
its way back to the tasks it was working on during the previous incarnation. Any
iTask editor created with editTask automatically remembers its contents and state
(finished or not) while the other iTask combinators are pure functions which can
be recalculated and in this way the system can determine which other tasks have
to be inspected next. Tasks that are not yet activated might deliver some default
value, but it is not important because it is not used anywhere yet, and the task
produces no HTML code. In this way we achieve the same result as in Seaside,
albeit that we reconstruct the state of the run-time system by a combination of
re-evaluation from scratch and restoring of the previous edit states.

3.4 Work Flow Pattern Combinators of the Core System

The core system presented above is extendable. The sequential composition is
covered by the combinators =>> and]>>. In this section we introduce parallel
composition, repetition and recursion.

32

The infix operator (t1 -&&- t2) activates subtasks t1 and t2 and ends when
both subtasks are completed; the infix operator (t1 -||- t2) also activates two
subtasks t1 and t2 but ends as soon as one of them terminates, but it is biased
to the first task at the same time. In both cases, the user can work on each
subtask in any desired order. A subtask, like any other task, can consist of any
composition of iTasks.

(-&&-) infixr 4 :: (Task a) (Task b)→Task (a,b) | iCreate a & iCreate b

(-&&-) taska taskb = doTask and

where and tst=:{tasknr}
] (a,tst=:{activated=adone}) = mkParSubTask 0 tasknr taska tst

] (b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst

= ((a,b) ,set_activated (adone && bdone) tst

(-||-) infixr 3 :: (Task a) (Task a)→Task a | iCreate a

(-||-) taska taskb = doTask or

where or tst=:{tasknr}
] (a,tst=:{activated=adone}) = mkParSubTask 0 tasknr taska tst

] (b,tst=:{activated=bdone}) = mkParSubTask 1 tasknr taskb tst

= (if adone a (if bdone b createDefault)
, set_activated (adone || bdone) tst

)

mkParSubTask :: Int TaskID (Task a)→Task a

mkParSubTask i tasknr task = task o newSubTaskNr o set_activated True o subTaskNr i

The function mkParSubTask is a special wrapper function for subtasks. It is used
to activate a subtask and to ensure that it gets a correct task number.

Another iTask combinator is foreverTask which repeats a task infinitely many
times.

foreverTask :: (Task a)→Task a | iCreate a

foreverTask task = doTask (foreverTask task o snd o task o newSubTaskNr)

As an example, consider the following definition:

t = foreverTask (sequenceITask -||- editTask "Cancel" createDefault)

In t the user can work on sequenceITask (Sect. 2.5), but while doing this, she
can always decide to cancel it. After completion of any of these alternatives the
whole task is repeated.

More general than repetition is to allow arbitrary recursive workflows. As we
have stated in Sect. 2.7, a crucial combinator for recursion is newTask.

newTask :: (Task a)→Task a | iCreate a

newTask task = doTask (task o newSubTaskNr)

(newTask t) promotes any user defined task t to a proper iTask such that it can
be recursively called without causing possible non-termination. It ensures that t
is only called when it is its turn to be activated and that an appropriate subtask
number is assigned to it. Consider the following example of a recursive workflow:

33

getPositive :: Int→Task Int

getPositive i = newTask (getPositive‘ i) 1.

where 2.

getPositive‘ i = [Txt "Type in a positive number:"] 3.

?>> editTask "Done" i =>> λni→ 4.

if (ni > 0) (return ni) (getPositive ni) 5.

Function getPositive requests a positive number from the user. If this is the case
the number typed in is returned, otherwise the task calls itself recursively for
a new attempt. This example works fine. However, it would not terminate if
getPositive‘ calls itself directly in line 5 instead of indirectly via a call to newTask.
Remember that every editor returns a value, whether it is finished or not. If
it is not yet finished, it returns createDefault. The default value for type Int

happens to be zero, and therefore by default getPositive‘ goes into recursion.
The function newTask will prevent infinite recursion because the indicated task
will not be activated when the previous task is not yet finished. Hence, one has
to keep in mind to regard getPositive as a task that can be recursively activated,
and not as a plain recursive function.

The combinator repeatTask repeats a given task, until the predicate p holds.

repeatTask task p = t createDefault

where
t v = newTask (task v) =>> λnv→ if (p nv) (return_D nv) (t nv)

Using this combinator the task getPositive can be expressed as:

getPositive = repeatTask (λi→ [Txt "Type in a positive number:"]
?>> editTask "Done" i) (λx→x > 0)

Note the importance of the place of the newTask. If it would be moved to the
recursive call, by replacing (t v) by newTask t v, the task would always be exe-
cuted immediately for a first time (i.e. without waiting for activation). This is
generally not the desired behavior.

3.5 Reflection (Part II)

With the combinators presented above, iTasks can be composed as desired. As
discussed in Sect. 3.4, one can imagine all kinds of additional combinators. For
all well-known workflow patterns we have defined iTask combinators that mimic
their behavior. They have been discussed in Sect. 2. The actual implementation
of the combinators in the iTask library is more complicated than the combinators
introduced in the core system. There are additional requirements, such as:

Presentation issues: One can construct complicated tasks that have to be
presented to the user systematically and clearly. The system needs to prompt
the user for information on the right moment, remove feedback information
when it is no longer needed, and so on. Users should be able to work on
several tasks in any order they want. Such tasks have to be presented clearly
as well, e.g. by creating a separate web page for each task and a button to
navigate between these tasks.

34

Multiple users: A workflow system is a multi-user system. Tasks can be as-
signed to different users, persistent storage and retrieval of information in a
database needs to be handled, think about version control, ensure consistent
behavior by ruling out possible race conditions, ensure that the correct in-
formation is communicated to each user, inform a user that she has to wait
on information to be produced by someone else, and so on.

Efficiency: Real world workflow systems run for years. How can we ensure that
the system will scale up and that it can reconstruct itself efficiently?

Features: One can imagine many more options one would like to have. For
instance, it might be important that tasks are performed on time. A man-
ager might want to know which tasks and/or persons are preventing the
completion of other tasks.

The consequences for the implementation of the core system are described next.

3.6 The Actual iTask Implementation

In this section we discuss the most interesting aspects of the actual implemen-
tation by building on the core system.

Handling Multiple Users On each event every iTask application is (re)started
for all its users. All tasks are recalculated from scratch, but only for one user
the tasks are shown. By default, tasks are assigned to user 0. As presented in
Sect. 2.8, users can be assigned to tasks with the operators @: and @::. We give
the HTML accumulator within the TSt environment (Sect. 3.1) a tree structure
instead of a list structure, and we keep track of the user to whom a task is
assigned, as well as the identification of the application user:

:: *TSt = { . . .
, myId :: UserID // id of task user
, userId :: UserID // id of application user
, html :: HtmlTree // accumulator for html code
}

:: HtmlTree = BT [BodyTag]
| (@@:) infix 0 (UserID,String) HtmlTree

| (-@:) infix 0 UserID HtmlTree

| (+-+) infixl 1 HtmlTree HtmlTree

| (+|+) infixl 1 HtmlTree HtmlTree

defaultUser = 0

(BT out) represents HTML output; ((u ,name)@@:t) assigns the html tree t to user
u where name is the label of the button with which the user can select this task;
(u-@:t) also assigns the html tree t to user u, but now t should not be displayed.
These two alternatives are used to distinguish between output for a given user,
and other output. The remaining constructors (t1+-+t2) (and (t1+|+t2)) place
output t1 left (above) of output t2.

In a single-user application, the only user is defaultUser; in a multi-user ap-
plication, the current user can be selected with a menu at the top of the browser

35

window. This feature is added for testing, for the final application one needs
of course to add a decent login procedure. Initially, myId is defaultUser, userId is
the selected user, and the accumulator html is empty (BT []). After evaluation of
a task, the accumulator contains all HTML output of each and every activated
iTask. It is not hard to define a filtering function that extracts all tasks for the
current user from the output tree.

Version management is important as well for a multi-user web enabled sys-
tem. Back buttons of browsers and cloning of browser windows might destroy
the correct behavior of an application. For every user a version number is stored
and only requests matching the latest version are granted. An error message is
given otherwise after which the browser window is updated showing the most
recent version. Since we only have one application running on the server side,
storage and retrieval of any information is guaranteed to be indivisible such that
problems in this area cannot occur.

Another aspect to think about is that the completion of one task by one
user, e.g. a Cancel action, may remove tasks others are working on (see e.g.
the deadlines example in Section 2.9). This effects the implementation of all
choice combinators: one has to remember which task was chosen to avoid race
conditions.

Optimizing the Reconstruction of the Task Tree An iTask application
reconstructs itself over and over each time a client browser is manipulated by
someone. The more progress made in the application, the more tasks are created.
Hence, the evaluation tree increases in size and it takes longer to reconstruct it.
In a naive implementation, this would lead to a linear increase in time per user
action on the workflow, which is clearly unacceptable.

We optimize the reconstruction process similar to the normal rewriting that
takes place in the implementation of functional languages such as Clean and
Haskell. When a closure is evaluated, the function call is replaced by its result.
Similar, when a task is finished, it can be replaced by its result. We have to
store such a result persistently, for which we can of course again use an iData
element. However, it is not necessary to optimize each result in order to avoid the
creation of too many iData storages. We can freely choose between recalculation
(saving space) or storing (saving time). In the iTask toolkit we have decided to
optimize “big” tasks only. Combinators such as repeatTask produce only inter-
mediate results and can be replaced by the next call to itself. For these kinds of
combinators the task tree will not grow at all. However, user defined tasks that
are created with newTask are likely being used to abstract from such “big” tasks.

Here is what the actual newTask combinator does, as opposed to the core
version of Sect. 3.4.

newTask :: (Task a)→Task a | iData a 1.

newTask t = doTask (λtst=:{tasknr,hst} 2.

] (taskval,hst) = mkStoreForm (Init,storeId) id hst 3.

] (done,v) = taskval.value 4.

| done = (v,{tst & hst = hst}) 5.

36

] (v,tst=:{activated = done,hst}) 6.

= t {tst & tasknr = [-1:tasknr] ,hst = hst} 7.

| not done = (v,{tst & tasknr = tasknr}) 8.

] (_,hst) = mkStoreForm (Init,storeId) (const (True,v)) hst 9.

= (v,{tst & tasknr = tasknr, hst = hst}) 10.

) 11.

where storeId = mkFormId (tasknr +> "_New") (False,createDefault) <@ Session 12.

A storage is associated with task t (line 3) that initially has a default value
(line 12). If the task was finished in the past, it is not re-evaluated. Instead,
its value is retrieved from the storage (line 4 and 5), otherwise it needs to be
evaluated (lines 6–7). If the user actions have not terminated task t, then it has
not produced a final value yet, thus the storage need not be updated (line 8).
If the user has terminated the task, then the storage is updated with the final
value (line 9), and a boolean mark to prevent re-evaluation of this “redex”.

Garbage Collection of iData Objects The optimization described above pre-
vents the task evaluation tree from growing, but all persistent iData objects
created in previous runs are not garbage collected automatically. Although cer-
tain results are not needed for the computation of the task tree anymore, one
nevertheless might want to keep them for other reasons. Consider the gather-
ing of statistical information such as “who has performed a certain task in the
past?” and “which tasks have taken a long time to complete?”. Another reason
is that one wants to remember a result of a task, but not of any of its subtasks.
We have therefore included variants of certain combinators in the iTask library,
such as repeatTaskGC and newTaskGC which automatically take care of the garbage
collection of their subtasks, no matter where they are stored. The numbering
discipline plays a crucial role in identifying which subtasks belong to a given
task, such that any choice of garbage collection strategy can be implemented.

Higher-Order Tasks A distinctive feature of the iTask toolkit is the ability to
communicate higher-order tasks that have been partially evaluated (Sect. ??).
In the real world it is obvious that work that has been done partially can be
handed over to other persons who finish the work. This is not one of the standard
workflow patterns that can be found in contemporary workflow tools (see [21]).
We show that the iTask toolkit does support this workflow pattern, and that it
does so in a concise way. The complete realization of the (p-!>t) is as follows:

(-!>) infix 4 :: (Task s) (Task a)→Task (Maybe s,TClosure a) 1.

| iCreateAndPrint s & iCreateAndPrint a 2.

(-!>) p t = doTask (λtst=:{tasknr,html} 3.

] (v,tst=:{activated = done,html = task}) 4.

= t {set (BT []) True tst & tasknr = taskId} 5.

] (s,tst=:{activated = halt,html = stop}) 6.

= p {set (BT []) True tst & tasknr = stopId} 7.

| halt = return (Just s, TClosure (close t)) 8.

(set html True tst) 9.

37

| done = return (Nothing,TClosure (return v)) 10.

(set (html +|+ task) True tst) 11.

| otherwise = return (Nothing,TClosure (return v)) 12.

(set (html +|+ task +|+ stop) False tst) 13.

) 14.

where close t = t o (set_tasknr taskId) 15.

set html done = (set_html html) o (set_activated done) 16.

stopId = [-1,0:tasknr] 17.

taskId = [-1,1:tasknr] 18.

Both the suspendable task t and the terminator task p are evaluated (lines 4–5
and 6–7). Their current renderings are task and stop respectively, and they both
contain the most recent user edit operations. The most exciting spot is line 8: if p
is finished (condition halt is true), then the task t as far as it has been evaluated
has to be returned. However one has to realize that a task t is only a recipe
that is executed by applying it to its state. When a task is executed, it always
returns a result and a state, even if the task is not yet finished. This also holds
for task t when it is activated in line 5. There actually are no partially evaluated
task closures in this system, there are only tasks and when they are applied they
return their result. The crucial issue is how to return a partially evaluated task if
none exist? The answer is given in line 15! Remember that an iTask application
can reconstruct itself completely from scratch. This property also holds for any
iTask expression in the application. The only thing we need is the task recipe
and the state of a task, and in particular, the task number stored in this state.
Given a task number and a task we can reconstruct the work done so far! So by
passing the task function and the task number to somebody else, the work can
be reconstructed and the person can continue the work. Line 15 assures that an
interrupted task is reapplied on the original task number when it is restarted.

4 Related Work

In the realm of functional programming, many solutions that have been inspiring
for our work have been proposed to program web applications. We mention just
a few of them in a number of languages: the HaskellCGI library [16]; the Curry
approach [12]; writing XML applications [9] in SMLserver [8]. One sophisticated
system is WASH/CGI by [20], based on Haskell. Here, HTML is produced as
an effect of the CGI monad whereas we consider HTML as a first-class citizen,
using data types. Instead of storing state, WASH/CGI logs all user responses and
I/O operations. These are replayed when needed to bring the application to its
desired, most recent state. In iTasks, we replay the program instead of the session,
and restore the state of the program on-the-fly using the storage capabilities
of the underlying iData. Forms are programmed explicitly in HTML, and their
elements may, or may not, contain values. In the iTask toolkit, forms and tasks
are generated from arbitrary data types, and always have value. Interconnecting
forms in WASH/CGI is done by adding callback actions to submit fields, whereas
the iData toolkit uses a functional dependency relation.

38

Two more recent approaches that are also based on functional languages are
Links [5] and Hop [19]. Both languages aim to deal with web programming within
a single framework, just as the iData and iTask approach do. Links compiles to
JavaScript for rendering HTML pages, and SQL to communicate with a back-end
database. A Links program stores its session state at the client side. Notable dif-
ferences between Links and iData and iTasks are that the latter has a more refined
control over the location of state storage, and even the presence of state, which
needs to be mimicked in Links with recursive functions. Compiling to JavaScript
gives Links programs more expressive and computational power at the client
side: in particular Links offers thread-creation and message-passing communica-
tion, and finally, the client side code can call server side logic and vice versa.
The particular focus of Hop is on rendering graphically attractive applications,
like desktop GUI applications can. Hop implements a strict separation between
programming the user interface and the logic of an application. The main com-
putation runs on the server, and the GUI runs on the client(s). Annotations
decide where a computation is performed. Computations can communicate with
each other, which gives it similar expressiveness as Links. The main difference
between these systems and iTasks (and iData) is that the latter are restricted to
thin-client web applications, and provide a high degree of automation using the
generic foundation.

iData components that reside in iTasks are abstractions of forms. A pioneer
project to experiment with form-based services is Mawl [2]. It has been improved
upon by means of Powerforms [3], used in the <bigwig> project [4]. These projects
provide templates which, roughly speaking, are HTML pages with holes in which
scalar data as well as lists can be plugged in (Mawl), but also other templates
(<bigwig>). They advocate compile-time systems, because this allows one to use
type systems and other static analysis. Powerforms reside on the client-side of a
web application. The type system is used to filter out illegal user input. Their
and our approach make good use of the type system. Because iData are encoded
by ADTs, we get higher-order forms for free. Moreover, we provide higher-order
tasks that can be suspended and migrated.

Web applications can be structured with continuations. This has been done
by Hughes, in his arrow framework [14]. Queinnec states that “A browser is
a device that can invoke continuations multiply/simultaneously” [18]. Graunke
et al [10] have explored continuations as one of three functional compilation
techniques to transform sequential interactive programs to CGI programs. The
Seaside [6] system offers an API for programming web pages using a Smalltalk
interpreter. When waiting for new information from the browser, a Seaside ap-
plication is suspended and continues evaluation as soon as input is available. To
make this possible, the whole state of the interpreter’s run-time system is stored
after a page has been produced and this state is recovered when the next user
event is posted such that the application can resume execution. In contrast to
iTask, Seaside has to be by construction a single user system.

Our approach is simpler yet more powerful: every page has a complete (set
of) model value(s) that can be stored and recovered generically. An application

39

is resurrected by restarting the very same program, which recovers its previous
state on-the-fly.

Workflow systems are distributed software systems, and as such can also
be implemented using a programming language with support for distributed
computing such as D-Clean [?], GdH [?], Erlang, and Java. iTasks, on the other
hand, makes effective use of the distributed nature of the web: web browsers act
as distributed rendering resources, and the server controls what gets displayed
where and when. Furthermore, the interactive components are created in a type-
directed way, which makes the code concise. There is no need to program the
data flow between the participating users, again reducing the code size.

Our combinator library has been inspired by the comprehensive analysis of
workflow patterns of over more than 30 contemporary commercial workflow sys-
tems [21]. These patterns are typically based on a Petri-net style, which implies
that patterns for distributing work (also called splitting) and merging (joining)
work are distinct and can be combined more or less arbitrarily. In the setting of
a strongly typed combinatorial approach such as the iTasks, it is more natural
to define combinator functions that pair splitting and merging patterns. For in-
stance, the two combinators -&&- and -||- that were introduced in Sect. ?? pair
the and split – and join and or split – synchronizing merge patterns. Concep-
tually, the Petri-net based approach is more fine-grained, and should allow the
workflow designer greater flexibility. However, we believe that we have captured
the essential combinators of these systems. We plan to study the relationship be-
tween the typical functional approach and the classic Petri-net based approach
in the near future.

Contemporary commercial workflow tools use a graphical formalism to spec-
ify workflow cases. We believe that a textual specification, based on a state-
of-the-art functional language, provides more expressive power. The system is
strongly typed, and guarantees all user input to be type safe as well. In commer-
cial systems, the connection between the specification of the workflow and the
(type of the) concrete information being processed, is not always well typed. Our
system is fully dynamic, depending on the values of the concrete information.
For instance, recursive workflows can easily be defined. In a graphical system the
flows are much more static. Our system is higher order: tasks can communicate
tasks. Work can be interrupted and conditionally moved to other users for fur-
ther completion. Last but not least: we generate a complete working multi-user
web application out of the specification. Database storage and retrieval of the
information, version management control, type driven generation of web forms,
handling of web forms, it is all done automatically such that the programmer
only needs to focus on the flow specification itself.

5 Conclusions

The iTask system is a domain specific language for the specification of workflows,
embedded in Clean. The specification is used to generate a multi-user interactive
web-based workflow management system.

40

The notation we offer is concise as well as intuitive. For functional program-
mers the monadic style of programming should look familiar. Users of commercial
workflow systems, who design workflows, typically use a graphical formalism for
this purpose. For this group of potential users a text based approach is likely to
be harder to understand. It should be investigated in what way a mapping from
a graphical approach to the textual approach can be constructed.

The iTask toolkit covers all standard workflow patterns in a combinatorial
style (see Appendix A). Moreover, it adds further expressive power in terms of a
strongly typed system, dynamic run-time behavior, and higher-order tasks that
can be suspended, passed on to other users, and continued. At the same time
it generates a multi-user interactive web-based application that automatically
handles sessions, state and state storage, HTML rendering, and more.

This latter feature is due to building the iTask toolkit on top of the iData
toolkit. This project provides further evidence that the iData concept is a ver-
satile, elementary unit to create interactive web applications. One particular
helpful design decision was to separate handling values and constructing the
rendering of the application in the iData toolkit. This allows the iTask toolkit to
separately handle the flow of information and the filtering of the correct HTML
code for the end user. The iData enabled us to do “task rewriting” in a sim-
ilar way as expressions are rewritten in languages such as Clean and Haskell.
Finally, iTasks profit from these advantages, and strengthen them by extended
the expressive power by defining workflow system on a sophisticated high level
of abstraction.

Future work will be the investigation of more “unusual” useful workflow
patterns. Also we are working on a new option for the evaluation of tasks on the
client side using Ajax technology in combination with an efficient interpreter for
functional languages [15].

Acknowledgements

The authors would like to thank Phil Wadler for his inspiring exercise, Erik
Zuurbier for the many discussions on the state-of-art of contemporary workflow
systems and as a source of many examples, and Wil van der Aalst for commenting
on the difference between the combinator approach and contemporary workflow
specification languages.

References

1. A. Alimarine. Generic Functional Programming - Conceptual Design, Implemen-
tation and Applications. PhD thesis, University of Nijmegen, The Netherlands,
2005. ISBN 3-540-67658-9.

2. D. Atkins, T. Ball, M. Benedikt, G. Bruns, K. Cox, P. Mataga, and K. Rehor.
Experience with a Domain Specific Language for Form-based Services. In Usenix
Conference on Domain Specific Languages, Oct. 1997.

3. C. Brabrand, A. Møller, M. Ricky, and M. Schwartzbach. Powerforms: Declarative
client-side form field validation. World Wide Web Journal, 3(4):205–314, 2000.

41

4. C. Brabrand, A. Møller, and M. Schwartzbach. The <bigwig> Project. In ACM
Transactions on Internet Technology (TOIT), 2002.

5. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming with-
out tiers. In Proceedings of the 5th International Symposium on Formal Methods
for Components and Objects (FMCO’06), volume 4709, CWI, Amsterdam, The
Netherlands, 7 - 10 November 2006. Springer-Verlag.

6. S. Ducasse, A. Lienhard, and L. Renggli. Seaside - A Multiple Control Flow Web
Application Framework. In S. Ducasse, editor, Proceedings ESUG 2004 Interna-
tional Conference – Research Track, volume Technical Report IAM-04-008, pages
231–254. Institut für Informatik und Angewandte Mathematik, University of Bern,
Switzerland, November 7 2004.

7. C. Elliot. Tangible Functional Programming. In Proceedings of the 12th ACM
SIGPLAN International Conference on Functional Programming (ICFP 2007),
pages 59–70, Freiburg, Germany, Oct 1–3 2007. ACM.

8. M. Elsman and N. Hallenberg. Web programming with SMLserver. In Fifth In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’03).
Springer-Verlag, January 2003.

9. M. Elsman and K. F. Larsen. Typing XHTML Web applications in ML. In In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’04),
volume 3057 of LNCS, pages 224–238. Springer-Verlag, June 2004.

10. P. Graunke, S. Krishnamurthi, R. Bruce Findler, and M. Felleisen. Automatically
Restructuring Programs for the Web. In M. Feather and M. Goedicke, editors, Pro-
ceedings 16th IEEE International Conference on Automated Software Engineering
(ASE’01). IEEE CS Press, Sept. 2001.

11. K. Hanna. A Document-Centered Environment for Haskell. In A. Butterfield,
C. Grelck, and F. Huch, editors, Proceedings Implementation and Application
of Functional Languages, 17th InternationalWorkshop, IFL 2005 – Revised Se-
lected Papers, volume 4015, pages 196–211, Dublin, Ireland, September 19-21 2005.
Springer.

12. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pages 76–92. Springer LNCS 1990, 2001.

13. R. Hinze. A new approach to generic functional programming. In The 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 119–132. Boston, Massachusetts, January 2000.

14. J. Hughes. Generalising Monads to Arrows. Science of Computer Programming,
37:67–111, May 2000.

15. J. Jansen, P. Koopman, and R. Plasmeijer. Efficient Interpretation by Transform-
ing Data Types and Patterns to Functions. In H. Nilsson, editor, Proceedings
Seventh Symposium on Trends in Functional Programming, TFP 2006, pages 157–
172, Nottingham, UK, The University of Nottingham, April 19-21 2006.

16. E. Meijer. Server Side Web Scripting in Haskell. Journal of Functional Program-
ming, 10(1):1–18, 2000.

17. R. Plasmeijer and P. Achten. The Implementation of iData - A Case Study in
Generic Programming. In A. Butterfield, editor, Proceedings Implementation and
Application of Functional Languages - Revised Selected Papers, 17th International
Workshop, IFL05, LNCS 4015, pages 106–123, Department of Computer Science,
Trinity College, University of Dublin, September 19-21 2006.

18. C. Queinnec. The influence of browsers on evaluators or, continuations to pro-
gram web servers. In Proceedings Fifth International Conference on Functional
Programming (ICFP’00), Sept. 2000.

42

19. M. Serrano, E. Gallesio, and F. Loitsch. Hop, a language for programming the web
2.0. In Proceedings ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2006), pages 975
– 985, Portland, Oregon, USA, October 22-26 2006.

20. P. Thiemann. WASH/CGI: Server-side Web Scripting with Sessions and Typed,
Compositional Forms. In S. Krishnamurthi and C. Ramakrishnan, editors, Prac-
tical Aspects of Declarative Languages: 4th International Symposium, PADL 2002,
volume 2257 of LNCS, pages 192–208, Portland, OR, USA, January 19-20 2002.
Springer-Verlag.

21. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
patterns. QUT Technical report, FIT-TR-2002-02, Queensland University of Tech-
nology, Brisbane, 2002.

A iTask toolkit

This is the complete api of the iTask toolkit.

definition module iTasks

// iTasks library for defining interactive multi-user workflow tasks (iTask) for the web
// defined on top of the iData library

// c©iTask & iData Concept and Implementation by Rinus Plasmeijer, 2006,2007 - MJP
// Version 1.0 - april 2007 - MJP
// This library is still under construction - MJP

import iDataSettings, iDataButtons

derive gForm Void

derive gUpd Void, TCl

derive gPrint Void, TCl

derive gParse Void

derive gerda Void

:: *TSt // task state
:: Task a :== St *TSt a // an interactive task
:: Void = Void // for tasks returning non interesting results,

// won’t show up in editors either

/∗ Initiating the iTask library: to be used with an iData server wrapper!
startTask :: start iTasks beginning with user with given id, True if trace allowed

id < 0 : for login purposes.
startNewTask :: same, lifted to iTask domain, use it after a login ritual
singleUserTask :: start wrapper function for single user
multiUserTask :: start wrapper function for user with indicated id with option to switch

between [0..users − 1]
multiUserTask2 :: same, but forces an automatic update request every (n minutes, m seconds)
∗/
startTask :: !Int !Bool !(Task a) !*HSt→ (a, [BodyTag] ,!*HSt) | iCreate a

43

startNewTask :: !Int !Bool !(Task a) →Task a | iCreateAndPrint a

singleUserTask :: !Int !Bool !(Task a) !*HSt→ (Html,*HSt) | iCreate a

multiUserTask :: !Int !Bool !(Task a) !*HSt→ (Html,*HSt) | iCreate a

multiUserTask2 :: !(!Int,!Int) !Int !Bool !(Task a) !*HSt→ (Html,*HSt) | iCreate a

/∗ Setting options for any collection of iTask workflows
(<<@) :: set iData attribute globally for indicated (composition of) iTasks
∗/
class (<<@) infix 3 b :: (Task a) b→Task a

:: GarbageCollect = Collect | NoCollect

instance <<@ Lifespan // default: Session
, StorageFormat // default: PlainString
, Mode // default: Edit
, GarbageCollect // deafult: Collect

defaultUser :== 0 // default id of user

// Here follow the iTask combinators:

/∗ promote any iData editor to the iTask domain
editTask :: create a task editor to edit a value of given type,

and add a button with given name to finish the task
∗/
editTask :: String a →Task a | iData a

/∗ standard monadic combinators on iTask
(=>>) :: for sequencing: bind
(]>>) :: for sequencing: bind, but no argument passed
return V :: l i f t a value to the iTask domain and return it
∗/
(=>>) infix 1 :: (Task a) (a→Task b) →Task b | iCreateAndPrint b

(]>>) infixl 1 :: (Task a) (Task b) →Task b

return_V :: a →Task a | iCreateAndPrint a

/∗ prompting variants
(?>>) :: prompt as long as task is active but not finished
(!>>) :: prompt when task is activated
(<|) :: repeat task as long as predicate does not hold, give error otherwise
return VF :: return the value and show the HTML code specified
return D :: return the value and show it in iData display format
∗/
(?>>) infix 5 :: [BodyTag] (Task a) →Task a | iCreate a

(!>>) infix 5 :: [BodyTag] (Task a) →Task a | iCreate a

(<|) infix 6 :: (Task a) (a→.Bool, a→ [BodyTag])
→Task a | iCreate a

return_VF :: a [BodyTag] →Task a | iCreateAndPrint a

return_D :: a →Task a | gForm {|?|}, iCreateAndPrint a

44

/∗ Assign tasks to user with indicated id
(@:) :: will prompt who is waiting for task with give name
(@::) :: same, default task name given
∗/
(@:) infix 3 :: !(!String,!Int) (Task a) →Task a | iCreateAndPrint a

(@::) infix 3 :: !Int (Task a) →Task a | iCreate a

/∗ Handling recursion and loops
newTask :: use the to promote a (recursively) defined user function to as task
foreverTask :: infinitely repeating Task
repeatTask :: repeat Task until predict is valid
∗/
newTask :: !String (Task a) →Task a | iData a

foreverTask :: (Task a) →Task a | iData a

repeatTask_Std :: (a→Task a) (a→Bool)→a→Task a | iCreateAndPrint a

/∗ Sequencing Tasks:
seqTasks :: do all iTasks one after another, task completed when all done
∗/
seqTasks :: [(String,Task a)] →Task [a] | iCreateAndPrint a

/∗ Choose Tasks
buttonTask :: Choose the iTask when button pressed
chooseTask :: Select one iTask with button, buttons horizontally displayed
chooseTaskV :: Select one iTask with button, buttons vertically displayed
chooseTask pdm :: Select one iTask with pull down menu
mchoiceTask :: Select several iTasks with marked check boxes
∗/
buttonTask :: String (Task a) →Task a | iCreateAndPrint a

chooseTask :: [(String,Task a)] →Task a | iCreateAndPrint a

chooseTaskV :: [(String,Task a)] →Task a | iCreateAndPrint a

chooseTask_pdm :: [(String,Task a)] →Task a | iCreateAndPrint a

mchoiceTasks :: [(String,Task a)] →Task [a] | iCreateAndPrint a

/∗ Dom Tasks parallel / interleaved and FINISH as soon as SOMETask completes:
orTask :: both iTasks in any order, completion when first done
(−||−) :: same, now as infix combinator
orTask2 :: both iTasks in any order, completion when first done
orTasks :: all iTasks in any order, completion when first done
∗/
orTask :: (Task a, Task a) →Task a | iCreateAndPrint a

(-||-) infixr 3 :: (Task a) (Task a) →Task a | iCreateAndPrint a

orTask2 :: (Task a, Task b) →Task (EITHER a b) | iCreateAndPrint a

& iCreateAndPrint b

orTasks :: [(String, Task a)] →Task a | iData a

/∗ Do Tasks parallel / interleaved and FINISH when ALL Tasks done:
andTask :: both iTasks in any order, completion when both done
(−&&−) :: same, now as infix combinator

45

andTasks :: all iTasks in any order, completion when all done
andTasks mu :: assign task to indicated users, task completed when all done
∗/
andTask :: (Task a, Task b) →Task (a,b) | iCreateAndPrint a

& iCreateAndPrint b

(-&&-) infixr 4 :: (Task a) (Task b) →Task (a,b) | iCreateAndPrint a

& iCreateAndPrint b

andTasks :: [(String,Task a)] →Task [a] | iCreateAndPrint a

andTasks_mu :: String [(Int,Task a)]→Task [a] | iData a

/∗ Time and Date management:
waitForTimeTask :: Task is done when time has come
waitForTimerTask:: Task is done when specified amount of time has passed
waitForDateTask :: Task is done when date has come
∗/
waitForTimeTask :: HtmlTime →Task HtmlTime

waitForTimerTask:: HtmlTime →Task HtmlTime

waitForDateTask :: HtmlDate →Task HtmlDate

/∗ Experimental department
Will not work when the tasks are garbage collected to soon !!

−!> : : a task, either finished or interrupted (by completion of the first task)
is returned in the closure if interrupted, the work done so far is
returned(!) which can be continued somewhere else

channel :: splits a task in respectively a sender task closure and receiver task
closure; when the sender is evaluated, the original task is evaluated as
usual; when the receiver task is evaluated, it will wait upon completion
of the sender and then gets its result ;
Important:

Notice that a receiver will never finish if you don’t activate the
corresponding receiver somewhere.

closureTask :: The task is executed as usual, but a receiver closure is returned
immediately. When the closure is evaluated somewhere, one has to wait
until the task is finished. Handy for passing a result to several
interested parties.

closureLzTask :: Same, but now the original task will not be done unless someone is asking
for the result somewhere.

∗/
:: TCl a = TCl (Task a)

(-!>) infix 4 :: (Task stop) (Task a)→Task (Maybe stop,TCl a) | iCreateAndPrint stop

& iCreateAndPrint a

channel :: String (Task a) →Task (TCl a,TCl a) | iCreateAndPrint a

closureTask :: String (Task a) →Task (TCl a) | iCreateAndPrint a

closureLzTask :: String (Task a) →Task (TCl a) | iCreateAndPrint a

/∗ Operations on Task state
taskId :: id assigned to task
userId :: id of application user
addHtml :: add HTML code

46

∗/
taskId :: TSt→ (Int,TSt)
userId :: TSt→ (Int,TSt)
addHtml :: [BodyTag] TSt→TSt

/∗ Lifting to iTask domain
(∗>>) :: l i f t functions of type (TSt→ (a,TSt)) to iTask domain
(@>>) :: l i f t functions of (TSt→TSt) to iTask domain
appIData :: l i f t iData editors to iTask domain
appHSt :: l i f t HSt domain to TSt domain, will be executed only once
appHSt2 :: l i f t HSt domain to TSt domain, will be executed on each invocation
∗/
(*>>) infix 4 :: (TSt→ (a,TSt)) (a→Task b)→Task b

(@>>) infix 4 :: (TSt→TSt) (Task a) →Task a

appIData :: (IDataFun a) →Task a | iData a

appHSt :: (HSt→ (a,HSt)) →Task a | iData a

appHSt2 :: (HSt→ (a,HSt)) →Task a | iData a

/∗ Controlling side effects
Once : ; task will be done only once, the value of the task will be remembered
∗/
Once :: (Task a) →Task a | iData a

47

Spider Spinning for Dummies

Richard S. Bird

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

bird@comlab.ox.ac.uk

Oh what a tangled web we weave
when first we practise to derive.

(With apologies to Sir Walter Scott)

Abstract. Spider spinning is a snappy name for the problem of listing
the ideals of a totally acyclic poset in such a way that each ideal is
computed from its predecessor in constant time. Such an algorithm is
said to be loopless. Our aim in these lectures is to show how to calculate
a loopless algorithm for spider spinning. The calculation makes use of
the fundamental laws of functional programming and the real purpose
of the exercise is to show these laws in action.

1 Introduction

Consider the problem of generating all bit strings a1a2 . . . an of fixed length
n satisfying given constraints of the form ai ≤ aj for various i and j . The
generation is to be in Gray path order, meaning that exactly one bit changes
from one bit string to the next. The transition code is a list of integers naming
the bit that is to be changed at each step.

For example, with n = 3, consider the constraints a1 ≤ a2 and a3 ≤ a2.
One possible Gray path is 000, 010, 011, 111, 110 with transition code
[2, 3, 1, 3] and starting string 000.

The snag is that the problem does not always have a solution. For example,
with n = 4 and the constraints a1 ≤ a2 ≤ a4 and a1 ≤ a3 ≤ a4, the six possible
bit strings, namely

0000, 0001, 0011, 0101, 0111, 1111

cannot be permuted into a Gray path.

Exercise 1. Why not?

Constraints of the form ai ≤ aj on bit strings of length n can be represented
by a digraph with n nodes in which a directed edge i←j is associated with a con-
straint ai ≤ aj . Knuth and Ruskey [6] proved that a Gray path exists whenever

48

the digraph is totally acyclic, meaning that the undirected graph obtained by
dropping the directions on the edges is acyclic. They called a connected totally
acyclic digraph a spider because when an edge i← j is drawn with i below j the
digraph can be made to look like an arachnid (see Figure 1 for a three-legged
spider). They called a totally acyclic digraph a tad, but since its connected com-
ponents are spiders, we will continue the arachnid metaphor and call it a nest
of spiders.

1

2 5

3

6

7

4

Fig. 1. A three-legged spider

Knuth called the problem of generating the associated bit strings in Gray
path order, spider squishing. The more formal rendering of the task is: “gen-
erating all ideals 1 of a totally acyclic poset”. Since spiders are good for the
environment and should never be squished, we will call it spider spinning in-
stead.

But there is a twist: we want the generation to be loopless, meaning that
the first transition should be produced in linear time in the size of the nest, and
each subsequent transition in constant time. Note that the idea of a loopless
algorithm is defined in terms of the transitions between bit strings, not the bit
strings themselves. Writing out a bit string is not possible in constant time.

Knuth and Ruskey gave an algorithm for spider spinning but it wasn’t loop-
less. There is a program, SPIDERS, on Knuth’s web site [4] that does perform
loopless spider spinning. It is quite complicated, as Knuth readily admits:

“But I apologize at the outset that the algorithm seems to be rather
subtle, and I have not been able to think of any way to explain it to
dummies”.

Our aim in these lectures is to calculate a loopless algorithm for spider spinning.
I have no idea if my algorithm bears any relationship to Knuth’s algorithm, since
I don’t understand either. While it is generally true in mathematics that calcu-
lations simplify complicated things, in programming it is usually the other way
around: simple programs are transformed into programs that can be completely
opaque. So it is with loopless spider spinning.

1 By an ideal of a poset S is meant a subset I of S such that if x ∈ I and x ≤ y , then
y ∈ I .

49

2 Loopless algorithms

The term loopless was first introduced by Ehrlich in [1]. Imagine a program
to list all combinatorial patterns of some kind, such as the subsequences or
permutations of a list. Suppose each pattern is obtained from its predecessor by
a single transition. For subsequences a transition i could mean “insert or delete
the element at position i”. For permutations a transition i could mean “swap
the item in position i with the one in position i−1”. An algorithm for generating
all patterns is called loopless if the first transition is produced in linear time and
each subsequent transition in constant time.

Loopless algorithms were formulated in a procedural setting and many clever
tricks, such as the use of focus pointers, doubly-linked lists, and coroutines, have
been used to construct them. See for example [5], which contains references
to much of the literature on looplessness. Bear in mind though that loopless
algorithms are not necessarily faster than their non-loopless counterparts. To
quote again from [4]:

“The extra contortions that we need to go through in order to achieve
looplessness are usually ill-advised, because they actually cause the total
execution time to be longer than it would be with a more straightforward
algorithm. But hey, looplessness carries an academic cachet. So we might
as well treat this task as a challenging exercise that might help us to
sharpen our algorithmic wits.”

Change the penultimate word to ‘calculational’ and you will appreciate the real
point of the lectures.

2.1 Unfoldr

Being functional rather than procedural programmers, we will formulate the idea
of a loopless algorithm in terms of the standard function unfoldr. Recall the
Haskell standard type Maybe:

> data Maybe a = Nothing | Just a

The function unfoldr is defined by

> unfoldr :: (b -> Maybe (a,b)) -> b -> [a]
> unfoldr step b
> = case step b of
> Nothing -> []
> Just (a,b’) -> a : unfoldr step b’

By definition, a loopless algorithm is one that is expressed in the form

unfoldr step . prolog

where step takes constant time and prolog x takes O(n) steps, where n is
the size of x . For instance, if x is a list, then n is the length of x , and if
x is a tree, then n is the number of nodes in the tree. Every loopless algorithm
has to be of this form.

50

2.2 Warm-up 1

By way of warming-up for the spider spinning to come, we first take a look at
some loopless versions of functions that return lists. The obvious place to start
is the identity function on lists. We have

> id :: [a] -> [a]
> id = unfoldr uncons

> uncons :: [a] -> Maybe (a,[a])
> uncons [] = Nothing
> uncons (x:xs) = Just (x,xs)

That was easy, so now let us consider the function reverse that reverses a list.
In Haskell this function is defined by

> reverse :: [a] -> [a]
> reverse = foldl (flip (:)) []

The useful combinator flip , which we will meet again later on, is defined by

> flip f x y = f y x

A loopless program for reversing a list is now given by

> reverse = unfoldr uncons . foldl (flip (:)) []

Of course, all the real work is done in the prolog.

2.3 Warm-up 2

For another warm-up, consider the function concat that concatenates a list of
lists. Here is a loopless version:

> concat :: [[a]] -> [a]
> concat = unfoldr step . filter (not . null)

> step :: [[a]] -> Maybe (a,[[a]])
> step [] = Nothing
> step ((x:xs):xss) = Just (x,consList xs xss)

> consList :: [a] -> [[a]] -> [[a]]
> consList xs xss = if null xs then xss else xs : xss

The prolog filters out nonempty lists from the input and takes linear time in the
length of the list. The function step maintains the invariant that it takes and
returns a list of nonempty lists.

Exercise 2. Why is it necessary to exclude empty lists?

51

Exercise 3. Would the alternative definition

> concat = unfoldr uncons . foldr (++) []

also serve as a loopless program?

The answer to the first question is that empty lists have to be filtered out of
the input, otherwise step would not take constant time. For example, consider
an input of the form [[1], [], [], . . . , [], [2]] in which there are n empty sequences
between the first and last singleton lists. After producing the first element 1, it
takes n steps to produce the second element 2 of the final list.

The answer to the second question is no, the prolog does not take time
proportional to the length of its argument; it takes time proportional to the
length of its result.

2.4 Warm-up 3

For the next warm-up consider the preorder traversal of a binary tree:

> data Tree a = Nil | Bin a (Tree a) (Tree a)

> preorder :: Tree a -> [a]
> preorder Nil = []
> preorder (Bin x l r) = [x] ++ preorder l ++ preorder r

We can make preorder loopless in two stages. First we have

> preorder t = preForest [t]

where preForest returns the preorder traversal of a forest:

> preForest :: [Tree a] -> [a]
> preForest [] = []
> preForest (Nil:ts) = preForest ts
> preForest (Bin x l r:ts) = [x] ++ preForest (l:r:ts)

Now we make preForest loopless:

> preorder = unfoldr step . wrapTree

> step :: [Tree a] -> Maybe (a,[Tree a])
> step [] = Nothing
> step (Bin x l r:ts) = Just (x,consTree l (consTree r ts))

> consTree t ts = if nil t then ts else t:ts

> wrapTree t = consTree t []

52

Note the invariant on step , namely that it takes and returns a forest of non-
empty binary trees.

As a generalistaion, consider the preorder traversal of a forest of rose trees:

> type Forest a = [Rose a]
> data Rose a = Node a (Forest a)

> preorder :: Forest a -> [a]
> preorder [] = []
> preorder (Node x ts:us) = x:preorder (ts ++ us)

We have preorder = unfoldr step, where

> step :: Forest a -> Maybe (a,Forest a)
> step [] = Nothing
> step (Node x ts:us) = Just (x,ts ++ us)

Ah, but step is not constant time because ++ isn’t.
We can make step take constant time with a change of type. Instead of

taking a forest as argument, we can make step take a list of nonempty forests,
revising its definition to read

> step :: [Forest a] -> Maybe (a,[Forest a])
> step [] = Nothing
> step ((Node x ts:us):vss)
> = Just (x,consList ts (consList us vss))

This is essentially the same trick as we performed for concat. Now we have

> preorder = unfoldr step . wrapList
> wrapList ts = consList ts []

2.5 Warm-up 4

For the final warm-up let us go back to binary trees and this time consider
inorder traversal:

> inorder :: Tree a -> [a]
> inorder Nil = []
> inorder (Bin x l r) = inorder l ++ [x] ++ inorder r

How do we make inorder loopless?
Well, one answer is to convert the binary tree into a forest of rose trees in

such a way that the inorder traversal of the former is the preorder traversal of
the latter. For example, consider Figure 2. The conversion is performed by a
function convert :

53

3

1

0 2

7

5

4 6

8

=⇒ 0 1

2

3

4 5

6

7

8

Fig. 2. Converting a binary tree to a forest of rose trees

> convert :: Tree a -> [Rose a]
> convert t = addTree t []

> addTree :: Tree a -> [Rose a] -> [Rose a]
> addTree Nil rs = rs
> addTree (Bin x l r) = addTree l (Node x (convert r): rs)

Converting a binary tree into a forest of rose trees takes linear time in the
size of the tree. Now we have

> inorder = unfoldr step . wrapList . convert

where step is as defined for preorder traversal.

Exercise 4. Construct a loopless program for the postorder traversal of a forest
of rose trees.

3 Spider spinning with legless spiders

Here is a picture of some poor legless spiders:

3 2 1 0

Fig. 3. A nest of four legless spiders

There are no constraints on the nodes in a nest of legless spiders, so we are
seeking a method for listing all bit strings of given length in such a way that
each string differs from its predecessor in just one bit. One possible transition
code for the four spiders of Figure 3 is

[0,1,0,2,0,1,0,3,0,1,0,2,0,1,0]

54

We seek a loopless algorithm whose prolog is linear in n, the number of legless
spiders in the nest. In other words we want a Gray code 2. For example, one
possible listing of all bits strings a3a2a1a0 of length four is as follows:

0000 0110 1100 1010
0001 0111 1101 1011
0011 0101 1111 1001
0010 0100 1110 1000

This particular ordering is called The Gray binary code. The least significant bit
is on the right and varies the most often. But there are many other Gray codes.

Changing the meaning of transition i to read “insert/delete element ai”, we
can also read the transition code as instructions to generate all subsequences of
a list of length 4. For example, applying the transitions above to abcd yields

a, ab, b, bc, abc, ac, c, cd, acd, abcd, bcd, bd, abd, ad, d

To generate all strings anan−1 . . . a0 we can start off with all bits 0 and first
generate all bit strings 0an−1 . . . a0. Then an is changed to 1, and again all
strings of length n are generated but in reverse order by running through the
transitions backwards. (This is the advantage of having the least significant bit
on the right.)

The description translates easily into a recursive definition of a function
gray for generating transitions:

> gray :: Int -> [Int]
> gray 0 = []
> gray (n+1) = gray n ++ [n] ++ reverse (gray n)

In order to make gray loopless we would like to get rid of reverse . This
function takes linear time before it delivers its first element.

Exercise 5. How can reverse be eliminated?

The answer to the question is: just remove it! The function gray n returns
a palindrome, so the second clause can be replaced by

> gray (n+1) = gray n ++ [n] ++ gray n

Exercise 6. Prove formally by induction that gray returns a palindrome.

Next, one way to make gray loopless is to observe that the recursive case
looks very similar to an instance of the inorder traversal of a certain binary tree:

2 According to Knuth, named after Frank Gray, not Elisha Gray

55

> grayTree :: Int -> Tree Int
> grayTree 0 = Nil
> grayTree (n+1) = Bin t n t where t = grayTree n

We have gray = inorder . grayTree . We know from the warm-up section
how to make inorder loopless, so we have

> gray = unfoldr step . wrapList . convert . grayTree

Exercise 7. What is wrong with this ‘loopless’ definition of gray ?

The answer is that the prolog takes exponential time! The problem is not
with grayTree , which takes only n steps to build the tree, but with convert ,
which takes linear time in the size of the tree. But the tree has exponential size
once the sharing of subtrees is destroyed.

What we need to do is construct convert . grayTree directly. We define

> grayForest :: Int -> Forest Int
> grayForest 0 = []
> grayForest (n+1) = ts ++ [Node n ts]
> where ts = grayforest n

Then we have

> gray = unfoldr step . wrapList . grayforest

where step is as defined in the second warm-up.

Exercise 8. There is still a snag. What is it?

The snag is that grayforest n takes quadratic time because adding an ele-
ment to the end of a list is a linear-time operation. Much better than exponential
time, but not good enough.

There are various ways to jump this hurdle. The simplest is to introduce
queues, redefining a forest to be a queue of trees rather than a list. Okasaki’s
implementation of queues [7] provides a type Queue a for which the following
operations all take constant time:

insert :: Queue a -> a -> Queue a
remove :: Queue a -> (a, Queue a)
empty :: Queue a
isempty :: Queue a -> Bool

To install queues, we redeclare the type Forest to read

> type Forest a = Queue (Tree a)

56

The function grayForest is redefined to read

> grayForest 0 = empty
> grayForest (n+1) = insert tq (Node n tq)
> where tq = grayForest n

Now we have

> gray = unfoldr step . wrapQueue . grayForest

where step and wrapQueue are defined as follows:

> wrapQueue :: Queue a -> [Queue a]
> wrapQueue xq = consQueue xq []

> consQueue :: Queue a -> [Queue a] -> [Queue a]
> consQueue xq xqs = if isempty xq then xqs else xq:xqs

> step :: [Forest a] -> Maybe (a,[Forest a])
> step [] = Nothing
> step (zq:zqs) = Just (x,consQueue xq (consQueue yq zqs))
> where (Fork x xq,yq) = remove zq

This is a loopless algorithm for gray.

3.1 Another loopless program

Here is another loopless algorithm for gray , one that uses a cyclic structure
rather than a queue. Consider the forest that arises with gray 4 and pictured
in Figure 4.

0 1

0

2

0 1

0

3

0 1

0

2

0 1

0

Fig. 4. A forest for gray 4.

In general a Gray forest has the property that a node labelled k has exactly
k children; moreover these children are given by the list take k ts , where
ts is the Gray forest. Suppose we define grayCycle by

> grayCycle :: Int -> Forest Int
> grayCycle n = ts where ts = [Node k ts | k <- [0..n-1]]

57

The result returned by grayCycle is a cyclic structure. Moreover, building this
structure takes linear time.

We can process this cycle of trees by removing the first tree, outputting its
label k and adding k subtrees of the cycle to the cycle. We can represent the
information about how many trees to take by a pair (k,ts) . Hence

> gray = unfoldr step . wrapPair . grayCycle

> wrapPair ts = [(length ts,ts)]

> step :: [(Int,Forest Int)] -> Maybe (Int,[(Int,Forest Int)])
> step [] = Nothing
> step ((j,Node k ts:us):vss) =
> Just (k,consPair (k,ts) (consPair (j-1,us) vss))

> consPair (k,ts) kts = if k==0 then kts else (k,ts):kts

The function step maintains the invariant that it takes and returns lists of
pairs whose first components are nonzero. This is another loopless program.

4 Spider spinning with tree spiders

Next, consider spider spinning when each spider is just a tree, such as pictured
in Figure 5

0

1 2 3

4

5

6

7

8

Fig. 5. A nest of two tree spiders

One possible transition code for this nest is

586878 0 878685 3 586878 4 878685 2 586878 4
878685 3 586878 1 878685 3 586878 4 878685 2
586878 4 878685 3 586878

This special case of spider spinning was considered by Koda and Ruskey [3]. A
useful way to think of the problem is in terms of colourings. Think of the nodes
as being coloured black if the associated bit is 1, and coloured white if the bit is
0. Thus every descendent of a white node has to be white. The black nodes of
a single spider identifies a prefix of the underlying tree, so the black nodes in a

58

nest identify a prefix of the forest. The transition code for a nest of tree spiders
is a list of node labels, showing which node should change colour at each step.
In the literature, the prefixes of a forest are also known as the “principal sub-
forests” and the “ideals of a forest poset”. Ingenious loopless algorithms for this
problem are described in [3–5]. A non-loopless algorithm based on continuations
appeared in [2].

4.1 Boustrophedon product

As the example above showed, the transitions for a nest of spiders can be formed
by weaving together the transitions for each individual spider in the nest. It is
easy to see how the weaving should proceed. Suppose the nest contains just two
spiders, x and y . Begin, say, by going through the transitions for y . Follow this
with the first transition for x and then repeat the transitions for y but in reverse
order. We saw essentially the same idea in the Gray code problem. Continue
in this fashion, weaving single transitions of x with complete transitions of y ,
alternating forwards and backwards, rather like the shuttle on a loom or an
ox ploughing a field. Indeed, Knuth uses the name boustrophedon product for
essentially this operation. We will call it box because it’s short, pronounceable,
and contains an ‘ox’.3 Here is the definition of box:

> box :: [a] -> [a] -> [a]
> box [] bs = bs
> box (a:as) bs = bs ++ [a] ++ box as (reverse bs)

For example, box [3,4,5,6] [0,1,2] returns

[0,1,2,3,2,1,0,4,0,1,2,5,2,1,0,6,0,1,2]

Exercise 9. Prove that box is associative, a property that can be expressed as
the identity

box (box as bs) = box as . box bs

Just as concat concatenates a list of lists, so the function boxall applies
box to a list of lists:

> boxall :: [[a]] -> [a]
> boxall = foldr box []

Since box is associative with unit [] we could just as well have defined

> boxall = foldl box []

3 There is another reason for the name box , but we’ll get to that much later on.

59

Exercise 10. Prove this assertion.

For a list of length n of lists each of length m, the output of boxall has
length (m + 1)n − 1, which is exponential in mn, the total length of the input.

We can now define ncode and scode, the transition codes for a nest of
spiders and a single spider, respectively. First we introduce the type declarations

> type Nest a = [Spider a]
> data Spider a = Node a (Nest a)

Now we can define

> ncode :: Nest a -> [a]
> ncode = boxall . map scode

> scode :: Spider a -> [a]
> scode (Node a xs) = a : ncode xs

The transition code for a single spider consists of an initial transition to change
the colour of the root node (in fact, from white to black), followed by a complete
list of the transitions for the nest of its subspiders. The definition of ncode is
short and sweet, but not loopless.

4.2 Map fusion

So far there has been very little, if anything, in the way of program calculation.
Now we start. The best advice when faced with calculating a program is to be
guided by the form of the definitions under manipulation. In other words, begin
by simply taking out the toolbox of functional laws and seeing which tools fit
the problem in hand. The other indispensable piece of advice is to begin with a
simpler problem, and we did that by starting out with legless spider spinning.
Guided by the simpler example we know that at some point we are going to have
to eliminate occurrences of reverse and then represent lists by queues of rose
trees. But that is in the future.

The first step, dictated solely by the form of the definition of ncode, is an
application of the map-fusion law for foldr. This law states that

foldr f e . map g = foldr (f . g) e

In words, a fold after a map is just a fold. Applying it to ncode gives the
alternative definition

> ncode = foldr (box . scode) []

The form of this definition suggests that we now concentrate on the function
box . scode .

We calculate:

60

box (scode (Node a xs)) bs
= {definition of scode}

box (a:ncode xs) bs
= {definition of box}

bs ++ a:box (ncode xs) (reverse bs)
= {definition of ncode}

bs ++ b:box (foldr (box . scode) [] xs) (reverse bs)

This easy calculation consists of no more that instantiating the definitions of
scode , box and ncode . But it brings into focus a new expression namely

box . foldr (box . scode) []

The form of this expression suggests the use of another fundamental law of
functional programming, the fold-fusion law of foldr . This law states that

f . foldr g a = foldr h b

provided f is strict; f a = b ; and

f (g x y) = h x (f y)

for all x and y. Fold-fusion is one of the fundamental laws of functional
programming and crops up in nearly every calculation. Indeed the map-fusion
law is a special case of fold-fusion.

The function box is strict and box [] = id, so it remains to find an h such
that

box (box (scode x) bs) = h x (box bs)

Of course, there is no guarantee that h exists.

Exercise 11. Calculate h .

The essential fact that guarantees success is that box is associative, so

box (box (scode x) bs) = box (scode x) . box bs

This immediately gives us a definition of h :

h x f = box (scode x) . f

Thus

box . foldr (box . scode) [] = foldr h id

But this identity can be simplified. Observe for example that

foldr h id [x,y,z] = box (scode x) . box (scode y) . box (scode z)

which suggests the truth of the identity

61

foldr h id xs bs = foldr (box . scode) bs xs

More briefly,

foldr h id = flip (foldr (box . scode))

Exercise 12. Suppose f :: a -> a -> a is strict, associative, and has unit e ,
so f e = id . Prove that

f . foldr (f . g) e = flip (foldr (f . g))

This result will be useful in general spider spinning, so we will call it the monoid
law of foldr .

Hence, setting bop = box . scode 4, we have calculated that

> ncode = foldr bop []
> bop (Node a xs) bs = bs ++ [a] ++ foldr bop (reverse bs) xs

In this version of ncode the function boxall no longer appears. Neither does
scode.

4.3 Eliminating reverse

Having eliminated boxall, we now eliminate reverse. However, unlike the
case of legless spider spinning, this elimination requires a little more work.

The idea is that, instead of reversing a sequence explicitly, we construct both
ncode and reverse . ncode at the same time. To do so we make use of
another basic law of functional programming, the tupling law of foldr. This
law states that

fork (foldr f a,foldr g b) = foldr (cross . fork (f,g)) (a,b)

where the combinators fork and cross are defined by

> fork (f,g) x = (f x,g x)
> cross (f,g) (x,y) = (f x,g y)

To apply tupling we need a function, opb say, so that

reverse . foldr bop bs = foldr opb (reverse bs)

Then we obtain

fork (ncode,reverse . ncode) = foldr op ([],[])

4 We could have introduced this abbreviation earlier, but didn’t because of another
piece of useful advice about calculation: don’t rush into naming things until the
moment is ripe, because calculation involving the named thing has both to unpack
the name and repackage it again.

62

where

op x (bs,sb) = (bop x bs,opb x sb)

Appealing to fold fusion again, we have to satisfy the fusion condition

reverse (bop x bs) = opb x (reverse bs)

We calculate:

reverse (bop (Node a xs) bs)
= {definition of bop}

reverse (bs ++ [a] ++ foldr bop (reverse bs) xs)
= {property of reverse}

reverse (foldr bop (reverse bs) xs) ++ [a] ++ reverse bs
= {putative definition of opb}

foldr opb bs xs ++ [a] ++ reverse bs

Hence we can define

> opb (Node a xs) sb = foldr opb (reverse sb) xs ++ [a] ++ sb

That gives

op (Node a xs) (bs,sb)
= {definition of op}

(bop (Node a xs) bs, opb (Node a xs) sb)
= {definitions of bop and opb}

(bs ++ [a] ++ foldr bop sb xs,
foldr opb bs xs ++ [a] ++ sb)

= {definition of op}
(bs ++ [a] ++ cs, sc ++ [a] ++ sb)
where (cs,sc) = foldr op (sb,bs) xs

In summary, we have arrived at

> ncode = fst . foldr op ([],[])
> op (Node a xs) (bs,sb) = (bs ++ [a] ++ cs, sc ++ [a] ++ sb)
> where (cs,sc) = foldr op (sb,bs) xs

Occurrences of reverse have been eliminated.
So far, so good. But computation of foldr op ([],[]) takes quadratic time

because ++ takes linear time. As with legless spider spinning this problem can
be solved by representing lists as the preorder traversals of forests of trees:

> type Forest a = Queue (Tree a)
> data Tree a = Fork a (Tree a)

We now have

63

> ncode = unfoldr step . prolog
> prolog = wrapQueue . fst . foldr op (empty,empty)
> op (Node a xs) (bq,qb)
> = (insert bq (Fork a cq), insert qc (Fork a qb))
> where (cq,qc) = foldr op (qb,bq) xs

The definitions of step and wrapQueue are exactly the same as in legless
spider spinning. This is a loopless algorithm for ncode.

5 Spider spinning with general spiders

It is now time to tackle the general spider spinning problem. First, observe that
by picking a spider up by one of its nodes we get a tree with directed edges,
such as that shown in Figure 5. Different trees arise depending on which node is
picked up, but they all represent the same constraints.

1

2 5

3

6

7

4

5

1

2

3

6

7

4

Fig. 6. A spider and an associated tree

Thus we can model general spiders with the type declarations

> type Nest a = [Spider a]
> data Spider a = Node a [(Dir,Spider a)]
> data Dir = Dn | Up

There is one complication when dealing with general spiders that does not arise
with simpler species: the starting bit string is not necessarily a string consisting
of all 0s. For example, with n = 3 and the constraints a1 ≥ a2 ≤ a3, the five
possible bit strings, namely 000 001 100 101 111 , can only be arranged
in Gray path order by starting with one of the odd-weight strings: 001 , 100 ,
or 111 . However we are going to ignore consideration of the definition of the
function seed :: Nest Int -> [Bit] for determining the starting string.

As with tree spiders we can define

> ncode :: Nest a -> [a]
> ncode = boxall . map scode

We define scode to be the concatenation of two lists, a white code and a black
code. The white code for a spider x is a valid transition sequence for x when
its head is coloured white (corresponding to a 0 bit), and the black code a valid
sequence when its head is coloured black (corresponding to a 1 bit):

64

> scode :: Spider a -> [a]
> scode (Node a ls) = wcode ls ++ [a] ++ bcode ls

Note that when the spiders are tree spiders, wcode should return the empty
sequence.

For scode to be correct, the final spider colouring generated by executing
wcode ls has to be the initial colouring on which bcode ls starts. In order
for the colourings to match up we need to define wcode in terms of a variant
of box which we will call cox .5

cox [] bs = bs
cox (as++[a]) bs = cox as (reverse bs) ++ [a] ++ bs

For example,

box [2,3,4] [0,1] = 01 2 10 3 01 4 10
cox [2,3,4] [0,1] = 10 2 01 3 10 4 01

Whereas box as bs begins with bs and ends with either bs or reverse bs de-
pending on whether as has even length, cox as bs ends with bs and begins
with either bs or reverse bs .

Exercise 13. Give a valid Haskell definition of cox .

Exercise 14. Prove that cox is associative.

Now, setting coxall = foldr cox [], we define

> wcode, bcode :: [(Dir,Spider a)] -> [a]
> wcode = coxall . map wc
> bcode = boxall . map bc

where wc, bc :: (Dir,Spider a) -> [a] . Use of coxall in the definition
of wcode means that the final colouring after executing wcode will be the union
of the final colourings generated by the wc transitions, and use of boxall in
the definition of bcode means that this colouring will also be the union of the
colourings on which the bc transitions start.

It remains to define wc and bc. Given the choices above, the following
definitions are forced:

> wc (Up,Node a ls) = wcode ls ++ [a] ++ bcode ls
> wc (Dn,Node a ls) = reverse (wcode ls)
> bc (Up,Node a ls) = reverse (bcode ls)
> bc (Dn,Node a ls) = wcode ls ++ [a] ++ bcode ls

5 By the way, ‘to box and cox’ means ‘to take turns’, which is certainly what both
operations do and is the real reason for their names. The term comes from the comic
play ’Box and Cox - A Romance of Real Life in One Act’, by John Maddison Morton.
Box and Cox were two lodgers who shared their rooms - one occupying them by day
and the other by night.

65

Look first at wc (Up,x). When the head of the mother spider of x is white and
is connected to x by an upwards edge, there are no constraints on wc (Up,x),
so we can define it to be either scode x or its reverse. But the subsequent
transitions are those in the list bc (Up,x) and the only way to match up the
final colouring of the former with the initial colouring of the latter is with the
definitions above. The reasoning is dual with bc (Dn,x) and wc (Dn,x).

Finally, we show that ncode can be expressed in terms of the transitions
for a single spider. Suppose we define a mother spider

> mother :: Nest a -> Spider a
> mother xs = Node undefined [(Up,x) | x <- xs]

Setting legs (Node a ls) = ls we calculate

(wcode . legs . mother) xs
= wcode [(Up,x) | x <- xs]
= coxall [wc (Up,x) | x <- xs]
= (coxall . map scode) xs
= ncode xs

Hence ncode = wcode . legs . mother . Again, the program is short and
sweet but not loopless.

6 Transformation

The transformation to loopless form follows the same path as the simpler problem
of a nest of tree spiders. Specifically, we are going to:

1. Eliminate boxall and coxall from the definition of ncode by appeal
to map fusion and fold fusion.

2. Eliminate reverse by appeal to tupling.
3. Eliminate the remaining complexity by introducing queues.

It is the appeal to fold fusion in the first step that is the trickiest.

6.1 First steps

As an easy first step we apply map fusion to the definitions of wcode and
bcode, obtaining

> bcode = foldr (box . bc) []
> wcode = foldr (cox . wc) []

We now concentrate on the term box . bc . Everything we discover will apply
to the second term cox . wc with the obvious changes. Instantiating the first
clause of the definition of bc , we find

box (bc (Up,Node a ls)) = box (reverse (foldr (box . bc) [] ls))

66

The right-hand side suggests an appeal to fold fusion: find an h so that

box . reverse . foldr (box . bc) [] = foldr h id

The problem, however, is that no such h exists. The monoid law of foldr (see
above) does give an h for which

box . foldr (box . bc) [] = foldr h id

But this doesn’t help. As we will show later on, we can also find an h such that

cox . reverse . foldr (box . bc) [] = foldr h id

But this only helps if we can change a box into a cox .
Fortunately, we can. In fact there are two properties that we will need. Firstly,

we have the morphing property

box as bs = if even (length as)
then cox as bs
else cox as (reverse bs)

As a functional identity:

box as = cox as . revif (odd (length as))

where

> revif p = if p then reverse else id

Secondly, we also have the conjugate property

reverse (box as bs) = cox (reverse as) (reverse bs)

Exercise 15. Prove the morphing and conjugate properties.

Using the morphing property we obtain

box (bc (Up,Node a ls)) = cox (reverse (foldr (box . bc) [] ls)) .
revif (not (bp ls))

where

> bp = even . length . foldr (box . bc) []

Occurrences of cox in cox . wc can be similarly replaced by box.
Returning to the fusion condition, we calculate

cox (reverse (box (bc l) bs))
= {conjugate property}
cox (cox (reverse (bc l)) (reverse bs))

= {associativity of cox}
cox (reverse (bc l)) . cox (reverse bs)

= {conjugate property}
reverse . box (bc l) . reverse . cox (reverse bs)

67

Hence

h l f = reverse . box (bc l) . reverse . f

Appeal to fold fusion now yields

cox . reverse . foldr (box . bc) [] = foldr h id

Exercise 16. With the above definition of h , prove that

foldr h id ls xs = reverse (foldr (box . bc) (reverse xs) ls

Using the result of the exercise above, we obtain

cox (reverse (foldr (box . bc) [] ls)) =
reverse . flip (foldr (box . bc)) ls . reverse

Putting all the above together we have

box (bc (Up,Node a ls))
= {definition of bc}
box (reverse (foldr (box . bc) [] ls))

= {morphing box into cox}
cox (reverse (foldr (box . bc) [] ls)) .
revif (not (bp ls))

= {fold fusion}
reverse . flip (foldr (box . bc)) ls . reverse .
revif (not (bp ls))

= {definition of revif}
reverse . flip (foldr (box . bc)) ls .
revif (bp ls)

In summary, and introducing bop = box . bc and wop = cox . wc , we have
shown that

> bop (Up,Node a ls) = reverse . ff bop ls . revif (bp ls)
> wop (Dn,Node a ls) = reverse . ff wop ls . revif (wp ls)

where

> ff = flip . foldr
> bp = even . length . foldr bop []
> wp = even . length . foldr wop []

Two clauses remain.

68

6.2 The remaining clauses

Here is one of the remaining two clauses:

box (bc (Dn,Node a ls)) = box (wcode ls ++ [a] ++ bcode ls)

Clearly, we now need a fact about box (ws ++ [a] ++ bs). Here it is:

box (ws ++ [a] ++ bs) xs =
if even (length ws)
then box ws xs ++ [a] ++ box bs (reverse xs)
else box ws xs ++ [a] ++ box bs xs

Equivalently, defining

> add a (ws,bs) = ws ++ [a] ++ bs

we can express this distributive law as a functional identity

box (add a (ws,bs)) = add a . fork (box ws, box bs . revif w)
where w = even (length ws)

Dually,

cox (add a (ws,bs)) = add a . fork (cox ws . revif b, cox bs)
where b = even (length bs)

Now, setting ws = wcode ls and bs = bcode ls , we calculate:

box (add a (ws,bs))
= {distributive law}
add a . fork (box ws, box bs . revif w)

= {since box (bcode ls) = box (foldr (box . bc) [] ls)
and box (foldr (box . bc) [] ls) = ff bop ls}

add a . fork (box ws, ff bop ls . revif w)
= {morphing: box ws = cox ws . revif (not w)

and cox (wcode ls) = ff wop ls}
add a . fork (ff wop ls . revif (not w),

ff bop ls . revif w)

In summary we have calculated that

> bop (Up,Node a ls) = reverse . ff bop ls . revif (bp ls)
> wop (Dn,Node a ls) = reverse . ff wop ls . revif (wp ls)

> bop (Dn,Node a ls) =
> add a . fork (ff wop ls . revif (not (wp ls)),
> ff bop ls . revif (wp ls))
> wop (Up,Node a ls) =
> add a . fork (ff wop ls . revif (bp ls),
> ff bop ls . revif (not (bp ls)))

> add a (ws,bs) = ws ++ [a] ++ bs

69

6.3 The parity functions

Calculationally speaking, everything so far is tickety-boo. We have eliminated
occurrences of box and cox , which is what we set out to do. However, constant
recomputation of the parity functions

> bp = even . length . foldr bop []
> wp = even . length . foldr wop []

is inefficient both in time and space. Instead of repeatedly computing these values
we will install them in a parity spider, an element of

> data PSpider a = PNode (Bool,Bool) a [(Dir,PSpider a)]

Parity and other information is retrieved from a parity spider by

> wp (PNode (w,b) a ls) = w
> bp (PNode (w,b) a ls) = b
> head (PNode (w,b) a ls) = a
> legs (PNode (w,b) a ls) = ls

Parity information is installed in a spider by

> decorate :: Spider a -> PSpider a
> decorate (Node a ls) = pnode a [(d,decorate x) | (d,x) <- ls]

The smart constructor pnode is defined by

> pnode a ls = PNode (foldr op (True,True) ls) a ls

where

> op :: (Dir,PSpider a) -> (Bool,Bool) -> (Bool,Bool)
> op (Up,x) (w,b) = ((wp x /= bp x) && w, bp x && b)
> op (Dn,x) (w,b) = (wp x && w, (wp x /= bp x) && b)

Installing parity information takes linear time in the size of a spider.

Exercise 17. Justify the above definition of op .

The result is the following completely opaque program for ncode :

> ncode = foldr wop [] . legs . decorate . mother

> wop (Dn,x) = reverse . ff wop (legs x) . revif (wp x)
> wop (Up,x) = add (head x) .
> fork (ff wop (legs x) . revif (bp x),
> ff bop (legs x) . revif (not (bp x)))
> bop (Up,x) = reverse . ff bop (legs x) . revif (bp x)
> bop (Dn,x) = add (head x) .
> fork (ff wop (legs x) . revif (not (wp x)),
> ff bop (legs x) . revif (wp x))

70

6.4 Eliminating reverse

The next step is to eliminate reverse by an appeal to the tupling law for
foldr . Instead of going into details we will just sketch the reasoning. In effect,
every sequence as is represented by a pair of sequences (as,sa) where
sa = reverse as . Reversal is then implemented by swapping the two lists.

There are only three changes to the program above. First, the definition of
add is changed to read

> add :: a -> (([a],[a]),([a],[a])) -> ([a],[a])
> add a ((ws,sw),(bs,sb)) = (ws ++ [a] ++ bs, sb ++ [a] ++ sw)

Second, all occurrences of reverse are changed to swap :

> swap (x,y) = (y,x)

Third, all occurrences of revif are changed to swapif :

> swapif p = if p then swap else id

As a result of these changes, we obtain

> ncode = fst . foldr wop ([],[]) . legs . decorate . mother

> wop, bop :: (Dir,PSpider a) -> ([a],[a]) -> ([a],[a])
> wop (Dn,x) = swap . ff wop (legs x) . swapif (wp x)
> wop (Up,x) = add (head x) .
> fork (ff wop (legs x) . swapif (bp x),
> ff bop (legs x) . swapif (not (bp x)))
> bop (Up,x) = swap . ff bop (legs x) . swapif (bp x)
> bop (Dn,x) = add (head x) .
> fork (ff wop (legs x) . swapif (not (wp x)),
> ff bop (legs x) . swapif (wp x))

Ignoring the cost of add the computation of ncode takes linear time in the
size of the nest.

6.5 Queues again

Now we are ready for looplessness. As in the simpler problem of tree spiders, we
represent a list by the preorder traversal of a forest of Rose trees, where a forest
is a queue of Rose trees:

> type Forest a = Queue (Rose a)
> data Rose a = Fork a (Forest a)

We change add once more, this time to read

> add :: a -> Pair (Pair (Forest a)) -> Pair (Forest a)
> add a ((wf,fw),(bf,fb)) =
> (insert wf (Fork a bf), insert fb (Fork a fw))

71

We replace the previous definition of ncode by

> ncode = preorder . fst . foldr bop (empty,empty) .
> legs . decorate . mother

Now all the work is done by preorder , which we can implement just as we did
for tree spiders:

> preorder :: Forest a -> [a]
> preorder = unfoldr step . wrapQueue

The definition of step is the same as it was for the tree spider problem.
Summarising, we have

> ncode = unfoldr step . prolog

where

> prolog = wrapQueue . fst . foldr wop (empty,empty) .
> legs . decorate . mother

Even though the prolog is a six-act play, involving characters such as spiders,
lists, queues and trees, and strange actions like flipping, swapping and folding, it
nevertheless takes linear time in the size of the nest, so this finally is a loopless
program for spider spinning.

References

1. Ehrlich, G. (1973) Loopless algorithms for generating permutations, combinations,
and other combinatorial configurations. J. ACM, 20: pages 500–513.

2. Filliatre, J-C, and Pottier, F. (2003) Producing all ideals of a forest, functionally.
Journal of Functional Programming, 13, 5: pages 945–956.

3. Koda, Y. and Ruskey, R. (1993) A Gray code for the ideals of a forest poset.
Journal of Algorithms 15: pages 324–340.

4. Knuth, D.E. (2001) SPIDERS: a program downloadable from
www-cs-faculty.stanford.edu/~knuth/programs.html.

5. Knuth, D.E. (2005) The Art of Computer Programming, Vol 4, Fascicles 2,3,4.
Addison-Wesley.

6. Knuth, D.E. and Ruskey, F. (2003) Efficient Coroutine Generation of Constrained
Gray Sequences (aka Deconstructing Coroutines) Object-Orientation to Formal
Methods: Dedicated to The Memory of Ole-Johan Dahl. LNCS 2635, Springer-
Verlag.

7. Okasaki, C. (1995) Simple and efficient purely functional queues and deques.
Journal of Functional Programming, 5, 4: pages 583–592.

72

Dependently Typed Programming in Agda
Draft

Ulf Norell

Chalmers University, Gothenburg

1 Introduction

In Hindley-Milner style languages, such as Haskell and ML, there is a clear
separation between types and values. In a dependently typed language the
line is more blurry – types can contain (depend on) arbitrary values and
appear as arguments and results of ordinary functions.

The standard example of a dependent type is the type of lists of a
given length: Vec A n. Here A is the type of the elements and n is the
length of the list. Many languages allow you to define lists (or arrays) of
a given size, but what makes Vec a true dependent type is that the length
of the list can be an arbitrary term, which need not be known at compile
time.

Since dependent types allows types to talk about values, we can encode
properties of values as types whose elements are proofs that the property
is true. This means that a dependently typed programming language can
be used as a logic. In order for this logic to be consistent we need to require
programs to be total, i.e. they are not allowed to crash or non-terminate.

The rest of these notes are structured as follows: Section 2 introduces
the dependently typed language Agda and its basic features, and Sec-
tion 3 explains a couple of programming techniques made possible by the
introduction of dependent types.

2 Agda Basics

Agda is a dependently typed language based on Martin-Löf type theory
developed at Chalmers University in Gothenburg. This section introduces
the basic features of Agda and how they can be employed in the construc-
tion of dependently typed programs. Information on how to obtain the
Agda system and further details on the topics discussed here can be found
on the Agda wiki1.

1 http://www.cs.chalmers.se/~ulfn/Agda

73

This section is a literate Agda file which can be compiled by the Agda
system. Hence, we need to start at the beginning: Every Agda file contains
a single top-level module whose name corresponds to the name of the file.
In this case the file is called AgdaBasics.lagda2.

module AgdaBasics where

The rest of your program goes inside the top-level module. Let us
start by defining some simple datatypes and functions.

2.1 Datatypes and pattern matching

Similar to languages like Haskell and ML, a key concept in Agda is pattern
matching over algebraic datatypes. With the introduction of dependent
types pattern matching becomes even more powerful as we shall see in
Section 2.4 and Section 3. But for now, let us start with simply typed
functions and datatypes.

Datatypes are introduced by a data declaration, giving the name and
type of the datatype as well as the constructors and their types. For
instance, here is the type of booleans

data Bool : Set where
true : Bool
false : Bool

The type of Bool is Set, the type of small3 types. Functions over Bool
can be defined by pattern matching in a for Haskell programmers familiar
way:

not : Bool -> Bool
not true = false
not false = true

Agda functions are not allowed to crash, so a function definition must
cover all possible cases. This will be checked by the type checker and an
error is raised if there are missing cases.

In Haskell and ML the type of not can be inferred from the defining
clauses and so in these languages the type signature is not required. How-
ever, in the presence of dependent types this is no longer the case and

2 Literate Agda files have the extension lagda and ordinary Agda files have the ex-
tension agda.

3 There is hierarchy of increasingly large types. The type of Set is Set1, whose type
is Set2, and so on.

74

we are forced to write down the type signature of not. This is not a bad
thing, since by writing down the type signature we allow the type checker,
not only to tell us when we make mistakes, but also to guide us in the
construction of the program. When types grow more and more precise
the dialog between the programmer and the type checker gets more and
more interesting.

Another useful datatype is the type of (unary) natural numbers.

data Nat : Set where
zero : Nat
suc : Nat -> Nat

Addition on natural numbers can be defined as a recursive function.

+ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)

In the same way as functions are not allowed to crash, they must also
be terminating. To guarantee termination recursive calls have to be made
on structurally smaller arguments. In this case _+_ passes the termination
checker since the first argument is getting smaller in the recursive call
(n < suc n). Let us define multiplication while we are at it

* : Nat -> Nat -> Nat
zero * m = zero
suc n * m = m + n * m

Agda supports a flexible mechanism for mixfix operators. If a name of
a function contains underscores (_) it can be used as an operator with the
arguments going where the underscores are. Consequently, the function
+ can be used as an infix operator writing n + m for _+_ n m. There are
(almost) no restrictions on what symbols are allowed as operator names,
for instance we can define

or : Bool -> Bool -> Bool
true or x = x
false or _ = false

if_then_else_ : {A : Set} -> Bool -> A -> A -> A
if true then x else y = x
if false then x else y = y

In the second clause of the _or_ function the underscore is a wildcard
pattern, indicating that we don’t care what the second argument is and

75

we can’t be bothered giving it a name. This, of course, means that we
cannot refer to it on the right hand side. The precedence and fixity of an
operator can be declared with an infix declaration:

infixl 60 _*_
infixl 40 _+_
infixr 20 _or_
infix 5 if_then_else_

There are some new and interesting bits in the type of if_then_else_.
For now, it is sufficient to think about {A : Set} -> as declaring a poly-
morphic function over a type A. More on this in Sections 2.2 and 2.3.

Just as in Haskell and ML datatypes can be parameterised by other
types. The type of lists of elements of an arbitrary type is defined by

infixr 40 _::_
data List (A : Set) : Set where

[] : List A
:: : A -> List A -> List A

Again, note that Agda is quite liberal about what is a valid name.
Both [] and _::_ are accepted as sensible names. In fact, Agda names
can contain arbitrary non-whitespace unicode characters, with a few ex-
ceptions, such as parenthesis and curly braces. So, if we really wanted
(which we don’t) we could define the list type as

data _? (α : Set) : Set where
ε : α ?
C : α -> α ? -> α ?

This liberal policy of names means that being generous with whites-
pace becomes important. For instance, not:Bool->Bool would not be a
valid type signature for the not function, since it is in fact a valid name.

2.2 Dependent functions

Let us now turn our attention to dependent types. The most basic depen-
dent type is the dependent function type, where the result type depends
on the value of the argument. In Agda we write (x : A) -> B for the
type of functions taking an argument x of type A and returning a result
of type B, where x may appear in B. A special case is when x itself is a
type. For instance, we can define

76

identity : (A : Set) -> A -> A
identity A x = x

zero’ : Nat
zero’ = identity Nat zero

This is a dependent function taking a type argument A and an ele-
ment of A and returns the element. This is how polymorphic functions
are encoded in Agda. Here is an example of a more intricate dependent
function; the function which takes a dependent function and applies it to
an argument:

apply : (A : Set)(B : A -> Set) ->
((x : A) -> B x) -> (a : A) -> B a

apply A B f a = f a

Agda accepts some short hands for dependent function types:

– (x : A)(y : B) -> C for (x : A) -> (y : B) -> C , and
– (x y : A) -> B for (x : A)(y : A) -> B .

The elements of dependent function types are lambda terms which
may carry explicit type information. Some alternative ways to define the
identity function above are:

identity2 : (A : Set) -> A -> A
identity2 = \A x -> x

identity3 : (A : Set) -> A -> A
identity3 = \(A : Set)(x : A) -> x

identity4 : (A : Set) -> A -> A
identity4 = \(A : Set) x -> x

2.3 Implicit arguments

We saw in the previous section how dependent functions taking types as
arguments could be used to model polymorphic types. The thing with
polymorphic functions, however, is that you don’t have to say at which
type you want to apply it – that is inferred by the type checker. However,
in the example of the identity function we had to explicitly provide the
type argument when applying the function. In Agda this problem is solved
by a general mechanism for implicit arguments. To declare a function
argument implicit we use curly braces instead of parenthesis in the type:
{x : A} -> B means the same thing as (x : A) -> B except that when

77

you use a function of this type the type checker will try to figure out the
argument for you.

Using this syntax we can define a new version of the identity function,
where you don’t have to supply the type argument.

id : {A : Set} -> A -> A
id x = x

true’ : Bool
true’ = id true

Note that the type argument is implicit both when the function is
applied and when it is defined.

There is no restrictions on what arguments can be made implicit,
nor is there any guarantees that an implicit argument can be inferred by
the type checker. For instance, we could be silly and make the second
argument of the identity function implicit as well:

silly : {A : Set}{x : A} -> A
silly {_}{x} = x

false’ : Bool
false’ = silly {x = false}

Clearly, there is no way the type checker could figure out what the
second argument to silly should be. To provide an implicit argument
explicitly you use the implicit application syntax f {v}, which gives v as
the left-most implicit argument to f, or as shown in the example above,
f {x = v}, which gives v as the implicit argument called x. The name of
an implicit argument is obtained from the type declaration.

Conversely, if you want the type checker to fill in a term which needs
to be given explicitly you can replace it by an underscore. For instance,

one : Nat
one = identity _ (suc zero)

It is important to note that the type checker will not do any kind of
search in order to fill in implicit arguments. It will only look at the typing
constraints and perform unification4.

Even so, a lot can be inferred automatically. For instance, we can
define the fully dependent function composition. (Warning: the following
type is not for the faint of heart!)

4 Miller pattern unification to be precise.

78

◦ : {A : Set}{B : A -> Set}{C : (x : A) -> B x -> Set}
(f : {x : A}(y : B x) -> C x y)(g : (x : A) -> B x)
(x : A) -> C x (g x)

(f ◦ g) x = f (g x)

plus-two = suc ◦ suc

The type checker can figure out the type arguments A, B, and C, when
we use _◦_.

We have seen how to define simply typed datatypes and functions,
and how to use dependent types and implicit arguments to represent
polymorphic functions. Let us conclude this part by defining some familiar
functions.

map : {A B : Set} -> (A -> B) -> List A -> List B
map f [] = []
map f (x :: xs) = f x :: map f xs

++ : {A : Set} -> List A -> List A -> List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

2.4 Datatype families

So far, the only use we have seen of dependent types is to represent
polymorphism, so let us look at some more interesting examples. The
type of lists of a certain length, mentioned in the introduction, can be
defined as follows:

data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
:: : {n : Nat} -> A -> Vec A n -> Vec A (suc n)

This declaration introduces a number of interesting things. First, note
that the type of Vec A is Nat -> Set. This means that Vec A is a family
of types indexed by natural numbers. So, for each natural number n,
Vec A n is a type. The constructors are free to construct elements in an
arbitrary type of the family. In particular, [] constructs an element in
Vec A zero and _::_ an element in Vec A (suc n) for some n.

There is a distinction between parameters and indices of a datatype.
We say that Vec is parameterised by a type A and indexed over natural
numbers.

In the type of _::_ we see an example of a dependent function type.
The first argument to _::_ is an implicit natural number n which is the

79

length of the tail. We can safely make n implicit since the type checker
can infer it from the type of the third argument.

Finally, note that we chose the same constructor names for Vec as for
List. Constructor names are not required to be distinct between different
datatypes.

Now, the interesting part comes when we start pattern matching on
elements of datatype families. Suppose, for instance, that we want to take
the head of a non-empty list. With the Vec type we can actually express
the type of non-empty lists, so we define head as follows:

head : {A : Set}{n : Nat} -> Vec A (suc n) -> A
head (x :: xs) = x

This definition is accepted by the type checker as being exhaustive, despite
the fact that we didn’t give a case for []. This is fortunate, since the []
case would not even be type correct – the only possible way to build an
element of Vec A (suc n) is using the _::_ constructor.

The rule for when you have to include a particular case is very simple:
if it is type correct you have to include it.

Dot patterns Here is another function on Vec:

vmap : {A B : Set}{n : Nat} -> (A -> B) -> Vec A n -> Vec B n
vmap f [] = []
vmap f (x :: xs) = f x :: vmap f xs

Perhaps surprisingly, the definition map on Vec is exactly the same
as on List, the only thing that changed is the type. However, something
interesting is going on behind the scenes. For instance, what happens with
the length argument when we pattern match on the list? To see this, let
us define new versions of Vec and vmap with fewer implicit arguments:

data Vec2 (A : Set) : Nat -> Set where
nil : Vec2 A zero
cons : (n : Nat) -> A -> Vec2 A n -> Vec2 A (suc n)

vmap2 : {A B : Set}(n : Nat) -> (A -> B) -> Vec2 A n -> Vec2 B n
vmap2 .zero f nil = nil
vmap2 .(suc n) f (cons n x xs) = cons n (f x) (vmap2 n f xs)

What happens when we pattern match on the list argument is that
we learn things about its length: if the list turns out to be nil then the
length argument must be zero, and if the list is cons n x xs then the
only type correct value for the length argument is suc n. To indicate that

80

the value of an argument has been deduced by type checking, rather than
observed by pattern matching it is prefixed by a dot (.).

In this example we could choose to define vmap by first pattern match-
ing on the length rather than on the list. In that case we would put the
dot on the length argument of cons5:

vmap3 : {A B : Set}(n : Nat) -> (A -> B) -> Vec2 A n -> Vec2 B n
vmap3 zero f nil = nil
vmap3 (suc n) f (cons .n x xs) = cons n (f x) (vmap3 n f xs)

The rule for when an argument should be dotted is: if there is a unique
type correct value for the argument it should be dotted.

In the example above, the terms under the dots were valid patterns,
but in general they can be arbitrary terms. For instance, we can define
the image of a function as follows:

data Image_3_ {A B : Set}(f : A -> B) : B -> Set where
im : (x : A) -> Image f 3 f x

Here we state that the only way to construct an element in the image
of f is to pick an argument x and apply f to x. Now if we know that a
particular y is in the image of f we can compute the inverse of f on y:

inv : {A B : Set}(f : A -> B)(y : B) -> Image f 3 y -> A
inv f .(f x) (im x) = x

Absurd patterns Let us define another datatype family, name the fam-
ily of numbers smaller than a given natural number.

data Fin : Nat -> Set where
fzero : {n : Nat} -> Fin (suc n)
fsuc : {n : Nat} -> Fin n -> Fin (suc n)

Here fzero is smaller than suc n for any n and if i is smaller than n
then fsuc i is smaller than suc n. Note that there is no way of construct-
ing a number smaller than zero. When there are no possible constructor
patterns for a given argument you can pattern match on it with the ab-
surd pattern ():

magic : {A : Set} -> Fin zero -> A
magic ()

5 In fact the dot can be placed on any of the ns. What is important is that there is a
unique binding site for each variable in the pattern.

81

Using an absurd pattern means that you do not have to give a right
hand side, since there is no way anyone could provide an argument to
your function. One might think that the clause would not have to be given
at all, that the type checker would see that the matching is exhaustive
without any clauses, but remember that a case can only be omitted if
there is no type correct way of writing it. In the case of magic a perfectly
type correct left hand side is magic x.

It is important to note that an absurd pattern can only be used if
there are no valid constructor patterns for the argument, it is not enough
that there are no closed inhabitants of the type6. For instance, if we define

data Empty : Set where
empty : Fin zero -> Empty

Arguments of type Empty can not be matched with an absurd pat-
tern, since there is a perfectly valid constructor pattern that would do:
empty x. Hence, to define the magic function for Empty we have to write

magic’ : {A : Set} -> Empty -> A
magic’ (empty ())
-- magic’ () -- not accepted

Now, let us define some more interesting functions. Given a list of
length n and a number i smaller than n we can compute the ith element
of the list (starting from 0):

! : {n : Nat}{A : Set} -> Vec A n -> Fin n -> A
[] ! ()
(x :: xs) ! fzero = x
(x :: xs) ! (fsuc i) = xs ! i

The types ensure that there is no danger of indexing outside the list.
This is reflected in the case of the empty list where there are no possible
values for the index.

The _!_ function turns a list into a function from indices to elements.
We can also go the other way, constructing a list given a function from
indices to elements:

tabulate : {n : Nat}{A : Set} -> (Fin n -> A) -> Vec A n
tabulate {zero} f = []
tabulate {suc n} f = f fzero :: tabulate (f ◦ fsuc)

Note that tabulate is defined by recursion over the length of the
result list, even though it is an implicit argument. There is in general
no correspondance between implicit data and computationally irrelevant
data.
6 Since checking type inhabitation is undecidable.

82

2.5 Programs as proofs

As mentioned in the introduction, Agda’s type system is sufficiently pow-
erful to represent (almost) arbitrary propositions as types whose elements
are proofs of the proposition. Here are two very simple propositions, the
true proposition and the false proposition:

data False : Set where
record True : Set where

trivial : True
trivial = _

The false proposition is represented by the datatype with no con-
structors and the true proposition by the record type with no fields (see
Section 2.8 for more information on records). The record type with no
fields has a single element which is the empty record. We could have de-
fined True as a datatype with a single element, but the nice thing with
the record definition is that the type checker knows that there is a unique
element of True and will fill in any implicit arguments of type True with
this element. This is exploited in the definition of trivial where the
right hand side is just underscore. If you nevertheless want to write the
element of True, the syntax is record{}.

These two propositions are enough to work with decidable proposi-
tions. We can model decidable propositions as booleans and define

isTrue : Bool -> Set
isTrue true = True
isTrue false = False

Now, isTrue b is the type of proofs that b equals true. Using this
technique we can define the safe list lookup function in a different way,
working on simply typed lists and numbers.

< : Nat -> Nat -> Bool
_ < zero = false
zero < suc n = true
suc m < suc n = m < n

length : {A : Set} -> List A -> Nat
length [] = zero
length (x :: xs) = suc (length xs)

lookup : {A : Set}(xs : List A)(n : Nat) ->
isTrue (n < length xs) -> A

lookup [] n ()
lookup (x :: xs) zero p = x
lookup (x :: xs) (suc n) p = lookup xs n p

83

In this case, rather than there being no index into the empty list, there
is no proof that a number n is smaller than zero. In this example using
indexed types to capture the precondition is a little bit nicer, since we
don’t have to pass around an explicit proof object, but some properties
cannot be easily captured by indexed types, in which case this is a nice
alternative.

We can also use datatype families to define propositions. Here is a
definition of the identity relation

data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x

For a type A and an element x of A, we define the the family of proofs
of “being equal to x”. This family is only inhabited at index x where the
single proof is refl.

Another example is the less than or equals relation on natural num-
bers. This could be defined as a boolean function, as we have seen, but
we can also define it inductively

data _≤_ : Nat -> Nat -> Set where
leq-zero : {n : Nat} -> zero ≤ n
leq-suc : {m n : Nat} -> m ≤ n -> suc m ≤ suc n

One advantage of this approach is that we can pattern match on the
proof object. This makes proving properties of _≤_ easier. For instance,

leq-trans : {l m n : Nat} -> l ≤ m -> m ≤ n -> l ≤ n
leq-trans leq-zero _ = leq-zero
leq-trans (leq-suc p) (leq-suc q) = leq-suc (leq-trans p q)

2.6 More on pattern matching

We have seen how to pattern match on the arguments of a function, but
sometimes you want to pattern match on the result of some intermediate
computation. In Haskell and ML this is done on the right hand side using
a case or match expression. However, as we have learned, when pattern
matching on an expression in a dependently typed language, you not
only learn something about the shape of the expression, but you can also
learn things about other expressions. For instance, pattern matching on
an expression of type Vec A n will reveal information about n. This is
not captured by the usual case expression, so instead of a case expression
Agda provides a way of matching on intermediate computations on the
left hand side.

84

The with construct The idea is that if you want to pattern match on
an expression e in the definition of a function f, you abstract f over the
value of e, effectively adding another argument to f which can then be
matched on in the usual fashion. This abstraction is performed by the
with construct. For instance,

min : Nat -> Nat -> Nat
min x y with x < y
min x y | true = x
min x y | false = y

The equations for min following the with abstraction have an extra
argument, separated from the original arguments by a vertical bar, cor-
responding to the value of the expression x < y. You can abstract over
multiple expressions at the same time, separating them by vertical bars
and you can nest with abstractions. In the left hand side, with abstracted
arguments should be separated by vertical bars.

In this case pattern matching on x < y doesn’t tell us anything inter-
esting about the arguments of min, so repeating the left hand sides is a
bit tedious. When this is the case you can replace the left hand side with
...:

filter : {A : Set} -> (A -> Bool) -> List A -> List A
filter p [] = []
filter p (x :: xs) with p x
... | true = x :: filter p xs
... | false = filter p xs

Here is an example when we do learn something interesting. Given
two numbers we can compare them to see if they are equal. Rather than
returning an uninteresting boolean, we can return a proof that the num-
bers are indeed equal when this is the case, and an explanation of why
they are different when this is the case:

data _6=_ : Nat -> Nat -> Set where
z6=s : {n : Nat} -> zero 6= suc n
s6=z : {n : Nat} -> suc n 6= zero
s6=s : {m n : Nat} -> m 6= n -> suc m 6= suc n

data Equal? (n m : Nat) : Set where
eq : n == m -> Equal? n m
neq : n 6= m -> Equal? n m

Two natural numbers are different if one is zero and the other suc of
something, or if both are successors but their predecessors are different.
Now we can define the function equal? to check if two numbers are equal:

85

equal? : (n m : Nat) -> Equal? n m
equal? zero zero = eq refl
equal? zero (suc m) = neq z6=s
equal? (suc n) zero = neq s6=z
equal? (suc n) (suc m) with equal? n m
equal? (suc n) (suc .n) | eq refl = eq refl
equal? (suc n) (suc m) | neq p = neq (s6=s p)

Note that in the case where both numbers are successors we learn
something by pattern matching on the proof that the predecessors are
equal. We will see more examples of this kind of informative datatypes in
Section 3.1.

When you abstract over an expression using with, that expression
is abstracted from the entire context. This means that if the expression
occurs in the type of an argument to the function or in the result type,
this occurrence will be replaced by the with-argument on the left hand
side. For example, suppose we want to prove something about the filter
function. That the only thing it does is throwing away some elements of
its argument, say. We can define what it means for one list to be a sublist
of another list:

infix 20 _⊆_
data _⊆_ {A : Set} : List A -> List A -> Set where

stop : [] ⊆ []
drop : forall {xs y ys} -> xs ⊆ ys -> xs ⊆ y :: ys
keep : forall {x xs ys} -> xs ⊆ ys -> x :: xs ⊆ x :: ys

The intuition is that to obtain a sublist of a given list, each element
can either be dropped or kept. When the type checker can figure out the
type of an argument in a function type you can use the forall syntax:

– forall {x y} a b -> A is short for {x : _}{y : _}(a : _)(b : _) -> A.

Using this definition we can prove that filter computes a sublist of
its argument:

lem-filter : {A : Set}(p : A -> Bool)(xs : List A) -> filter p xs ⊆ xs
lem-filter p [] = stop
lem-filter p (x :: xs) with p x
... | true = keep (lem-filter p xs)
... | false = drop (lem-filter p xs)

The interesting case is the _::_ case. Let us walk through it slowly:

-- lem-filter p (x :: xs) = ?

At this point the goal that we have to prove is

86

-- (filter p (x :: xs) | p x) ⊆ x :: xs

In the goal filter has been applied to its with abstracted argument p x
and will not reduce any further. Now, when we abstract over p x it will
be abstracted from the goal type so we get

-- lem-filter p (x :: xs) with p x
-- ... | px = ?

where p x has been replaced by px in the goal type

-- (filter p (x :: xs) | px) ⊆ x :: xs

Now, when we pattern match on px the call to filter will reduce and
we get

-- lem-filter p (x :: xs) with p x
-- ... | true = ? {- x :: filter p xs ⊆ x :: xs -}
-- ... | false = ? {- filter p xs ⊆ x :: xs -}

In some cases, it can be helpful to use with to abstract over an ex-
pression which you are not going to pattern match on. In particular, if
you expect this expression to be instantiated by pattern matching on
something else. Consider the proof that n + zero == n:

lem-plus-zero : (n : Nat) -> n + zero == n
lem-plus-zero zero = refl
lem-plus-zero (suc n) with n + zero | lem-plus-zero n
... | .n | refl = refl

In the step case we would like to pattern match on the induction
hypothesis n + zero == n in order to prove suc n + zero == suc n,
but since n + zero cannot be unified with n that is not allowed. However,
if we abstract over n + zero, calling it m, we are left with the induction
hypothesis m == n and the goal suc m == suc n. Now we can pattern
match on the induction hypothesis, instantiating m to n.

2.7 Modules

The module system in Agda is primarily used to manage name spaces.
In a dependently typed setting you could imagine having modules as first
class objects that could be passed around and created on the fly, but in
Agda this is not the case.

We have already seen that each file must define a single top-level
module containing all the declarations in the file. These declarations can
in turn be modules.

87

module Maybe where
data Maybe (A : Set) : Set where

nothing : Maybe A
just : A -> Maybe A

maybe : {A B : Set} -> B -> (A -> B) -> Maybe A -> B
maybe z f nothing = z
maybe z f (just x) = f x

By default all names declared in a module are visible from the outside.
If you want to hide parts of a module you can declare it private:

module A where
private

internal : Nat
internal = zero

exported : Nat -> Nat
exported n = n + internal

To access public names from another module you can qualify the name
by the name of the module.

mapMaybe1 : {A B : Set} -> (A -> B) -> Maybe.Maybe A -> Maybe.Maybe B
mapMaybe1 f Maybe.nothing = Maybe.nothing
mapMaybe1 f (Maybe.just x) = Maybe.just (f x)

Modules can also be opened, locally or on top-level:
mapMaybe2 : {A B : Set} -> (A -> B) -> Maybe.Maybe A -> Maybe.Maybe B
mapMaybe2 f m = let open Maybe in maybe nothing (just ◦ f) m

open Maybe

mapMaybe3 : {A B : Set} -> (A -> B) -> Maybe A -> Maybe B
mapMaybe3 f m = maybe nothing (just ◦ f) m

When opening a module you can control which names are brought into
scope with the using, hiding, and renaming keywords. For instance, to
open the Maybe module without exposing the maybe function, and using
different names for the type and the constructors we can say

open Maybe hiding (maybe)
renaming (Maybe to _option; nothing to none; just to some)

mapOption : {A B : Set} -> (A -> B) -> A option -> B option
mapOption f none = none
mapOption f (some x) = some (f x)

Renaming is just cosmetic, Maybe A and A option are interchangable.
mtrue : Maybe Bool
mtrue = mapOption not (just false)

88

Parameterised modules Modules can be parameterised by arbitrary
types7.

module Sort (A : Set)(_<_ : A -> A -> Bool) where
insert : A -> List A -> List A
insert y [] = y :: []
insert y (x :: xs) with x < y
... | true = x :: insert y xs
... | false = y :: x :: xs

sort : List A -> List A
sort [] = []
sort (x :: xs) = insert x (sort xs)

When looking at the functions in parameterised module from the outside,
they take the module parameters as arguments, so

sort1 : (A : Set)(_<_ : A -> A -> Bool) -> List A -> List A
sort1 = Sort.sort

You can apply the functions in a parameterised module to the module
parameters all at once, by instantiating the module

module SortNat = Sort Nat _<_

This creates a new module SortNat with functions insert and sort.

sort2 : List Nat -> List Nat
sort2 = SortNat.sort

Often you want to instantiate a module and open the result, in which
case you can simply write

open Sort Nat _<_ renaming (insert to insertNat; sort to sortNat)

without having to give a name to the instantiated module.
Sometimes you want to export the contents of another module from

the current module. In this case you can open the module publicly using
the public keyword:

module Lists (A : Set)(_<_ : A -> A -> Bool) where
open Sort A _<_ public
minimum : List A -> Maybe A
minimum xs with sort xs
... | [] = nothing
... | y :: ys = just y

Now the Lists module will contain insert and sort as well as the
minimum function.
7 But not by other modules.

89

Importing modules from other files Agda programs can be split over
multiple files. To use definitions from a module defined in another file the
module has to be imported. Modules are imported by their names, so if
you have a module A.B.C in a file /some/local/path/A/B/C.agda it is
imported with the statement import A.B.C. In order for the system to
find the file /some/local/path must be in Agda’s search path.8.

I have a file Logic.agda in the same directory as these notes, defining
logical conjunction and disjunction. To import it we say

import Logic using (_∧_; _∨_)

Note that you can use the same namespace control keywords as when
opening modules. Importing a module does not automatically open it
(like when you say import qualified in Haskell). You can either open
it separately with an open statement, or use the short form

open import Logic

Splitting a program over several files will improve type checking per-
formance, since when you are making changes the type checker only has
to type check the files that are influenced by the changes.

2.8 Records

We have seen a record type already, namely the record type with no fields
which was used to model the true proposition. Now let us look at record
types with fields. A record type is declared much like a datatype where
the fields are indicated by the field keyword. For instance

record Point : Set where
field x : Nat

y : Nat

This declares a record type Point with two natural number fields x and
y. To construct an element of Point you write

mkPoint : Nat -> Nat -> Point
mkPoint a b = record{ x = a; y = b }

To allow projection of the fields from a record, each record type comes
with a module of the same name. This module is parameterised by an
element of the record type and contains projection functions for the fields.
In the point example we get a module

8 The search path can be set from emacs by executing M-x customize-group agda2.

90

-- module Point (p : Point) where
-- x : Nat
-- y : Nat

This module can be used as it is or instantiated to a particular record.

getX : Point -> Nat
getX = Point.x

abs2 : Point -> Nat
abs2 p = let open Point p in x * x + y * y

At the moment you cannot pattern match on records, but this will
hopefully be possible in a later version of Agda.

It is possible to add your own functions to the module of a record by
including them in the record declaration after the fields.

record Monad (M : Set -> Set) : Set1 where
field

return : {A : Set} -> A -> M A
>>= : {A B : Set} -> M A -> (A -> M B) -> M B

mapM : {A B : Set} -> (A -> M B) -> List A -> M (List B)
mapM f [] = return []
mapM f (x :: xs) = f x >>= \y ->

mapM f xs >>= \ys ->
return (y :: ys)

mapM’ : {M : Set -> Set} -> Monad M ->
{A B : Set} -> (A -> M B) -> List A -> M (List B)

mapM’ Mon f xs = Monad.mapM Mon f xs

3 Programming Techniques

In this section we will describe and exemplify a couple of programming
techniques which are made available in dependently typed languages:
views and universe constructions.

3.1 Views

As we have seen pattern matching in Agda can reveal information not
only about the term being matched but also about terms occurring in the
type of this term. For instance, matching a proof of x == y against the
refl constructor we (and the type checker) will learn that x and y are
the same.

91

We can exploit this, and design datatypes whose sole purpose is to
tell us something interesting about its indices. We call such a datatype a
view. To use the view we define a view function, computing an element
of the view for arbitrary indices.

This section on views is defined in the file Views.lagda so here is the
top-level module declaration:

module Views where

Natural number parity Let us start with an example. We all know
that any natural number n can be written on the form 2k or 2k + 1
for some k. Here is a view datatype expressing that. We use the natural
numbers defined in the summer school library module Data.Nat.

open import Data.Nat

data Parity : Nat -> Set where
even : (k : Nat) -> Parity (k * 2)
odd : (k : Nat) -> Parity (1 + k * 2)

An element of Parity n tells you if n is even or odd, i.e. if n = 2k
or n = 2k + 1, and in each case what k is. The reason for writing k * 2
and 1 + k * 2 rather than 2 * k and 2 * k + 1 has to do with the fact
that _+_ and _*_ are defined by recursion over their first argument. This
way around we get a better reduction behaviour.

Now, just defining the view datatype isn’t very helpful. We also need
to show that any natural number can be viewed in this way. In other
words, given an arbitrary natural number n we need to compute an ele-
ment of Parity n.

parity : (n : Nat) -> Parity n
parity zero = even zero
parity (suc n) with parity n
parity (suc .(k * 2)) | even k = odd k
parity (suc .(1 + k * 2)) | odd k = even (suc k)

In the suc n case we use the view recursively to find out the parity
of n. If n = k * 2 then suc n = 1 + k * 2 and if n = 1 + k * 2 then
suc n = suc k * 2.

In effect, this view gives us the ability to pattern match on a natu-
ral number with the patterns k * 2 and 1 + k * 2. Using this ability,
defining the function that divides a natural number by two is more or less
trivial:

92

half : Nat -> Nat
half n with parity n
half .(k * 2) | even k = k
half .(1 + k * 2) | odd k = k

Note that k is bound in the pattern for the view, not in the dotted
pattern for the natural number.

Finding an element in a list Let us turn our attention to lists. First
some imports: we will use the definitions of lists and booleans from the
summer school library.

open import Data.Function
open import Data.List
open import Data.Bool

Now, given a predicate P and a list xs we can define what it means
for P to hold for all elements of xs:

infixr 30 _:all:_
data All {A : Set}(P : A -> Set) : List A -> Set where

all[] : All P []
:all: : forall {x xs} -> P x -> All P xs -> All P (x :: xs)

A proof of All P xs is simply a list of proofs of P x for each element
x of xs. Note that P does not have to be a decidable predicate. To turn a
decidable predicate into a general predicate we define a function Sat.

Sat : {A : Set} -> (A -> Bool) -> A -> Set
Sat p x = isTrue (p x)

Using the All datatype we could prove the second part of the correct-
ness of the filter function, namely that all the elements of the result of
filter satisfies the predicate: All (Sat p) (filter p xs). This is left
as an exercise. Instead, let us define some interesting views on lists.

Given a decidable predicate on the elements of a list, we can either
find an element in the list that satisfies the predicate, or else all elements
satifies the negation of the predicate. Here is the corresponding view
datatype:

data Find {A : Set}(p : A -> Bool) : List A -> Set where
found : (xs : List A)(y : A) -> Sat p y -> (ys : List A) ->

Find p (xs ++ y :: ys)
not-found : forall {xs} -> All (Sat (not ◦ p)) xs -> Find p xs

93

We don’t specify which element to use as a witness in the found case.
If we wanted the view to always return the first (or last) matching element
we could force the elements of xs (or ys) to satisfy the negation of p. To
complete the view we need to define the view function computing an
element of Find p xs for any p and xs. Here is a first attempt:

find1 : {A : Set}(p : A -> Bool)(xs : List A) -> Find p xs
find1 p [] = not-found all[]
find1 p (x :: xs) with p x
... | true = found [] x {! !} xs
... | false = {! !}

In the case where p x is true we want to return found (hence, re-
turning the first match), but there is a problem. The type of the hole
({! !}) is isTrue (p x), even though we already matched on p x and
found out that it was true. The problem is that when we abstracted over
p x we didn’t know that we wanted to use the found constructor, so there
were no p x to abstract over. Remember that with doesn’t remember the
connection between the with-term and the patterns. One solution to this
problem is to make this connection explicit with a proof object. The idea
is to not abstract over the term itself but rather over an arbitrary term of
the same type and a proof that it is equal to the original term. Remember
the type of equality proofs:

data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x

Now we define the type of elements of a type A together with proofs
equal to some given x in A.

data Inspect {A : Set}(x : A) : Set where
it : (y : A) -> x == y -> Inspect x

There is one obvious way to construct an element of Inspect x, namely
to pick x as the thing which is equal to x.

inspect : {A : Set}(x : A) -> Inspect x
inspect x = it x refl

We can now define find by abstracting over inspect (p x) rather
than p x itself. This will provide us with proofs p x == true or p x == false
which we can use in the arguments to found and not-found. First we need
a couple of lemmas about isTrue and isFalse:

trueIsTrue : {x : Bool} -> x == true -> isTrue x
trueIsTrue refl = _

94

falseIsFalse : {x : Bool} -> x == false -> isFalse x
falseIsFalse refl = _

Now we can define find without any problems.

find : {A : Set}(p : A -> Bool)(xs : List A) -> Find p xs
find p [] = not-found all[]
find p (x :: xs) with inspect (p x)
... | it true prf = found [] x (trueIsTrue prf) xs
... | it false prf with find p xs
find p (x :: ._) | it false _ | found xs y py ys = found (x :: xs) y py ys
find p (x :: xs) | it false prf | not-found npxs =

not-found (falseIsFalse prf :all: npxs)

In the case where p x is true, inspect (p x) matches it true prf
where prf : p x == true. Using our lemma we can turn this into the
proof of isTrue (p x) that we need for the third argument of found.
We get a similar situation when p x is false and find p xs returns
not-found.

Indexing into a list In Sections 2.4 and Section 2.5 we saw two ways of
safely indexing into a list. In both cases the type system guaranteed that
the index didn’t point outside the list. However, sometimes we have no
control over the value of the index and it might well be that it is pointing
outside the list. One solution in this case would be to wrap the result of
the lookup function in a maybe type, but maybe types don’t really tell
you anything very interesting and we can do a lot better. First let us
define the type of proofs that an element x is in a list xs.

data _∈_ {A : Set}(x : A) : List A -> Set where
hd : forall {xs} -> x ∈ x :: xs
tl : forall {y xs} -> x ∈ xs -> x ∈ y :: xs

The first element of a list is a member of the list, and any element
of the tail of a list is also an element of the entire list. Given a proof
of x ∈ xs we can compute the index at which x occurs in xs simply by
counting the number of tls in the proof.

index : forall {A}{x : A}{xs} -> x ∈ xs -> Nat
index hd = zero
index (tl p) = suc (index p)

Now, let us define a view on natural numbers n with respect to a list
xs. Either n indexes some x in xs in which case it is of the form index p
for some proof p : x ∈ xs, or n points outside the list, in which case it
is of the form length xs + m for some m.

95

data Lookup {A : Set}(xs : List A) : Nat -> Set where
inside : (x : A)(p : x ∈ xs) -> Lookup xs (index p)
outside : (m : Nat) -> Lookup xs (length xs + m)

In the case that n is a valid index we not only get the element at
the corresponding position in xs but we are guaranteed that this is the
element that is returned. There is no way a lookup function could cheat
and always return the first element, say. In the case that n is indexing
outside the list we also get some more information. We get a proof that
n is out of bounds and we also get to know by how much.

Defining the lookup function is no more difficult than it would have
been to define the lookup function returning a maybe.

! : {A : Set}(xs : List A)(n : Nat) -> Lookup xs n
[] ! n = outside n
(x :: xs) ! zero = inside x hd
(x :: xs) ! suc n with xs ! n
(x :: xs) ! suc .(index p) | inside y p = inside y (tl p)
(x :: xs) ! suc .(length xs + n) | outside n = outside n

A type checker for λ-calculus To conclude this section on views, let
us look at a somewhat bigger example: a type checker for simply typed
λ-calculus. This example was first implemented by Conor McBride in
Epigram many years ago. His version not only guaranteed that when the
type checker said ok things were really ok, but also provided a detailed
explanation in the case where type checking failed. We will focus on the
positive side here and leave the reporting of sensible and guaranteed pre-
cise error message as an exercise.

First, let us define the type language. We have one base type ı and a
function type.

infixr 30 _→_
data Type : Set where

ı : Type
→ : Type -> Type -> Type

When doing type checking we will inevitably have to compare types
for equality, so let us define a view.

data Equal? : Type -> Type -> Set where
yes : forall {τ} -> Equal? τ τ
no : forall {σ τ} -> Equal? σ τ

=?= : (σ τ : Type) -> Equal? σ τ
ı =?= ı = yes

96

ı =?= (_ → _) = no
(_ → _) =?= ı = no
(σ1 → τ1) =?= (σ2 → τ2) with σ1 =?= σ2 | τ1 =?= τ2

(σ → τ) =?= (.σ → .τ) | yes | yes = yes
(σ1 → τ1) =?= (σ2 → τ2) | _ | _ = no

Note that we don’t give any justification in the no case. The _=?=_
could return no all the time without complaints from the type checker.
In the yes case, however, we guarantee that the two types are identical.

Next up we define the type of raw lambda terms. We use unchecked
deBruijn indices to represent variables.

infixl 80 _$_
data Raw : Set where

var : Nat -> Raw
$: Raw -> Raw -> Raw
lam : Type -> Raw -> Raw

We use Church style terms in order to simplify type inference. The
idea with our type checker is that it should take a raw term and return a
well-typed term, so we need to define the type of well-typed λ-terms with
respect to a context Γ and a type τ .

Cxt = List Type

data Term (Γ : Cxt) : Type -> Set where
var : forall {τ} -> τ ∈ Γ -> Term Γ τ
$: forall {σ τ} -> Term Γ (σ → τ) -> Term Γ σ -> Term Γ τ
lam : forall σ {τ} -> Term (σ :: Γ) τ -> Term Γ (σ → τ)

We represent variables by proofs that a type is in the context. Re-
member that the proofs of list membership provided us with an index
into the list where the element could be found. Given a well-typed term
we can erase all the type information and get a raw term.

erase : forall {Γ τ} -> Term Γ τ -> Raw
erase (var x) = var (index x)
erase (t $ u) = erase t $ erase u
erase (lam σ t) = lam σ (erase t)

In the variable case we turn the proof into a natural number using the
index function.

Now we are ready to define the view of a raw term as either being the
erasure of a well-typed term or not. Again, we don’t provide any justifi-
cation for giving a negative result. Since, we are doing type inference the
type is not a parameter of the view but computed by the view function.

97

data Infer (Γ : Cxt) : Raw -> Set where
ok : (τ : Type)(t : Term Γ τ) -> Infer Γ (erase t)
bad : {e : Raw} -> Infer Γ e

The view function is the type inference function taking a raw term
and computing an element of the Infer view.

infer : (Γ : Cxt)(e : Raw) -> Infer Γ e

Let us walk through the three cases (variable, application, and lambda).

infer Γ (var n) with Γ ! n
infer Γ (var .(length Γ + n)) | outside n = bad
infer Γ (var .(index x)) | inside σ x = ok σ (var x)

In the variable case we need to take case of the fact that the raw
variable might be out of scope. We can use the lookup function _!_ we
defined above for that. When the variable is in scope the lookup function
provides us with the type of the variable and the proof that it is in scope.

infer Γ (e1 $ e2)
with infer Γ e1

infer Γ (e1 $ e2) | bad = bad
infer Γ (.(erase t1) $ e2) | ok ı t1 = bad
infer Γ (.(erase t1) $ e2) | ok (σ → τ) t1

with infer Γ e2

infer Γ (.(erase t1) $ e2) | ok (σ → τ) t1 | bad = bad
infer Γ (.(erase t1) $.(erase t2)) | ok (σ → τ) t1 | ok σ’ t2

with σ =?= σ’
infer Γ (.(erase t1) $.(erase t2))

| ok (σ → τ) t1 | ok .σ t2 | yes = ok τ (t1 $ t2)
infer Γ (.(erase t1) $.(erase t2))

| ok (σ → τ) t1 | ok σ’ t2 | no = bad

The application case is the bulkiest simply because there are a lot of
things we need to check: that the two terms are type correct, that the first
term has a function type and that the type of the second term matches
the argument type of the first term. This is all done by pattern matching
on recursive calls to the infer view and the type equality view.

infer Γ (lam σ e) with infer (σ :: Γ) e
infer Γ (lam σ .(erase t)) | ok τ t = ok (σ → τ) (lam σ t)
infer Γ (lam σ e) | bad = bad

Finally, the lambda case is very simple. If the body of the lambda is
type correct in the extended context, then the lambda is well-typed with
the corresponding function type.

98

Without much effort we have defined a type checker for simply typed
λ-calculus that not only is guaranteed to compute well-typed terms, but
also guarantees that the erasure of the well-typed term is the term you
started with.

3.2 Universes

The second programming technique we will look at that is not available
in non-dependently typed languages is universe construction. First the
module header.

module Universes where

A universe is a set of types (or type formers) and a universe construc-
tion consists of a type of codes and a decoding function mapping codes
to types in the universe. The purpose of a universe construction is to be
able to define functions over the types of the universe by inspecting their
codes. In fact we have seen an example of a universe construction already.

A familiar universe The universe of decidable propositions consists of
the singleton type True and the empty type False. Codes are booleans
and the decoder is the isTrue function.

data False : Set where
record True : Set where

data Bool : Set where
true : Bool
false : Bool

isTrue : Bool -> Set
isTrue true = True
isTrue false = False

Now functions over decidable propositions can be defined by manip-
ulating the boolean codes. For instance, we can define negation and con-
junction as functions on codes and prove some properties of the corre-
sponding propositions.

infix 30 not_
infixr 25 _and_

not_ : Bool -> Bool
not true = false
not false = true

99

and : Bool -> Bool -> Bool
true and x = x
false and _ = false

notNotId : (a : Bool) -> isTrue (not not a) -> isTrue a
notNotId true p = p
notNotId false ()

andIntro : (a b : Bool) -> isTrue a -> isTrue b -> isTrue (a and b)
andIntro true _ _ p = p
andIntro false _ () _

A nice property of this universe is that proofs of True can be found
automatically. This means that if you have a function taking a proof of
a precondition as an argument, where you expect the precondition to be
trivially true at the point where you are calling the function, you can
make the precondition an implicit argument. For instance, if you expect
to mostly divide by concrete numbers, division of natural numbers can
be given the type signature

open import Data.Nat

nonZero : Nat -> Bool
nonZero zero = false
nonZero (suc _) = true

postulate _div_ : Nat -> (m : Nat){p : isTrue (nonZero m)} -> Nat

three = 16 div 5

Here the proof obligation isTrue (nonZero 5) will reduce to True and
solved automatically by the type checker. Note that if you tell the type
checker that you have defined the type of natural numbers, you are allowed
to use natural number literal like 16 and 5. This has been done in the
library.

Universes for generic programming Generic programming deals with
the problem of defining functions generically over a set of types. We can
achieve this by defining a universe for the set of types we are interested
in. Here is a simple example of how to program generically over the set
of types computed by fixed points over polynomial functors.

First we define a type of codes for polynomial functors.

data Functor : Set1 where
|Id| : Functor

100

|K| : Set -> Functor
|+| : Functor -> Functor -> Functor
|x| : Functor -> Functor -> Functor

A polynomial functor is either the identity functor, a constant functor, the
disjoint union of two functors, or the cartesian product of two functors.
Since codes for functors can contain arbitrary Sets (in the case of the
constant functor) the type of codes cannot itself be a Set, but lives in
Set1.

Before defining the decoding function for functors we define datatypes
for disjoint union and cartesian product.

data _⊕_ (A B : Set) : Set where
inl : A -> A ⊕ B
inr : B -> A ⊕ B

data _×_ (A B : Set) : Set where
, : A -> B -> A × B

infixr 50 _|+|_ _⊕_
infixr 60 _|x|_ _×_

The decoding function takes a code for a functor to a function on Sets
and is computed recursively over the code.

[_] : Functor -> Set -> Set
[|Id|] X = X
[|K| A] X = A
[F |+| G] X = [F] X ⊕ [G] X
[F |x| G] X = [F] X × [G] X

Since it’s called a functor it ought to support a map operation. We
can define this by recursion over the code.

map : (F : Functor){X Y : Set} -> (X -> Y) -> [F] X -> [F] Y
map |Id| f x = f x
map (|K| A) f c = c
map (F |+| G) f (inl x) = inl (map F f x)
map (F |+| G) f (inr y) = inr (map G f y)
map (F |x| G) f (x , y) = map F f x , map G f y

Next we define the least fixed point of a polynomial functor.

data µ_ (F : Functor) : Set where
<_> : [F] (µ F) -> µ F

To ensure termination, recursive datatypes must be strictly positive
and this is checked by the type checker. Our definition of least fixed point

101

goes through, since the type checker can spot that [_] is strictly positive
in its second argument.

With this definition we can define a generic fold operation on least
fixed points. Grabbing for the closest category theory text book we might
try something like this

-- fold : (F : Functor){A : Set} -> ([F] A -> A) -> µ F -> A
-- fold F ϕ < x > = ϕ (map F (fold F ϕ) x)

Unfortunately, this definition does not pass the termination checker since
the recursive call to fold is passed to the higher order function map
and the termination checker cannot see that map isn’t applying it to bad
things.

To make fold pass the termination checker we can fuse map and fold
into a single function mapFold F G ϕ x = map F (fold G ϕ) x defined
recursively over x. We need to keep two copies of the functor since fold
is always called on the same functor, whereas map is defined by taking its
functor argument apart.

mapFold : forall {X} F G -> ([G] X -> X) -> [F] (µ G) -> [F] X
mapFold |Id| G ϕ < x > = ϕ (mapFold G G ϕ x)
mapFold (|K| A) G ϕ c = c
mapFold (F1 |+| F2) G ϕ (inl x) = inl (mapFold F1 G ϕ x)
mapFold (F1 |+| F2) G ϕ (inr y) = inr (mapFold F2 G ϕ y)
mapFold (F1 |x| F2) G ϕ (x , y) = mapFold F1 G ϕ x , mapFold F2 G ϕ y

fold : {F : Functor}{A : Set} -> ([F] A -> A) -> µ F -> A
fold {F} ϕ < x > = ϕ (mapFold F F ϕ x)

There is a lot more fun to be had here, but let us make do with a
couple of examples. Both natural numbers and lists are examples of least
fixed points of polynomial functors:

NatF = |K| True |+| |Id|
NAT = µ NatF

Z : NAT
Z = < inl _ >

S : NAT -> NAT
S n = < inr n >

ListF = \A -> |K| True |+| |K| A |x| |Id|
LIST = \A -> µ (ListF A)

nil : {A : Set} -> LIST A
nil = < inl _ >

102

cons : {A : Set} -> A -> LIST A -> LIST A
cons x xs = < inr (x , xs) >

To make implementing the argument to fold easier we introduce a few
helper functions:

[_||_] : {A B C : Set} -> (A -> C) -> (B -> C) -> A ⊕ B -> C
[f || g] (inl x) = f x
[f || g] (inr y) = g y

uncurry : {A B C : Set} -> (A -> B -> C) -> A × B -> C
uncurry f (x , y) = f x y

const : {A B : Set} -> A -> B -> A
const x y = x

Finally some familiar functions expressed as folds.

foldr : {A B : Set} -> (A -> B -> B) -> B -> LIST A -> B
foldr {A}{B} f z = fold [const z || uncurry f]

plus : NAT -> NAT -> NAT
plus n m = fold [const m || S] n

Universes for overloading At the moment, Agda does not have a class
system like the one in Haskell. However, a limited form of overloading can
be achieved using universes. The idea is simply if you know in advance at
which types you want to overload a function, you can construct a universe
for these types and define the overloaded function by pattern matching
on a code.

A simple example: suppose we want to overload equality for some of
our standard types. We start by defining our universe:

open import Data.Nat
open import Data.List

data Type : Set where
bool : Type
nat : Type
list : Type -> Type
pair : Type -> Type -> Type

El : Type -> Set
El nat = Nat
El bool = Bool
El (list a) = List (El a)
El (pair a b) = El a × El b

103

In order to achieve proper overloading it is important that we don’t
have to supply the code explicitly everytime we are calling the overloaded
function. In this case we won’t have to since the decoding function com-
putes distinct datatypes in each clause. This means that the type checker
can figure out a code from its decoding. For instance, the only code that
can decode into Bool is bool, and if the decoding of a code is a product
type then the code must be pair of some codes.

Now an overloaded equality function simply takes an implicit code
and computes a boolean relation over the semantics of the code.

infix 30 _==_
== : {a : Type} -> El a -> El a -> Bool

== {nat} zero zero = true
== {nat} (suc _) zero = false
== {nat} zero (suc _) = false
== {nat} (suc n) (suc m) = n == m

== {bool} true x = x
== {bool} false x = not x

== {list a} [] [] = true
== {list a} (_ :: _) [] = false
== {list a} [] (_ :: _) = false
== {list a} (x :: xs) (y :: ys) = x == y and xs == ys

== {pair a b} (x1 , y1) (x2 , y2) = x1 == x2 and y1 == y2

In the recursive calls of _==_ the code argument is inferred automat-
ically. The same happens when we use our equality function on concrete
examples:

example1 : isTrue (2 + 2 == 4)
example1 = _

example2 : isTrue (not (true :: false :: [] == true :: true :: []))
example2 = _

In summary, universe constructions allows us to define functions by
pattern matching on (codes for) types. We have seen a few simple exam-
ples, but there are a lot of other interesting possibilities. For example

– XML schemas as codes for the types of well-formed XML documents,
– a universe of tables in a relational database, allowing us to make

queries which are guaranteed to be well-typed,

104

4 Conclusions

In these notes I have tried to give a reasonably complete introduction to
Agda and dependently typed programming. Even so, there are a lot of
things missing. To fill the gaps please visit the Agda Wiki and sign up to
the Agda mailing list:

– Wiki: http://www.cs.chalmers.se/~ulfn/Agda
– List: https://lists.chalmers.se/mailman/listinfo/agda

The wiki is at the moment very much under construction. Feel free to
add any information that you think is missing.

105

Libraries for Generic Programming in Haskell

Johan Jeuring, Sean Leather, José Pedro Magalhães, and
Alexey Rodriguez Yakushev

Utrecht University, The Netherlands

Abstract.

1 Introduction

Software development often consists of designing a datatype to which func-
tionality is added. Some functionality is datatype-specific. Other functionality
is defined on almost all datatypes, and only depends on the structure of the
datatype; this is called datatype-generic functionality. Examples of such func-
tionality include comparing two values for equality, searching a value for occur-
rences of a particular string or other value, editing a value, and pretty-printing
a value. Larger examples include XML tools, testing frameworks, debuggers,
and data conversion tools.

Until recently, an instance of a datatype-generic program on a particular
datatype was obtained by implementing the instance by hand. This is an error-
prone task: it is often boring and reduces the productivity of programmers.
Some programming languages provide standard implementations of basic data-
type-generic programs such as equality of two values and printing a value. In
this case, the programs are integrated into the language, and cannot be ex-
tended or adapted. So, how can we define datatype-generic programs our-
selves?

More than a decade ago the first programming languages appeared that
support the definition of datatype-generic programs. Using these programming
languages it is possible to define a generic program which can then be used on
a particular datatype without further work. Although these languages allow us
to define our own generic programs, they have never grown out of the research
prototype phase, and most cannot be used anymore.

The rich type system of Haskell allows us to write a number of datatype-
generic programs in the language itself. The power of classes, constructor classes,
functional dependencies, generalized algebraic data types, and other advanced
language constructs of Haskell is impressive, and since 2001 we have seen at
least 10 proposals for generic programming libraries in Haskell using one or
more of these advanced constructs. Using a library instead of a separate pro-
gramming language for generic programming has many advantages. The main
advantages are that a user does not need a separate compiler for generic pro-
grams and that generic programs can be used out of the box. Furthermore, a

106

library is much easier to ship, support, and maintain than a programming lan-
guage, which makes the risk of using generic programs smaller. The loss of ex-
pressiveness compared with a generic programming language such as Generic
Haskell is limited.

These lecture notes introduce generic programming in Haskell using libraries.
We will introduce several characteristic generic programming libraries, and we
will show how to use them to use and write generic programs. Furthermore, we
will introduce a number of medium-sized applications which support a student
with solving mathematical exercises. These ‘exercise assistants’ use a number of
components that are instances of generic programs. In the lab exercise for these
lectures, we ask you to take one of the three libraries introduced here, and use
that library to turn the exercise assistants into a generic program.

These notes are organised as follows. Section 2 puts generic programming
in context and introduces the various kinds of datatypes supported by Haskell
and common extensions. Section 3 introduces a large example in which generic
programming plays a rôle in several components. Section 4 introduces libraries
for generic programming, and briefly discusses the criteria we used to select the
libraries for these notes. Section 5 discusses the library known as a ‘Lightweight
Implementation of Generics’. Section 6 discusses the library Generics for the
Masses, and Section 7 discusses Scrap Your Boilerplate. Section 8 compares the
different libraries for generic programming in Haskell. Section 9 shows how
you can implement generic datatypes using associated datatypes in GHC, and
Section 10 concludes.

We have not been able to completely finish these lecture notes before the
school. We will add Sections 8 and 9 to the final version of these notes.

2 Introduction to generic programming

Generic programming has developed as a technique for increasing the amount
and scale of reuse in code while still preserving type safety. The term “generic”
is highly overloaded in computer science; however, broadly speaking, most
uses involve some sort of parametrisation. A generic program abstracts over
the differences in separate but similar programs. In order to arrive at specific
programs, one instantiates the parameter in various ways. It is the type of the
parameter that distinguishes how the concept of generic programming is inter-
preted.

In this section, we describe the concept of generic programming and put
it into context. Section 2.1 introduces a number of variations on the theme
of generic programming as well as demonstrates how they may be used in
Haskell. Section 2.2 reveals our focus on datatype-generic programming by dis-
cussing the world of datatypes. In our discussions, we attempt to provide un-
derstandable examples and, where possible, to use running examples in which
we implement equality and/or logic. This is in keeping with the background of
the exercise assistant introduced in Section 3.

107

2.1 Types of generic programming

There are many different variations of generic programming. Gibbons [Gib-
bons, 2007] lists 7 broad categories which we briefly review. In each of the fol-
lowing sections (titled according to the type of the parameter of the generic
abstraction), we give a general description of the relevant form of generics and
also provide an example of how to apply the technique in Haskell.

Value

The most basic form of generic programming is to parametrise a computation
by values. The idea goes by various names in programming languages: proce-
dure, subroutine, and function, and it is a fundamental element in mathematics.
While parametrisation by value is not generally considered under the defini-
tion of “generic,” it is perfectly reasonable to model other forms of genericity
as functions. In this case, the function g(x) represents a generic component g
that is parametrised by an entity x. Instantiation of the generic component is
then analogous to application of a function.

In Haskell, functions come naturally. For example, here is function that takes
two Boolean values as arguments and determines their basic equality.

eqBool :: Bool→ Bool→ Bool

eqBool a b = (not a ∧ not b) ∨ (a ∧ b)

Type

Commonly known as polymorphism, genericity by type refers to both type
abstractions (types parametrised by other types) and polymorphic functions
(functions with polymorphic types).

Haskell has excellent support for polymorphic datatypes and functions. The
canonical examples are the List datatype and the length function. We provide the
datatype for a list of Boolean values.

data List = Nil | Cons Bool List

We then offer a simple function for calculating the length of the list.

length :: List→ Int

length Nil = 0
length (Cons x xs) = 1 + length xs

It is clear from observation that the List datatype need not contain only
Boolean values. Notice also that length never makes use of the actual elements
of the list, rather it only counts the quantity. We can therefore abstract over the
type of the element and preserve the structure by redefining the List datatype
and the length function:

108

data List a = Nil | Cons a (List a)

length :: List a→ Int

length Nil = 0
length (Cons x xs) = 1 + length xs

List a is a datatype parametrised by another type, and length is now a poly-
morphic function that can be applied to a value of type List a for any a. Note
how the implementation of length remains the same; only the type has changed.
We must only apply the constructors and function to arrive at an instance for a
particular concrete type1.

blist :: List Bool

blist = Cons True (Cons False (Cons True Nil))

length blist 3

Function
If a function is a first-class citizen in a programming language, parametrisa-
tion of one function by another function is exactly the same as parametrisation
by value. However, we explicitly mention this category because it enables ab-
straction over control structure. The full power of functions parametrised by
functions can be seen in the higher-order functions of functional programming
languages such as Haskell and ML.

Suppose we have a list of Bool values and we want to determine both the
logical conjunction and logical disjunction of the list. We can define these func-
tions as follows.

and :: List Bool→ Bool

and Nil = True
and (Cons p ps) = p ∧ and ps

or :: List Bool→ Bool

or Nil = False
or (Cons p ps) = p ∨ or ps

Now that we can see the control structure of these functions, it is evident that
the same pattern of recursive operator application appears in both. To abstract
from this pattern, we look at the differences between and and or, and abstract
over those components.

foldr :: (a→ b→ b)→ b→ List a→ b

1 We use the notation a b to mean “in GHCi, expression a evaluates to b”.

109

foldr f n Nil = n
foldr f n (Cons x xs) = f x (foldr f n xs)

The pattern that is extracted is known in the Haskell standard library as foldr
(“fold from the right”). It captures the essence of the recursion in the functions
and and or, and accepts parameters for the binary logical operator and the value
for the Nil case. Now, we redefine and and or in simpler terms.

and = foldr (∧) True
or = foldr (∨) False

Interface

A generic program may also abstract over a given set of requirements, an inter-
face of sorts. In this case, a specific program can only be instantiated by parame-
ters that conform to this interface and the generic program will remain unaware
of any unspecified aspects of the parameters. Gibbons calls the set of required
operations the “structure” of the parameter; however, we think this may easily
be confused with the shape of a datatype discussed later. We propose that this
be called an interface.

This idea has been popularised by the C++ template system, in which a con-
cept embodies an implicit set of operations necessary for a template to be instan-
tiated. A concept is an implicit interface that specifies the operations necessary
for instantiation. Consider this trivial C++ template function for equality:

template 〈typename A〉
bool equals (A a1, A a2){

return a1 a2;
}

The interface of the type parameter A is the implicit requirement that a value
supports operator (). In specific terms, this means that when the template for
equals〈A〉() is expanded at the call site given a concrete type C (i.e. with the con-
straint that A≡ C), the compiler tries to find a declaration for operator (c1, c2).
If such a declaration is not found, the template cannot be instantiated. This is
different from parametric polymorphism, because the template function per-
forms an operation on values of type A, whereas a polymorphic function needs
no knowledge of A values.

Unlike the implicit concept in C++ templates, Haskell supports explicit spec-
ification of interfaces using type class constraints [Wadler and Blott, 1989], which
we illustrate with a function for determining whether or not two lists are equal.
Equality is of course not restricted to a single type. In fact, many different
datatypes support equality. But unlike length, equality must be implemented
differently for each type a in List a, because the equality operation requires in-
spection of the elements in the list. The code below defines the class of types
that support the equality (()) and inequality ((6)) operations.

110

class Eq a where
(), (6) :: a→ a→ Bool

a b = not (a 6 b)
a 6 b = not (a b)

The type class definition includes the types of the interface operations and de-
fault implementations. For a datatype to support the operations in the class Eq,
we create an instance of it. In our case, we will use Boolean equality as we have
defined it above.

instance Eq Bool where
() = eqBool

Now we implement our list equality function in a generic manner and the in-
stance Eq Bool ensures that it will work at least with Boolean values.

instance Eq a⇒ Eq (List a) where
Nil Nil = True
(Cons x xs) (Cons y ys) = x y ∧ xs ys

= False

So List a is an instance of the Eq type class with the provided implementation
of (). The Eq a ⇒ part of the instance declaration is the type-class context. It
imposes the constraint that the element type a supports the equality operation.

Property

Gibbons expands the concept of generic programming to include properties or
specifications of programs or program components. These are “generic” in the
sense that a specification may hold for multiple implementations. These prop-
erties may be informally or formally defined, and, depending on the language
or tool support, they may be encoded into a program, used as part of the testing
process, or just appear as text.

A simple example of a property is found once again in the implementation
of the equality function [Hudak et al., 1999]. A programmer using an instance
of the Eq type class above would likely expect that x y≡ not (x 6 y) for any
values of some type a such that x, y :: Eq a⇒ a. However, there is no guarantee
of this. Both () and (6) are provided as separate methods, and the compiler
cannot verify such a relationship. This informal law relies on programmers im-
plementing the operations as expected for all instances of Eq.

Another example where properties are useful in the specification of multiple
instances occurs in the concept of a monad. The concept comes from category
theory, and it was first applied to functional programming in order to structure
“impure” features such as state, exceptions, and continuations [Wadler, 1990].
Since then, uses for the monad have expanded to include general input and
output [Jones and Wadler, 1993], state threads [Launchbury and Jones, 1994],
and parser combinators [Hutton and Meijer, 1998], among others.

111

In Haskell, a particular monad is defined as an instance of the following
Monad type class:

class Monad m where
(>>=) :: m a→ (a→ m b)→ m b
return :: a→ m a

The instance must provide implementations for return and (>>=) (pronounced
“bind”), the two primary operators used to structure monadic code. We use the
Maybe datatype as an example:

data Maybe a = Nothing | Just a

instance Monad Maybe where
(Just x) >>= k = k x
Nothing >>= = Nothing
return = Just

The Maybe datatype serves as a simple failure-tracking mechanism. Com-
bined with the monadic structure, we can use it to string together multiple
computations that might fail:

computeSomething :: Int→ Maybe Int

computeSomething i = do j ← computeOrFail1 i
k← do x← computeOrFail2 j

y← computeOrFail3 x
return y

return k

If any of the computeOrFailn :: Int → Maybe Int functions fails with Nothing,
the statements following that function are not executed and computeSomething
fails. Note that this example uses Haskell’s do-notation which is a convenient
syntactic sugar for repeated applications of (>>=) [Peyton Jones et al, 2003].

The concept of the monad is not only specified by the type class Monad; it
also requires that the functions satisfy a number of laws:

return a >>= k ≡ k a -- left unit
m >>= return ≡m -- right unit
m >>= (λx→ k x >>= h)≡ (m >>= k) >>= h -- associative

These three laws ensure that composition of monadic binds are associative and
that return is both a left unit and a right unit of (>>=) [Wadler, 1992]. All in-
stances of the Monad class should obey these laws. While this property cannot
be directly verified by the compiler, it is important for allowing support of the
do-notation, especially nested do blocks as shown in computeSomething above.

Program Representation
There exist many techniques in which one program is parametrised by the rep-
resentation of another program (or its own). This area includes such techniques
as the following:

112

– Code generation, such as the generation of parsers and lexical analysers.
Happy [Marlow and Gill, 1997] and Alex [Dornan et al., 2003] are com-
monly used in Haskell for parser generation and lexical analysis, respec-
tively.

– Reflection or the ability of a program to observe and modify its own struc-
ture and behavior. Reflection has been popularized by programming lan-
guages that support some dynamic type checking such as Java [Forman and
Danforth, 1999], but some attempts have also been made in Haskell [Lämmel
and Peyton Jones, 2004].

– Multi-stage programming for separating computation into stages [Taha,
1999].

Gibbons describes these ideas as genericity by stage; however, some tech-
niques such as reflection do not immediately lend themselves to being staged.
We think that this category of is better described as metaprogramming or generic
programming in which the parameter is some form of program representation.

Perhaps the best known form of generic programming in this category is us-
ing C++ templates. The C++ template facility has led to a number of advanced
libraries such as Boost [Gurtovoy and Abrahams, 2002] as well as other un-
expected uses [Alexandrescu, 2001]. Partly inspired by C++ templates and the
multi-stage programming language MetaML [Sheard, 1999], Template Haskell
provides a metaprogramming extension to Haskell98 [Sheard and Peyton Jones,
2002].

We introduce the concept by example. An annoying itch in Haskell is the
need to explicitly write selection functions for tuples of different arities. The
standard library provides fst :: (a, b)→ a and snd :: (a, b)→ b, because pairs are
the most common form of tuples. But what about triples, quadruples, etc.? We
can use Template Haskell to scratch that itch.

We want to automatically generate functions such as these:

fst3 = λ(x, ,) → x
snd4 = λ(, x, ,)→ x

Using Template Haskell, we can write:

fst3 = $ (sel 1 3)
snd4 = $ (sel 2 4)

This demonstrates the use of the “splice” syntax, $(...), to evaluate the enclosed
“...” at compile time. Each call to $(sel i n) is expanded to a function that selects
the i-th component of a n-tuple. Consider the following implementation 2:

sel :: Int→ Int→ ExpQ

sel i n = lamE pats body

2 The code for sel is derived from the original example [Sheard and Peyton Jones, 2002]
with modifications to simplify it and to conform to the Language.Haskell.TH library
included with GHC 6.8.2.

113

where pats = [tupP (map varP as)]
body = varE (as !! (i− 1))
as = [mkName ("a"++ show j) | j← [1 . . n]]

In order to define sel, we need to create an abstract syntax recipe of the form
λ(a1, a2, ..., ai, ..., an) → ai. We pull each of our ingredients from the Template
Haskell libraries. First, we need a lambda expression (lamE) to create a func-
tion. A lambda expression requires a list of patterns on the left of the → and
an expression on the right. In our pattern, we use a tuple (tupP) and a list of
n variables (varP) whose names are generated (using mkName) based on their
position in the tuple. In the body of the lambda abstraction, we need an expres-
sion containing a variable (varE) that represents the i-th component. Finally, our
function creates an expression of type ExpQ that can subsequently be evaluated
within a splice.

Note that Template Haskell is type-safe and that a well-typed program can-
not “go wrong” at run-time [Milner, 1978]. In the first stage of Template Haskell
compilation, the expression inside the $(...) is type-checked. Next, this expres-
sion is compiled and executed, and the resulting piece of syntax is spliced into
place where the call is made. Finally, the resulting Haskell program is com-
pletely type-checked as if this were again the initial stage of compilation. To
put this into the context of our example above, compilation could fail for sev-
eral reasons, namely the function sel does not type-check or a call to $(sel i n)
generates code that does not type-check.

Template Haskell has also been explored for other uses in generic program-
ming. Most notably, it is possible to prototype datatype-generic extensions to
Haskell with Template Haskell [Norell and Jansson, 2004a].

Shape

Recall the implementation of equality as defined by the type class Eq. Note that
we gave only two instances, one for Bool and one for List a. In order for Eq to be
useful, we need to provide a large number of instances: one for every primitive
type and one for every algebraic datatype. While we cannot escape specialized
definitions for basic types such as Int and Char, we should be able to abstract
over the similarities of many algebraic datatypes. Intuitively, we can visualize
these similarities simply by reviewing the syntax for datatypes in Haskell:

data List a = Nil | Cons a (List a)

From our understanding of the data declaration, we know that List a is con-
structed by either a Nil or a Cons. This choice may be called a sum and denoted
by the + symbol. We see that the Cons takes two arguments, a and another
List a. We refer to this pair-like constructor as a product and use the × symbol.
A constructor that takes no arguments (such as Nil) also has the special des-
ignator of unit, often represented by 1 or 1. We can now reconstruct the List
datatype in the new formulation:

114

data List a = 1 + (a× List a)

The sum of products view allows us to abstract over the shape or structure of
a datatype. Each regular datatype can be formulated as an equation of sums,
products, and units. As another, slightly more complicated, example, take the
following Tree3 datatype with its sum of products view:

data Tree3 a = Twig | Leaf a | Branch (Tree3 a) a (Tree3 a)
data Tree3 a = 1 + (a + (Tree3 a× (a× Tree3 a)))

Tree3 has three alternatives: Twig, Leaf , and Branch. To simulate this in our bi-
nary + representation, we use right-associative nested sums. Additionally, we
use right-associative nested products to simulate the Branch constructor with
more than two arguments. Overall, these approaches simplify the view, since
the representation of any datatype only need the nullary unit and the binary
sum and product.

The sum of products view is used in projects such as Generic Haskell [Löh,
2004] to achieve datatype-generic programming. In fact, Generic Haskell pro-
vides us with a solution to the problem with our Eq type class mentioned above.
Consider this implementation of datatype-generic equality:

eq{|a :: ?|} :: (eq{|a|})⇒ a→ a→ Bool

eq{|Unit|} = True
eq{|Int|} x y = eqInt x y
eq{|Char|} x y = eqChar x y
eq{|a + b|} (Inl x) (Inl y) = eq{|a|} x y
eq{|a + b|} (Inl x) (Inr y) = False
eq{|a + b|} (Inr x) (Inl y) = False
eq{|a + b|} (Inr x) (Inr y) = eq{|b|} x y
eq{|a× b|} (x1 × y1) (x2 × y2) = eq{|a|} x1 x2 ∧ eq{|b|} y1 y2

The eq{|a :: ?|} function uses pattern matching on types to perform case anal-
ysis. Thus, each of the primitive types are specifically defined and the alge-
braic datatypes are supported with the generic sum of products view. We will
not explain this function in detail. We use Generic Haskell as an example of
a datatype-generic extension to Haskell, because it has a minimal syntax that
is relatively easy to understand. However, Generic Haskell is a language exten-
sion of Haskell for which we need a separate compiler/preprocessor to perform
specialization for functions such as eq{|a :: ?|} on the datatypes on which it is
needed. These lecture notes focus on library support for generic programming
instead.

There are generic views other than the sum of products. For example, we
may regard a datatype as a fixed-point, allowing us to make all recursion in
the datatype explicit. Another example is the spine view which we discuss in a
varient of the Scrap Your Boilerplate library in Section 7. For a more in-depth
study of generic views, refer to [Holdermans et al., 2006].

115

2.2 The world of Haskell datatypes

Datatypes play a central rôle in programming in Haskell. Solving a problem of-
ten consists of designing a datatype, and defining functionality on that datatype.
Haskell offers a powerful construct for defining datatypes: data. Haskell also
offers two other constructs: type to introduce type synonyms and newtype, a
restricted version of data. We will mainly use the data construct in these notes.

Datatypes come in many variations: we have finite, regular, nested, and
many more kinds of datatypes. This subsection introduces many of these vari-
ations of datatypes by example. Not all datatypes are pure Haskell 98, some
require extensions to Haskell. Many of these extensions are supported by most
Haskell compilers, some only by GHC. On the way, we will explain kinds and
show how they are used to classify types. In addition to the datatype defini-
tions, we will also define an equality function on the datatypes we introduce.
As we will see, the definitions of equality on the different datatypes follow the
same pattern. This pattern will be used to define a generic program for equality
later in these notes.

Monomorphic datatypes

We start our journey through datatypes with lists containing values of a partic-
ular type. For example, in the previous subsection we have defined the datatype
of lists of booleans:

data List = Nil | Cons Bool List

We define a new datatype, called List, which has two kinds of values: an empty
list (represented by the constructor Nil), or a list consisting of a boolean value
in front of another List. This datatype is the same as Haskell’s predefined list
datatype containing booleans, with [] and (:) as constructors. Since the datatype
List does not take any type parameters, it has base kind ?. Other examples of
datatypes of kind ? are Int, Char, [Maybe ()], etc.

Here is the equality function on this datatype:

eqListBool :: List→ List→ Bool

eqListBool Nil Nil = True
eqListBool (Cons b1 l1) (Cons b2 l2) = eqBool b1 b2 ∧ eqListBool l1 l2
eqListBool = False

Two empty lists are equal, and two nonempty lists are equal if their head ele-
ments are the same (which we check using equality on Bool) and their tails are
equal. An empty list and a nonempty list are unequal.

Polymorphic datatypes

We abstract from the datatype of booleans in the type List to obtain polymorphic
lists.

116

data List a = NilList | ConsList a (List a)

Compared with List, the List a datatype has a different functional structure:
its kind is ? → ?. Kinds represent the structure of datatypes, and are either ?
(base kind) or κ → ν, where κ and ν are kinds. Since List takes a base type as
argument, it has the functional kind ? → ?. Actually, nothing is known about
the type variable a, and in such a case, Haskell defaults its kind to ?.

Equality on polymorphic lists is almost the same as equality on lists of
booleans:

eqList :: (a→ a→ Bool)→ List a→ List a→ Bool

eqList eqa NilList NilList = True
eqList eqa (ConsList x1 l1) (ConsList x2 l2) = eqa x1 x2 ∧ eqList eqa l1 l2
eqList = False

The only difference with equality on List is that we need to have some means
of determining equality of the elements of the list, so we need an additional
equality function of type (a→ a→ Bool) as parameter3.

Families and mutually-recursive datatypes
A family of datatypes is a set of datatypes that may use each other. Below we
present a non-recursive family of datatypes, which represents a simplified rep-
resentation of a system of linear expressions. A system of linear equations is a
list of equations, in which an equation consists of two linear expressions. Here
is an example:

2 x + 3 y + z = 5
x − y = 1
x + y + z = 7

For simplicity, we assume linear expressions are values of type Expr a, a datatype
for arithmetic expressions. An arithmetic expression abstracts over the type of
constants, typically an instance of the Num class, and is a variable, a literal, or
the addition, subtraction, multiplication, or division of two arithmetic expres-
sions. Of course, the domain of expressions also contains non-linear expres-
sions, in which a variable is multiplied with itself or another variable, so this
description is not type-safe.

type LinearSystem = List LinearExpr

data LinearExpr = Equation (Expr Int) (Expr Int)
infixl 6 ×,÷
infixl 5 +,−
data Expr a = ExprVar String

3 Using Haskell’s type classes, this would correspond to replacing the type of the first
argument in the type of eqList by an Eq a⇒ constraint.

117

| Lit a
| Expr a + Expr a
| Expr a− Expr a
| Expr a× Expr a
| Expr a÷ Expr a

Even though these datatypes are defined in terms of each other, there is no
mutual recursion: Expr a is at the end of the hierarchy and is defined only in
terms of itself. Defining equality for LinearSystem is trivial and results in non-
mutually recursive equality functions.

However, datatypes in Haskell can also be mutually recursive, as can be
seen in the following example. A forest is either empty or a tree followed by a
forest, and a tree is either empty or a node of a forest:

data Tree a = Empty | Node a (Forest a)
data Forest a = Nil | Const (Tree a) (Forest a)

Defining the equality function for these datatypes amounts to defining the equal-
ity function for each datatype separately. The result is a set of mutually recur-
sive functions:

eqTree :: (a→ a→ Bool)→ Tree a→ Tree a→ Bool

eqTree eqa Empty Empty = True
eqTree eqa (Node a1 f1) (Node a2 f2) = eqa a1 a2 ∧ eqForest eqa f1 f2
eqTree = False

eqForest :: (a→ a→ Bool)→ Forest a→ Forest a→ Bool

eqForest eqa Nil Nil = True
eqForest eqa (Const t1 f1) (Const t2 f2) = eqTree eqa t1 t2 ∧ eqForest eqa f1 f2
eqForest = False

Higher-order kinded datatypes

Consider the following minimal datatype for logic expressions, together with
an equality function:

data Logics = Lit Bool
| Not Logics

| Or Logics Logics

eqLogics :: Logics → Logics → Bool

eqLogics (Lit x1) (Lit x2) = eqBool x1 x2
eqLogics (Not e1) (Not e′1) = eqLogics e1 e′1
eqLogics (Or e1 e2) (Or e′1 e′2) = eqLogics e1 e′1 ∧ eqLogics e2 e′2
eqLogics = False

118

Again, the equality function follows the pattern: for each pair of constructors
with the same name, either recursively compare their arguments pairwise, or,
if they do not take arguments, return True. Comparing different constructors
results in False.

But suppose we now want to use the fact that disjunction is associative, and
represent our Logics datatype as:

data LogicL = Lit Bool
| Not LogicL
| Or (List LogicL)

We can abstract from the “container type” List, which contains the subexpres-
sions, by introducing a type argument for it.

data LogicF f = Lit Bool
| Not (LogicF f)
| Or (f (LogicF f))

We have introduced a type variable, and so LogicF does not have kind ? as its
predecessors. However, its kind is also not ? → ?, as we have seen previously
in the List datatype, because the type argument that LogicF expects is not a base
type, but a “type transformer”: we can see in the application f (LogicF f) that
f is applied to an argument. The kind of LogicF is thus: (? → ?) → ?. This
datatype is a higher-order kinded datatype.

To better understand abstraction over container types, consider the follow-
ing type:

type Logic′L = LogicF List

Modulo undefined values, Logic′L is isomorphic to LogicL. The type argument
of LogicF describes what “container” will be used for the elements of the Or
case.

Defining equality for the Logic′L datatype is simple:

eqLogic′L
:: Logic′L → Logic′L → Bool

eqLogic′L
(Lit x1) (Lit x2) = eqBool x1 x2

eqLogic′L
(Not x1) (Not x2) = eqLogic′L

x1 x2

eqLogic′L
(Or l1) (Or l2) =

length l1 length l2 ∧ and (zipWith eqLogic′L
l1 l2)

eqLogic′L
= False

Note that we use the zipWith :: (a → b → c) → List a → List b → List c
function because we know the container is the list type.

We can also provide the equality function for the LogicF type:

eqLogicF :: (∀a . (a→ a→ Bool)→ f a→ f a→ Bool)→
LogicF f → LogicF f → Bool

119

eqLogicF eqf (Lit x1) (Lit x2) = eqBool x1 x2
eqLogicF eqf (Not x1) (Not x2) = eqLogicF eqf x1 x2
eqLogicF eqf (Or x1) (Or x2) = eqf (eqLogicF eqf) x1 x2
eqLogicF = False

This definition is considerably more complex than the previous one. The added
complexity is caused by the fact that we do not know what the “container” type
is, and therefore we have to abstract from an equality function on such a type.
However, since that type is just a container, its equality function also needs to
abstract from an equality function on the contained type! This requires the use
of rank-2 polymorphism, a common extension to Haskell, and is indicated by
the presence of the ∀a in the type signature of eqLogicF . When invoking this
function, the user supplies the first argument (the equality function on the f-
type).

Nested datatypes
A regular data type is a recursive, parametrised type whose definition does
not involve a change of the type parameter(s). All the datatypes we have in-
troduced so far are regular. However, it is also possible to define so-called
nested datatypes [Bird and Meertens, 1998]. In a nested datatype, recursive oc-
currences of the datatype have other type arguments than the datatype being
defined. Perfect binary trees are an example of such a datatype:

data Perfect a = Leaf a | Node (Perfect (a, a))

Any value of this datatype is a full binary tree in which all leaves are at the
same depth. This is attained by using the pair constructor in the recursive call
for the Node constructor. An example of such tree is:

perfect = Node (Node (Node (Leaf (((1, 2), (3, 4)), ((5, 6), (7, 8))))))

Here is the equality function on Perfect:

eqPerfect :: (∀a . a→ a→ Bool)→ Perfect b→ Perfect b→ Bool

eqPerfect eqa (Leaf x1) (Leaf x2) = eqa x1 x2
eqPerfect eqa (Node x1) (Node x2) = eqPerfect eqa x1 x2
eqPerfect = False

This definition is again very similar to the equality on datatypes we have in-
troduced before. An interesting aspect of this definition is that it needs rank-2
polymorphism (as in eqLogicF), since the type of the elements at the leaves de-
pends on how deep the tree is.

Existentially quantified datatypes
Many of the datatypes we have seen take arguments, and in the type of the con-
structors of these datatypes, these type argument are universally quantified. For

120

example, the constructor ConsList of the datatype List a has type a → List a →
List a for all types a. However, we can also use existential types, which “hide”
a type variable that only occurs under a constructor. Consider the following
example:

data Dynamic = ∀a . Dyn (Rep a) a

The type Dynamic encapsulates a type a and its representation, a value of type
Rep a. We will encounter this datatype later in these lecture notes (Section 5),
where it is used to check and convert between types at run-time in a type-
safe fashion. Despite the use of the ∀ symbol, the type variable a is said to
be existentially quantified because it is only available inside the constructor
— Dynamic has kind ?. Existential datatypes are typically used to encapsulate
some type with its corresponding actions: in the above example, the only thing
we can do with a Dynamic is inspect its representation. Other important ap-
plications of existentially quantified datatypes include the implementation of
abstract datatypes, which encapsulate a type together with a set of operations.
Existential datatypes are not part of the Haskell 98 standard, but they are a
fairly common extension.

The definition of equality on an existentially quantified datatype may be
problematic. We can only compare two values if the operations provided by the
constructor allow us to compare two values. For example, if the only operation
provided by the constructor is a string representation of the value, we can only
compare the string representation of two values. In Section 5 we will show how
to compare two dynamic values.

Generalized algebraic data types

Another powerful extension to the Haskell 98 standard are generalized alge-
braic data types (GADTs). A GADT is a datatype in which different constructors
may have related but different result types. Consider the following example,
where we combine the datatypes Logics and Exprs shown before in a datatype
for statements:

data Stat a where
Val :: Expr Int → Stat (Expr Int)
Term :: Logics → Stat Logics

If :: Stat Logics → Stat a → Stat a→ Stat a
Write :: Stat a → Stat ()
Seq :: Stat a → Stat b→ Stat b

The new aspect here is the ability to give each constructor a different result type
Stat.... This has the advantage that we can describe the type of the different
constructors more precisely. For example, the type of the If constructor now
says that the first argument of the If should return a logic expression, and the
expressions returned in the then and else branches may be of any type, as long
as they have the same type.

121

Defining equality of two statements is still a matter of repeating similar
code:

eqStat :: Stat a→ Stat b→ Bool

eqStat (Val x1) (Val x2) = eq Expr () x1 x2
eqStat (Term x1) (Term x2) = eqLogics x1 x2
eqStat (If x1 x2 x3) (If x′1 x′2 x′3) = eqStat x1 x′1 ∧ eqStat x2 x′2 ∧ eqStat x3 x′3
eqStat (Write x1) (Write x2) = eqStat x1 x2
eqStat (Seq x1 x2) (Seq x′1 x′2) = eqStat x1 x′1 ∧ eqStat x2 x′2
eqStat = False

We have shown many kinds of datatypes and an example of a function that
offers functionality needed for many datatypes. We have seen that we can de-
fine these functions ourselves, but the code quickly becomes repetitive and
tedious. Furthermore, if the datatypes change, the definitions will have to be
changed accordingly. This is not only inefficient and time-consuming but also
error-prone. In the next chapter we will introduce a larger example in which
many different datatypes naturally arise, on which we have to implement the
same functionality. This example will further illustrate the need for generic pro-
gramming.

3 Lab assignment: Exercise Assistants

At the Open University NL and Utrecht University, we are developing several
exercise assistants. We have developed an exercise assistant that supports in-
teractively solving a system of linear equations [Passier and Jeuring, 2006], an
assistant that supports calculating a disjunctive normal form (DNF) of a logical
expression [Lodder et al., 2006], and an assistant that supports several kinds
of exercises within linear algebra. A screenshot of the assistant that supports
calculating a DNF of a logical expression is shown in Figure 1.

The different exercise assistants can be viewed as instances of a generic pro-
gram, but they have not been implemented using generic programming tech-
niques. As a consequence, each time we get a request for an exercise assistant on
a new domain, which happens not infrequently, we have to reimplement quite a
lot of boilerplate code for the new domain. We have done so with the domains
of arithmetics expressions, used in exercises about simplifying fractions, and
relational algebra, used in exercises for normalizing relational algebra expres-
sions. We would like to simplify creating an instance of the exercise assistant
for a new domain, by making the exercise assistants instances of a generic pro-
gram.

In this lab assignment it is your task to take any of the libraries discussed
in the following sections, and to use the library to implement (parts of the)
exercise assistants as a generic program.

122

Fig. 1. The Exercise Assistant

This section introduces exercise assistants. We first give some general back-
ground behind these assistants. Then we discuss the generic components which
are needed to turn the instances of a generic program into a generic program.
Divide the lab into three parts:

– analyse which generic components can be implemented using the library
you have selected;

– implement these generic components as stand-alone generic programs;
– replace the uses of datatype-specific code in the exercise assistants with in-

stances of the generic programs.

We think this lab exercise is rather ambitious, but it should not be too hard to
make some progress in the first part.

In this lab assignment you can use the following materials:

– modules that implement the different generic programming libraries for
Haskell;

– modules that implement the various exercise assistants.

For the first part of the lab assignment you only need one of the library mod-
ules, for the second part you’ll need the code for the exercise assistants.

3.1 An introduction to exercise assistants

This subsection introduces our exercise assistants. We describe the characteris-
tics of exercise assistants, their user interface, and their main components. We
will use our exercise assistant that supports solving exercises about calculating
a DNF of a logical expression as the running example.

123

Characteristics. The exercise assistants we are building have the following char-
acteristics:

– An assistant is interactive, so a student solves an exercise step by step and
receives semantically rich feedback after each erroneous step. Using this
feedback, a student can correct his or her mistake or adjust the solving strat-
egy.

– A student enters and rewrites expressions in the working area. This ap-
proach mimics the pen-and paper situation as close as possible; a student
can make syntactical as well as semantical mistakes.

– Feedback is produced automatically. For example, the exercise assistant
that supports calculating the DNF of a logical expression, gives feedback
about any errors made in any of the exercises. The feedback need not be
specified with every exercise, but is automatically calculated based on the
exercise, the available rewrite rules, possibly the known “buggy” rewrite
rules [Brown and VanLehn, 1980], the strategy for solving the exercise, and
the expression entered by the student. The feedback is not hard coded, but
is generated algorithmically on the level of rewrite steps and of the strategy
for solving the exercise.

The distinguishing feature of our assistants is that they give very good feed-
back. Although giving good feedback is generally acknowledged to be vital for
learning [Mory, 2003], current e-learning systems that support incrementally
solving exercises lack sophisticated techniques for giving feedback. We hope to
improve upon this situation.

The user interface and feedback. The user interface of the exercise assistant, shown
in Figure 1, consists of four text fields and nine buttons. The current exercise as-
sistant combines all the kinds of exercises we support in a single application.
The top-left bottom is set to ‘Proposition to DNF’, other kinds of exercises that
can be selected here are ‘Simplifying fractions’, ‘Gaussian elimination’, etc. Fig-
ure 1 shows the exercise assistant halfway solving an exercise, just after a user
has clicked the Hint button.

The text fields. The top-left text field shows the current term, in this case the
logical formula that has to be transformed to DNF. The current formula to be
rewritten is ((~r || q) /\ ~r) || (~(~r || q) /\ ~~r), where ~ denotes
logical negation ¬, and || denotes logical or ∨. The second text field is the
working area in which the student stepwise edits the logical formula into a
DNF. The third top-right text field displays the derivation that the student has
performed until now, with the justification of the steps (the name of the rewrite
rules that have been applied) in between the terms. Finally, the fourth text-field
displays feedback to the student. Since the student has asked for a hint, it tells
the student to use the rule ‘DeMorganOr’. If a student applies a rule correctly,
it tells the student which rule has been applied. If a student applies a rule that
does not fit the strategy for the exercise it tells the student to step back and
try again. We have not yet added detailed feedback for when a buggy rule is
applied.

124

The buttons. A student selects the particular kind of exercises to practice with
the top-left button. The top-right button is then used to generate a new exercise,
which is presented in the top-left text field and the working area. After editing
the formula, a student clicks the Submit button to obtain feedback, and the
Undo button to undo the last step (or any amount of steps). If a student wants
a hint, he or she clicks the Hint or Step button. Clicking the Hint button gives a
suggestion about how to proceed, whereas clicking the Step button gives a de-
tailed next step. If for example the current formula is ¬q ∨ ¬(t ∧ t), clicking the
Hint button gives the message: “You can apply the De Morgan rule”, and clicking
the Step button gives the message “Apply the De Morgan rule on ¬(t ∧ t), giving
¬t∧¬t”. The Next button performs the next step in the calculation. This button
can be used to play the stepwise solution of an exercise for a student. The Ready
button is clicked when a student thinks the exercise is correctly solved. If the
formula is not yet in DNF, the exercise assistant gives the massage: “Sorry, you
have not yet reached a solution”, and otherwise “Congratulations: you have reached
a solution!”. If a student has solved an exercise, but does not click the Ready
button, the exercise assistant gives the feedback “No more steps left to do”.

Feedback messages. A student can make different kinds of mistakes when solving
an exercise in our exercise assistants:

– syntactical mistakes, for example when a student writes ¬(q∧ (t∧)) instead
of ¬(q ∧ (t ∧ t)) (the and operator ∧ needs two arguments) or a formula
with a missing parenthesis;

– rewrite step mistakes, such as forgetting to change a disjunction into a con-
junction when applying the De Morgan rule. For example ¬(t∧ t) is rewrit-
ten to ¬t ∧ ¬t instead of ¬t ∨ ¬t;

– strategic mistakes, such pushing the operator or to top level before all nega-
tions have been pushed in front of constants or variables. This is not a real
mistake, but it is not a clever way to solve the exercise, since after pushing
the negations down, the operator or has to be pushed to top level again.

The exercise assistant reports the syntactical mistakes using Swierstra’s error-
correcting parsers [Swierstra and Duponcheel, 1996]. At the moment the er-
ror message is rather basic, but this can easily be improved. We can either use
the generic feedback provided by the error-correcting parsers, or we can give
domain-specific syntactic error messages [Horacek and Wolska, 2006]. When a
student performs an erroneous rewrite step, this is reported. We have devel-
oped techniques for explaining erroneous rewrite steps, but they have not yet
been included in our exercise assistant. Finally, when a student makes a strate-
gic mistake, the assistant tells the student about it, and asks to try again. At the
moment the message does not contain any detail, but pressing undo and ask-
ing for a hint will tell the student what the assistant expects at this point in the
exercise.

125

3.2 The main components

To model intelligence in a computer program, Bundy [Bundy, 1983] identifies
three important, basic needs:

– The need to have knowledge about the domain.
– The need to reason with that knowledge.
– The need for knowledge about how to direct or guide that reasoning.

Our exercise assistants take instantiations of these needs as input. Each exercise
assistant needs a domain description (for example: systems of linear equations,
or logical expressions), together with a concrete representation of the domain
(how are the expressions presented to the student); rules for reasoning about
the domain (for example: multiplication distributes over addition, de Morgan
for logical expressions); and one or more strategies for solving exercises in the
domain (for example: first move occurrences of ¬ in front of logical variables,
and then distribute ∧ over ∨ to obtain an expression in DNF).

This subsection briefly illustrates these three needs for the domain of logic
expressions. Then we discuss the components of the exercise assistants that
only depend on the structure of the domain for which the exercise assistant
has been developed. These components should be implemented as generic pro-
grams.

The domain of logic expressions
The domain. A logic expression is a value of a datatype that is an extension of
the datatype logicS defined in Section 2.2. It is a logic variable, a constant true
or false (written True and False), the negation of a logic expression, or the dis-
junction, implication, or equivalence of two logic expressions. Note that we use
True, False, ∧, and ∨ as constructor names of Logic expressions in this section,
instead of functions on the basic Haskell datatype Bool. In the other sections of
these notes, these names denote the standard functions on Bool, unless explic-
itly stated otherwise.

infixr 1↔
infixr 2→
infixr 3 ∨
infixr 4 ∧
data Logic = LogicVar String

| True
| False
| ¬Logic
| Logic→ Logic
| Logic↔ Logic
| Logic ∧ Logic
| Logic ∨ Logic

If necessary, we write parentheses to resolve ambiguities. Examples of valid
expressions are ¬(p∨ (q∧ r)) and ¬(¬p↔ p).

126

Basic Rules:
Constants: ANDTRUE : p∧ True = p ORTRUE : p∨ True = True

NOTTRUE : ¬True = False ANDFALSE : p∧ False = False
ORFALSE : p∨ False = p NOTFALSE : ¬False = True

Definitions: IMPLDEF : p→ q = ¬p∨ q
EQUIVDEF : p↔ q = (p∧ q) ∨ (¬p∧ ¬q)

Negations: DEMORGANAND : ¬(p∧ q) = ¬p∨ ¬q NOTNOT : ¬¬p = p
DEMORGANOR : ¬(p∨ q) = ¬p∧ ¬q

Distribution: ANDOVEROR : p∧ (q∨ r) = (p∧ q) ∨ (p∧ r)

Additional Rules:
Tautologies: ORTAUT : p∨ ¬p = Ty EQUIVTAUT : p↔ p = True

IMPLTAUT : p→ p = True

Contradic-
tions:

ANDCONTR : p∧ ¬p = False EQUIVCONTR : p↔¬p = False

Fig. 2. Rules for logic expressions

The rules. Logic expressions form a boolean algebra, and hence a number of
rules for logic expressions can be formulated. Figure 2 presents a small col-
lection of basic rules and some tautologies and contradictions. All variables in
these rules are meta-variables and range over arbitrary logic expressions. The
rules are expressed as equivalences, but are only applied from left to right. For
most rules we assume to have a commutative variant, for instance, True∧ p = p
for rule ANDTRUE. With these implicit rules, we can bring every logic expression
to disjunctive normal form.

Every serious exercise assistant for this domain has to be aware of a much
richer set of rules. In particular, we have not given rules for commutativity
and associativity, several plausible rules for implications and equivalences are
omitted, and the list of tautologies and contradictions is far from complete.

Strategy 1: apply rules exhaustively. The first strategy applies the basic rules from
Figure 2 exhaustively: we proceed as long as we can apply some rule somewhere,
and we will end up with a logic expression in disjunctive normal form. This
is a special property of the chosen collection of basic rules, and this is not the
case for a rule set in general. The strategy is very liberal, and approves every
sequence of rules.

Strategy 2: four steps. Strategy 1 accepts sequences that are not very attractive,
and that no expert would ever consider. We give two examples:

¬¬(p∨ q) DEMORGANOR=⇒ ¬(¬p∧ ¬q) True∨ (¬¬p) NOTNOT=⇒ True∨ p

127

In both cases, it is more appealing to select a different rule (NOTNOT and ORTRUE,
respectively). We define a new strategy that proceeds in four steps, and such
that the above sequences are not permitted.
• Step 1: Remove constants from the logic expression with the rules for ”con-

stants” (see Figure 2), supplemented with constant rules for implications
and equivalences. Apply the rules top-down, that is, at the highest possible
position in the abstract syntax tree. After this step, all occurrences of True
and False are removed.
• Step 2: Use IMPLDEF and EQUIVDEF to rewrite implications and equiva-

lences in the formula. Proceed in a bottom-up order.
• Step 3: Push negations inside the expression using the rules for ”nega-

tions”, and do so in a top-down fashion. After this step, all negations appear
directly in front of a logic variable.
• Step 4: Use the distribution rule (ANDOVEROR) to move disjunctions to top-

level. The order is irrelevant.

Strategy 3: tautologies and contradictions. Suppose that we want to extend Strat-
egy 2, and use rules expressing tautologies and contradictions (for example, the
additional rules in Figure 2). These rules introduce constants. Our last strategy
is as follows:
• Follow the four steps of Strategy 2, however:
• Whenever possible, use the rules for tautologies and contradictions (top-

down), and
• clean up the constants afterwards (step 1). Then continue with Strategy 2.

Buggy rules. In addition to the collection of rules and a strategy, we can formu-
late buggy rules. These rules capture mistakes that are often made, such as the
following unsound variations on the two De Morgan rules:

BUGGYDM1 : ¬(p∧ q) 6= ¬p∧ ¬q BUGGYDM2 : ¬(p∨ q) 6= ¬p∨ ¬q

The advantage of formulating buggy rules is that specialized feedback can be
presented if the system detects that such a rule was applied. Note that these
rules should not appear in strategies, since that would invalidate the strategy.

The idea of formulating buggy rules can easily be extended to buggy strate-
gies. Such a strategy helps to recognize common procedural mistakes, in which
case we can report a detailed message.

Other domains in the exercise assistants

Besides exercises about rewriting logic expressions, our exercise assistants offer
exercises about simplifying arithmetic expressions, in particular fractions. The
datatype for arithmetic expressions has been defined in Section 2.2. We omit the
rewriting rules and normalisation strategies for arithmetic expressions.

Other exercises in the exercise assistant deal with solving a system of lin-
ear equations, which is a value of type LinearSystem a, also introduced in Sec-
tion 2.2. Since the datatype LinearSystem a also contains non-linear systems, we

128

use a slightly more restricted variant of this datatype, which prohibits the use
of non-liner expressions, in the code for the exercise assistant.

Finally, the exercise assistants supports several kinds of exercises on matri-
ces, such as Gaussian elimination. We view a matrix as a list of rows of expres-
sions. All rows have to be equally long.

newtype Matrix a = M [[Expr a]]

The rewrite rules on matrices consist, amongst others, of the elementary row
operations for switching rows, multiplying a row, and adding rows.

Generic components

Adapting exercise assistants. For an e-learning tool to be successful, users have to
be able to adapt the presentation of domains, the solving strategy of exercises,
the kinds of exercises, and even the domains themselves. Since we have started
working on the exercise assistants, we frequently get requests for instantiations
of the exercise assistant on other domains. The code for the different domains
is very similar, and we do not want to repeat implementing boilerplate code.

Furthermore, when improving our tools in a non-domain-specific way, we
do not want to repeat the same improvements for all the tools we have built.
To support the possibility to adapt the several components, to avoid code du-
plication and maximize code reuse, we want to develop generic programs that
implement part of the functionality of exercise assistants.

Generic programs. We can distinguish several functions in the exercise assistants
that can be implemented as generic programs. These functions deal with:

– rewriting expressions, including matching,
– determining whether or not two expressions are equal, determining the dis-

tance between two expressions, possibly after normalisation,
– generating exercises,
– traversing expressions,
– selecting within expressions,
– serialization.

We introduce each of these components below.

Rewriting. The basic concept behind the exercise assistant is that a student
rewrites an expression, until a solution to the exercise is reached. So for each
domain, we need to specify rewrite rules, and we have to apply rewrite rules
to expressions. To specify rewrite rules, we have to add (meta-)variables to
the domain. Logic expression may contain logic variables, but the variables
used in the rewrite rules for logic expressions in Figure 2 are meta-variables.
It follows that we either have to adapt the domain with an extra constructor
for meta-variables, or that we can distinguish meta-variables from variables
in the variable constructor in some way. Adding a variable to a datatype can

129

be done generically, but it is not a generic program, but a generic (or type-
indexed) datatype [Hinze et al., 2002]. In Section 9 we will show how to use as-
sociated datatypes [Chakravarty et al., 2005a] to implement such type-indexed
datatypes.

The first step in rewriting an expression consists of matching the left-hand
side of a rewrite rule with the current expression. The result of matching a left-
hand side of a rewrite rule with an expression is either nothing, or a substitu-
tion, binding meta-variables to expressions. If matching succeeds, we replace
the current term with the right-hand side of the rewrite rule, to which we apply
the substitution.

Equality and minimum edit distance. Equality is used in all domains, amongst
others to verify that a student has reached a solution. All domains also have a
definition of equivalence, which implements semantic equality. The definition
of equivalence varies for the different domains, but we expect it can be defined
generically by applying the strategy to both terms, and using standard equality
on the result. At the moment equivalence is a domain-specific function, but it
often uses the fold on the domain.

When a student makes a rewrite step mistake, the exercise assistant reports
this. We would like to replace this message by a more informative message,
which also tries to explain a likely cause of the error. One way to find out a
likely cause for the error is to rewrite the previous term in all possible, correct,
ways, and to determine the difference between the terms obtained, and the term
submitted by the student. The difference can be calculated using a generic pro-
gram for determining the minimum edit distance between two trees.

Generating exercises. Each strategy determines a class of exercises which can be
solved using the strategy. We want to generate random instances, within some
constraints, of such exercises for students to practice. For example, for Gaus-
sian elimination we want to generate random matrices, but we want to make
sure that the solution is not too complicated. Preferably, the solution is a matrix
consisting of entries that are relatively small integers. We use QuickCheck to
generate exercises. The generators on different domains are very similar, and
we want to have a generic program that abstracts from these instances.

Term traversals. The second strategy for rewriting a logic expression to DNF
given in the previous subsection bottom-up eliminates all∨’s that appear below
top level, using the rule that says that ∧ distributes over ∨, in its last step. To
perform a rewrite rule bottom-up, or top-down, we first have to traverse to
the lowest level in the term, try the rewrite rule, and then move up. It follows
that we need functions for traversing terms. Here we use the usual strategic
combinators for term transformations [Visser, 2005]. In the exercise assistants,
all of these combinators are implemented in terms of the traversal function once,
which takes a rewrite rule as argument and applies it to one of the children
of the top-level constructor. This function is currently implemented using the
Uniplate [Mitchell and Runciman, 2007] library.

130

Selections. One of the extensions to the exercise assistants that we are imple-
menting is that students may select a subexpression, and ask for possible rewrite
rules for that subexpression. Before we can present the possible rewrite rules,
we want to check if a selected subexpression is valid. A subexpression is valid
if it can be assigned a type. Checking whether or not a subexpression is valid
or not can partially be built into the parser for the domain, and depends on
the concrete syntax of the domain, but given the right parser combinators, we
expect this functionality can be defined generically.

Serialization. We offer services that provide feedback given a term and a loca-
tion in a strategy. These feedback services communicate with outside parties
to exchange terms, strategies, and feedback messages. For communication pur-
poses, we have to exchange information. At the moment, we exchange informa-
tion via an XML format. This implies that we have to serialize our data to XML,
and read XML into our services. Serializing and deserializing can partially be
implemented as a generic program.

3.3 Implementing generic components

Study the Haskell libraries for generic programming presented in the follow-
ing sections, pick your choice, analyse which generic components can be im-
plemented using the library, and try to implement some of the above generic
programs in this library. If you accomplish this in a reasonable amount of time,
try to replace the domain-specific functionality in the exercise assistants by your
generic programs.

4 Libraries for generic programming

Datatype-generic programming has been around for more than 10 years now.
The first approaches to datatype-generic programming used programming lan-
guage extensions to describe generic functions. Since the beginning of this de-
cennium quite a number of libraries for generic programming in Haskell have
been developed. The rationale for developing a library for generic program-
ming instead of a language extension is that Haskell is powerful enough to
support most generic programming concepts by means of a library. Further-
more, compared with a language extension, a library is much easier to ship,
support, and maintain. A library might be accompanied by tools that depend
on non-standard language extensions, for example for generating embedding-
projection pairs, but the core is Haskell.

The libraries for generic programming have different characteristics. Re-
cently, an extensive comparison of generic programming libraries (and their
characteristics) has been performed [Rodriguez et al., 2008]. In these notes we
will discuss three of those libraries: a Lightweight Implementation of Gener-
ics and Dynamics, Extensible and Modular Generics for the Masses, and Scrap
Your Boilerplate.

131

We focus on these three ibraries for a number of reasons. First, we think
these libraries are representative examples: one library explicitly passes a type
representation as argument to a generic function, another relies on the type
class mechanism, and the third is traversal- and combinator-based. Further-
more, all three have been used for a number of generic functions, and are rel-
atively easy to use for parts of the lab exercise given in these notes. Finally, all
three of them can express many generic functions; the Uniplate library [Mitchell
and Runciman, 2007] is also representative and eays to use, but Scrap Your Boil-
erplate is more powerful.

The example libraries show different ways to implement the essential in-
gredients of generic programming libraries. Support for generic programming
consists of three essential ingredients: a run-time type representation, a generic
view on data, and support for overloading.

A type-indexed function (TIF) is a function that is defined on every type of a
family of types. We say that the types in this family index the TIF, and we call
the type family a universe. The run-time representation of types determines the
universe on which we can pattern match in a type-indexed function. The larger
this universe, the more types the function can be applied to.

A type-indexed function only works on the universe on which it is defined.
If a new datatype is defined, the type-indexed function cannot be used on this
new datatype. There are two ways to make it work on the new datatype. A
non-generic extension of the universe of a TIF requires a type-specific, ad-hoc
case for the new datatype. A generic extension (or a generic view) of a universe
of a TIF requires to express the new datatype in terms of the universe of the TIF
so that the TIF can be used on the new datatype without a type-specific case. A
TIF combined with a generic extension is called a generic function.

An overloaded function is a function that analyses types to exhibit type-
specific behavior. Type-indexed and generic functions are special cases of over-
loaded functions. Many generic functions even have type-specific behavior:
lists are printed in a non-generic way by the generic pretty-printer defined by
deriving Show in Haskell.

In the next sections we will see how to encode these basic ingredients in the
three libraries we chose. For each library, we present its run-time type represen-
tation, the generic view on data and how overloading is achieved.

5 Lightweight Implementation of Generics and Dynamics

This section introduces generic programming in a simplified form of the data-
type-generic programming library Lightweight Implementation of Generics and
Dynamics (LIGD, [Cheney and Hinze, 2002]).

5.1 An example function

In polymorphic lambda calculus it is impossible to write a single parametri-
cally polymorphic equality function that works on all datatypes [Wadler, 1989].

132

That is why the definition of equality in Haskell uses type classes, and ML uses
equality types. The Eq type class provides the equality operator , which is
overloaded for a family of types. To add a newly defined datatype to this fam-
ily, the programmer defines an instance of equality for it. Thus, the programmer
manually writes definitions of equality for every new datatype that is defined,
as we did in Section 2. For equality, this process could be automated by using
the type class deriving mechanism. However, this mechanism can only be used
with a small number of type classes, because it is hardwired into the language,
making it closed and impossible to extend or change by the programmer. In
this subsection we show how equality is defined once and for all datatypes in
LIGD.

The equality function geq takes three arguments: the two values of type a to
compare, and a representation of the type of these values Rep a.

geq :: Rep a→ a→ a→ Bool

Function geq is defined by pattern matching on the representation type Rep. The
representation type contains a constructor for the unit type, which represents
types with a single value, for the sum type, which represents a choice between
two types, and for the product type, which represents a pair of types. We will
introduce the type Rep and its constructors in the following subsection. Func-
tion geq is an example of a TIF.

geq (RUnit) Unit Unit = True
geq (RInt) i j = i j
geq (RChar) c d = c d
geq (RSum ra rb) (Inl a1) (Inl a2) = geq ra a1 a2
geq (RSum ra rb) (Inr b1) (Inr b2) = geq rb b1 b2
geq (RSum ra rb) = False
geq (RProd ra rb) (Prod a1 b1) (Prod a2 b2) = geq ra a1 a2 ∧ geq rb b1 b2

Note that the run-time type-representation argument of function geq of type
Rep a represents the type of the following two arguments, namely a. The type
Unit, represented by RUnit, contains a single value Unit. Since there is only a
single value of type Unit, two values of the type are always equal. For the Int
type and the Char type we use the equality functions that are available for these
types. For the Sum type we first check if the two values have the same outermost
constructor (Inl or Inr). If so, we recursively compare their arguments, using the
type representation of the type of those arguments. For the product type Prod
we pairwise compare the components of the product, using the representation
types of the types of these components. Function geq is type-safe, in the sense
that the the two arguments that we want to compare have the same type, given
by the run-time type representation Rep a. If an argument would have another
type, Haskell’s type-checker would complain at compile-time.

133

5.2 Run-time type representation

In LIGD, the first argument of a type-indexed function is a run-time type repre-
sentation, which describes the type of the the arguments, results, or both argu-
ments and results, of the function. The type representation need not appear as
the first argument, but this is standard practice. In the variant of LIGD we give
in these notes, types are represented by a generalized algebraic data type. Using
a GADT has the advantage that case analysis on types can be implemented by
pattern matching, a familiar construct to functional programmers. The GADT
represents the types of the universe consisting of units, sums and products, to-
gether with basic types such as integers and characters. Of course, there are
many more basic types, such as floats, doubles, etc, but we only include Int and
Char.

data Unit = Unit
data Sum a b = Inl a | Inr b
data Prod a b = Prod a b

Unit is an example of a type with a single constructor with no arguments.
The Sum datatype is equal to the datatype Either in Haskell’s prelude. The Prod
equals the pair (tuple) type in Haskell. We have chosen to use new datatypes
to represent type representations at run-time, to not mix the world of type rep-
resentations and other types. The GADT Rep uses these datatypes to represent
the structure of types.

data Rep t where
RUnit :: Rep Unit
RInt :: Rep Int
RChar :: Rep Char
RSum :: Rep a→ Rep b→ Rep (Sum a b)
RProd :: Rep a→ Rep b→ Rep (Prod a b)

The original LIGD was developed before GADTs had been added to Haskell
and used an existentially quantified datatype instead. GADTs make it easier to
define these structure types.

5.3 Going generic: universe extension

If we define a datatype, how can we use our type-indexed function on this
new datatype? In LIGD (and most other generic programming libraries), the
introduction of a new datatype does not require redefinition or extension of all
existing generic functions. We merely need to describe the new datatype to the
library, and all existing and future generic functions will be able to handle it.

In LIGD, the structure of a datatype b is represented by the following Rep
constructor.

RType :: Rep c→ EP b c→ Rep b

134

The type c is the structure representation type of b, where c is a type isomorphic
to b. The isomorphism is witnessed by an embedding projection pair, which is
a pair of functions that convert b values to c values and back.

data EP b c = EP{ from :: (b→ c), to :: (c→ b)}

In LIGD, constructors are represented by nested sum types and constructor ar-
guments are represented by nested product types. The structure representation
type for lists is Sum Unit (Prod a (List a)), and the embedding projection for
lists is as follows:

fromList :: List a→ Sum Unit (Prod a (List a))
fromList Nil = Inl Unit
fromList (Cons a as) = Inr (Prod a as)
toList :: Sum Unit (Prod a (List a))→ List a

toList (Inl Unit) = Nil
toList (Inr (Prod a as)) = Cons a as

To extend the universe to lists, we write a type representation using RType:

rList :: Rep a→ Rep (List a)
rList ra = RType (RSum RUnit (RProd ra (rList ra)))

(EP fromList toList)

Note that the components of the pair are not embedded in the universe. The
reason for this is that LIGD does not model recursion explicitly.

We defined a type-indexed function for equality above. This definition still
misses a case to handle datatypes that are represented by RType. The defini-
tion of this case is given below. It takes two values, transforms them to their
structure representations and recursively applies equality.

geq (RType ra ep) t1 t2 = geq ra (from ep t1) (from ep t2)

Adding this line to the definition of geq turns it into a generic function.
In summary, there are two ways to extend a universe to a type T. A non-

generic extension requires type-specific, ad-hoc cases for T in type-indexed
functions, and a generic-extension requires a structure representation of T but
no additional function cases. This is the feature that distinguishes type-indexed
functions and generic functions. The latter include a case for RType, which al-
lows them to exploit the structure of a datatype in order to apply generic uni-
form behaviour to values of that datatype; while the former do not have a case
for RType, and therefore rely exclusively on non-generic extension.

In LIGD, sums, products and units are used to represent the structure of a
datatype. Certainly other choices are possible. For example, PolyLib includes
the datatype Fix in the universe, in order to represent the recursive structure
of datatypes. We refer to these representation choices as generic views [Holder-
mans et al., 2006]. Informally, a view consists of base (or view) types for the

135

universe (for example Sum and Prod) and a convention to represent structure,
for example, representing constructors by nested sums. Usually the choice of
a view will have an impact on the expressiveness of a library, that is, which
generic functions definitions are supported and what are the set of datatypes
on which generic extension is possible.

Exercise 1. Give the representation of the datatypes Tree and Forest in terms of
Rep.

5.4 Support for overloading

Function geq can be viewed as an implementation of deriving Eq in Haskell
itself. Similarly, we can define define functions that implement the methods of
the other classes that can be derived in Haskell: Show, Read, Ord, Enum, and
Bounded. We will show a definition of a generic show function. Besides illus-
trating generic programming in the library in general, implementing a generic
show function illustrates how a library deals with constructor names, and how
a library deals with ad-hoc cases for particular datatypes. For example, we do
not want a generic show function to show a string ”abc” as a list with explicit
occurrences of constructor names: Cons ’a’ (Cons ’b’ (Cons ’c’ Nil)).

The type representations as discussed in the previous section do not con-
tain any information about constructors, and hence it is impossible to define
a generic show function using this representation. To deal with constructor
names, we add an extra constructor to the structure type representation type.

RCon :: String→ Rep a→ Rep a

Using this extra constructor of Rep, the representation of the datatype List a
becomes:

rList :: Rep a→ Rep (List a)
rList ra = RType (RSum (RCon "Nil" RUnit)

(RCon "Cons" (RProd ra (rList ra))))
(EP fromList toList)

Here is a first attempt at defining a generic show function:

gshow :: Rep t→ t→ ShowS
gshow RInt t = shows t
gshow RChar t = shows t
gshow RUnit t = showString ""
gshow (RSum ra rb) (Inl a) = gshow ra a
gshow (RSum ra rb) (Inr b) = gshow rb b
gshow (RProd ra rb) (Prod a b) = gshow ra a . showString " " . gshow rb b
gshow (RType ra ep) t = gshow ra (from ep t)
gshow (RCon s RUnit) t = showString s
gshow (RCon s ra) t = showChar ’(’

136

. showString s . showChar ’ ’ . gshow ra t

. showChar ’)’

This definition works for all datatypes, but it shows strings and Haskell’s lists
in a uniform way, using constructor names. We want to extend this function
so that it behaves in a special, non-generic way for the type of strings, and
Haskell’s list datatype [a].

For each type for which we want a generic function to behave in a special,
non-generic, way, we have to extend the representation type. For example, to
solve the problem with showing strings and lists, we add the following con-
structors to the representation type Rep:

RString :: Rep String
RList :: Rep a→ Rep (List a)

Now we can add the following lines to the generic show function to obtain
type-specific behavior for the type String and [a].

gshow (RList ra) Nil = showString "[]"
gshow (RList ra) (Cons x xs) = gshow ra x . showChar ’:’ . gshow (RList ra) xs
gshow RString s = showString s

The resulting function does not implement all details of deriving Show, but
it does provide the core functionality.

Note that we had to adapt the type representation type Rep to obtain type-
specific behavior in the gshow function. It is undesirable to adapt a library for
the purpose of obtaining special behavior of a single generic function on a par-
ticular datatype. Unfortunately, this is unavoidable in the LIGD library: for any
generic function that needs special behavior on a particular datatype, we have
to extend the type representation with that datatype. This implies that many
users will construct their own variant of the LIGD library, making both the li-
brary and the generic functions written using it less portable and reusable. Löh
and Hinze [2006] show how to add open datatypes to Haskell. A datatype is open
if it can be extended in a different module. In a language with open datatypes,
the above problem with LIGD would disappear.

5.5 Generic functions in LIGD

This section introduces some more generic functions in LIGD, in particular
some functions for which we need different type representations. We start with
a simple example of a generic program.

Empty

With every type we can associate an empty value. For example, the empty value
of type Int is 0, and the empty value of type List a is []. Function gempty is a

137

generic function that returns the empty value for an arbitrary type. An inter-
esting aspect of this function is that it constructs a value of a type, instead of
consuming a value, as in geq and gshow.

gempty :: Rep a→ a

gempty RUnit = Unit
gempty RInt = 0
gempty RChar = ’\NUL’
gempty (RSum ra rb) = Inl (gempty ra)
gempty (RProd ra rb) = Prod (gempty ra) (gempty rb)
gempty (RType ra ep) = to ep (gempty ra)
gempty (RCon s ra) = gempty ra

Exercise 2. Another generic function that constructs values of a datatype is the
function genum :: Rep a → [a], which generates all values of a type. Many
datatypes have infinitely many values, so it is important that function genum
enumerates values fairly. Implement genum in LIGD.

Flatten
Many datatypes can be considered ”container” datatypes: datatypes used to
store and structure values. Examples are the datatypes List a, Tree a, Forest a,
Expr a, all introduced in Section 2.2. One of the few datatypes introduced in
Section 2.2 that is not a container datatype is the datatype Logics. A common
function on a container datatype is the function flatten, which takes a value
of the datatype, and returns a list containing all values that it contains. For
example, on the datatype Tree a function flatten would have type Tree a→ [a].
This subsection explains how the generic flatten function gflatten is defined in
LIGD.

To implement function gflatten, we have to solve a number of problems. A
first problem is to describe its type. A first, incorrect, attempt would be the
following:

gflatten :: Rep f → f a→ [a]

where f abstracts over types of kind ? → ?. Since Rep has kind ? → ?, this
gives a kind error. Replacing Rep f by Rep (f a) would solve the kinding prob-
lem, but introduces another: how do we split the representation of a container
datatype into a representation for f and a representation for a? Type application
is implicit in our type representation. We solve this problem by adapting the
structure representation type for LIGD with an extra case RVar1 which is used
to define special functionality for occurrences of the type argument in construc-
tors.

data Rep1 f a where
RUnit1 :: Rep1 f Unit

138

RSum1 :: Rep1 f a→ Rep1 f b→ Rep1 f (Sum a b)
. . .
RVar1 :: f a→ Rep1 f a

Except for its type, the representation of lists using this new representation type
does not change.

rList,1 :: Rep1 f a→ Rep1 f (List a)
rList,1 ra = RType1 (RSum1 (RCon1 "Nil" RUnit1)

(RCon1 "Cons" (RProd1 ra (rList,1 ra))))
(EP fromList toList)

To obtain an instance of the generic function gflatten on the datatype List a we
write:

flattenList :: List a→ [a]
flattenList = gflattenT rList,1

To specify the type of gflattenT we introduce a newtype GFlatten, together with
an abbreviation for a representation type Rep1 in which the action for type vari-
ables has been instantiated with GFlatten:

newtype GFlatten b a = GFlatten{gFlatten :: a→ b}
type a :⇒ b = Rep1 (GFlatten b) a

which is used in specifying what to do with an occurrence of a value of the type
variable. Function mkFlatten specifies what to do with such an occurrence: store
it in a list by means of the function (:[]).

mkFlatten :: a :⇒ [a]
mkFlatten = RVar1 (GFlatten (:[]))

Function gflatten now takes a function which transforms a representation of the
action on variables a :⇒ [a] to a representation of the argument datatype b :⇒
[a], and a value of the argument datatype b, and returns the list of occurrences
of the values of the type variable [a].

gflattenT :: ((a :⇒ [a])→ (b :⇒ [a]))→ b→ [a]
gflattenT repTransform = gflatten (repTransform mkFlatten)

where gflatten is the generic function that does the pattern matching on the
structure representation type.

gflatten :: b :⇒ [a]→ b→ [a]
gflatten RUnit1 Unit = []
gflatten (RSum1 ra rb) (Inl a) = gflatten ra a
gflatten (RSum1 ra rb) (Inr b) = gflatten rb b

139

gflatten (RProd1 ra rb) (Prod a b) = gflatten ra a ++ gflatten rb b
gflatten RInt1 i = []
gflatten RChar1 c = []
gflatten (RCon1 ra) x = gflatten ra x
gflatten (RType1 ra ep) x = gflatten ra (from ep x)
gflatten (RVar1 f) x = gFlatten f x

Exercise 3. Many generic functions follow the pattern of the generic flatten func-
tion. Examples are a function that sums all the integers in a value of a datatype,
and a function that takes the boolean or of all boolean values in a value of
a datatype. We implement this pattern by function gcrush. Section 6 defines
crushRight, which is a variant from the gcrush function.

Function gcrush abstracts from the functionality at occurrences of the type
variable, and from the base case [] and the binary case ++ in the definition of
flatten. Its type is as follows.

newtype Crush b a = Crush{crush :: a→ b}
gcrush :: Rep1 (Crush b) a→ (b→ b→ b)→ b→ a→ b

Define function gcrush.
Instantiate gcrush with the addition operator, 0, and a value of a datatype

containing integers to obtain a generic sum function, to test if your function
implements the desired behavior.

Generalised map

A well-known generic function is the generic gmap function, which is a gener-
alisation of the map function available on lists in Haskell. The map function in
Haskell takes a function and a list as argument, and applies the function to all
elements in the list. The generic gmap function takes a function of type a → b
and a value of a datatype containing a’s, and applies the function to all the a’s
in the value. Function gmap can be viewed as the implementation of deriving
for the Functor type class in Haskell. Just as function gflatten, the generic map
function needs to know where the occurrences of the type-argument of the
datatype appear in a constructor. This implies that we have to be able to ab-
stract over type constructors. If we use the representation type Rep1 to imple-
ment the generic map function, we can only define a map function in which the
argument function returns a value of either a type that only depends on a, or a
constant type. This is because the constructor RVar1 has type f a → Rep1 f a.
We use the RVar1 constructor to specify the behavior at occurrences of values
of the type variable, and to specify a function of type a → b there, we need an
extra type variable. Since we want to be able to change the type of the values
occurring in a datatype using the generic map function, we change the repre-
sentation datatype once more.

140

data Rep2 f a b where
RUnit2 :: Rep2 f Unit Unit
RSum2 :: Rep2 f a b→ Rep2 f c d→ Rep2 f (Sum a c) (Sum b d)
. . .
RVar2 :: f a b→ Rep2 f a b

The only difference with the representation type Rep1 is the occurrence of the
extra type variable b in the representation type and all constructors. The repre-
sentation of lists using this new representation type hardly changes: we get an
extra embedding-projection pair for the extra type variable.

rList,2 ra = RType2 (RSum2 (RCon2 "Nil" RUnit2)
(RCon2 "Cons" (RProd2 ra (rList,2 ra))))

(EP fromList toList)
(EP fromList toList)

Using rList,2, function map on lists is obtained as follows:

mapList :: (a→ b)→ List a→ List b

mapList = gmap rList,2

where gmap is defined below. To define function gmap we follow the same ap-
proach as for defining gflatten. First we introduce the type GMap for functions,
and the type a :→ b for a mapping in the representation type

newtype GMap a b = GMap{gMap :: a→ b}
type (a :→ b) = Rep2 GMap a b

Function mkMap specifies what to do with an occurrence of a value of the type
variable, namely applying the argument function.

mkMap :: (a→ b)→ (a :→ b)
mkMap f = RVar2 (GMap f)

Function gmap now takes a function which transforms a representation of the
action on variables a :→ b, a function, and a value of a datatype, and returns a
value of the same shape, in which the argument function has been applied to
all values appearing at the type variable position in the constructors.

gmap :: ((a :→ b)→ (c :→ d))→ (a→ b)→ (c→ d)
gmap repTransform f = gmapG (repTransform (mkMap f))

where gmapG is the generic function that does the pattern matching on the
structure representation type.

Note that if we pass the representation transformer rList,2 to gmap, the type
of its first argument is unified to a :→ b:

rList,2 :: (a :→ b)→ (List a :→ List b)

141

Applying gmap to rList,2 results in a function of the desired type (a → b) →
List a→ List b.

gmapG :: (a :→ b)→ a→ b

gmapG RUnit2 Unit = Unit
gmapG (RSum2 ra rb) (Inl a) = Inl (gmapG ra a)
gmapG (RSum2 ra rb) (Inr b) = Inr (gmapG rb b)
gmapG (RProd2 ra rb) (Prod a b) = Prod (gmapG ra a) (gmapG rb b)
gmapG RInt2 i = i
gmapG RChar2 c = c
gmapG (RCon2 nm ra) x = gmapG ra x
gmapG (RType2 ra ep1 ep2) x = (to ep2 . gmapG ra . from ep1) x
gmapG (RVar2 f) x = gMap f x

Since the last two generic functions we have introduced both require a new
structure representation type, one might wonder if this would happen for many
generic functions. As far as we are aware, these extensions stop at level 3. We
could use the datatype Rep3 for all of our generic functions, but that would
introduce many type variables which are never used, so we prefer to use the
representation type that is most suitable for the generic function at hand.

Exercise 4. Define the generalised version of function zipWith :: (a→ b→ c)→
[a] → [b] → [c] in LIGD. You may adapt the structure representation type for
this purpose.

6 Generics for the Masses

This section introduces generic programming as described by “Generics for
the Masses” [Hinze, 2006], specifically the extensible and modular variation
(“EMGM”) [d. S. Oliveira et al., 2006].

6.1 An example function

Defining a generic function in the EMGM library involves several steps. First,
we declare the type signature of a function in a newtype declaration.

newtype Geq a = Geq{geq′ :: a→ a→ Bool}

Since geq′ is a method in a record, we need to pass a record when using it, so
the actual type of geq′ is as follows:

geq′ :: Geq a→ a→ a→ Bool

An element of Geq a contains an instance of the equality function for a repre-
sentation of a type a. In fact, we can use this function in a way very similar to
geq in Section 5:

142

geq′ (prod char int) (Prod ’Q’ 42) (Prod ’Q’ 42) True

By passing the representation to the type-indexed function geq′, we specialize it
for a given datatype. We could imagine the following functions as dispatchers
for each specialization.

geq1 Unit Unit = True
geqint i j = i j
geqchar c d = c d
geq+ ra rb (Inl a1) (Inl a2) = geq′ ra a1 a2
geq+ ra rb (Inr b1) (Inr b2) = geq′ rb b1 b2
geq+ = False
geq× ra rb (Prod a1 b1) (Prod a2 b2) = geq′ ra a1 a2 ∧ geq′ rb b1 b2

We can read this in the same fashion as a type-indexed function in LIGD. In-
deed, if we compare the collection of functions here with geq from Section 5, we
notice a high degree of similarity. But instead of one function, we have three,
each corresponding to the Unit, Sum, or Prod datatype. Another major differ-
ence with LIGD is that the the type representation parameters are explicit and
not embedded in the Rep datatype. Specifically, each function takes the appro-
priate number of representations according to its arity; thus, geq1 has none and
geq+ and geq× each have two.

These functions are only part of the story, however. Notice that geq+ and
geq× each call the generic function geq′. We need to tie the recursive knot, so
that geq′ will now refer to each of these functions. We do this by creating an
instance declaration:

instance Generic Geq where
unit = Geq geq1

int = Geq geqint
char = Geq geqchar
plus ra rb = Geq (geq+ ra rb)
prod ra rb = Geq (geq× ra rb)

The type class Generic has member functions corresponding to structure types.
Each method binding defines the instance of the generic function for the associ-
ated type. Our dispatcher functions are now used to construct elements of Geq.
Although the EMGM approach uses method overriding instead of the pattern
matching of LIGD, it still effectively provides a case analysis on types.

We now have all of the necessary parts to use the type-index function geq′;
however, we should not need to provide an explicit representation every time.
So, we introduce a convenient wrapper that determines which type representa-
tion we need.

geq :: Rep a⇒ a→ a→ Bool
geq = geq′ rep

143

We discuss the Rep type class in more detail in the next section. For now, we
may think of the class context here simply as a requirement that type a be rep-
resentable. The value rep is witness to that representation.

6.2 Run-time type representation

In contrast with LIGD’s use of a generalized abstract datatype, EMGM makes
extensive use of type classes for its run-time type representation. The primary
classes are Generic and Rep, though others may be used to extend the basic con-
cepts of EMGM as we will see later in Section 6.3.

The class Generic serves as the type case for generic functions.

class Generic g where
unit :: g Unit
int :: g Int
char :: g Char
plus :: g a→ g b→ g (Sum a b)
prod :: g a→ g b→ g (Prod a b)

The class is parametrised by the type constructor g with the intention that it
represent the type of a generic function. As a result, the generic function has to
be embedded in a datatype as is the function geq′.

Each method of the class represents a case of the generic function. The func-
tion supports the same universe of types as LIGD (e.g. Unit, Sum, Prod, and
primitive types). Also like LIGD, the structural induction is implemented through
recursive calls, but unlike LIGD, these are polymorphically recursive. Thus,
each call to the generic function may have a different type.

The generic function as we have defined it to this point is a deconstructor
for the type g. As such, it requires an instance of g, the type representation. In
order to alleviate this requirement, we use another type class:

class Rep a where
rep :: Generic g⇒ g a

The class Rep allows us to replace any instance of the type g with rep. This is a
simple but powerful concept. We use the type system to find the right represen-
tation for us. This representation is again built inductively using the methods
of Generic:

instance Rep Unit where
rep = unit

instance Rep Int where
rep = int

instance Rep Char where
rep = char

instance (Rep a, Rep b)⇒ Rep (Sum a b) where

144

rep = plus rep rep
instance (Rep a, Rep b)⇒ Rep (Prod a b) where

rep = prod rep rep

As simple as these instances of Rep are, they handle an important duty. In the
function geq, we use rep to implicitly instantiate the structure of the arguments.
Now, we may apply geq with the same ease of use as any ad-hoc polymorphic
function, but it is actually datatype-generic.

6.3 Going generic: universe extension

Much like in LIGD, we need to extend our universe to include any new datatypes
that we create. Just as with LIGD, we extend our type-indexed functions with a
case to support arbitrary datatypes.

class Generic g where
. . .
datatype :: EP b a→ g a→ g b

Our datatype function reuses the embedding-projection pair datatype EP men-
tioned earlier to witness the isomorphism between the structure representation
and the datatype. Note the similarity with the RType constructor from LIGD.

To demonstrate the use of datatype, we will once again show how the List
datatype may be represented generically. As mentioned before, we use the same
universe as LIGD, so we can make use of the same pair of functions, fromList and
toList, in the embedding projection for lists. Using this pair and an encoding of
the list structure at the value level, we define a representation of lists:

rList :: Generic g⇒ g a→ g (List a)
rList ra = datatype (EP fromList toList) (plus unit (prod ra (rList ra)))

It is now straightforward to apply a generic function to a list. To make it con-
venient, we create a new instance of Rep for List a with the constraint that the
contained type a must also be representable:

instance Rep a⇒ Rep (List a) where
rep = rList rep

At last, we can transform our type-indexed equality function into a true
generic function. For this, we need to add another case for arbitrary datatypes.

geqdt ep ra a1 a2 = geq′ ra (from ep a1) (from ep a2)

instance Generic Geq where
. . .
datatype ep ra = Geq (geqdt ep ra)

145

The so-call “dispatcher” function geqdt accepts any datatype for which an embed-
ding-projection pair has been defined. It is very similar to the arm of the LIGD
function geq for RType. The instance definition for datatype means that the recur-
sive knot has been tied for geq which is now a generic function.

Exercise 5. Give representations for the datatypes LogicL and LogicF from Sec-
tion 2.2. Follow the definition of rList, and include the embedding-projection
pairs. You may need to define representations of other datatypes in the process.
Test your results using geq.

6.4 Support for overloading

In this section, we provide a definition for another generic function, while si-
multaneously demonstrating how the EMGM library can support constructor
names and ad-hoc cases. Just as with LIGD, we illustrate support for overload-
ing with gshow along with a non-generic definition for lists.

Currently, we cannot access information such as constructor names in the
definition of a generic function. For this purpose, we add another “case” to our
generic function declaration.

type Name = String

class Generic g where
. . .
constr :: Name→ g a→ g a

We use this class method to label other type components with a name. As an
example of using constr, we extend the list type representation:

rList :: Generic g⇒ g a→ g (List a)
rList ra = datatype (EP fromList toList) (plus (constr "Nil" unit)

(constr "Cons" (prod ra (rList ra))))

Using the capability to display constructor names, we can write a simplified
generic show function:

newtype Gshow a = Gshow{gshow′ :: a→ ShowS}

gshow1 Unit = showString ""

gshowint i = shows i
gshowchar c = showChar c
gshow+ ra rb (Inl a) = gshow′ ra a
gshow+ ra rb (Inr b) = gshow′ rb b
gshow× ra rb (Prod a b) = gshow′ ra a . showChar ’ ’ . gshow′ rb b
gshowdt ep ra a = gshow′ ra (from ep a)

146

gshowconstr s ra a = showChar ’(’ .
showString s . showChar ’ ’ . gshow′ ra a .
showChar ’)’

instance Generic Gshow where
unit = Gshow gshow1

int = Gshow gshowint
char = Gshow gshowchar
plus ra rb = Gshow (gshow+ ra rb)
prod ra rb = Gshow (gshow× ra rb)
datatype ep ra = Gshow (gshowdt ep ra)
constr s ra = Gshow (gshowconstr s ra)

gshow :: Rep a⇒ a→ ShowS
gshow = gshow′ rep

Applying this function to a list of integers gives us the expected result:

(gshow (Cons 5 (Cons 3 Nil))) "" "(Cons 5 (Cons 3 (Nil)))"

As mentioned in Section 5, we would prefer to see this list appear as it natively
does in Haskell: "[5,3]". We would also rather see the String type appear as a
row of characters instead of a list with constructor names. To this end, just as
we added constructors to the Rep GADT, we can add methods to the Generic
type class.

class Generic g where
. . .
list :: g a→ g (List a)
string :: g String

It is then straightforward to define these new cases for the generic show func-
tion.

gshowlist ra Nil = showString "[]"
gshowlist ra (Cons a as) = gshow′ ra a . showChar ’:’ . gshow′ (list ra) as
gshowstring s = showString s

instance Generic Gshow where
. . .
list ra = Gshow (gshowlist ra)
string = Gshow gshowstring

147

Our last step, as expected, is to make these types representable. We replace the
previous instance of Rep for List a with one using the list method, and we add a
new instance for String.

instance Rep a⇒ Rep (List a) where
rep = list rep

instance Rep String where
rep = string

Now, when we revisit our example application of gshow to a list, we receive a
more concise response: "5:3:[]". We can further adapt the definition of gshowlist
to obtain [5, 3] instead.

We have extended the representation for generic functions to support ad-
hoc list and string cases. In order to do that, we modified the primary element:
the Generic type class. This approach fails when the module containing Generic
is distributed as a library. Users of the library either choose a different route for
ad-hoc cases, or they duplicate the functionality. Fortunately, there is a solution
to making a Generics for the Masses library extensible and modular.

6.5 Making generic functions extensible

We know that modifying the type class Generic should be off limits, so we might
consider a hierarchy of classes. Generic would be the base class of all generic
functions, and users would introduce subclasses for ad-hoc cases. Let us revisit
the list example.

class Generic g⇒ GenericList g where
list :: g a→ g (List a)
list = rList

This declaration introduces the subclass GenericList encoding a list representa-
tion. The default value of list is the same value that we determined previously,
but it can be overridden in an instance declaration. For the ad-hoc case of the
generic show function, we would use an instance with the same implementa-
tion as before:

instance GenericList Gshow where
list ra = Gshow (gshowlist ra)

We have regained ground on our previous implementation of an ad-hoc case,
yet at the same time, we have lost some. We can apply our generic function to
a type representation and a value (e.g. (gshow′ (list int) (Cons 3 Nil)) ""), and
it will evaluate as expected. However, we can no longer use the same means of
dispatching the appropriate representation with ad-hoc cases. What happens if
we attempt to write the following instance of Rep?

instance Rep a⇒ Rep (List a) where
rep = list rep

GHC gives us this error:

148

Could not deduce (GenericList g)
from the context (Rep (List a), Rep a, Generic g)
arising from a use of ‘list’ at ...

Possible fix:
add (GenericList g) to the context of
the type signature for ‘rep’ ...

We certainly do not want to follow GHC’s advise. Recall that the method rep
of class Rep has the type (Generic g, Rep a) ⇒ g a. By adding GenericList g to
its context, we would force all generic functions to support both Generic and
GenericList, thereby ruling out any modularity. In order to use Rep as it is cur-
rently defined, we must use a type g that is an instance of Generic; instances of
any subclasses are not valid.

Let us instead abstract over the type constructor g. We subsequently rede-
fine Rep as a type class with two parameters.

class Rep g a where
rep :: g a

A small matter of migrating the parametrisation of the type constructor to the
class level and lifting the restriction of the Generic context opens the universe
to a new round of representations. We now re-introduce the representative in-
stances.

instance Generic g⇒ Rep g Unit where
rep = unit

instance Generic g⇒ Rep g Int where
rep = int

instance Generic g⇒ Rep g Char where
rep = char

instance (Generic g, Rep g a, Rep g b)⇒ Rep g (Sum a b) where
rep = plus rep rep

instance (Generic g, Rep g a, Rep g b)⇒ Rep g (Prod a b) where
rep = prod rep rep

instance (GenericList g, Rep g a)⇒ Rep g (List a) where
rep = list rep

The organization here is very regular. Every instance handled by a method of
Generic is constrained by Generic in its context. For the ad-hoc list instance, we
use GenericList instead. This is the key to true extensibility and modularity in
the EMGM library.

Now, we rewrite our generic show function to use the new dispatcher by
specialising the type constructor argument g to Gshow.

gshow :: Rep Gshow a⇒ a→ ShowS
gshow = gshow′ rep

149

Exercise 6. The standard compare function returns the ordered relationship (“less
than,” “equal to,” or “greater than”) between two instances of some type a.

data Ordering = LT | EQ | GT
compare :: (Eq a, Ord a)⇒ a→ a→ Ordering

This function can be implemented by hand, but more often it is generated by the
compiler using deriving Ord. The latter uses the syntactic ordering of construc-
tors to determine the relationship. For example, the datatype Ordering derives
Ord and its constructors have the relationship LT < EQ < GT.

Implement an extensible generic version of compare that behaves like deriving Ord
and works with representable types. It should have a type signature similar to
the following:

gcompare :: a→ a→ Ordering

6.6 Generic functions in EMGM

In this section, we discuss the implementations of different sorts of generic
functions. Some require exploring alternative strategies from the approach de-
scribed so far.

Empty

A simple example of a generic producer is one that generates an “empty” value
for every possible type. We write the generic empty function in EMGM as fol-
lows:

newtype Gempty a = Gempty{gempty′ :: a}

instance Generic Gempty where
unit = Gempty Unit
int = Gempty 0
char = Gempty ’\NUL’
plus ra rb = Gempty (Inl (gempty′ ra))
prod ra rb = Gempty (Prod (gempty′ ra) (gempty′ rb))
datatype ep ra = Gempty (to ep (gempty′ ra))
constr s ra = Gempty (gempty′ ra)

gempty :: Rep Gempty a⇒ a
gempty = gempty′ rep

There are a few notable differences here from previous examples. First, notice
the use of gempty′ with the type Gempty→ a. The generic function simply takes

150

a representation and produces a value, no other arguments are provided. In
order to generate a value with a concrete type, we would evaluate it like this:

gempty :: Sum Int Char Inl 0

Second, we use the to destructor of EP instead of from in the datatype method of
Generic. This is the signature of a producer function.

Crush and flatten

So far in this section, we have dealt with generic functions abstracted over fi-
nite and fully applied types (with kind ?). We should also investigate how to
deal with type constructors (kind ? → ?). There are many such “container”
datatypes that use parametric polymorphism to store values of various types
with a common structure.

We explore the realm of type constructors with the implementation of a
generic crush function and a generic flatten operation (the latter is implemented
using the former). Crush is a fold-like operation over a datatype [Meertens,
1996]. We want to end up with a function similar to this:

crushRight :: (a→ b→ b)→ b→ f a→ b

Function crushRight takes three arguments: a “combining” operator that joins
a-values with b-values to create new b-values, a “zero” value, and a container f
parameterized by a. crushRight (sometimes called reduce) is a generalization of
the standard Haskell right-fold, foldr. In foldr, f is specialized to [].

We split the implementation of crushRight into components, and we begin
with the type signature for the combining function.

newtype Crush b a = Crush{crushRight′ :: a→ b→ b}

This function extracts the container’s element (the a type) and combines it in
some way with a partial result (the b type) to produce a final result. The imple-
mentation is fairly straightforward4:

crushRight1 e = e
crushRightint e = e
crushRightchar e = e
crushRight+ ra rb (Inl a) e = crushRight′ ra a e
crushRight+ ra rb (Inr b) e = crushRight′ rb b e
crushRight× ra rb (Prod a b) e = crushRight′ ra a (crushRight′ rb b e)
crushRightdt ep ra a e = crushRight′ ra (from ep a) e
crushRightconstr s ra a e = crushRight′ ra a e

4 For brevity, we elide most of the instance declaration, because it is as expected.

151

instance Generic (Crush b) where
unit = Crush crushRight1

. . .

Note that crushRight′ is only applied to the parametrised structural types: Sum,
Prod, and the datatype and constructor cases; it is not applied to the primitive
types. This operator is only useful for combining the elements of a polymorphic
datatype and not for acting on non-parametrised types.

We have successfully made it this far, but we now run into a problem. We
need a representation for a type of kind ?→ ?. The type for rep is Rep g a⇒ g a,
and type a is the representation type and of kind ?. To expand rep to support
functional types, we add a parameter to the function (in the same way the type
is now parametrised) to get:

class FRep g f where
frep :: g a→ g (f a)

In the class FRep (functional representation), the representation type argument
a of Rep is replaced by a constructor type f. This is exactly what we need for
container types such as Tree a or List a. The FRep instance for List is similar to the
one for Rep except that references to the type argument (and the corresponding
function argument) are removed.

instance Generic g⇒ FRep g List where
frep = rList

The pieces are becoming clearer, but it is not yet obvious how to bring them
together. The reason is that we fibbed a bit earlier regarding the crushRight′

function. In its type, a → b → b, the a actually refers to the representation type,
not the container type a that we want for our final crushRight. As a result, we
need a way to convert the combining operator from using a container datatype
to using its representation. The ingredients are available directly:

frep . Crush :: (FRep (Crush b) f)⇒ (a→ b→ b)→ Crush b (f a)

With this, we can pass a proper combining operator and operate on the struc-
ture of some container type f.

The last two components to crushRight, a zero value and a container, follow
simply from the definition of crushRight′. The development of our function is
now complete.

crushRight :: FRep (Crush b) f ⇒ (a→ b→ b)→ b→ f a→ b
crushRight f z x = crushRight′ (frep (Crush f)) x z

To demonstrate the use of crushRight, we use the same generic flattening
function introduced in Section 5. Recall that flattening involves translating all
elements of a structure into a list. The definition of gflatten only requires the
combining operator, (:), and the zero value, [].

152

gflatten :: FRep (Crush [a]) f ⇒ f a→ [a]
gflatten = crushRight (:) []

Exercise 7. Define two functions using crushRight:

1. showElements takes a container with showable elements and returns a string
with the elements printed in a comma-delimited fashion.

2. sumElements takes a container with numeric elements and returns the nu-
meric sum of all elements.

Generalised map

The standard library map function applies a function on all of the elements of
a list. A generic map operation generalises this to any container datatype. A
datatype-specific map function may be implemented as an instance of the stan-
dard class Functor. This approach is error-prone and not generic.

As described in Section 5, a gmap function gives us the ability to modify the
elements of any container type. We aim for a function with this type:

gmap :: (a→ b)→ f a→ f b

As with crushRight, we first introduce the function that applies to each element.

newtype Gmap a b = Gmap{gmap′ :: a→ b}

This function appears to be similar to crushRight′, and we might expect to im-
plement it in the same way. The difference lies in the fact that crushRight is only
a generic consumer of a datatype while gmap is both a consumer and a pro-
ducer. We need to abstract over a type constructor with two different element
types.

The implementation of the generic function follows:

gmap1 x = x
gmapint x = x
gmapchar x = x
gmap+ ra rb (Inl a) = Inl (gmap′ ra a)
gmap+ ra rb (Inr b) = Inr (gmap′ rb b)
gmap× ra rb (Prod a b) = Prod (gmap′ ra a) (gmap′ rb b)
gmapdt ep1 ep2 ra a = (to ep2 . gmap′ ra . from ep1) a

Since this function is also a generic producer, the definitions construct new
values of the same representation. Also, gmapdt is interesting, because it uses
both from and to for converting between datatypes and their representations.
We need only one representation, ra, to map over, but we need two different
embedding-projection pairs, ep1 and ep2, to translate between the input type,
the representation, and the output type.

153

In order to support gmapdt and abstraction over two types, we need a mod-
ified Generic class. One option is to add a type argument and reuse that type
class for all previous implementations, ignoring the extra variable. Instead, we
choose to create a new class to distinguish generic functions with arity 2.

class Generic2 g where
unit2 :: g Unit Unit
int2 :: g Int Int
char2 :: g Char Char
plus2 :: g aT1 aT2→ g bT1 bT2→ g (Sum aT1 bT1) (Sum aT2 bT2)
prod2 :: g aT1 aT2→ g bT1 bT2→ g (Prod aT1 bT1) (Prod aT2 bT2)
datatype2 :: EP aT2 aT1→ EP bT2 bT1→ g aT1 bT1→ g aT2 bT2

Again, it is a simple matter to make Gmap an instance of Generic2:

instance Generic2 Gmap where
unit2 = Gmap gmap1

. . .
datatype2 ep1 ep2 ra = Gmap (gmapdt ep1 ep2 ra)

Unfortunately, now that datatype2 differs from datatype, we need to recreate the
representation of datatypes. Fortunately, the difference is the minor addition of
another embedding-projection pair. We rewrite rList as rList,2:

rList,2 :: Generic2 g⇒ g a b→ g (List a) (List b)
rList,2 ra = datatype2 (EP fromList toList) (EP fromList toList)

(plus2 unit2 (prod2 ra (rList,2 ra)))

We can immediately use the list representation to implement the standard map
as mapList:

mapList :: (a→ b)→ List a→ List b
mapList f = gmap′ (rList,2 (Gmap f))

Of course, our goal is to generalise this, but we do not have an appropriate
dispatcher class. FRep will not work, because it abstracts over only one type
variable. We need to extend it just as we extended Generic to Generic2:

class FRep2 g f where
frep2 :: g a b→ g (f a) (f b)

instance Generic2 g⇒ FRep2 g List where
frep2 = rList,2

The class FRep2 uses a type constructor g that has kind ? → ? → ? to support
the input and output element types. Note, however, that we still expect unary
datatypes: f has only one type variable.

Finally, we provide our definition of gmap.

154

gmap :: FRep2 Gmap f ⇒ (a→ b)→ f a→ f b
gmap f = gmap′ (frep2 (Gmap f))

Its definition follows as the expected generalisation of mapList. We use frep2 . Gmap
(as with crushRight) to translate between the function f that applies to datatypes
and one that applies to datatypes with the representation.

Exercise 8. Extend gmap to support constructor labels. The Generic2 class will
likely need modification. Show how rList,2 changes when constructor labels for
Nil and Cons are added.

Exercise 9. In the standard Haskell libraries, there is a function called transpose:

transpose :: [[a]]→ [[a]]

When applied to a list of lists, it swaps the rows and columns of its argument.
For example:

transpose [[1, 2, 3], [4, 5, 6]] [[1, 4], [2, 5], [3, 6]]

transpose can be generalised to a function that swaps container datatypes. Given
the generic transpose function gtranspose, we can, for example, swap elements
of Tree3 and List:

gtranspose (Cons (Leaf 1) (Cons (Leaf 2) (Cons (Leaf 3) Nil)))
 Leaf (Cons 1 (Cons 2 (Cons 3 Nil)))

Generic transpose has a type similar to this:

gtranspose :: f (g a)→ g (f a)

Implement gtranspose in EMGM.

7 Scrap Your Boilerplate

In this section we describe the “Scrap Your Boilerplate” (SYB) approach to
generic programming [Lämmel and Peyton Jones, 2003, 2004]. The novel con-
cept behind this approach to generic programming is that contrary to the two
approaches discussed previously in these notes, the structure of datatypes is not
directly exposed to the programmer. In the SYB approach, generic functions are
defined in terms of “primitive” generic combinators, which do not have to be
given by the user because they are derivable using Haskell’s deriving mecha-
nism for type classes.

155

7.1 An example function

Recall the Expr datatype from Section 3.2), and suppose we want to implement
a function that increases the value of each literal by one. Here is a simple but
incorrect solution:

inc :: Expr Int→ Expr Int
inc (Lit x) = Lit (x + 1)

This solution is incorrect, because we also have to write the “boilerplate” code
for traversing the entire expression tree, which just leaves the structure intact
and recurses into the arguments. Using SYB, we do not have to do that any-
more: we signal that the other cases are uninteresting by saying:

inc x = x

Now we have the complete definition of function inc: increment the literals and
leave the rest untouched. To ensure that this function is applied everywhere in
the expression we write:

increment :: Data a⇒ a→ a
increment = everywhere (mkT inc)

This is all we need: the increment function increases the value of each literal by
one in any Expr. It even works for LinearExprs, or LinearSystems, with no added
cost.

We now proceed to explore the internals of SYB to better understand the po-
tential of this approach and the mechanisms that are involved behind a simple
generic function such as increment.

7.2 Run-time type representation

Contrary to the approaches to generic programming discussed earlier, SYB does
not provide the structure of datatypes to the programmer, but instead offers
basic combinators for writing generic programs. At the basis of these combina-
tors is the method typeOf of the type class Typeable. Instances of this class can
be automatically derived by the GHC compiler, and implement a unique repre-
sentation of a type, enabling run-time type comparison and type-safe casting.

class Typeable a where
typeOf :: a→ TypeRep

An instance of Typeable only provides a TypeRep (type representation) of itself.
The automatically derived instances of this class in GHC are guaranteed to pro-
vide a unique representation for each type, which is a necessary condition for
the type-safe cast, as we will see later. So, providing an instance is as easy as
adding deriving Typeable at the end of a datatype declaration, as in:

156

data MyDatatype a = MyConstructor a deriving Typeable

We will not discuss the internal structure of TypeRep, since a programmer should
not define instances manually. The built-in derivation of Typeable makes SYB
somewhat less portable than the previous two libraries we have seen, and makes
it impossible to adapt the type representation.

The Typeable class is the “back-end” of SYB. The class Data can be considered
the “front-end”. It is built on top of the Typeable class, and adds generic folding,
unfolding and reflection capabilities5.

class Typeable d⇒ Data d where
gfoldl :: (∀a b . Data a⇒ c (a→ b)→ a→ c b)

→ (∀g . g→ c g)
→ d
→ c d

gunfold :: (∀b r . Data b⇒ c (b→ r)→ c r)
→ (∀r . r→ c r)
→ Constr
→ c d

toConstr :: d→ Constr

dataTypeOf :: d→ DataType

The combinator gfoldl is named after the function foldl on lists, as it can be
considered a “left-associative fold operation for constructor applications”, with
gunfold being the corresponding unfold. The types of these combinators may be
a bit intimidating, and they are probably better understood by looking at spe-
cific instances. We will give such instances in the next subsection, since giving
an instance of Data for a datatype is the way generic functions become available
on the datatype.

7.3 Going generic: universe extension

To use the SYB combinators on a particular datatype we have to supply the
instances of the datatype for the Typeable and the Data class. A programmer
should not define instances of Typeable, but instead rely on the automatically
derived instances by the compiler. For Data, GHC can also automatically derive
instances for a datatype, but we present an instance here to show how SYB
works. For example, the instance of Data on the List datatype is as follows:

instance (Typeable a, Data a)⇒ Data (List a) where
gfoldl k z NilList = z NilList

5 The Data class has, in fact, many more methods, but they all have default definitions
based on these four basic combinators. They are provided as instance methods so
that a programmer can define more efficient versions, specialized to the datatype in
question.

157

gfoldl k z (ConsList h t) = z ConsList ‘k‘ h ‘k‘ t
gunfold k z l = case constrIndex l of

1→ z NilList
2→ k (k (z ConsList))

Any instance of the Data class follows the regular pattern of the above instance:
the first argument to gfoldl can be seen as an application combinator, and the
second argument as the base case generator. Function gfoldl differs from the reg-
ular foldl in two ways: it is not recursive, and the base case takes a constructor
as argument, instead of a base case for just the NilList. When we apply gfoldl to
function application and the identity function, it becomes the identity function
itself.

gfoldl ($) id x = x

We further illustrate the gfoldl function with another example.

gsize :: Data a⇒ a→ Int

gsize = unBox . gfoldl k (λ → IntBox 1) where
k (IntBox h) t = IntBox (h + gsize t)

newtype IntBox x = IntBox{unBox :: Int}

Function gsize returns the number of constructors that appear in a value of any
datatype that is an instance of Data. For example, if it is applied to a list con-
taining pairs, it will count both the constructors of the datatype List, and of the
datatype for pairs. Given the general type of gfoldl, we have to use a container
type for the result type Int and perform additional boxing and unboxing.

Function gunfold acts as the dual operation of the gfoldl: gfoldl is a generic
consumer, which consumes a datatype value generically to produce some re-
sult, and gunfold is a generic producer, which consume a datatype value to
produce a datatype value generically. Its definition relies on constrIndex, which
returns the index of the constructor in the datatype of the argument.

The two other methods of class Data which we have not yet mentioned are
toConstr and dataTypeOf . These functions return, as their names suggest, con-
structor and datatype representations of the term they are applied to. As an
example, we provide the instance for the List datatype6:

toConstr NilList = con1
toConstr (ConsList) = con2

dataTypeOf = ty
con1 = mkConstr ty "Empty_List" [] Prefix
con2 = mkConstr ty "Cons_List" [] Prefix
ty = mkDataType "Module.Name" [con1, con2]

6 Instead of "Module.Name" one should supply the appropriate module name, which is
used for unambiguous identification of a datatype.

158

The functions mkConstr and mkDataType are provided by the SYB library as
means for building Constr and DataType, respectively. mkConstr build a con-
structor representation given the constructor’s datatype representation, name,
list of field labels and fixity. mkDataType builds a datatype representation given
the datatype’s name and list of constructor representations. These two methods
together form the basis of SYB’s type reflection mechanism, allowing the user
to inspect and construct types at runtime.

Exercise 10. Write a suitable instance of the Data class for the Expr datatype
from Section 2.2.

The basic combinators of SYB are mainly used to define other useful com-
binators. It is mainly these derived combinators that are used by a generic pro-
grammer. Functions like gunfoldl appear very infrequently in generic programs.
In the next subsection we will show many of the derived combinators in SYB.

7.4 Generic functions in SYB

We now proceed to show a few generic functions in the SYB approach. In SYB,
as in many other approaches, it is often useful to first identify the type of the
generic function, before selecting the most appropriate combinators to imple-
ment it.

Types of SYB combinators
Transformations, queries, and builders are some of the important basic combi-
nators of SYB. We discuss the type of each of these.

A transformation transforms an argument value in some way, and returns a
value of the same type. It has the following type:

type GenericT = ∀a . Data a⇒ a→ a

There is also a monadic variant of transformations, which allows the use of a
helper monad in the transformation:

type GenericM m = ∀a . Data a⇒ a→ m a

A query function processes an input value to collect information, possibly of
another type.

type GenericQ r = ∀a . Data a⇒ a→ r

A builder produces a value of a particular type.

type GenericB = ∀a . Data a⇒ a

A builder that has access to a monad is called a “reader”:

type GenericR m = ∀a . Data a⇒ m a

159

The type does not require m to be a monad.
Many functions in the SYB library are suffixed with one of the letters T, M,

Q, B, or R to help identify their usage. Examples are the functions mkT, mkQ,
mkM, extB, extR, extQ, gmapT and gmapQ, some of which are defined in the rest
of this section.

Basic examples

Recall the increment function with which we started Section 7.1. Its definition
uses the higher-order combinators everywhere and mkT. The former is a traversal
pattern for transformations, applying its argument everywhere it can:

everywhere :: GenericT→ GenericT
everywhere f = f . gmapT (everywhere f)

Function gmapT maps a function only to the immediate subterms of an expres-
sion. It is defined using gfoldl as follows:

gmapT :: Data a⇒ (∀b . Data b⇒ b→ b)→ a→ a
gmapT f x = unID (gfoldl k ID x)

where
k (ID c) y = ID (c (f y))

newtype ID x = ID{unID :: x}

Exercise 11. Function everywhere traverses a (multiway) tree. Define

everywhere′ :: GenericT→ GenericT

as everywhere but traversing in the opposite direction.

Function mkT lifts a, usually type-specific, function to a function that can be
applied to a value of any datatype.

mkT :: (Typeable a, Typeable b)⇒ (b→ b)→ a→ a

For example, mkT (sin :: Float → Float), applies function sin if the input value
is of type Float, and the identity function to an input value of any other type.
The combination of the two functions everywhere and mkT allows us to lift a
type-specific function to a generic function and apply it everywhere in a value.

Proceeding from transformations to queries, we define a function that sums
all the integers in an expression:

total :: GenericQ Int

total = everything (+) (0 ‘mkQ‘ lit) where
lit :: Expr Int→ Int
lit (Lit x) = x
lit x = 0

160

Queries typically use the everything and mkQ combinators. Function everything
applies its second argument everywhere in the argument, and combines results
with its first argument. Function mkQ lifts a type-specific function of type a →
b, together with a default value of type b, to a generic a query function of type
GenericQ b. If the input value is of type a, then the type-specific function is
applied to obtain a b value, otherwise it returns the default value. To sum the
literals in an expression, function total combines subresults using the addition
operator (+), and it keeps occurrences of literals, whereas all other values are
replaced by 0.

Generic maps
Functions such as increment and total are defined in terms of functions everywhere,
everything, and mkT, which in turn are defined in terms of the basic combinators
provided by the Data and Typeable classes. Many generic functions are defined
in terms of combinators of the Data class directly, as in the examples below.
We redefine function gsize defined in Section 7.3 using the combinator gmapQ,
and we define a function glength, which determines the number of children of
a constructor, also in terms of gmapQ.

gsize :: Data a⇒ a→ Int
gsize t = 1 + sum (gmapQ gsize t)
glength :: GenericQ Int
glength = length . gmapQ (const ())

The combinator gmapQ is one of the mapping combinators in Data class of the
SYB library, of type:

gmapQ :: (∀a . Data a⇒ a→ u)→ a→ [u]

It is rather different from the regular list map function, in that works on any
datatype that is an instance of Data, and that it only applies its argument func-
tion to the immediate children of the top-level constructor. So for lists, it only
applies the argument function to the head of the list and the tail of the list, but
it does not recurse into the list. This explains why gsize recursively calls itself
in gmapQ, while glength, which only counts immediate children, does not use
recursion.

Exercise 12. Define the function:

gdepth :: GenericQ Int

which computes the depth of a value of any datatype using gmapQ. The depth
of a value is the maximum number of constructors on any path to a leaf in the
value. For example:

gdepth [1, 2] 3
gdepth ((Lit 1) + (Lit 2) + (ExprVar "x")) 4

161

Exercise 13. Define the function:

gwidth :: GenericQ Int

which computes the width of a value of any datatype using gmapQ. The width
of a value is the number of elements that appear at a leaf. For example:

gwidth () 1
gwidth (Just 1) 1

gwidth ((1, 2), (1, 2)) 4
gwidth (((1, 2), 2), (1, 2)) 5

Equality

Defining the generic equality function is a relatively simple task in the libraries
we have introduced previously. Defining equality in SYB is not that easy. The
reason for this is that the structural representation of datatypes is not exposed
directly — in SYB, generic functions are written using combinators like gfoldl.
To define generic equality we need to generically traverse two values at the
same time, and it is not immediately clear how we can do this if gfoldl is our
basic traversal combinator.

To implement equality, we need a generic zip-like function that can be used
to pair together the children of the two argument values. Recall the type of
Haskell’s zipWith function:

zipWith :: (a→ b→ c)→ [a]→ [b]→ [c]

However, we need a generic variant that works not only for lists but for any
datatype. For this purpose, SYB provides the gzipWithQ combinator:

gzipWithQ :: GenericQ (GenericQ c)→ GenericQ (GenericQ [c])

The type of gzipWithQ is rather intricate, but if we unfold the definition of
GenericQ, and omit the occurrences of ∀· and Data, the argument of gzipWithQ
has type a → b → c. It would take too much space to explain the details of
gzipWithQ. Defining equality using gzipWithQ is easy:

geq :: Data a⇒ a→ a→ Bool

geq x y = geq′ x y
where

geq′ :: GenericQ (GenericQ Bool)
geq′ x′ y′ = (toConstr x′ toConstr y′) ∧ and (gzipWithQ geq′ x′ y′)

The outer function geq is used to constrain the type of the function to the type
of equality. Function geq′ has a more general type since it only uses gzipWithQ,
besides some functions on Bool.

162

7.5 Support for overloading

Suppose we want to implement a function with the same functionality as Haskell’s
deriving Show. Here is a first attempt using the combinators we have intro-
duced in the previous sections.

gshows :: Data a⇒ a→ String

gshows t = "("
++ showConstr (toConstr t)
++ concat (gmapQ ((++) " " . gshows) t)
++
")"

Function showConstr :: Constr → String is the only function we have not yet in-
troduced. Its behavior follows immediately from its type: it returns the string
representing the name of the constructor. Function gshows returns the string rep-
resentation of any input value. However, it does not implement deriving Show
faithfully: it inserts too many parentheses, and, what’s worse, it treats all types
in a uniform way, so both lists and strings are shown using the names of he
constructors Cons and Nil:

gshows "abc" "((:) (a) ((:) (b) ((:) (c) ([]))))"

The problem here is that gshows is “too generic”: we want its behavior to be
non-generic for certain datatypes, such as String. To obtain special behavior for
a particular type we use the ext combinators of the SYB library. Since function
gshows has the type of a generic query, we use the extQ combinator:

extQ :: (Typeable a, Typeable b)⇒ (a→ q)→ (b→ q)→ a→ q

This combinator takes an initial generic query and extends it with the type-
specific case given in its second argument. Its implementation relies on type-
safe cast:

extQ f g a = maybe (f a) g (cast a)

Function cast relies on the typeOf method of the Typeable class, the type of which
we have introduced in Section 7.2), to guarantee type equality and ultimately
uses unsafeCoerce to perform the cast.

Using extQ, we can now define a better pretty-printer:

gshow :: Data a⇒ a→ String

gshow = (λt→
"("
++ showConstr (toConstr t)
++ concat (gmapQ ((++) " " . gshow) t)
++ ")"

) ‘extQ‘ (show :: String→ String)

Summarizing, the extQ combinator (together with its companions extT, extR,
. . .) is the mechanism for overloading in the SYB approach.

163

Exercise 14.

1. Check the behavior of function gshow on a value of type Char, and redefine
it to behave just like the standard Haskell show.

2. Check the behavior of gshow on standard Haskell lists, and redefine it to
behave just like the standard Haskell show. Note: since the list datatype has
kind ?→ ?, using extQ will give problems. This problem is solved in SYB by
defining combinators for higher kinds. Have a look at the ext1Q combinator.

3. Check the behavior of gshow on standard Haskell pairs, and redefine it to
behave just like the standard Haskell show. Note: now the datatype has kind
? → ? → ?, but ext2Q is not defined! Fortunately, you can define it your-
self. . .

Exercise 15. Define function gread :: (Data a) ⇒ String → [(a, String)]. Decide
for yourself how complete you want your solution to be regarding whitespace,
infix operators, etc. Note: you don’t have to use gunfold directly: fromConstr,
which is itself defined using gunfold, can be used instead.

7.6 Making generic functions extensible

The SYB library as described above suffers from a serious drawback: after a
generic function is defined, it cannot be extended to have special behavior on
a new datatype. We can, as illustrated in Section 7.5 with function gshow, de-
fine a function with type-specific behavior. But after such function is defined,
defining another function to extend the first one with more type-specific behav-
ior is impossible. Suppose we want to extend the gshow function with special
behavior for a new datatype:

data NewDatatype = One String | Two [Int] deriving (Typeable, Data)
gshow′ :: Data a⇒ a→ String

gshow′ = gshow ‘extQ‘ showNewDatatype where
showNewDatatype :: NewDatatype→ String
showNewDatatype (One s) = "String: "++ s
showNewDatatype (Two l) = "List: "++ gshow l

Now we have:
gshow′ (One "a") "String: a"

as we expected. However:

gshow′ (One "a", One "b") "((,) (One \"a\") (One \"b\"))"

This example illustrates the problem: as soon as gshow′ calls gshow, the type-
specific behavior we just defined is never again taken into account, since gshow
has no knowledge of the existence of gshow′.

To make generic functions in SYB extensible, Lämmel and Peyton Jones
[2005] extended the SYB library, lifting generic functions to Haskell’s type class
system. A generic function like gsize is now defined as follows:

164

class Size a where
gsize :: a→ Int

The default case is written as an instance of the form:

instance . . .⇒ Size a where . . .

Ad-hoc cases are instances of the form (using lists as an example):

instance Size a⇒ Size [a] where . . .

This requires overlapping instances, since the default case is more general than
any type-specific extension. Fortunately, GHC allows overlapping instances. A
problem is that this approach also needs to lift generic combinators like gmapQ
to a type class, which requires abstraction over type classes. Abstraction over
type classes is not supported by GHC. The authors then proceed to describe
how to circumvent this by encoding an abstraction using dictionaries. This re-
quires the programmer to write the boilerplate code of the proxy for the dic-
tionary type. We do not discuss this extension and refer the reader to [Lämmel
and Peyton Jones, 2005] for further information.

7.7 Variants

Scrap Your Boilerplate Reloaded [Hinze et al., 2006] is a variant of SYB that
replaces the combinator based approach of SYB by a tangible representation of
the structure of values. The Spine datatype is used to encode the structure of
datatypes.

data Spine :: ?→ ? where
Con :: a→ Spine a
(�) :: Spine (a→ b)→ Typed a→ Spine b

where the Typed representation is given by:

data Typed a = (:̂){typeOf :: Type a, val :: a}
data Type :: ?→ ? where

Int :: Type Int
List :: Type a→ Type [a]
. . .

This approach represents the structure of datatype values by making the appli-
cation of a constructor to its arguments explicit. For example, the list [1, 2] can
be represented by7 Con (:) � (Int :̂ 1) � (List Int :̂ [2]). We can define the usual
SYB combinators such as gfoldl on the Spine datatype. Function gunfold cannot
be implemented in the approach. Scrap Your Boilerplate Revolutions [Hinze
and Löh, 2006] solves this problem by introducing the “type spine” and “lifted

7 Note the difference between the list constructor (:) and the Typed constructor (:̂).

165

spine” views. These views allow the definition of not only generic readers such
as gunfold, but even functions that abstract over type constructors, such as fmap.

A disadvantage of these variants is that generic and non-generic universe
extension require recompilation of type representations and generic functions.
For this reason, these variants cannot be used as a library, and should be con-
sidered a design pattern rather than a library. It is possible to make the variants
extensible by using a similar approach as discussed in Section 7.6: abstraction
over type classes. We refer the reader to [Hinze et al., 2006, Hinze and Löh,
2006] for further information.

8 Comparing Libraries for Generic programming

In the previous sections we have introduced three libraries for generic program-
ming in Haskell. We did not introduce any of the other libraries for generic pro-
gramming, such as PolyLib [Norell and Jansson, 2004b], RepLib [Weirich, 2006],
Smash your boilerplate [Kiselyov, 2006], and Uniplate [Mitchell and Runciman,
2007], for instance. The obvious question a Haskell programmer who wants to
implement a generic program now asks is: which library should I use for my
project? The answer to this question depends, of course. If you want to write
generic programs with special behaviour on different datatypes, you shouldn’t
use LIGD, but using EMGM or SYB is fine. If you want abstraction over type
constructors, necessary for gflatten and gmap, you shouldn’t use SYB, but LIGD
and EMGM are fine. If you want generation of type representations out of the
box, you shouldn’t use LIGD or EMGM, but SYB is fine.

Recently, an extensive comparison of generic programming libraries (and
their characteristics) has been performed [Rodriguez et al., 2008]. In the final
version of these lecture notes we will include a comprehensive comparison of
the libraries introduced in these notes, and mention a few points about the li-
braries we did not introduce. For now we refer the readers to the technical re-
port.

9 Type-indexed datatypes in GHC

So far we have been looking at libraries for generic programming and what
functions can be expressed in these libraries. An related concept in generic pro-
gramming is the concept of type-indexed datatypes [Hinze et al., 2002]. Such
datatypes are constructed in a generic way from an argument datatype.

For example, a type-indexed datatype is needed when we want to imple-
ment rewriting on expressions (as discussed in Section 3.2). To specify rewrite
rules, we have to add meta-variables to the domain on which we want to rewrite.
Adapting the domain with an extra constructor for meta-variables requires
changing the original datatype, which might even not be accessible (if it is
taken from a library, for instance). The best solution is to define a new datatype
which adds a new constructor for meta-variables. This can be done using a
type-indexed datatype.

166

Type-indexed datatypes are available in Generic Haskell [Löh, 2004], an
extension of Haskell with generic programming constructs. The generic pro-
gramming libraries available for Haskell do not offer support for defining type-
indexed datatypes. However, it is possible to implement type-indexed datatypes
directly in Haskell using associated datatypes [Chakravarty et al., 2005b] , a re-
cent extension implemented in GHC.

In the final version of these lecture notes we will show how to do this.

10 Conclusions

These notes discuss three libraries for generic programming in Haskell: LIGD,
EMGM, and SYB. Each of these libraries has its strengths and weaknesses, and
we discuss when a generic programmer should use which library. Further-
more, we discuss how to implement type-indexed datatypes using associated
datatypes.

Acknowledgements. This work has been partially funded by the Netherlands
Organisation for Scientific Research (NWO), via the Real-life Datatype-Generic
programming project, project nr. 612.063.613, and by the Fundação para a Ciência
e Tecnologia, via the SFRH/BD/35999/2007 grant.

167

Bibliography

Andrei Alexandrescu. Modern C++ design: generic programming and design pat-
terns applied. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001. ISBN 0-201-70431-5.

Richard Bird and Lambert Meertens. Nested datatypes. In Johan Jeuring, editor,
MPC’98, volume 1422 of LNCS, pages 52–67. Springer, 1998.

John Seely Brown and Kurt VanLehn. Repair theory: A generative theory of
bugs in procedural skills. Cognitive Science, 4:379–426, 1980.

Alan Bundy. The Computer Modelling of Mathematical Reasoning. Academic Press,
1983.

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. Associated
type synonyms. Proceedings of the tenth ACM SIGPLAN international conference
on Functional programming, pages 241–253, 2005a.

Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon
Marlow. Associated Types with Class. Proceedings of the 32nd ACM SIGPLAN-
SIGACT sysposium on Principles of Programming Languages, pages 1–13, 2005b.

James Cheney and Ralf Hinze. A lightweight implementation of generics and
dynamics. In Manuel Chakravarty, editor, Haskell’02, pages 90–104. ACM,
2002. doi: 10.1145/581690.581698.

Bruno C. d. S. Oliveira, Ralf Hinze, and Andres Löh. Extensible and modu-
lar generics for the masses. In Henrik Nilsson, editor, Trends in Functional
Programming, pages 199–216, 2006.

Chris Dornan, Isaac Jones, and Simon Marlow. Alex User Guide, 2003. URL
http://www.haskell.org/alex.

Ira R. Forman and Scott H. Danforth. Putting metaclasses to work: a new dimen-
sion in object-oriented programming. Addison Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 1999. ISBN 0-201-43305-2.

Jeremy Gibbons. Datatype-generic programming. In Roland Backhouse,
Jeremy Gibbons, Ralf Hinze, and Johan Jeuring, editors, Spring School on
Datatype-Generic Programming, volume 4719. Springer-Verlag, 2007.

Aleksey Gurtovoy and David Abrahams. The Boost C++ metaprogramming
library, 2002. URL http://www.cs.ualberta.ca/~graphics/software/
boost/libs/mpl/doc/paper/mpl_paper.pdf.

The Haskell Prime list. Haskell prime, 2006. Wiki page at http://hackage.
haskell.org/trac/haskell-prime.

Ralf Hinze. Generics for the masses. Journal of Functional Programming, 16:451–
482, 2006.

Ralf Hinze and Andres Löh. “Scrap Your Boilerplate” revolutions. In Tarmo
Uustalu, editor, MPC’06, volume 4014 of LNCS, pages 180–208. Springer,
2006.

Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types. In MPC
’02: Proceedings of the 6th International Conference on Mathematics of Program

168

http://www.haskell.org/alex
http://www.cs.ualberta.ca/~graphics/software/boost/libs/mpl/doc/paper/mpl_paper.pdf
http://www.cs.ualberta.ca/~graphics/software/boost/libs/mpl/doc/paper/mpl_paper.pdf
http://hackage.haskell.org/trac/haskell-prime
http://hackage.haskell.org/trac/haskell-prime

Construction, pages 148–174, London, UK, 2002. Springer-Verlag. ISBN 3-540-
43857-2.

Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira. “Scrap Your Boilerplate”
reloaded. In Philip Wadler and Masimi Hagiya, editors, FLOPS’06, volume
3945 of LNCS. Springer, 2006.

Stefan Holdermans, Johan Jeuring, Andres Löh, and Alexey Rodriguez. Generic
views on data types. In Tarmo Uustalu, editor, MPC’06, volume 4014 of
LNCS, pages 209–234. Springer, 2006.

Helmut Horacek and Magdalena Wolska. Handling errors in mathematical for-
mulas. In Mitsuru Ikeda, Kevin D. Ashley, and Tak-Wai Chan, editors, Intelli-
gent Tutoring Systems, volume 4053 of Lecture Notes in Computer Science, pages
339–348. Springer, 2006. ISBN 3-540-35159-0.

Paul Hudak, John Peterson, and Joseph Fasel. A Gentle Introduction to Haskell
98, 1999. URL http://www.haskell.org/tutorial.

Graham Hutton and Erik Meijer. Monadic parsing in haskell. J. Funct. Program.,
8(4):437–444, July 1998.

Simon P. Jones and Philip Wadler. Imperative functional programming. In
POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 71–84, New York, NY, USA, 1993. ACM.

Oleg Kiselyov. Smash your boilerplate without class and typeable. http://
article.gmane.org/gmane.comp.lang.haskell.general/14086, 2006.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical ap-
proach to generic programming. ACM SIGPLAN Notices, 38(3):26–37, 2003.
TLDI’03.

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection, zips,
and generalised casts. In ICFP’04, pages 244–255. ACM, 2004.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with class: exten-
sible generic functions. In ICFP’05, pages 204–215, 2005.

John Launchbury and Simon P. Jones. Lazy functional state threads. SIGPLAN
Not., 29(6):24–35, June 1994.

Josje Lodder, Johan Jeuring, and Harrie Passier. An interactive tool for manipu-
lating logical formulae. In M. Manzano, B. Pérez Lancho, and A. Gil, editors,
Proceedings of the Second International Congress on Tools for Teaching Logic, 2006.

Andres Löh. Exploring Generic Haskell. PhD thesis, Utrecht University, 2004.
Andres Löh and Ralf Hinze. Open data types and open functions. In Michael

Maher, editor, PPDP’06, pages 133–144. ACM, 2006. doi: 10.1145/1140335.
1140352.

Simon Marlow and Andy Gill. Happy User Guide, 1997. URL http://www.
haskell.org/happy.

Lambert Meertens. Calculate polytypically! In PLILP ’96: Proceedings of the
8th International Symposium on Programming Languages: Implementations, Log-
ics, and Programs, pages 1–16, London, UK, 1996. Springer-Verlag.

Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, 1978.

Neil Mitchell and Colin Runciman. Uniform boilerplate and list processing. In
Haskell’07. ACM, 2007.

169

http://www.haskell.org/tutorial
http://article.gmane.org/gmane.comp.lang.haskell.general/14086
http://article.gmane.org/gmane.comp.lang.haskell.general/14086
http://www.haskell.org/happy
http://www.haskell.org/happy

E. Mory. Feedback research revisited. In D.H. Jonassen, editor, Handbook of
research for educational communications and technology, 2003.

Ulf Norell and Patrik Jansson. Prototyping generic programming in Template
Haskell. In Dexter Kozen, editor, Mathematics of Program Construction, volume
3125 of LNCS, pages 314–333. Springer-Verlag, 2004a.

Ulf Norell and Patrik Jansson. Polytypic programming in Haskell. In
G. Michaelson and P. Trinder, editors, IFL’03, volume 3145 of LNCS. Springer,
2004b.

Harrie Passier and Johan Jeuring. Feedback in an interactive equation solver.
In M. Seppälä, S. Xambo, and O. Caprotti, editors, Proceedings of the Web Ad-
vanced Learning Conference and Exhibition, WebALT 2006, pages 53–68. Oy We-
bALT Inc., 2006.

Simon Peyton Jones et al. Haskell 98, Language and Libraries. The Revised Report.
Cambridge University Press, 2003. A special issue of the Journal of Func-
tional Programming.

Alexey Rodriguez, Johan Jeuring, Patrik Jansson, Alex Gerdes, Oleg Kiselyov,
and Bruno C. D. S. Oliveira. Comparing libraries for generic programming in
haskell. Technical Report UU-CS-2008-010, Department of Information and
Computing Sciences, Utrecht University, 2008.

Tim Sheard. Using MetaML: A Staged Programming Language. Advanced Func-
tional Programming: Third International School, Braga, Portugal, September 12-19,
1998, Revised Lectures, 1999.

Tim Sheard and Simon Peyton Jones. Template metaprogramming for Haskell.
In Manuel M. T. Chakravarty, editor, ACM SIGPLAN Haskell Workshop 02,
pages 1–16. ACM Press, October 2002.

S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting com-
binator parsers. In Advanced Functional Programming, pages 184–207, 1996.

Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, June 1999.

Thomas van Noort. Generic views for generic types. Master’s thesis, Utrecht
University, 2008.

Eelco Visser. A survey of strategies in rule-based program transformation sys-
tems. Journal of Symbolic Computation, 40(1):831–873, 2005. Special issue on
Reduction Strategies in Rewriting and Programming.

Philip Wadler. Theorems for free! In FPCA’89, pages 347–359. ACM, 1989.
Philip Wadler. Comprehending monads. In LFP ’90: Proceedings of the 1990

ACM conference on LISP and functional programming, pages 61–78, New York,
NY, USA, 1990. ACM.

Philip Wadler. The essence of functional programming. In Conference Record
of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1–14, Albequerque, New Mexico, 1992.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-
hoc. In Conference Record of the 16th Annual ACM Symposium on Principles of
Programming Languages, pages 60–76. ACM, January 1989.

Stephanie Weirich. RepLib: a library for derivable type classes. In Haskell’06,
pages 1–12. ACM, 2006. doi: 10.1145/1159842.1159844.

170

From reduction-based

to reduction-free normalization

(preliminary version)

Olivier Danvy

Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

danvy@daimi.au.dk

http://www.daimi.au.dk/~danvy

Abstract. We document a method to construct reduction-free normal-
ization functions. Starting from a reduction-based normalization func-
tion, i.e., the iteration of a one-step reduction function, we successively
subject it to refocusing (i.e., deforestation of the intermediate reduced
terms in the reduction sequence), fusion of auxiliary functions, refunc-
tionalization (i.e., the converse of defunctionalization), and direct-style
transformation (i.e., the converse of the CPS transformation). We con-
sider three simple examples and treat them in detail: for the first one,
arithmetic expressions, we construct an evaluation function; for the sec-
ond one, terms in the free monoid, we construct an accumulator-based
flatten function; for the third one, applicative order lambda-terms with
explicit substitutions and call/cc, and , we construct a call-by-value eval-
uator. The results are traditional reduction-free normalization functions.
The overall method builds on previous work on a syntactic correspon-
dence between reduction semantics and abstract machines and on a func-
tional correspondence between evaluators and abstract machines.

1 Introduction

Normalization by evaluation is a ‘reduction-free’ approach to normalizing terms.
Instead of repeatedly reducing a term towards its normal form, as in the tradi-
tional reduction-based approach, one uses an extensional normalization function

that does not construct any intermediate term and directly yields a normal form,
if there is any [30]. Normalization by evaluation has been developed in intuition-
istic type theory [20, 49, 61], proof theory [10, 11], category theory [6, 22, 58],
λ-definability [44], partial evaluation [24,25,38], and formal semantics [1,41,42].
The more complicated the terms and the notions of reduction, the more compli-
cated the normalization functions.

Normalization by evaluation therefore requires one to extensionally define a
reduction-free normalization function, which is non-trivial [7,8]. Nevertheless, it
is our contention that the computational content of a reduction-based normal-
ization function—i.e., a function intensionally defined as the transitive closure

171

of one-step reduction—can pave the way to constructing a reduction-free nor-
malization function:

Our starting point: We start from a reduction semantics for a language of
terms [40], i.e., an abstract syntax, a notion of reduction in the form of a
collection of redexes and the corresponding contraction function, and a re-
duction strategy. The reduction strategy takes the form of a grammar of
reduction contexts, its associated plug function, and a decomposition func-
tion mapping a term to a value or to a reduction context and a redex (we
assume this decomposition to be unique). Thus equipped, we define a one-
step reduction function as a function whose fixed points are values, and
which otherwise decomposes a non-value term into a reduction context and
a redex, contracts this redex, and plugs the contractum into the context:

non-value
term

decompose
//

one-step
reduction

��
�

�

�

�

�

�

�

context × redex

context-(in)sensitive
contraction

��

term context × contractum
plug

oo

A reduction-based normalization function is defined as the iteration of this
one-step reduction function.

A syntactic correspondence: On the way to reaching a normal form, the
reduction-based normalization function repeatedly decomposes, contracts,
and plugs. Observing that most of the time, the decomposition function is
applied to the result of the plug function [37], Nielsen and the author have
suggested to deforest the intermediate term by replacing the composition of
the decomposition function and of the plug function by a refocus function
that directly maps a reduction context and a contractum to the next re-
duction context and redex, if there are any. Such a refocused normalization
function (i.e., a normalization function using a refocus function instead of a
decomposition function and a plug function) takes the form of a small-step
abstract machine.

A functional correspondence: A big-step abstract machine is often a defunc-
tionalized continuation-passing program [3–5,19, 28]. When this is the case,
such abstract machines can be refunctionalized [33,36] and transformed into
direct style [23].

It is our experience that starting from a reduction semantics for a language of
terms, we can refocus the corresponding reduction-based normalization function
into a small-step abstract machine, and refunctionalize the corresponding big-
step abstract machine into a reduction-free normalization function. The goal of

172

this article is to illustrate it with three simple examples: arithmetic expressions,
terms of the free monoid, and applicative-order lambda-terms with explicit sub-
stitutions and call/cc.

Overview: In Section 2, we implement a reduction semantics for arithmetic
expressions in complete detail and in Standard ML, and we define the corre-
sponding reduction-based normalization function. In Section 3, we refocus the
reduction-based normalization function of Section 2 into a small-step abstract
machine, and we present the corresponding reduction-free normalization func-
tion. In Sections 4 and 5, we go through the same motions for terms in the free
monoid. In Section 2 and 7, we repeat the construction with lambda-terms.

Sections 2, 4 and 6 might appear as intimidating; however, except that they
are expressed in ML, they describe straightforward reduction semantics as have
been developed by Felleisen and his co-workers for the last two decades [39, 40,
62]. For this reason, these three sections have a parallel structure. Similarly, to
emphasize that the construction of a reduction-free normalization function out
of a reduction-based normalization function is systematic, we have also given
Sections 3, 5 and 7 a parallel structure.

Prerequisites: The reader is expected to have some familiarity with the program-
ming language Standard ML [53]; reduction semantics [37,40]; the CPS transfor-
mation [31, 60] and its left inverse, the direct-style transformation [23, 32]; and
defunctionalization [36,57] and its left inverse, refunctionalization [33]. In partic-
ular, we build on evaluation contexts being defunctionalized continuations [27].

Contribution: This lecture note builds on work that was carried out at the
University of Aarhus over the last 7 years and that gave rise to a number of
doctoral theses [2,13,18,29,51,52,54]. The examples of arithmetic expressions and
of the free monoid were presented at WRS’04 [26]. The example of lambda-terms
originates in a joint work with Lasse R. Nielsen [37], Ma lgorzata Biernacka [16,
17], and Mads Sig Ager, Dariusz Biernacki, and Jan Midtgaard [3, 5]. Fusing
the transition functions and the trampoline function of a small-step abstract
machine to obtain a big-step one is a joint work with Kevin Millikin [34].

2 A reduction semantics for arithmetic expressions

To define a reduction semantics for simplified arithmetic expressions (integer lit-
erals and additions), we specify their abstract syntax, their notion of reduction
(computing the sum of two integers), their reduction contexts and the corre-
sponding plug function, and how to decompose them into a reduction context
and the left-most inner-most redex, if there is one. We then define a one-step re-
duction function that decomposes a non-value term into a reduction context and
a redex, contracts the redex, and plugs the contractum into the context. We can
finally define a reduction-based normalization function that repeatedly applies
the one-step reduction function until a value, i.e., a normal form, is reached.

173

2.1 Abstract syntax

An arithmetic expression is either a literal or the addition of two terms:

datatype term = LIT of int

| ADD of term * term

2.2 Notion of contraction

A redex is the sum of two literals, and we implement contraction as computing
this sum:

datatype redex = SUM of int * int

(* contract : redex -> term *)

fun contract (SUM (n1, n2))

= LIT (n1 + n2)

The left-most inner-most reduction strategy converges and yields a literal.

2.3 Reduction contexts

We seek the left-most inner-most redex in a term. The grammar of reduction
contexts and the corresponding plug function are as follows:

datatype context = C0

| C1 of term * context

| C2 of int * context

(* plug : context * term -> term *)

fun plug (C0, t)

= t

| plug (C1 (t’, c), t)

= plug (c, ADD (t, t’))

| plug (C2 (n, c), t)

= plug (c, ADD (LIT n, t))

2.4 Decomposition

A term is a value (i.e., it does not contain any redex) or it can be decomposed
into a reduction context and a redex:

datatype value_or_decomposition = VAL of term

| DEC of context * redex

(No term is stuck.)
The decomposition function recursively searches for the left-most inner-most

redex in a term. It is usually left unspecified in the literature [40]. We define it
here it in a form we have found convenient in our previous study of reduction

174

semantics [37], namely as a big-step abstract machine with two state-transition
functions, decompose’ and decompose’ aux: decompose’ traverses a given term
and accumulates the reduction context until it finds a value, and decompose’ aux

dispatches on the accumulated context to decide whether the given term is a
value, a redex has been found, or the search must continue:

(* decompose’ : term * context -> value_or_decomposition *)

fun decompose’ (LIT n, c)

= decompose’_aux (c, n)

| decompose’ (ADD (t1, t2), c)

= decompose’ (t1, C1 (t2, c))

(* decompose’_aux : context * int -> value_or_decomposition *)

and decompose’_aux (C0, n)

= VAL (LIT n)

| decompose’_aux (C1 (t2, c), n)

= decompose’ (t2, C2 (n, c))

| decompose’_aux (C2 (n’, c), n)

= DEC (c, SUM (n’, n))

(* decompose : term -> value_or_decomposition *)

fun decompose t

= decompose’ (t, C0)

Lemma 1. A term t is either a value or there exists a unique context c such

that decompose t evaluates to DEC (c, r), where r a redex.

Proof. Immediate.

2.5 One-step reduction

We are now in position to define a one-step reduction function as a function that
(1) maps a non-value term into a reduction context and a redex, (2) contracts
the redex, and (3) plugs the contractum in the reduction context:

(* reduce : term -> term *)

fun reduce t

= (case decompose t

of (VAL t’)

=> t’

| (DEC (c, r))

=> plug (c, contract r))

2.6 Reduction-based normalization

A reduction-based normalization function is one that iterates the one-step re-
duction function until it yields a value (i.e., a fixed point):

175

(* normalize : term -> term *)

fun normalize t

= (case reduce t

of (LIT n)

=> LIT n

| t’

=> normalize t’)

In the following definition, we inline reduce in order to directly check whether
decompose yields a value or a decomposition:

(* iterate0 : value_or_decomposition -> term *)

fun iterate0 (VAL t)

= t

| iterate0 (DEC (c, r))

= iterate0 (decompose (plug (c, contract r)))

(* normalize0 : term -> term *)

fun normalize0 t

= iterate0 (decompose t)

2.7 Reduction-based normalization, typefully

The type of normalize0 is not informative. To make it appear more clearly that
the normalization function yields normal forms, i.e., integers, we can refine the
type of values to be that of integers, and adjust the first clause of decompose’ aux

and the reduction function:

datatype value_or_decomposition = VAL of int (* was: term *)

| DEC of context * redex

...

and decompose’_aux (C0, n)

= VAL n

| ...

(* reduce : term -> term *)

fun reduce t

= (case decompose t

of (VAL n)

=> LIT n

| (DEC (c, r))

=> plug (c, contract r))

The reduction-based normalization function can then return an integer rather
than a literal:

(* iterate1 : value_or_decomposition -> int *)

fun iterate1 (VAL n)

= n

| iterate1 (DEC (c, r))

= iterate1 (decompose (plug (c, contract r)))

176

(* normalize1 : term -> int *)

fun normalize1 t

= iterate1 (decompose t)

The type of normalize1 is more informative than that of normalize0 since it
makes it clear that applying normalize1 to a term yields a value.

2.8 Summary and conclusion

We have implemented in ML, in complete detail, a reduction semantics for
arithmetic expressions. Using this reduction semantics, we have presented two
reduction-based normalization functions.

2.9 Exercises

1. Implement the reduction semantics above in the programming language of
your choice.

2. Extend the source language with multiplication and adapt your implemen-
tation.

3 From reduction-based to reduction-free normalization

In this section, we transform the reduction-based normalization function of Sec-
tion 2.7 into a reduction-free normalization function, i.e., one where no interme-
diate term is ever constructed. We first refocus the reduction-based normaliza-
tion function [37] to deforest the intermediate terms, and we obtain a small-step
abstract machine implementing the iteration of the refocus function. We then
transform this small-step abstract machine into a big-step one [34]. This abstract
machine is in defunctionalized form [36], and we refunctionalize it [33]. The result
is in continuation-passing style and we re-express it in direct style [23]. The re-
sulting direct-style function is a traditional evaluator for arithmetic expressions;
in particular, it is reduction-free.

3.1 Plugging and decomposition

In the reduction-based normalization function of Section 2.7, decompose is always
applied to the result of plug after the first decomposition. Let us add a vacuous
initial call to plug so that in all cases, decompose is applied to the result of plug:

(* normalize2 : term -> int *)

fun normalize2 t

= iterate1 (decompose (plug (C0, t)))

177

3.2 Refocusing

As investigated earlier by Nielsen and the author [37], the composition of decompose
and plug can be deforested into one refocus function to avoid the construction
of intermediate terms. In addition, this refocus function can be expressed very
simply in terms of the decomposition functions of Section 2.4 (and this is the
reason why we chose to specify them precisely like that):

(* refocus : context * term -> value_or_decomposition *)

fun refocus (c, t)

= decompose’ (t, c)

The refocused evaluation function therefore reads as follows:

(* iterate3 : value_or_decomposition -> int *)

fun iterate3 (VAL v)

= v

| iterate3 (DEC (c, r))

= iterate3 (refocus (c, contract r))

(* normalize3 : term -> int *)

fun normalize3 t

= iterate3 (refocus (C0, t))

The refocused normalization function is reduction-free because it is no longer
based on a (one-step) reduction function. Instead, the refocus function directly
maps a reduction context and a contractum to the next reduction context and
redex, if there are any.

3.3 From refocused normalization function to staged abstract

machine

The refocused normalization function is small-step -abstract machine in the sense
that decompose’ and decompose’ aux form a transition function and iterate3 is a
‘trampoline’ [43], i.e., another transition function that keeps activating the two
others until a value is obtained. Using Ohori and Sasano’s ‘lightweight fusion by
fixed-point promotion’ [55], let us fuse iterate3 and refocus (i.e., decompose’ and
decompose’ aux, which we rename refocus4 and refocus4 aux for the occasion) so
that iterate3 is directly applied to the result of decompose’ and decompose’ aux.
The result is a (tail-recursive) state-transition function, i.e., a big-step abstract
machine [56]:

(* iterate4 : value_or_decomposition -> int *)

fun iterate4 (VAL v)

= v

| iterate4 (DEC (c, r))

= refocus4 (contract r, c)

178

(* refocus4 : term * context -> int *)

and refocus4 (LIT n, c)

= refocus4_aux (c, n)

| refocus4 (ADD (t1, t2), c)

= refocus4 (t1, C1 (t2, c))

(* refocus4_aux : context * int -> int *)

and refocus4_aux (C0, n)

= iterate4 (VAL n)

| refocus4_aux (C1 (t2, c), n)

= refocus4 (t2, C2 (n, c))

| refocus4_aux (C2 (n’, c), n)

= iterate4 (DEC (c, SUM (n’, n)))

(* normalize4 : term -> int *)

fun normalize4 t

= refocus4 (t, C0)

The structure of this abstract machine is remarkable because iterate4 im-
plements the contraction rules of the reduction semantics and refocus4 and
refocus4 aux implement its congruence rules—a distinction that usually requires
a non-trivial analysis to establish for existing abstract machines [46].

3.4 Inlining and simplification

Since iterate4 and contract are only pedagogical devices, let us inline them
to streamline the abstract machine. Inlining contract, in the last clause of
refocus4 aux, yields the following clause:

| refocus4_aux (C2 (n’, c), n)

= refocus4 (LIT (n’ + n), c)

Since refocus4 is defined by cases on its first argument, this clause can be sim-
plified as follows:

| refocus4_aux (C2 (n’, c), n)

= refocus4_aux (c, n’ + n)

The resulting simplified machine is an ‘eval/apply’ abstract machine [48].

3.5 Refunctionalization

Like many other abstract machines [3–5, 19, 28], the abstract machine of Sec-
tion 3.4 is in defunctionalized form [36]: the reduction contexts, together with
refocus4 aux, are the first-order counterpart of a function. The higher-order
counterpart of the abstract machine reads as follows:

(* refocus5 : term * (int -> int) -> int *)

fun refocus5 (LIT n, c)

= c n

179

| refocus5 (ADD (t1, t2), c)

= refocus5 (t1,

fn n1 => refocus5 (t2,

fn n2 => c (n1 + n2)))

(* normalize5 : term -> int *)

fun normalize5 t

= refocus5 (t, fn n => n)

3.6 Back to direct style

The refunctionalized definition of Section 3.5 is in continuation-passing style
since it has a functional accumulator and all of its calls are tail calls [23,31]. Its
direct-style counterpart reads as follows:

(* refocus6 : term -> int *)

fun refocus6 (LIT n)

= n

| refocus6 (ADD (t1, t2))

= (refocus6 t1) + (refocus6 t2)

(* normalize6 : term -> int *)

fun normalize6 t

= refocus6 t

The resulting definition is that of the usual evaluation function for arithmetic
expressions, i.e., a traditional reduction-free normalization function.

3.7 Summary and conclusion

We have refocused the reduction-based normalization function of Section 2 into a
small-step abstract machine, and we have exhibited the corresponding reduction-
free normalization function.

3.8 Exercises

1. Reproduce the construction above in the programming language of your
choice.

2. Extend the source language with multiplication and adapt the construction.

4 A reduction semantics for terms in the free monoid

To define a reduction semantics for terms in the free monoid over a given carrier
set, we specify their abstract syntax (a distinguished unit element, the other
elements of the carrier set, and products of terms), their notion of reduction
(oriented conversion rules), their reduction contexts and the corresponding plug

180

function, and how to decompose them into a reduction context and the right-
most inner-most redex, if there is one. We then define a one-step reduction
function that decomposes a non-value term into a reduction context and a redex,
contracts the redex, and plugs the contractum into the context. We can finally
define a reduction-based normalization function that repeatedly applies the one-
step reduction function until a value, i.e., a normal form, is reached.

4.1 Abstract syntax

Given a type elem of carrier-set elements, a term in the free monoid is either the
unit element, an element of type elem, or the product of two terms:

datatype term = UNIT

| ELEM of elem

| PROD of term * term

Terms in the free monoid obey conversion rules: the unit element is neutral for
the product (both on the left and on the right), and the product is associative.

4.2 Notion of contraction

We introduce a notion of reduction by orienting the conversion rules into reduc-
tion rules:

PROD (UNIT, t) −→ t

ELEM e −→ PROD (ELEM e, UNIT)

PROD (PROD (t11, t12), t2) −→ PROD (t11, PROD (t12, t2))

We represent redexes as a data type and implement their contraction with the
corresponding reduction rules:

datatype redex = LEFT_UNIT of term

| RIGHTMOST of elem

| ASSOC of (term * term) * term

(* contract : redex -> term *)

fun contract (LEFT_UNIT t)

= t

| contract (RIGHTMOST e)

= PROD (ELEM e, UNIT)

| contract (ASSOC ((t11, t12), t2))

= PROD (t11, PROD (t12, t2))

The right-most inner-most reduction strategy converges and yields a flat, list-like
term in normal form.

181

4.3 Reduction contexts

We seek the right-most inner-most redex in a term. The grammar of reduction
contexts and the corresponding plug function are as follows:

datatype context = C0

| C1 of term * context

(* plug : context * term -> term *)

fun plug (C0, t)

= t

| plug (C1 (t1, c), t2)

= plug (c, PROD (t1, t2))

4.4 Decomposition

A term is a value (i.e., it does not contain any redex) or it can be decomposed
into a reduction context and a redex:

datatype value_or_decomposition = VAL of term

| DEC of context * redex

(No term is stuck.)
The decomposition function recursively searches for the right-most inner-

most redex in a term. As in Section 2.4, we define it with two auxiliary functions,
decompose’ and decompose’ aux: decompose’ traverses a given term and accumu-
lates the reduction context until it finds a redex or a value, and decompose’ aux

dispatches on the accumulated context to decide whether the given term is a
value, a redex has been found, or the search must continue:

(* decompose’ : term * context -> value_or_decomposition *)

fun decompose’ (UNIT, c)

= decompose’_aux (c, UNIT)

| decompose’ (ELEM e, c)

= DEC (c, RIGHTMOST e)

| decompose’ (PROD (t1, t2), c)

= decompose’ (t2, C1 (t1, c))

(* decompose’_aux : context * term -> value_or_decomposition *)

and decompose’_aux (C0, t)

= VAL t

| decompose’_aux (C1 (UNIT, c), t2)

= DEC (c, LEFT_UNIT t2)

| decompose’_aux (C1 (ELEM e, c), t2)

= decompose’_aux (c, PROD (ELEM e, t2))

| decompose’_aux (C1 (PROD (t11, t12), c), t2)

= DEC (c, ASSOC ((t11, t12), t2))

(* decompose : term -> value_or_decomposition *)

fun decompose t

= decompose’ (t, C0)

182

Lemma 2. A term t is either a value or there exists a unique context c such

that decompose t evaluates to DEC (c, r), where r a redex.

Proof. Immediate.

4.5 One-step reduction

We are now in position to define a one-step reduction function as a function that
(1) maps a non-value term into a reduction context and a redex, (2) contracts
the redex, and (3) plugs the contractum in the reduction context:

(* reduce : term -> term *)

fun reduce t

= (case decompose t

of (VAL t’)

=> t’

| (DEC (c, r))

=> plug (c, contract r))

4.6 Reduction-based normalization

A reduction-based normalization function is one that iterates the one-step re-
duction function until it yields a value. In the following definition, and as in
Section 2.6, we inline reduce and directly check whether decompose yields a value
or a decomposition:

(* iterate0 : value_or_decomposition -> term *)

fun iterate0 (VAL t)

= t

| iterate0 (DEC (c, r))

= iterate0 (decompose (plug (c, contract r)))

(* normalize0 : term -> term *)

fun normalize0 t

= iterate0 (decompose t)

4.7 Reduction-based normalization, typefully

As in Section 2.7, the type of normalize0 is not informative. To make it appear
more clearly that the normalization function yields normal forms, let us introduce
a data type of terms in normal form:

datatype term_nf = UNIT_nf

| PROD_nf of elem * term_nf

We can then refine the type of values by glueing it with the corresponding normal
form:

183

datatype value_or_decomposition = VAL of term * term_nf

| DEC of context * redex

We must then adjust decompose’ aux to construct values both as regular terms
and as terms in normal form:

(* decompose’ : term * context -> value_or_decomposition *)

fun decompose’ (UNIT, c)

= decompose’_aux (c, UNIT, UNIT_nf)

| decompose’ (ELEM e, c)

= DEC (c, RIGHTMOST e)

| decompose’ (PROD (t1, t2), c)

= decompose’ (t2, C1 (t1, c))

(* decompose’_aux : context * term * term_nf

-> value_or_decomposition *)

and decompose’_aux (C0, t, t_nf)

= VAL (t, t_nf)

| decompose’_aux (C1 (UNIT, c), t2, t2_nf)

= DEC (c, LEFT_UNIT t2)

| decompose’_aux (C1 (ELEM e, c), t2, t2_nf)

= decompose’_aux (c, PROD (ELEM e, t2), PROD_nf (e, t2_nf))

| decompose’_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= DEC (c, ASSOC ((t11, t12), t2))

(* decompose : term -> value_or_decomposition *)

fun decompose t

= decompose’ (t, C0)

The reduction-based normalization function can then return the representation
of the term in normal form:

(* iterate1 : value_or_decomposition -> term_nf *)

fun iterate1 (VAL (t, t_nf))

= t_nf

| iterate1 (DEC (c, r))

= iterate1 (decompose (plug (c, contract r)))

(* normalize1 : term -> term_nf *)

fun normalize1 t

= iterate1 (decompose t)

The type of normalize1 is more informative than that of normalize0 since it
makes it clear that applying normalize1 to a term yields a term in normal form.

4.8 Summary and conclusion

We have implemented in ML a reduction semantics for terms in the free monoid,
given its carrier set. Using this reduction semantics, we have presented two
reduction-based normalization functions.

184

4.9 Exercises

1. Implement the reduction semantics above in the programming language of
your choice.

5 From reduction-based to reduction-free normalization

In this section, we transform the reduction-based normalization function of Sec-
tion 4.7 into a reduction-free normalization function, i.e., one where no interme-
diate term is ever constructed. We first refocus the reduction-based normaliza-
tion function and we obtain a small-step abstract machine. We then transform
this small-step abstract machine into a big-step one. This abstract machine is in
defunctionalized form, and we refunctionalize it. The result is in continuation-
passing style and we re-express it in direct style. The resulting direct-style func-
tion is a traditional flatten function with an accumulator; in particular, it is
reduction-free.

5.1 Plugging and decomposition

In the reduction-based normalization function of Section 4.7, decompose is always
applied to the result of plug after the first decomposition. Let us add a vacuous
initial call to plug so that in all cases, decompose is applied to the result of plug:

(* normalize2 : term -> term_nf *)

fun normalize2 t

= iterate1 (decompose (plug (C0, t)))

5.2 Refocusing

As in Section 3.2, we now deforest the composition of decompose and plug into
one refocus function:

(* refocus : context * term -> value_or_decomposition *)

fun refocus (c, t)

= decompose’ (t, c)

The refocused evaluation function therefore reads as follows:

(* iterate3 : value_or_decomposition -> term_nf *)

fun iterate3 (VAL (t, t_nf))

= t_nf

| iterate3 (DEC (c, r))

= iterate3 (refocus (c, contract r))

(* normalize3 : term -> term_nf *)

fun normalize3 t

= iterate3 (refocus (C0, t))

The refocused normalization function is reduction-free because it is no longer
based on a reduction function and it no longer constructs intermediate terms.

185

5.3 From refocused evaluation function to staged abstract machine

Again, the refocused evaluation function is a small-step abstract machine in
the sense that decompose’ and decompose’ aux form a transition function and
iterate3 is a ‘trampoline’. Let us fuse iterate3 and refocus (i.e., decompose’ and
decompose’ aux, which we rename refocus4 and refocus4 aux as in Section 3.3), so
that iterate3 is directly applied to the result of decompose’ and decompose’ aux.
The result is the following big-step abstract machine:

(* iterate4 : value_or_decomposition -> term_nf *)

fun iterate4 (VAL (t, t_nf))

= t_nf

| iterate4 (DEC (c, r))

= refocus4 (contract r, c)

(* refocus4 : term * context -> term_nf *)

and refocus4 (UNIT, c)

= refocus4_aux (c, UNIT, UNIT_nf)

| refocus4 (ELEM e, c)

= iterate4 (DEC (c, RIGHTMOST e))

| refocus4 (PROD (t1, t2), c)

= refocus4 (t2, C1 (t1, c))

(* refocus4_aux : context * term * term_nf -> term_nf *)

and refocus4_aux (C0, t, t_nf)

= iterate4 (VAL (t, t_nf))

| refocus4_aux (C1 (UNIT, c), t2, t2_nf)

= iterate4 (DEC (c, LEFT_UNIT t2))

| refocus4_aux (C1 (ELEM e, c), t2, t2_nf)

= refocus4_aux (c, PROD (ELEM e, t2), PROD_nf (e, t2_nf))

| refocus4_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= iterate4 (DEC (c, ASSOC ((t11, t12), t2)))

(* normalize4 : term -> term_nf *)

fun normalize4 t

= refocus4 (t, C0)

Again, this abstract machine is staged: iterate4 implements the contraction
rules of the reduction semantics and refocus4 and refocus4 aux implement its
congruence rules.

5.4 Inlining and simplification

As in Section 3.4, we inline iterate4 and contract to streamline the abstract
machine. Three cases occur:

1. The clause

| refocus4 (ELEM e, c)

= iterate4 (DEC (c, RIGHTMOST e))

after inlining iterate4 and contract, reads as follows:

186

| refocus4 (ELEM e, c)

= refocus4 (PROD (ELEM e, UNIT), c)

Since refocus4 is defined by cases on its first argument, this clause can be
simplified as follows (skipping two steps):

| refocus4 (ELEM e, c)

= refocus4_aux (c, PROD (ELEM e, UNIT), PROD_nf (e, UNIT_nf))

2. The clause

| refocus4_aux (C1 (UNIT, c), t2, t2_nf)

= iterate4 (DEC (c, LEFT_UNIT t2))

after inlining iterate4 and contract, reads as follows:

| refocus4_aux (C1 (UNIT, c), t2, t2_nf)

= refocus4 (t2, c)

We know, however, that t2 is in normal form, and therefore we can directly
call refocus4 aux instead:

| refocus4_aux (C1 (UNIT, c), t2, t2_nf)

= refocus4_aux (c, t2, t2_nf)

3. The clause

| refocus4_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= iterate4 (DEC (c, ASSOC ((t11, t12), t2)))

after inlining iterate4 and contract, reads as follows:

| refocus4_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= refocus4 (PROD (t11, PROD (t12, t2)), c)

Since refocus4 is defined by cases on its first argument, this clause can be
simplified as follows (skipping two steps):

| refocus4_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= refocus4 (t2, C1 (t12, C1 (t11, c)))

We know, however, that t2 is in normal form, and therefore we can directly
call refocus4 aux instead:

| refocus4_aux (C1 (PROD (t11, t12), c), t2, t2_nf)

= refocus4_aux (C1 (t12, C1 (t11, c)), t2, t2_nf)

In the resulting definition of refocus4 aux, we observe that the second parameter
is dead, i.e., that it is never used. Eliminating it (and renaming the last parameter
to a) yields the following definition:

187

(* refocus4 : term * context -> term_nf *)

fun refocus4 (UNIT, c)

= refocus4_aux (c, UNIT_nf)

| refocus4 (ELEM e, c)

= refocus4_aux (c, PROD_nf (e, UNIT_nf))

| refocus4 (PROD (t1, t2), c)

= refocus4 (t2, C1 (t1, c))

(* refocus4_aux : context * term_nf -> term_nf *)

and refocus4_aux (C0, a)

= a

| refocus4_aux (C1 (UNIT, c), a)

= refocus4_aux (c, a)

| refocus4_aux (C1 (ELEM e, c), a)

= refocus4_aux (c, PROD_nf (e, a))

| refocus4_aux (C1 (PROD (t11, t12), c), a)

= refocus4_aux (C1 (t12, C1 (t11, c)), a)

5.5 Refunctionalization

The above definitions of refocus4 and refocus4 aux are not in defunctionalized
form because of the last clause of refocus4 aux [36]. To put them in defunction-
alized form (eureka), we need to introduce one more auxiliary function:

(* refocus4 : term * context -> term_nf *)

fun refocus4 (UNIT, c)

= refocus4_aux (c, UNIT_nf)

| refocus4 (ELEM e, c)

= refocus4_aux (c, PROD_nf (e, UNIT_nf))

| refocus4 (PROD (t1, t2), c)

= refocus4 (t2, C1 (t1, c))

(* refocus4_aux : context * term_nf -> term_nf *)

and refocus4_aux (C0, a)

= a

| refocus4_aux (C1 (t’, c), a)

= refocus4_aux’ (t’, c, a)

(* refocus4_aux’ : term * context * term_nf -> term_nf *)

and refocus4_aux’ (UNIT, c, a)

= refocus4_aux (c, a)

| refocus4_aux’ (ELEM e, c, a)

= refocus4_aux (c, PROD_nf (e, a))

| refocus4_aux’ (PROD (t11, t12), c, a)

= refocus4_aux’ (t12, C1 (t11, c), a)

Now the reduction contexts, together with refocus4 aux, are the first-order coun-
terpart of a function. The higher-order counterpart of the normalization function
reads as follows:

(* refocus5 : term * (term_nf -> term_nf) -> term_nf *)

188

fun refocus5 (UNIT, c)

= c UNIT_nf

| refocus5 (ELEM e, c)

= c (PROD_nf (e, UNIT_nf))

| refocus5 (PROD (t1, t2), c)

= refocus5 (t2, fn t2’_nf => refocus5_aux’ (t1, c, t2’_nf))

(* refocus5_aux’ : term * (term_nf -> term_nf) * term_nf -> term_nf *)

and refocus5_aux’ (UNIT, c, a)

= c a

| refocus5_aux’ (ELEM e, c, a)

= c (PROD_nf (e, a))

| refocus5_aux’ (PROD (t11, t12), c, a)

= refocus5_aux’ (t12, fn a’ =>

refocus5_aux’ (t11, c, a’), a)

(* normalize5 : term -> term_nf *)

fun normalize5 t

= refocus5 (t, fn a => a)

5.6 Back to direct style

The refunctionalized definition of Section 5.5 is in continuation-passing style
since it has a functional accumulator and all of its calls are tail calls. Its direct-
style counterpart reads as follows:

(* refocus6 : term -> term_nf *)

fun refocus6 UNIT

= UNIT_nf

| refocus6 (ELEM e)

= PROD_nf (e, UNIT_nf)

| refocus6 (PROD (t1, t2))

= refocus6_aux’ (t1, refocus6 t2)

(* refocus6_aux : term * term_nf -> term_nf *)

and refocus6_aux’ (UNIT, a)

= a

| refocus6_aux’ (ELEM e, a)

= PROD_nf (e, a)

| refocus6_aux’ (PROD (t11, t12), a)

= refocus6_aux’ (t11, refocus6_aux’ (t12, a))

(* normalize6 : term -> term_nf *)

fun normalize6 t

= refocus6 t

The resulting definition is that of a flatten function with an accumulator, i.e.,
an uncurried version of the usual reduction-free normalization function for the
free monoid [9, 12, 15, 47].

189

5.7 Summary and conclusion

We have refocused the reduction-based normalization function of Section 4 into a
small-step abstract machine, and we have exhibited the corresponding reduction-
free normalization function.

The resulting reduction-free normalization function could be streamlined by
skipping refocus6 as follows:

(* normalize7 : term -> term_nf *)

fun normalize7 t

= refocus6_aux’ (t, UNIT_nf)

This simplified reduction-free normalization function is the traditional flatten
function with an accumulator. It, however, corresponds to another reduction-
based normalization function and a slightly different reduction strategy—though
one that yields the same normal forms.

5.8 Exercises

1. Reproduce the construction above in the programming language of your
choice.

6 A reduction semantics for lambda-terms with explicit
substitutions

See http://www.brics.dk/~danvy/AFP08/.

6.1 Abstract syntax

6.2 Notion of contraction

6.3 Reduction contexts

6.4 Decomposition

6.5 One-step reduction

6.6 Reduction-based normalization

6.7 Reduction-based normalization, typefully

6.8 Summary and conclusion

6.9 Exercises

190

7 From reduction-based to reduction-free normalization

See http://www.brics.dk/~danvy/AFP08/.

7.1 Plugging and decomposition

7.2 Refocusing

7.3 From refocused evaluation function to staged abstract machine

7.4 Inlining and simplification

7.5 Refunctionalization

7.6 Back to direct style

7.7 Summary and conclusion

7.8 Exercises

8 Conclusion

There is a general consensus that normalization by evaluation is an art because
one must invent a non-standard, extensional evaluation function and its left
inverse [1, 7, 8, 11, 14, 20, 22, 38, 44, 47,49, 61].

In this article, we have built on the computational content of a reduction-
based normalization function as provided by a reduction semantics, and we have
presented a simple, derivational way to construct a reduction-free normalization
function. We have illustrated the construction on two examples, arithmetic ex-
pressions and terms in a free monoid. Elsewhere, we have successfully constructed
weak-head normalization functions for the lambda-calculus (a.k.a. evaluation
functions) and, in a joint work with Kevin Millikin and Johan Munk, normal-
ization functions for the lambda-calculus (yielding long beta-eta-normal forms,
when they exist), thereby establishing a link between normalization by evalua-
tion and abstract machines for strong reduction [21, 45, 50]. Elsewhere [35, 37]
We have also constructed one-pass CPS transformations, which provide an early
example of normalization by evaluation.

Acknowledgments: This lecture note is a revised version of an invited talk at
WRS 2004, for which the author is grateful to Sergio Antoy and Yoshihito
Toyama. Thanks are also due to Rinus Plasmeijer for the opportunity to present
this material at AFP 2008.

191

References

1. K. Aehlig and F. Joachimski. Operational aspects of untyped normalization by
evaluation. Mathematical Structures in Computer Science, 14:587–611, 2004.

2. M. S. Ager. Partial Evaluation of String Matchers & Constructions of Abstract Ma-
chines. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark,
Jan. 2006.

3. M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional correspondence
between evaluators and abstract machines. In D. Miller, editor, Proceedings of
the Fifth ACM-SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’03), pages 8–19, Uppsala, Sweden, Aug. 2003.
ACM Press.

4. M. S. Ager, O. Danvy, and J. Midtgaard. A functional correspondence between call-
by-need evaluators and lazy abstract machines. Information Processing Letters,
90(5):223–232, 2004. Extended version available as the research report BRICS
RS-04-3.

5. M. S. Ager, O. Danvy, and J. Midtgaard. A functional correspondence between
monadic evaluators and abstract machines for languages with computational ef-
fects. Theoretical Computer Science, 342(1):149–172, 2005. Extended version avail-
able as the research report BRICS RS-04-28.

6. T. Altenkirch, M. Hofmann, and T. Streicher. Categorical reconstruction of a
reduction-free normalization proof. In D. H. Pitt, D. E. Rydeheard, and P. John-
stone, editors, Category Theory and Computer Science, number 953 in Lecture
Notes in Computer Science, pages 182–199, Cambridge, UK, Aug. 1995. Springer-
Verlag.

7. T. Altenkirch and T. Uustalu. Normalization by evaluation for λ
→2. In

Y. Kameyama and P. J. Stuckey, editors, Functional and Logic Programming, 7th
International Symposium, FLOPS 2004, number 2998 in Lecture Notes in Com-
puter Science, pages 260–275, Nara, Japan, Apr. 2004. Springer-Verlag.

8. V. Balat, R. D. Cosmo, and M. P. Fiore. Extensional normalisation and type-
directed partial evaluation for typed lambda calculus with sums. In X. Leroy,
editor, Proceedings of the Thirty-First Annual ACM Symposium on Principles of
Programming Languages, SIGPLAN Notices, Vol. 39, No. 1, pages 64–76, Venice,
Italy, Jan. 2004. ACM Press.

9. V. Balat and O. Danvy. Memoization in type-directed partial evaluation. In
D. Batory, C. Consel, and W. Taha, editors, Proceedings of the 2002 ACM SIG-
PLAN/SIGSOFT Conference on Generative Programming and Component Engi-
neering, GPCE 2002, number 2487 in Lecture Notes in Computer Science, pages
78–92, Pittsburgh, Pennsylvania, Oct. 2002. Springer-Verlag.

10. U. Berger, M. Eberl, and H. Schwichtenberg. Normalization by evaluation. In
B. Möller and J. V. Tucker, editors, Prospects for hardware foundations (NADA),
number 1546 in Lecture Notes in Computer Science, pages 117–137, Berlin, Ger-
many, 1998. Springer-Verlag.

11. U. Berger and H. Schwichtenberg. An inverse of the evaluation functional for typed
λ-calculus. In G. Kahn, editor, Proceedings of the Sixth Annual IEEE Symposium
on Logic in Computer Science, pages 203–211, Amsterdam, The Netherlands, July
1991. IEEE Computer Society Press.

12. I. Beylin and P. Dybjer. Extracting a proof of coherence for monoidal categories
from a proof of normalization for monoids. In S. Berardi and M. Coppo, edi-
tors, Types for Proofs and Programs, International Workshop TYPES’95, number

192

1158 in Lecture Notes in Computer Science, pages 47–61, Torino, Italy, June 1995.
Springer-Verlag.

13. M. Biernacka. A Derivational Approach to the Operational Semantics of Func-
tional Languages. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus,
Denmark, Jan. 2006.

14. M. Biernacka, D. Biernacki, and O. Danvy. An operational foundation for delimited
continuations in the CPS hierarchy. Technical Report BRICS RS-04-29, DAIMI,
Department of Computer Science, University of Aarhus, Aarhus, Denmark, Dec.
2004. A preliminary version was presented at the the Fourth ACM SIGPLAN
Workshop on Continuations (CW’04).

15. M. Biernacka, D. Biernacki, and O. Danvy. An operational foundation for delimited
continuations in the CPS hierarchy. Logical Methods in Computer Science, 1(2:5):1–
39, Nov. 2005. A preliminary version was presented at the Fourth ACM SIGPLAN
Workshop on Continuations (CW’04).

16. M. Biernacka and O. Danvy. A concrete framework for environment machines.
ACM Transactions on Computational Logic, 9(1):1–30, 2007. Article #6. Extended
version available as the research report BRICS RS-06-3.

17. M. Biernacka and O. Danvy. A syntactic correspondence between context-sensitive
calculi and abstract machines. Theoretical Computer Science, 375(1-3):76–108,
2007. Extended version available as the research report BRICS RS-06-18.

18. D. Biernacki. The Theory and Practice of Programming Languages with Delimited
Continuations. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus,
Denmark, Dec. 2005.

19. D. Biernacki and O. Danvy. From interpreter to logic engine by defunctionalization.
In M. Bruynooghe, editor, Logic Based Program Synthesis and Transformation,
13th International Symposium, LOPSTR 2003, number 3018 in Lecture Notes in
Computer Science, pages 143–159, Uppsala, Sweden, Aug. 2003. Springer-Verlag.

20. T. Coquand and P. Dybjer. Intuitionistic model constructions and normalization
proofs. Mathematical Structures in Computer Science, 7:75–94, 1997.

21. P. Crégut. An abstract machine for lambda-terms normalization. In M. Wand,
editor, Proceedings of the 1990 ACM Conference on Lisp and Functional Program-
ming, pages 333–340, Nice, France, June 1990. ACM Press.

22. D. Čubrić, P. Dybjer, and P. J. Scott. Normalization and the Yoneda embedding.
Mathematical Structures in Computer Science, 8:153–192, 1998.

23. O. Danvy. Back to direct style. Science of Computer Programming, 22(3):183–195,
1994. A preliminary version was presented at the Fourth European Symposium on
Programming (ESOP 1992).

24. O. Danvy. Type-directed partial evaluation. In G. L. Steele Jr., editor, Proceed-
ings of the Twenty-Third Annual ACM Symposium on Principles of Programming
Languages, pages 242–257, St. Petersburg Beach, Florida, Jan. 1996. ACM Press.

25. O. Danvy. Type-directed partial evaluation. In J. Hatcliff, T. Æ. Mogensen, and
P. Thiemann, editors, Partial Evaluation – Practice and Theory; Proceedings of the
1998 DIKU Summer School, number 1706 in Lecture Notes in Computer Science,
pages 367–411, Copenhagen, Denmark, July 1998. Springer-Verlag.

26. O. Danvy. From reduction-based to reduction-free normalization. In S. Antoy and
Y. Toyama, editors, Proceedings of the Fourth International Workshop on Reduc-
tion Strategies in Rewriting and Programming (WRS’04), volume 124(2) of Elec-
tronic Notes in Theoretical Computer Science, pages 79–100, Aachen, Germany,
May 2004. Elsevier Science. Invited talk.

193

27. O. Danvy. On evaluation contexts, continuations, and the rest of the computa-
tion. In H. Thielecke, editor, Proceedings of the Fourth ACM SIGPLAN Workshop
on Continuations (CW’04), Technical report CSR-04-1, Department of Computer
Science, Queen Mary’s College, pages 13–23, Venice, Italy, Jan. 2004. Invited talk.

28. O. Danvy. A rational deconstruction of Landin’s SECD machine. In C. Grelck,
F. Huch, G. J. Michaelson, and P. Trinder, editors, Implementation and Applica-
tion of Functional Languages, 16th International Workshop, IFL’04, number 3474
in Lecture Notes in Computer Science, pages 52–71, Lübeck, Germany, Sept. 2004.
Springer-Verlag. Recipient of the 2004 Peter Landin prize. Extended version avail-
able as the research report BRICS RS-03-33.

29. O. Danvy. An Analytical Approach to Program as Data Objects. DSc thesis, De-
partment of Computer Science, University of Aarhus, Aarhus, Denmark, Oct. 2006.

30. O. Danvy and P. Dybjer, editors. Proceedings of the 1998 APPSEM Workshop on
Normalization by Evaluation (NBE 1998), BRICS Note Series NS-98-8, Gothen-
burg, Sweden, May 1998. BRICS, Department of Computer Science, University of
Aarhus. Available online at <http://www.brics.dk/ nbe98/programme.html>.

31. O. Danvy and A. Filinski. Representing control, a study of the CPS transformation.
Mathematical Structures in Computer Science, 2(4):361–391, 1992.

32. O. Danvy and J. L. Lawall. Back to direct style II: First-class continuations. In
W. Clinger, editor, Proceedings of the 1992 ACM Conference on Lisp and Func-
tional Programming, LISP Pointers, Vol. V, No. 1, pages 299–310, San Francisco,
California, June 1992. ACM Press.

33. O. Danvy and K. Millikin. Refunctionalization at work. Science of Computer
Programming, 200? In press. A preliminary version is available as the research
report BRICS RS-07-7.

34. O. Danvy and K. Millikin. On the equivalence between small-step and big-step ab-
stract machines: a simple application of lightweight fusion. Information Processing
Letters, 106(3):100–109, 2008.

35. O. Danvy, K. Millikin, and L. R. Nielsen. On one-pass CPS transformations.
Journal of Functional Programming, 17(6):793–812, 2007.

36. O. Danvy and L. R. Nielsen. Defunctionalization at work. In H. Søndergaard, edi-
tor, Proceedings of the Third International ACM SIGPLAN Conference on Princi-
ples and Practice of Declarative Programming (PPDP’01), pages 162–174, Firenze,
Italy, Sept. 2001. ACM Press. Extended version available as the research report
BRICS RS-01-23.

37. O. Danvy and L. R. Nielsen. Refocusing in reduction semantics. Research Report
BRICS RS-04-26, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark, Nov. 2004. A preliminary version appeared in the informal
proceedings of the Second International Workshop on Rule-Based Programming
(RULE 2001), Electronic Notes in Theoretical Computer Science, Vol. 59.4.

38. P. Dybjer and A. Filinski. Normalization and partial evaluation. In G. Barthe,
P. Dybjer, L. Pinto, and J. Saraiva, editors, Applied Semantics – Advanced Lec-
tures, number 2395 in Lecture Notes in Computer Science, pages 137–192, Cam-
inha, Portugal, Sept. 2000. Springer-Verlag.

39. M. Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Control and
State in Imperative Higher-Order Programming Languages. PhD thesis, Computer
Science Department, Indiana University, Bloomington, Indiana, Aug. 1987.

40. M. Felleisen and M. Flatt. Programming languages and lambda calculi. Unpub-
lished lecture notes available at <http://www.ccs.neu.edu/home/matthias/3810-
w02/readings.html> and last accessed in April 2008, 1989-2001.

194

41. A. Filinski. A semantic account of type-directed partial evaluation. In G. Nadathur,
editor, Proceedings of the International Conference on Principles and Practice of
Declarative Programming, number 1702 in Lecture Notes in Computer Science,
pages 378–395, Paris, France, Sept. 1999. Springer-Verlag. Extended version avail-
able as the research report BRICS RS-99-17.

42. A. Filinski and H. K. Rohde. A denotational account of untyped normalization
by evaluation. In I. Walukiewicz, editor, Foundations of Software Science and
Computation Structures, 7th International Conference, FOSSACS 2004, number
2987 in Lecture Notes in Computer Science, pages 167–181, Barcelona, Spain,
Apr. 2002. Springer-Verlag.

43. S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined style. In P. Lee, editor,
Proceedings of the 1999 ACM SIGPLAN International Conference on Functional
Programming, SIGPLAN Notices, Vol. 34, No. 9, pages 18–27, Paris, France, Sept.
1999. ACM Press.

44. M. Goldberg. Gödelization in the λ-calculus. Information Processing Letters, 75(1-
2):13–16, 2000.

45. B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In
S. Peyton Jones, editor, Proceedings of the 2002 ACM SIGPLAN International
Conference on Functional Programming (ICFP’02), SIGPLAN Notices, Vol. 37,
No. 9, pages 235–246, Pittsburgh, Pennsylvania, Sept. 2002. ACM Press.

46. T. Hardin, L. Maranget, and B. Pagano. Functional runtime systems within the
lambda-sigma calculus. Journal of Functional Programming, 8(2):131–172, 1998.

47. Y. Kinoshita. A bicategorical analysis of E-categories. Mathematica Japonica,
47(1):157–169, 1998.

48. S. Marlow and S. L. Peyton Jones. Making a fast curry: push/enter vs. eval/apply
for higher-order languages. In K. Fisher, editor, Proceedings of the 2004 ACM
SIGPLAN International Conference on Functional Programming (ICFP’04), SIG-
PLAN Notices, Vol. 39, No. 9, pages 4–15, Snowbird, Utah, Sept. 2004. ACM
Press.

49. P. Martin-Löf. About models for intuitionistic type theories and the notion of
definitional equality. In Proceedings of the Third Scandinavian Logic Symposium
(1972), volume 82 of Studies in Logic and the Foundation of Mathematics, pages
81–109. North-Holland, 1975.

50. C. L. McGowan. The correctness of a modified SECD machine. In Proceedings of
the Second Annual ACM Symposium in the Theory of Computing, pages 149–157,
Northampton, Massachusetts, May 1970.

51. J. Midtgaard. Transformation, Analysis, and Interpretation of Higher-Order Pro-
cedural Programs. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus,
Denmark, June 2007.

52. K. Millikin. A Structured Approach to the Transformation, Normalization and
Execution of Computer Programs. PhD thesis, BRICS PhD School, University of
Aarhus, Aarhus, Denmark, May 2007.

53. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). The MIT Press, 1997.

54. L. R. Nielsen. A study of defunctionalization and continuation-passing style. PhD
thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark, July 2001.
BRICS DS-01-7.

55. A. Ohori and I. Sasano. Lightweight fusion by fixed point promotion. In
M. Felleisen, editor, Proceedings of the Thirty-Fourth Annual ACM Symposium
on Principles of Programming Languages, SIGPLAN Notices, Vol. 42, No. 1, pages
143–154, New York, NY, USA, Jan. 2007. ACM Press.

195

56. G. D. Plotkin. A structural approach to operational semantics. Technical Report
FN-19, DAIMI, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, Sept. 1981.

57. J. C. Reynolds. Definitional interpreters for higher-order programming languages.
In Proceedings of 25th ACM National Conference, pages 717–740, Boston, Mas-
sachusetts, 1972. Reprinted in Higher-Order and Symbolic Computation 11(4):363–
397, 1998, with a foreword [59].

58. J. C. Reynolds. Using functor categories to generate intermediate code. In P. Lee,
editor, Proceedings of the Twenty-Second Annual ACM Symposium on Principles of
Programming Languages, pages 25–36, San Francisco, California, Jan. 1995. ACM
Press.

59. J. C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic
Computation, 11(4):355–361, 1998.

60. G. L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial In-
telligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, May 1978. Technical report AI-TR-474.

61. R. Vestergaard. The simple type theory of normalisation by evaluation. In
B. Gramlich and S. Lucas, editors, Proceedings of the First International Workshop
on Reduction Strategies in Rewriting and Programming (WRS 2001), number 57
in Electronic Notes in Theoretical Computer Science, Utrecht, The Netherlands,
May 2001. Elsevier Science.

62. Y. Xiao, A. Sabry, and Z. M. Ariola. From syntactic theories to interpreters:
Automating proofs of unique decomposition. Higher-Order and Symbolic Compu-
tation, 14(4):387–409, 2001.

196

Self-Adjusting Computation

Umut A. Acar1

Toyota Technological Institute
Chicago, IL, USA
umut@tti-c.org

Abstract. In these notes, I present an overview of self-adjusting com-
putation. These notes are a draft of more comprehensive notes to be
distributed later. More information and software can be found at
http://ttic.uchicago.edu/~ pl/sa-sml/.

1 Motivation

The motivation behind self-adjusting computation is that observation that in-
cremental change is pervasive in many applications.

What I mean by this is that many application interact with data that changes
slowly and by small amounts, i.e., incrementally over time. Since incremental
changes are small, they often cause small changes to the output. This enables
updating the output much faster than recomputing it from scratch.

Applications that exhibit this phenomena abound. For example, applications
that interact with or model the physical world (e.g., robots, traffic control sys-
tems, scheduling systems) must respond to changes in the environment quickly.
Similarly in applications that interact with the user, application data change
incrementally over time as a result of user commands. For example, in soft-
ware development, we often invoke a compiler on programs that differ only by
a few lines of how big the total code base may be—in a typical use, we make
small changes to the code and compile the program. Other applications where
such changes are common include databases, where the database itself changes
incrementally over time.

Another entirely different class of applications are those where changes are
inherent to the data itself, because of motion. For example, if we wish to simulate
the flow of some fluid by modeling the particles that make up the fluid itself,
then we will need to compute properties of moving objects. When a computation
involves moving objects, it can often be performed accurately by updating the
computation only when the relationships between objects change. Since motion
is continuous such changes are incremental—often few relationships change at
the same time and cause small changes to the output. This makes it possible to
update the output much more efficiently than recomputing from scratch.

1.1 Discrete and Continuous Changes

I describe two kinds of changes that arise naturally in the applications mentioned
above: discrete/dynamic, and continuous/kinetic.

197

2

Broadly, we can classify the kinds of changes into two

Discrete/Dynamic Changes: A discrete or dynamic change is a combina-
torial change to the input of the program. It changes the set of objects
represented by the input.

Continuous/Kinetic Changes: A continuous or kinetic change refers to a
change that affects the relationship between the input objects but does not
change the set itself. By a relationship we broadly mean any function that
maps a number of objects into a function whose co-domain (range) is a
discreet set. For example, comparisons between objects are relationships be-
cause the co-main contains true and false.

As a simple example, let’s consider sorting a list of numbers and how discrete
and continuous changes may arise in this application.

Suppose that we sort a list of numbers, e.g., [30,20,10,5], and then we add
a new number to the list, e.g. [7,30,20,10,5]. Since the change modifies the set
of objects itself, it is a discrete change. Changes such as an insertion/deletion
into/from the input are discrete changes regardless of the application. Note that
inserting/deleting an element from the input only changes the output by a small
amount as well (by essentially inserting/deleting the new element into/from
the output). This makes it possible to update the output much faster than
recomputing from scratch. Section 1.2 describes how this can be achieved.

 40

 20

 10

 0

 100 88.8 66.6 44.4 33.3

P
os

iti
on

s

Time

output change
40.0 - 0.3 t
20.0 - 0.3 t

10.0
0.0 + 0.15 t

Fig. 1. Moving points.

Suppose now we want to sort a list of numbers that change continuously as a
function of time. More precisely let a(t) = 40.0−0.3t, b(t) = 10, c(t) = 20.0−0.3t,

198

3

and d = 0.15t. In other words, we want to start at time zero (t = 0), and then
update the output whenever it “changes”. Since the numbers are moving (i.e.,
changing continuously) the values in the output will change continuously but
the output will only change discretely when the outcomes of the comparisons
between the input objects change.

To see this, note that, at time 0, the numbers are sorted as [a(t), b(t), c(t), d(t)].
The output then remains the same until the time becomes is about 33.33, be-
cause only then the number c(t) becomes less than b(t) changing the output
to [a(t), c(t), b(t), d(t)]. The output then remains the same until time (approxi-
mately) 44.44, when c(t) falls below a, and the output becomes [c(t), a(t), b(t), d(t)].
The output then changes again at approximately 66.66 to [c(t), b(t), a(t), d(t)],
at approximately 88.88 to [c(t), b(t), d(t), a(t)]. The final change takes place at
time 100.0, when the output becomes [c(t), d(t), b(t), a(t)]. Althought the output
is changing continously, it is only at these time that we need to make any sort
of updates to the sorting computation.

As the numbers increase and decrease over time the value of the output
changes continuously but the output changes combinatorially only when the
comparisons between the numbers change. Note that when the outcome of the
comparison changes, the change in the output is very small—it is simply a swap
of two adjacent numbers. These two properties make it possible to treat motion
as a form of incremental change. In fact, in this example, by viewing the outcomes
of comparisons as input to the computation, we can treat continuous changes
as discrete changes to these comparisons. In general, if the computed property
only depends on relationships between data whose values range over a discrete
domain, then we can perform motion simulation by changing the values of these
relationships as they take different values discretely.

1.2 Taking advantage of incrementality

The applications and examples described in the previous section suggest that
it may be possible to update computation much faster than recomputing from
scratch by taking advantage of the fact that incremental changes cause small
changes to the output. How might we go about this?

One option is to customize our implementations by designing algorithms that
can perform fast output updates. Another approach is to design languages for
writing incremental programs in a more systematic, methodical way. Of course
the second option would be nice. But neverthless let’s go through an example to
see the challenges with the first approach.

As a concrete example, let’s look back to our sorting problem. Let’s try to
design a data structure that would update the sorted output efficiently under a
single insertion. Considering single insertion seems to cause no loss of generality
because we can express larger changes (e.g., two insertions) in terms of them.
The interface for such data structure can expressed as follows
signature IncrementalSort =

sig

type ’a t

199

4

type elt

val insert: ’a t -> (’a * int) -> ’a t * ’a list

val sort: elt list -> (elt * elt -> bool) -> (t * elt list)

end

The sort operation performs an “initial sort” of the input and generates the
output list as well as a data structure (of abstract type ’a t) that can be used
to speedup the subsequent insertions. After sort is executed, we can change
the input by inserting new elements using the insert operation. This operation
takes the data structure and the element to insert and the position at which to
insert the element and returns the updated data structure and the output list.

Now having designed the interface, let’s try to give an implementation. There
are several options that we can consider; these are described below from the
simplest to the most sophisticated. These implementations differ in their choice
of the auxiliary data structure used to speed up insertions. In the desription
below, n denote the current input size.

1. The sort function returns the input as the auxiliary data structure. The
insert operation simply changes the input and sorts from scratch to update
the output. This is equivalent to a from-scratch execution.

2. The sort function returns both input and the output as the auxiliary data
structure. The insert operation inserts the new element into the input and
into the output. In this case, the insert operation can be performed in O(n)
time.

3. The sort function builds a binary-tree representation of the input list and
returns it as the auxiliary data structure. Internally the binary tree also re-
members in each node the sorted list of elements in that subtree. The insert
operation performs an insertion into the binary search tree and constructs
the output by using the sorted sublists stored in the nodes. These opera-
tions can be performed in O(log n) time by careful use of references and
data structures.

Note that the first two approaches are not interesting. They only improve
performance by a logarithmic factor, which is not worth the complexity—we
might as well re-compute from scratch whenever there is a new input. The third
approach is interesting but it does require quite a bit of algorithmic knowledge.
Not only do we have to use binary search trees but we also need to construct the
updated output. When the problem was more complex then sorting, designing
these internal data structures become more challenging.

Perhaps one of the most important difficulties with this approach is that
incremental structures are not composable. Let’s try to use our sorting data
structure in a larger application. Suppose that, given a list of numbers, we want
to filter out those that are negative and sort the positive numbers. As the input
is changed by an insertion, we want to update the output efficiently. If we did
not have to worry about incremental changes, this is trivial code to write : sort
(filter (fn x => x > 0) l).

To develop an incremental solution to this problem, we also need an incre-
mental filter, whose interface is given below:

200

5

Self-Adjusting Program

Mutator
Trace

The user State

Data
+

Commands

Result

Inputs
+

Changes

Result

Fig. 2. Self-adjusting-computation model.

signature IncrementalFilter =

sig

type ’a t

val filter: ’a list -> (’a -> bool) -> (t * ’a list)

val insert: ’a list -> (’a * int) -> ’a t * ’a list

end

Now we need to compose these data structures so that when we change the
input to the filter, the change to the output of filter can be applied to the
input to sort. But the filter function returns no information about how the
output changes. Thus, we need to come up with a way to find the change in the
output. This requires linear time in general. Furthermore, if the output is more
complex than a list, it may not even be clear if the difference can be computed
efficiently. For example, computing the difference between two graphs can be
very difficult.

These examples motivate a more systematic approach to writing incremental
programs; this is what self-adjusting computation offers.

2 Self-Adjusting Computation

Self-adjusting computation refers to a model of computation. In this model,
programs are written using so called modifiable references or modifiables. The
operations on modifiables reference are the same as those with ordinary ref-
erences. In these lectures, however, we will consider a restricted interface that
allows modifiables to be destructively updated only externally (not within a
self-adjusting computation).

In self-adjusting computation, a program can be executed with an input
(as in conventional models of computation) and, after such an execution, the
contents of modifiables can be changed by destructive updates and the output
can be updated by performing change propagation, which is provided by the
model. Given a computation and a set of changed modifiables, change prop-
agation updates the computation to incorporate the changed modifiables into
the computation. Semantically, change propagation yields the same output as a
from-scratch execution of the program with the change data.

In self-adjusting computation, a program typically consists of a self-adjusting
function and a mutator program. Figure 2 illustrates the structure of a program

201

6

in this model. The mutator program typically starts a computation by running
the self-adjusting function with an input and returning the output for inspec-
tion to the user. The mutator then enters an interaction loop, where it receives
commands from the user and based on these command issues changes to the
data of the self-adjusting function. After the desired changes are performed, the
mutator performs change propagation to update the computation, returns the
updated output to the user, and jumps back to the start of the interaction loop.

This basic interaction loop of the mutator can be modified to perform more
interesting tasks. For example the mutator can perform motion simulation. To
simulate motion, the mutator maintains the simulation-time and performs a
sweep of the time line as a part of this interaction loop. Whenever simulation-
time is advanced to a time at which a continuous/kinetic change takes place, the
mutator performs that change and updates the computation by running change
propagation.

To respond to changes to its data efficiently, a self-adjusting program main-
tains a trace. This trace is first constructed when the self-adjusting function is
executed with the user input and updated by change propagation when the data
changes take place. At a high-level, the trace represents the execution of the
self-adjusting function with the current data. More specifically, the trace records
all modifiables and the operations on modifiables as well as the continuations at
the time of dereference operations. The trace is internally represented by using
dynamic dependence graphs or DDGs and function calls and continuations are
memoized by using a particular form of memoization that remembers not just re-
sults of function calls also their traces. These memoized computations are re-used
during change propagation by matching the arguments to memoized functions.
Since modifiable references are mutable, we cannot re-use results of memoized
functions directly (they may depend on mutated modifiables). Instead, we reuse
the trace of a memoized computation after performing a change propagation on
the trace.

As a concrete example, let’s go back to our sorting example (Section 1.2.
Suppose that instead of constructing an incremental sorting data structure, we
write a self-adjusting version of the merge-sort algorithm, msort. We can write
a mutator for msort that reads an input from the user, invokes msort with
that input and returns the result to the user. The user can now work with this
results, e.g., she can traverse the sorted output, print it. After this initial run,
the mutator can enter the interaction loop, where it awaits the user to issue
some changes to the input, performs such changes, and updates the output by
running change propagation. Suppose again that we want to first filter the input
with a provided predicate and sort the resulting list. Such a program can be
trivially written by composing a self-adjusting function, filter, with msort,
written msort(filter (·)). We can use the same mutator to enable interaction
with the user. In this way, self-adjusting computation allows functions to be
composed just as in standard models of computation.

Again going back to our sorting example, let’s briefly discuss how we might
compute the sorted output of continuously changing numbers (e.g., Figure 1).

202

7

To perform motion simulation with objects whose time-varying functions are
known, we will need a priority queue for scheduling events at times at which the
outcomes of comparisons change. We will start the simulation by reading the
input from the user and running the msort function on this input. We would need
to modify the msort function to work with a comparison function that instead
of returning the outcome of the comparison directly, returns the outcome in a
modifiable. In addition, the comparison function computes the time at which
the value of the comparisons changes in the future, and inserts an event to the
priority queue at that time. After the initial run of msort with the given input is
complete, we can now perform motion simulation by scheduling the events in the
queue. We remove the event with the earliest time, move the simulation time
to that time, change the outcome of the comparison involved in the event by
writing to the corresponding modifiable, and perform change propagation. We
continue until no more events remain. For example, if the inputs are as shown
in Figure 1, then we would perform motion simulation at the times marked with
dark squares (labeled “output change”).

3 Self-Adjusting SML

In this section, I describe the Self-Adjusting, adaptive ML, AML, language for
writing self-adjusting program as an extension of the Standard ML language. In
the rest of these notes, we will use this language for writing some examples.

In the AML language, we have two different function spaces: ordinary func-
tions and adaptive functions. Adaptive functions can be thought as the functions
that operate on changeable data by manipulating modifiables. For example, the
primitive operations on modifiables will be adaptive functions.

Ordinary functions are declared using the conventional ML syntax for func-
tions. Adaptive functions are declared with the afun and mfun keywords. The
afun keyword declares an adaptive, non-memoizing function; the mfun keyword
declares an adaptive, memoizing function. Adaptive functions have the adaptive-
function type τ -$> τ . We use the infix operator $ for applying adaptive (mem-
oizing, or non-memoizing) functions. An adaptive function can perform all the
operations that ordinary functions can. In addition, adaptive functions can call
other adaptive functions.

We require an adaptive application to appear only in the body of an adaptive
function—an adaptive application cannot appear in the body of a normal func-
tion. Because of this requirements, we can partition a self-adjusting program into
a set of adaptive functions that call each other and other normal functions, and
a set of normal functions that can only call other normal functions. This distinc-
tion helps us enforce the distinction between the mutator and a self-adjusting
program. It also helps improve the efficiency of the compilation mechanisms and
the compiled code, which we will not discuss here.

203

8

signature ADAPTIVE = sig
type ’a box
val put : ’a -$> ’a box
val get : ’a box -$> ’a

val putTh : (unit -$> ’a) -> ’a box
val mkPut : unit -$> (’k * ’a -$> ’a box)

(** Meta operations **)
val new : ’a -> ’a box
val deref : ’a box -> ’a
val change : ’a box * ’a -> unit

datatype ’a res = Value of ’a | Exn of exn
val call : (’a -$> ’r) * ’a -> ’r res ref
val propagate : unit -> unit

end
structure Adaptive :> ADAPTIVE = struct ... end

Fig. 3. Signature for the Adaptive library.

3.1 The Primitives

Except for afun and mfun keywords, all the rest of the self-adjusting-computation
primitives are provided by a library. Figure 3 shows the interface to this library.
The box type τ box is the type of a modifiable reference and serves as a container
for changeable data. The put: α -$> α box primitive places a value into a box,
while the get: α box -$> α primitive returns the contents of a box. Since
the primitives have adaptive function types, they may only be used within an
adaptive function.

The put and get function are all we need to operate on modifiable refer-
ences. For the purposes of improving efficiency, however, the library provides
two additional facilities: putTh and mkPut. The putTh operation receives as an
argument a computation (a thunk), evaluates the computation, and places its
value into a box. The mkPut operation returns a putter that can be used to per-
form allocations based on a key. The putter takes a key and a value to be boxed
and returns a box holding that value.

When programming with these primitives, we will use put and get operations
initially. We will then replace the put operations with putTh operations and calls
to putters created by mkPut for improved performance.

To facilitate the mutator to drive self-adjusting computation and to operate
on changeable data we provide number of meta primitives. These meta primitives
are “impure” and should not be used within adaptive functions; doing otherwise
can violate the correctness of change propagation.

The new, change, and deref operations are used by the mutator to create
& modify inputs, and inspect outputs of a self-adjusting computation. The new
operation places a value into box—it is the meta-version of the put operation.
The deref operation returns the contents of a box—it is the meta-version of the
get operation. The change operation takes a value and a box and changes the
contents of the box to the given value by a destructive update.

204

9

The call and propagate primitives enable starting an adaptive computation
and performing change propagation. At the meta-level the result of an adaptive
computation is either an ordinary value or an exception. The result is an ex-
ception if the adaptive function raises an exception before terminating. More
concretely, the call operation takes an adaptive function and an argument to
that function, calls the function, and returns its results in an ordinary refer-
ence. Note, that the call operation is the only means of “applying” an adaptive
function outside the body of another adaptive function. The result of the call
operation is a mutable reference cell containing the output (distinguishing be-
tween normal and exceptional termination) of the self-adjusting computation.
The propagate operation can be applied anytime. It incorporates the effects of
the change operations executed since the beginning of the computation or the
last call to propagate.

4 Adaptive Lists and Examples

In these notes, we will consider a number of examples with adaptive lists.

signature LIST ADAPTIVE =
sig
datatype ’a u = NIL | CONS of ’a * ’a u box
type ’a t = ’a u box

val lengthLessThan: int -> ’a t -$> bool box
val map: (’a -> ’b) -> ’a t -$> ’b t
val partition: (’a -> bool) -> ’a t -$> ’a t * ’a t
val merge: (’a * ’a -> bool) -> (’a t * ’a t) -$> ’a t
val msort: (’a * ’a -> bool) -> ’a t -$> ’a t

end

structure AdaptiveList:LIST ADAPTIVE

Fig. 4. The interface for adaptive lists and the AdaptiveList structure.

Figure 4 shows the interface to our adaptive-list library. An adaptive list of
type ’a t is a recursive data type that is either empty (NIL) or is a cons cell
containing an element of type ’a and boxed lists. An adaptive list is defined in a
way that is analogous linked lists: boxed tails can be viewed as “next” pointer in
a linked list implementation. Boxing the tails allows us to insert/delete element
into/from the list by changing the contents of boxed tails.

As examples, we will consider writing three simple primitives: lengthLessThan,
map, and reverse. The lengthLessThan function takes an integer and returns a
boxed boolean indicating whether the length of the list is less than the supplied
integer. The map function takes a function and a list and maps the list to another
by applying the function to its elements. The reverse function returns the re-
verse of a given list. Figure 5 shows the code for the ordinary and the adaptive
versions of the list primitives. To obtain the adaptive versions from the ordinary
versions, we insert the underlined pieces of syntax.

205

10

fun lengthLessThan
(l: ’a list)
: bool =

let
fun len (i,l) =

if i >= n then
false

else
case l of

nil => true
| cons(h,t) => len (i+1,t)

in
len(0,l)

end

afun lengthLessThan
(l: ’a ListAdaptive.t)
: bool box =

let
mfun len (i,l) =

if i >= n then
false

else
case get $ l of

NIL => true
| CONS(h,t) => len $ (i+1,t)

in
put $ (len $ (0,l))

end

fun map
(f: ’a -> ’b)
(l: ’a list)
: ’b list =

let
fun m l =

case l of
nil => nil

| cons (h,t) => cons(f h, m t)
in m l end

afun map
(f: ’a -> ’b)
(l: ’a ListAdaptive.t)
: ’b ListAdaptive.t=

let
mfun m l =

case get $ l of

NIL => put $ NIL

| CONS(h,t) => put (CONS (f h, m t))

in m l end

fun reverse
(l: ’a list)
: ’b list =

let
fun rev (l,acc) =

case l of
nil =>

acc
| cons(h,t) =>

rev (t,cons(h,acc))
in

rev (l,[])
end

afun reverse
(l: ’a AdaptiveList.t)
: ’b AdaptiveList.t =

let
mfun rev (l,acc) =

case get $ l of

nil =>
acc

| cons(h,t) =>
rev (t, put $ (cons(h, acc)))

in
rev (l,put $ [])

end

Fig. 5. Some list primitives, ordinary (left) and adaptive (right).

5 An Adaptive-List Mutator

In our examples, we are interested in changing the inputs with insertions and
deletions. Figure 6 shows the code for such a mutator for adaptive-list applica-
tions. The mutator function takes a toString function for printing the input
and the output lists, an adaptive function f, and an input list l.

The mutator function defines a few utility functions for converting between
ordinary lists and adaptive lists, and deleting and inserting elements from/into
adaptive lists.

The mutator starts by converting the input list to an adaptive list and calling
the supplied function to the converted list. It then calls checkAndPrintResult
on the result of the adaptive call. This function checks that the adaptive function
returned a proper result (if an exception was raised than it is re-raised). If a non-

206

11

exception value is returned, then the function prints the returned result. After
checking the result from mutator deletes the first element in the lists, performs
change propagation, and prints the result. It then inserts the element back into
the list, performs a change propagation and prints the result.

structure ListAdaptive:LIST ADAPTIVE =
struct ... end

fun mutator
(toString: ’a list -> string)
(f: ’a alist -$> ’a alist)
(l: ’a list) : unit =

let
fun toList (l: ’a ListAdaptive.t) : ’a list =

case (Adaptive.deref l) of
NIL => nil

| CONS(h,t) => h::(toList t)

fun fromList (l: ’a list) : ’a ListAdaptive.t =
case l of

nil => box NIL
| cons(h,t) => box (CONS(h, fromList t)

fun checkAndprintResult r =
case !r of

Exn e => raise e
| Value v => let val s = toString (toList v)

in print (‘‘Result =’’ ^ s ^ ‘‘\n’’)

fun delete cl =
case (Adaptive.deref cl) of

NIL => (NONE)
| CONS(h,t) => (Adaptive.change (cl, t); h)

fun insert h cl =
case h of

NONE => ()
| SOME v => (Adaptive.change cl (CONS (v,box (Adaptive.deref cl))))

val cl = fromList l
val r = Adaptive.call (f, cl)
val = checkAndPrintResult r

val h = delete cl
val = Adaptive.propagate ()
val = checkAndPrintResult r

val = insert h cl
val = Adaptive.propagate ()
val = checkAndPrintResult r

in () end

Fig. 6. An example mutator for inserting/deleting the first element of a list.

6 Performance of Change Propagation

I have described how to translate ordinary, purely functional programs into self-
adjusting programs. The purpose of this conversion is to take advantage of the

207

12

ability to update the output of computations much faster than recomputing from
scratch by using change propagation. There is some more work that we need to do
to ensure efficient change propagation. In this section, we identify two stability-
properties and make our examples adhere to these properties. These properties
ensure the stability of self-adjusting programs, i.e., that they propagate changes
minimally.

Stability Property I: Result Stability. Let f(L) be an application of a self-
adjusting function f . We want f(L) to return a modifiable, and always the same
modifiable, even if its parts are re-executed during change propagation. The only
exception to this property happens when the result of f is always placed into a
modifiable by the caller.

Stability Property II: Output Stability. Consider some ordinary list function f
and consider its execution with two lists L and L′ where L′ is obtained from L by
inserting one new element. Define the distance between the outputs to be length
of the output list f(L′) minus the longest common subsequence of f(L) and
f(L′). If we run the self-adjusting version fa of f with the adaptive-list versions
of La and L′

a, then we want the edit distance between fa(La) and fa(L′
a) to

be d including the modifiable references in the outputs. In other words, we do
not want the output of self-adjusting programs to change any more than the
ordinary version even when including reference.

Ensuring the stability properties. To ensure these properties, we will rewrite our
programs by replacing the put primitives with putTh’s and with putter functions.
We will consider each function in turn. Figure 7 shows the for the modified list
primitives.

For the discussions, I would like to note a few facts about change propagation.
First note that change-propagation may re-execute a part of the computation
starting at any read. Second, when the expression e in put e, i.e., the body of
a put, is re-executed, the modifiable allocated by put may change. If we wish
the modifiable remain the same (i.e., be pre-allocated before the expression is
evaluated), then we will need to use putTh.

If the output of a function is another list, we will make sure that the mod-
ifiables in the output remain the same during change propagation by using a
putter to allocate the modifiables. A putter takes two arguments. It allocates
a modifiable and writes the value of the second argument to the modifiable. It
names the modifiable with the first argument. If a putter is called with the same
name, then it will allocate the same modifiable unless there is another modifiable
with the same name. Throughout we will name the tail modifiables of cons cells
by the heads of cons cells and assume that a lists contains no duplicates. This
uniquely identifies the modifiables by the head item in the same cons cell: after
change propagation, a cell that holds the same element of the input has the same
modifiable as before the change propagation.

Consider the function lengthLessThan. The function returns a modifiable
that holds the result. The first property requires that this modifiable be the

208

13

same even if we start executing somewhere in the middle of the len function. To
ensure this, we will use the function putTh to create the modifiable instead of
put. Since this is the only modifiable allocated by lengthLessThan, the second
property holds trivially.

Consider the function map. We will make sure that a modifiable tail of a cons
cell holding a particular element in the output remains the same by naming the
allocated tail by the element. To this end, we first create a putter by using the
mkPut function. We then use SOME h as a key when allocating the tail of the cons
cell holding h. This ensures the second property, if we insert a new element and
perform change propagation, we will get only one new modifiable. How about
the very first modifiable? To fix that modifiable, we simply use NONE as a name
for it.

In function reverse, we use essentially the same idea as in map.
For all these functions, note that a putter is created every time we enter the

function from the top level. It is only within a recursive chain of calls that the
modifiables are being named. Two different calls to these functions will have
different putters and will not share the output modifiables.

7 Merge Sort

Figure 8 shows the code for sorting a list using the merge-sort algorithm. The
merge-sort algorithm sorts the input by partitioning the input list into two lists
of equal size, recursively sorting them, and merging the sorted sublists. This
partition operation, when performed deterministically, does not behave well
under change propagation, because for example inserting a new element can
change the partitioned lists dramatically. For example, if we first partition the
list [0,1,3,4,5], the two lists will be [0,3,5] and [1,4]. If we now insert 2
and partition [0,1,2,3,4,5], then we will get [0,2,4] and [1,3,5], both of
which are now different than the two sorted lists before.

To address this problem, we will use randomization. Instead of performing
the partition deterministically, we will flip a coin for each element and collect
those elements that come up heads into one list and the other into another.
Going back to the example, we may split [0,1,3,4,5], into [0,3,5] and [1,4]
by flipping, heads, tails, heads, tails, and heads. If we now insert 2 and partition,
we will get [0,3,5] and [1,2,4], if we flip a tail for 2. For this to work, it will
be important that we flip the same coins for the same elements whenever we
repeat a partitioning. To do this, we will use random hash functions instead of
random coins.

To satisfy the two stability properties, we use a putter for merge as with map
and reverse. To make sure that msort always returns the same modifiable as
the head of the list, we allocate its result with putTh.

8 Exercise

Write the code for partition function used in msort.

209

14

fun lengthLessThan
(l: ’a list)
: bool =

let
fun len (i,l) =

if i >= n then
false

else
case l of

nil => true
| cons(h,t) => len (i+1,t)

in
len(0,l)

end

afun lengthLessThan
(l: ’a ListAdaptive.t)
: bool box =

let
afun len (i,l) =

if i >= n then
false

else
case get $ l of

NIL => true
| CONS(h,t) => len $ (i+1,t)

in
putTh $ (afn () => len $ (0,l))

end

fun map
(f: ’a -> ’b)
(l: ’a list)
: ’b list =

let
fun m l =

case l of
nil => nil

| cons (h,t) => cons(f h, m t)
in m l end

afun map
(f: ’a -> ’b)
(l: ’a ListAdaptive.t)
: ’b ListAdaptive.t=

let
val putter = mkPut ()

mfun m l =
case get $ l of

NIL => NIL
| CONS(h,t) => putter $ (SOME h, CONS (f h, m t))

in putter $ (NONE, m l) end

fun reverse
(l: ’a list)
: ’b list =

let
fun rev (l,acc) =

case l of
nil =>

acc
| cons(h,t) =>

rev (t,cons(h,acc))
in

rev (l,[])
end

afun reverse
(l: ’a AdaptiveList.t)
: ’b AdaptiveList.t =

let
val putter = mkPut ()
mfun rev (l,acc) =

case get $ l of

nil =>
putter $ (NONE,acc)

| cons(h,t) =>
rev (t, cons(h, putter $ (SOME h, acc)))

in
rev (l,nil))

end

Fig. 7. Some list primitives, ordinary (left) and adaptive (right).

210

15

structure BinaryHashFamily =
struct

fun new () =
end

afun split l =
let

val hashFun = BinaryHashFamily.new ()
fun randFun x = hashFun (Adaptive.hash x) = 0

in
AdaptiveList.partition randFun $ l

end

afun merge lt (a,b) =
let

val putter = mkPut ()
mfun mmerge (a,b) =

case (get $ a, get $ b) of

(NIL,b) => b
| (a,NIL) => a
| (CONS(ha,ta),CONS(hb,tb)) =>

if lt (ha,hb) then
CONS(ha, putter $ (SOME ha, mmerge(ta,b)))

else
CONS(hb, putter $ (SOME hb, mmerge(a,tb)))

in
putter $ (NONE, mmerge (a,b))

end

fun msort lt l =
putTh (afn () =>

if lengthLesThan $ 2 $ l then
get $ l

else
let

val (even,odd) = split $ l
val evens = msort $ even
val odds = msort $ odd
val r = merge $ lt $ (evens,odds)

in
get $ r

end))

Fig. 8. The adaptive merge-sort function.

211

A Tutorial on Parallel and Concurrent
Programming in Haskell (DRAFT)

Simon Peyton Jones and Satnam Singh

Microsoft Research Cambridge
simonpjmicrosoft.com satnamsmicrosoft.com

Abstract. This tutorial introduces parallel programming in Haskell.

1 Introduction

The introduction of multi-core processors has renewed interest in parallel func-
tional programming and there are now several interesting projects that explore
the advantages of a functional language for writing parallel code or implicitly par-
alellizing code written in a pure functional language. These lecture notes present
a variety of techniques for writing concurrent parallel programs which include
existing techniques based on semi-implicit parallelism and explicit thread-based
parallelism as well as more recent developments in the areas of software trans-
actional memory and nested data parallelism.

We also use the terms parallel and concurrent with quite specific meanings.
A parallel program is one which is written for performance reasons to exploit
the potential of a real parallel computing resource like a multi-core processor.
For a parallel program we have the expectation of some genuinely simultaneous
execution. Concurrency is a software structuring technique that allows us to
model computations as hypothetical independent activities (e.g. with their own
program counters) chat can communicate and synchronize.

In these lecture notes we assume that the reader is familiar with the pure
lazy functional programming language Haskell.

2 Applications of concurrency and parallelism

Writing concurrent and parallel programs is more challenging than the already
difficult problem of writing sequential programs. However, there are some com-
pelling reasons for writing concurrent and parallel programs:

Performance. We need to write parallel programs to achieve improving per-
formance from each new generation of multi-core processors.

Hiding latency. Even on single-core processors we can exploit concurrent pro-
grams to hide the latency of slow I/O operations to disks and network de-
vices.

212

Software structuring. Certain kinds of problems can be conveniently repre-
sented as multiple communicating threads which help to structure code in a
more modular manner e.g. by modeling user interface components as sepa-
rate threads.

Real world concurrency. In distributed and real-time systems we have to
model and react to events in the real world e.g. handling multiple server
requests in parallel.

All new mainstream microprocessors have two or more cores and relatively
soon we can expect to see tens or hundreds of cores. We can not expect the
performance of each individual core to improve much further. The only way to
achieve increasing performance from each new generation of chips is by dividing
the work of a program across multiple processing cores. One way to divide an
application over multiple processing cores is to somehow automatically parallels
the sequential code and this is an active area of research. Another approach is
for the user to write a semi-explicit or explicitly parallel program which is then
scheduled onto multiple cores by the operating systems and this is the approach
we describe in these lectures.

3 Compiling Parallel Haskell Programs

To compile a parallel Haskell program you need to specify the -threaded ex-
tra flag. For example, to compile the parallel program contained in the file
Wombat.hs issue the command:

ghc --make -threaded Wombat.hs

To execute the program you need to specify how many real threads are available
to execute the logical threads in a Haskell program. This is done by specifying
an argument to Haskell’s run-time system at invocation time. For example, to
use three real threads to execute the Wombat program issue the command:

Wombat +RTS -N3

In these lecture notes we use the term thread to describe a Haskell thread
rather than a native operating system thread.

4 Semi-Explicit Parallelism

A pure Haskell program may appear to have abundant opportunities for auto-
matic parallelization. Given the lack of side effects it may seem that we can
productively evaluate every sub-expression of a Haskell program in parallel. In
practice this does not work out well because it creates far too many small items
of work which can not be efficiently scheduled and parallelism is limited by
fundamental data dependencies in the source program.

Haskell provides a mechanism to allow the user to control the granularity
of parallelism by indicating what computations may be usefully carried out in

213

parallel. This is done by using functions from the Control.Parallel module. The
interface for Control.Parallel is shown below:

1 par :: a −> b −> b
2 pseq :: a −> b −> b

The function par indicates to the Haskell run-time system that it may be benefi-
cial to evaluate the first argument in parallel with the second argument. The par

function returns as its result the value of the second argument. One can always
eliminate par from a program by using the following identity without altering
the semantics of the program:

1 par a b = b

A thread is not necessarily created to compute the value of the expression a.
Instead, the Haskell run-time system creates a spark which has the potential to
be executed on a different thread from the parent thread. A sparked computa-
tion expresses the possibility of performing some speculative evaluation. Since
a thread is not necessarily created to compute the value of a this approach has
some similarities with the notion of a lazy future [1].

Sometimes it is convenient to write a function with two arguments as an infix
function and this is done in Haskell by writing quotes around the function:

1 a ‘par‘ b

An example of this expression executing in parallel is shown in Figure1.

thread1

eval a

a `par` b

eval b

thread2

spark for a

created

spark

converted to thread

time

Fig. 1. Semi-explicit execution of a in parallel with the main thread b

We call such programs semi-explicitly parallel because the programmer has
provided a hint about the appropriate level of granularity for parallel operations
and the system implicitly creates threads to implement the concurrency. The user
does not need to explicitly create any threads or write any code for inter-thread
communication or synchronization.

214

To illustrate the use of par we present a program that performs two compute
intensive functions in parallel. The first compute intensive function we use is the
notorious Fibonacci function:

1 fib :: Int −> Int

2 fib 0 = 0
3 fib 1 = 1
4 fib n = fib (n−1) + fib (n−2)

The second compute intensive function we use is the sumEuler function taken
from [2]:

1 mkList :: Int −> [Int]
2 mkList n = [1..n−1]
3

4 relprime :: Int −> Int −> Bool

5 relprime x y = gcd x y == 1
6

7 euler :: Int −> Int

8 euler n = length (filter (relprime n) (mkList n))
9

10 sumEuler :: Int −> Int

11 sumEuler = sum . (map euler) . mkList

The function that we wish to parallelize adds the results of calling fib and
sumEuler:

1 sumFibEuler :: Int −> Int −> Int

2 sumFibEuler a b = fib a + sumEuler b

As a first attempt we can try to use par the speculatively spark off the compu-
tation of fib while the parent thread works on sumEuler:

1 parSumFibEuler :: Int −> Int −> Int

2 parSumFibEuler a b
3 = f ‘par‘ (f + e)
4 where

5 f = fib a
6 e = sumEuler b

To help measure how long a particular computation is taking we use the Sytem.Time

module and define a function that returns the difference between two time sam-
ples as a number of seconds:

1 secDiff :: ClockTime −> ClockTime −> Float

2 secDiff (TOD secs1 psecs1) (TOD secs2 psecs2)
3 = fromInteger (psecs2 − psecs1) / 1e12 + fromInteger (secs2 − secs1)

The main program calls the parSumFibEuler function with suitably large argu-
ments and reports the value

1 r1 :: Int

2 r1 = sumFibEuler 40 7450
3

215

4 main :: IO ()
5 main
6 = do t0 <− getClockTime
7 pseq r1 (return ())
8 t1 <− getClockTime
9 putStrLn (”sum: ” ++ show r1)

10 putStrLn (”time: ” ++ show (secDiff t0 t1) ++ ” seconds”)

The calculations fib 40 and sumEuler 7450 have been chosen to have roughly the
same execution time.

If we were to execute this code using just one thread we would observe
the sequence of evaluations shown in Figure 2. Although a spark is created for
the evaluation of f there is no other thread available to instantiate this spark
so the program first computes f (assuming the + evaluates its left argument
first) and then computes e and finally the addition is performed. Making an
assumption about the evaluation order of the arguments of + is unsafe and
another valid execution trace for this program would involve first evaluating e

and then evaluating f.

thread1 eval f + eeval e

f `par` (f + e)

eval f

spark for f

created

Fig. 2. Executing f ‘par‘ (e + f) on a single thread

The compiled program can now be run on a multi-core computer and we
can see how it performs when it uses one and then two real operating system
threads:

$ ParSumFibEuler +RTS -N1

sum: 119201850

time: 21.534 seconds

$ ParSumFibEuler +RTS -N2

sum: 119201850

time: 21.462 seconds

The output above shows that the version run with two cores did not perform any
better than the sequential version. Why is this? The problem lies in line 3 of the
parSumFibEuler function. Although the work of computing fib 40 is sparked off
for speculative evaluation the parent thread also starts off by trying to compute
fib 40 because this particular implementation of the program used a version of
+ that evaluates its left and side before it evaluates its right hand side. This
causes the main thread to demand the evaluation of fib 40 so the spark never

216

gets instantiated onto a thread. After the main thread evaluates fib 40 it goes
onto evaluate sumEuler 7450 which results in a performance which is equivalent to
the sequential program. A sample execution trace for this version of the program
is shown in Figure 3.

thread1 eval f + eeval e

f `par` (f + e)

eval f

spark for f

created

thread2

Fig. 3. A spark that does not get instantiated onto a thread

A tempting fix is to reverse the order of the arguments to +:

1 parSumFibEuler :: Int −> Int −> Int

2 parSumFibEuler a b
3 = f ‘par‘ (e + f)
4 where

5 f = fib a
6 e = sumEuler b

Here we are sparking off the computation of fib for speculative evaluation with
respect to the parent thread. The parent thread starts off by computing sumEuler

and hopefully the run-time will convert the spark for computing fib and execute
it on a thread located on a different core in parallel with the parent thread. This
does give a respectable speedup:

$ ParFibSumEuler +RTS -N1

sum: 119201850

time: 21.832 seconds

$ ParFibSumEuler +RTS -N2

sum: 119201850

time: 12.233 seconds

A sample execution trace for this version of the program is shown in Figure 4
However, it is a Very Bad Idea to rely on the evaluation order of + for the

performance (or correctness) of a program. The Haskell language does not define
the evaluation order of the left and right hand arguments of + and the compiler
is free to transform a + b to b + a. What we really need to be able to specify
what work the main thread should do first. We can use the pseq function from
the Control.Monad module for this purpose. The expression a ‘pseq‘ b evaluates
a and then returns b. We can use this function to specify what work the main

217

thread1 eval e + f

eval f

f `par` (e +f)

eval e

thread2

spark for f

created

spark for f

instantiated onto thread

Fig. 4. A lucky parallelization (bad dependency on the evaluation order of +)

thread should do first (as the first argument of pseq) and we can then return the
result of the overall computation in the second argument without worrying about
things like the evaluation order of +. This is how we can re-write ParFibSumEuler

with pseq:

1 parSumFibEuler :: Int −> Int −> Int

2 parSumFibEuler a b
3 = f ‘par‘ (e ‘pseq‘ (e + f))
4 where

5 f = fib a
6 e = sumEuler b

This program still gives a roughly 2X speedup as does the following version
which has the arguments to + reversed but the use of pseq still ensures that the
main thread works on sumEuler before it computes fib (which will hopefully have
been computed by a speculatively created thread):

1 parSumFibEuler :: Int −> Int −> Int

2 parSumFibEuler a b
3 = f ‘par‘ (e ‘pseq‘ (f + e))
4 where

5 f = fib a
6 e = sumEuler b

An execution trace for this program is shown in Figure 5.

4.1 Weak Head Normal Form (WHNF)

The program below is a variant of the fib-Euler program in which each parallel
workload involves mapping an operation over a list.

1 module Main
2 where

218

thread1 eval f + e

eval f

f `par` (e `pseq` (f + e))

eval e

thread2

spark for f

created

spark for f

instantiated onto thread2

Fig. 5. A correct parallelization which is not dependent on the evaluation order of +

3 import System.Time
4 import Control.Parallel
5

6 fib :: Int −> Int

7 fib 0 = 0
8 fib 1 = 1
9 fib n = fib (n−1) + fib (n−2)

10

11 mapFib :: [Int]
12 mapFib = map fib [37, 38, 39, 40]
13

14 mkList :: Int −> [Int]
15 mkList n = [1..n−1]
16

17 relprime :: Int −> Int −> Bool

18 relprime x y = gcd x y == 1
19

20 euler :: Int −> Int

21 euler n = length (filter (relprime n) (mkList n))
22

23 sumEuler :: Int −> Int

24 sumEuler = sum . (map euler) . mkList
25

26 mapEuler :: [Int]
27 mapEuler = map sumEuler [7600, 7600]
28

29 parMapFibEuler :: Int

30 parMapFibEuler = mapFib ‘par‘
31 (mapEuler ‘pseq‘ (sum mapFib + sum mapEuler))
32

33 main :: IO ()

219

34 main
35 = putStrLn (show parMapFibEuler)

The intention here is that the computation that involves mapping the fib oper-
ation over a list occurs in parallel with the computation of in the main thread
of the operation that maps sumEuler over a list and sums the two lists. We have
chosen arguments which result in a similar run-time for mapFib and mapEuler.

However, when we run this program with one and then two cores we observe
no speedup:

satnams@MSRC-LAGAVULIN ~/papers/afp2008/whnf

$ time WHNF2 +RTS -N1

263935901

real 0m48.086s

user 0m0.000s

sys 0m0.015s

satnams@MSRC-LAGAVULIN ~/papers/afp2008/whnf

$ time WHNF2 +RTS -N2

263935901

real 0m47.631s

user 0m0.000s

sys 0m0.015s

What went wrong? The problem is that the function mapFib does not return a
list with four values each fully evaluated to a number. Instead, the expression is
reduced to weak head normal form which only return the top level cons cell with
the head and the tail elements unevaluated as shown in Figure 6. This means
that almost no work is done in the parallel thread.

:

fib 37 map fib [38, 39, 40]

Fig. 6. parFib evaluated to weak head normal form (WHNF)

To fix this problem we need to somehow force the evaluation of the list. We
can do this by defining a function that iterates over each element of the list and
then uses each element as the first argument to pseq which will cause it to be
evaluated to a number:

1 forceList :: [a] −> ()
2 forceList [] = ()
3 forceList (x:xs) = x ‘pseq‘ forceList xs

220

Using this function we can express our requirement to evaluate the the mapFib

function fully to a list of numbers rather than to just weak head normal form:

1 module Main
2 where

3 import Control.Parallel
4

5 fib :: Int −> Int

6 fib 0 = 0
7 fib 1 = 1
8 fib n = fib (n−1) + fib (n−2)
9

10 mapFib :: [Int]
11 mapFib = map fib [37, 38, 39, 40]
12

13 mkList :: Int −> [Int]
14 mkList n = [1..n−1]
15

16 relprime :: Int −> Int −> Bool

17 relprime x y = gcd x y == 1
18

19 euler :: Int −> Int

20 euler n = length (filter (relprime n) (mkList n))
21

22 sumEuler :: Int −> Int

23 sumEuler = sum . (map euler) . mkList
24

25 mapEuler :: [Int]
26 mapEuler = map sumEuler [7600, 7600]
27

28 parMapFibEuler :: Int

29 parMapFibEuler = (forceList mapFib) ‘par‘
30 (forceList mapEuler ‘pseq‘ (sum mapFib + sum mapEuler))
31

32 forceList :: [a] −> ()
33 forceList [] = ()
34 forceList (x:xs) = x ‘pseq‘ forceList xs
35

36 main :: IO ()
37 main
38 = putStrLn (show parMapFibEuler)

This gives the desired performance which shows the work of mapFib is done in
parallel with the work of mapEuler:

satnams@MSRC-LAGAVULIN ~/papers/afp2008/whnf

$ time WHNF3 +RTS -N1

263935901

real 0m47.680s

221

user 0m0.015s

sys 0m0.000s

satnams@MSRC-LAGAVULIN ~/papers/afp2008/whnf

$ time WHNF3 +RTS -N2

263935901

real 0m28.143s

user 0m0.000s

sys 0m0.000s

Question. What would be the effect on performance if we omitted the call of
forceList on mapEuler?

An important aspect of how pseq works is that it evaluates its first argument
to weak head normal formal. This does not fully evaluate an expression e.g. for
an expression that constructs a list out of a head and a tail expression (a CONS
expression) pseq will not evaluate the head and tail sub-expressions.

Haskell also defines a function called seq but the compiler is free to swap the
arguments of seq which means the user can not control evaluation order. The
compiler has primitive support for pseq and ensures the arguments are never
swapped and this function should always be preferred over seq for parallel pro-
grams.

4.2 Divide and conquer

Exercise 1: Parallel quicksort. The program below shows a sequential imple-
mentation of a quicksort algorithm. Use this program as a template to write a
parallel quicksort function. The main body of the program generates a pseudo-
random list of numbers and then uses measures the time taken to build the input
list and then to perform the sort and then add up all the numbers in the list.

1 module Main
2 where

3 import System.Time
4 import Control.Parallel
5 import System.Random

6

7 −− A sequential quicksort
8 quicksort :: Ord a => [a] −> [a]
9 quicksort [] = []

10 quicksort (x:xs) = losort ++ x : hisort
11 where

12 losort = quicksort [y | y <− xs, y < x]
13 hisort = quicksort [y | y <− xs, y >= x]
14

15 secDiff :: ClockTime −> ClockTime −> Float

16 secDiff (TOD secs1 psecs1) (TOD secs2 psecs2)
17 = fromInteger (psecs2 − psecs1) / 1e12 + fromInteger (secs2 − secs1)

222

18

19 main :: IO ()
20 main
21 = do t0 <− getClockTime
22 let input = (take 20000 (randomRs (0,100) (mkStdGen 42)))::[Int]
23 seq (forceList input) (return ())
24 t1 <− getClockTime
25 let r = sum (quicksortF input)
26 seq r (return ()) −− Force evaluation of sum
27 t2 <− getClockTime
28 −− Write out the sum of the result.
29 putStrLn (show r)
30 −− Write out the time taken to build the input list.
31 putStrLn (show (secDiff t0 t1))
32 −− Write out the time taken to perform the sort.
33 putStrLn (show (secDiff t1 t2))

The current version of GHC does not have a parallel garbage collector so
some parallel programs have poor performance because all parallel execution
is suspended during sequential garbage collection. This problem can be partly
mitigated by running a Haskell program with a large heap to reduce the amount
of garbage collection. The size of the heap is specified has an argument to the
run-time system e.g. -H800M means use a 800MB heap.

satnams@msrc-bensley /cygdrive/l/papers/afp2008/quicksort

$ QuicksortD +RTS -N1 -H800M

Sum of sort: 50042651196

Time to sort: 4.593779

satnams@msrc-bensley /cygdrive/l/papers/afp2008/quicksort

$ QuicksortD +RTS -N2 -H800M

Sum of sort: 50042651196

Time to sort: 3.171895

You can find get some idea of how well a program has been parallelized and
how much time is taken up with garbage collection by using the runtime -S flag
to dump some statistics to a file:

QuicksortD.exe +RTS -N2 -H300M -Sn2.txt

After execution you can look at the end of the file n2.txt to see what happened:

1,488,789,968 bytes allocated in the heap

203,137,628 bytes copied during GC (scavenged)

64,078,196 bytes copied during GC (not scavenged)

66,813,952 bytes maximum residency (4 sample(s))

12 collections in generation 0 (0.73s)

4 collections in generation 1 (0.72s)

223

325 Mb total memory in use

Task 0 (worker) : MUT time: 1.53s (3.03s elapsed)

GC time: 0.41s (0.41s elapsed)

Task 1 (worker) : MUT time: 0.00s (3.04s elapsed)

GC time: 0.00s (0.00s elapsed)

Task 2 (worker) : MUT time: 2.89s (3.04s elapsed)

GC time: 1.05s (1.13s elapsed)

Task 3 (worker) : MUT time: 0.00s (3.04s elapsed)

GC time: 0.00s (0.00s elapsed)

INIT time 0.00s (0.00s elapsed)

MUT time 4.41s (3.04s elapsed)

GC time 1.45s (1.53s elapsed)

EXIT time 0.00s (0.00s elapsed)

Total time 5.87s (4.57s elapsed)

%GC time 24.7% (33.5% elapsed)

Alloc rate 337,224,832 bytes per MUT second

Productivity 75.3% of total user, 96.5% of total elapsed

This execution of quicksort spent 24.7% of its time in garbage collection which is
performed sequentially. The work of the sort was shared out amongst two threads
(task 0 and task 2) although not evenly. The MUT time gives an indication of
how much time was spent performing computation.

Writing semi-implicitly parallel programs can sometimes help to parallelize
pure functional programs but it does not work when we want to parallelize
stateful computations in the IO monad. For that we need to write explicitly
threaded programs.

5 Explicit Concurrency

In this section we introduce Haskell’s mechanisms for writing explicitly concur-
rent programs. Haskell presents explicit concurrency features to the programmer
via a collection of library functions rather than adding special syntactic support
for concurrency and all the functions presented in this section are exported by
this module.

224

5.1 Creating Haskell Threads

The basic functions for writing explicitly concurrent programs are exported by
the Control.Concurrent which defines an abstract type ThreadId to allow the identi-
fication of Haskell threads (which should not be confused with operating system
threads). A new thread may be created for any computation in the IO monad
which returns an IO unit result by calling the forkIO function:

1 forkIO :: IO () −> IO ThreadId

Why does the forkIO function take an expression in the IO monad rather
than taking a pure functional expression as its argument? The reason for this is
that most concurrent programs need to communicate with each other and this
is done through shared synchronized state and these stateful operations have to
be carried out in the IO monad.

One important thing to note about threads that are created by calling forkIO

is that the main program (the parent thread) will not automatically wait for the
child threads to terminate.

Sometimes it is necessary to use a real operating system thread and this can
be achieved using the forkOS function:

1 forkOS :: IO () −> IO ThreadId

Threads created by this call are bound to a specific operating system thread
and this capability is required to support certain kinds of foreign calls made by
Haskell programs to external code.

5.2 MVars

To facilitate communication and synchronization between threads Haskell pro-
vides MVars which are exported by the module Control.Concurrent.MVar. Opera-
tions are provided the create an empty MVar, to create a new MVar with an initial
value, to remove a value from an MVar, the observe the value in an MVar (plus
non-blocking variants) as well as several other useful operations.

1 data MVar a
2

3 newEmptyMVar :: IO (MVar a)
4 newMVar :: a −> IO (MVar a)
5 takeMVar :: MVar a −> IO a
6 putMVar :: MVar a −> a −> IO ()
7 readMVar :: MVar a −> IO a
8 tryTakeMVar :: MVar a −> IO (Maybe a)
9 tryPutMVar :: MVar a −> a −> IO Bool

10 isEmptyMVar :: MVar a −> IO Bool

11 −− Plus other functions

One can use a pair of MVars and the blocking operations putMVar and takeMVar

to implement a rendezvous between two threads.

225

1 module Main
2 where

3 import Control.Concurrent
4 import Control.Concurrent.MVar
5

6 threadA :: MVar Int −> MVar Float −> IO ()
7 threadA valueToSendMVar valueReceivedMVar
8 = do −− some work
9 −− new perform rendezvous by sending 72

10 putMVar valueToSendMVar 72 −− send value
11 v <− takeMVar valueToReadMVar
12 putStrLn (show v)
13

14 threadB :: MVar Int −> MVar Float −> IO ()
15 threadB valueToReceiveMVar valueToSendMVar
16 = do −− some work
17 −− now perform rendezvous by waiting on value
18 z <− takeMVar valueToReceiveMVar
19 putMVar valueToSendMVar (1.2 ∗ z)
20 −− continue with other work
21

22 main :: IO ()
23 main
24 = do aMVar <− newEmptyMVar
25 bMVar <− newEmptyMVar
26 forkIO (threadA aMVar bMVar)
27 forkIO (threadB aMVar bMVar)
28 threadDelay 1000 −− wait for threadA and threadB to finish (sleazy)

Exercise. Re-write this program to remove the use of threadDelay by using
some other more robust mechanism to ensure the main thread does not complete
until all the child threads have completed.

1 module Main
2 where

3 import Control.Parallel
4 import Control.Concurrent
5 import Control.Concurrent.MVar
6

7 fib :: Int −> Int

8 −− As before
9

10 fibThread :: Int −> MVar Int −> IO ()
11 fibThread n resultMVar
12 = putMVar resultMVar (fib n)
13

14 sumEuler :: Int −> Int

15 −− As before
16

17 s1 :: Int

18 s1 = sumEuler 7450

226

19

20 main :: IO ()
21 main
22 = do putStrLn ”explicit SumFibEuler”
23 fibResult <− newEmptyMVar
24 forkIO (fibThread 40 fibResult)
25 pseq s1 (return ())
26 f <− takeMVar fibResult
27 putStrLn (”sum: ” ++ show (s1+f))

The result of running this program with one and two threads is:

satnams@MSRC-1607220 ~/papers/afp2008/explicit

$ time ExplicitWrong +RTS -N1

explicit SumFibEuler

sum: 119201850

real 0m40.473s

user 0m0.000s

sys 0m0.031s

satnams@MSRC-1607220 ~/papers/afp2008/explicit

$ time ExplicitWrong +RTS -N2

explicit SumFibEuler

sum: 119201850

real 0m38.580s

user 0m0.000s

sys 0m0.015s

To fix this problem we must ensure the computation of fib fully occurs inside
the fibThread thread which we do by using pseq.

1 module Main
2 where

3 import Control.Parallel
4 import Control.Concurrent
5 import Control.Concurrent.MVar
6

7 fib :: Int −> Int

8 −− As before
9

10 fibThread :: Int −> MVar Int −> IO ()
11 fibThread n resultMVar
12 = do pseq f (return ()) −− Force evaluation in this thread
13 putMVar resultMVar f
14 where

15 f = fib n
16

17 sumEuler :: Int −> Int

227

18 −− As before
19

20 s1 :: Int

21 s1 = sumEuler 7450
22

23 main :: IO ()
24 main
25 = do putStrLn ”explicit SumFibEuler”
26 fibResult <− newEmptyMVar
27 forkIO (fibThread 40 fibResult)
28 pseq s1 (return ())
29 f <− takeMVar fibResult
30 putStrLn (”sum: ” ++ show (s1+f))

6 Nested data parallelism

This chapter was written in collaboration with Manuel Chakravarty,
Gabriele Keller, and Roman Leshchinskiy (University of New South
Wales, Sydney).

The two major ways of exploiting parallelism that we have seen so far each have
their disadvantages:

– The par/seq style is semantically transparent, but it is hard to ensure
that the granularity is consistently large enough to be worth spawning new
threads.

– Explicitly-forked threads, communicating using MVars or STM give the pro-
grammer precise control over granularity, but at the cost of a new layer of
semantic complexity: there are now many threads, each mutating shared
memory. Reasoning about all the inter leavings of these threads is hard,
especially if there are a lot of them.

Furthermore, neither is easy to implement on a distributed-memory machine, be-
cause any pointer can point to any value, so spatial locality is poor. It is possible
to support this anarchic memory model on a distributed-memory architecture,
as Glasgow Parallel Haskell has shown [3], but it is very hard to get reliable,
predictable, and scalable performance. In short, we have no good performance

model, which is a Bad Thing if your main purpose in writing a parallel program
is to improve performance.

In this chapter we will explore another parallel programming paradigm: data

parallelism. The basic idea of data parallelism is simple:

Do the same thing, in parallel, to every element of a large collection of

values.

Not every program can be expressed in this way, but data parallelism is very
attractive for those that can, because:

228

– Everything remains purely functional, like par/seq, so there is no new se-
mantic complexity.

– Granularity is very good: to a first approximation, we get just one thread
(with its attendant overheads) for each physical processor, rather than one
thread for each data item (of which there are zillions).

– Locality is very good: the data can be physically partitioned across the pro-
cessors without random cross-heap pointers.

As a result, we get an excellent performance model.

6.1 Flat data parallelism

Data parallelism sounds good doesn’t it? Indeed, data-parallel programming is
widely and successfully used in mainstream languages such as High-Performance
Fortran. However, there’s a catch: the application has to fit the data-parallel
programming paradigm, and only a fairly narrow class of applications do so.
But this narrow-ness is largely because mainstream data-parallel technology only
supports so-called flat data parallelism. Flat data parallelism works like this

Apply the same sequential function f, in parallel, to every element of a
large collection of values a. Not only is f sequential, but it has a similar
run-time for each element of the collection.

Here is how we might write such a loop in Data Parallel Haskell:

sumSq :: [: Float :] -> Float

sumSq a = sumP [: x*x | x <- a :]

The data type [: Float :] is pronounced “parallel vector of Float”. We use a
bracket notation reminiscent of lists, because parallel vectors are similar to lists
in that consist of an sequence of elements. Many functions available for lists are
also available for parallel vectors. For example

mapP :: (a -> b) -> [:a:] -> [:b:]

zipWithP :: (a -> b -> c) -> [:a:] -> [:b:] -> [:c:]

sumP :: Num a => [:a:] -> a

(+:+) :: [:a:] -> [:a:] -> [:a:]

filterP :: (a -> Bool) -> [:a:] -> [:a:]

anyP :: (a -> Bool) -> [:a:] -> Bool

concatP :: [:[:a:]:] -> [:a:]

nullP :: [:a:] -> Bool

lengthP :: [:a:] -> Int

(!:) :: [:a:] -> Int -> a -- Zero-based indexing

These functions, and many more, are exported by Data.Array.Parallel. Just
as we have list comprehensions, we also have parallel-array comprehensions, of
which one is used in the above example. But, just as with list comprehensions,
array comprehensions are syntactic sugar, and we could just as well have written

229

sumSq :: [: Float :] -> Float

sumSq a = sumP (mapP (\x -> x*x) a)

Notice that there is no forkIO, and no par. The parallelism comes implicitly
from use of the primitives operating on parallel vectors, such as mapP, sumP, and
so on.

Flat data parallelism is not restricted to consuming a single array. For ex-
ample, here is how we might take the product of two vectors, by multiplying
corresponding elements and adding up the results:

vecMul :: [:Float:] -> [:Float:] -> Float

vecMul a b = sumP [: x*y | x <- a | y <- b :]

The array comprehension uses a second vertical bar “|” to indicate that we
interate over b in lockstep with a. (This same facility is available for ordinary
list comprehensions too.) As before the comprehension is just syntactic sugar,
and we could have equivalently written this:

vecMul :: [:Float:] -> [:Float:] -> Float

vecMul a b = sumP (zipWithP (*) a b)

6.2 Pros and cons of flat data parallelism

If you can express your program using flat data parallelism, we can implement
it really well on a N-processor machine:

– Divide a into N chunks, one for each processor.
– Compile a sequential loop that applies f successively to each element of a

chunk
– Run this loop on each processor
– Combine the results.

Notice that the granularity is good (there is one large-grain thread per proces-
sor); locality is good (the elements of a are accessed successively); load-balancing
is good (each processor does 1/N of the work). Furthermore the algorithm works
well even if f itself does very little work to each element, a situation that is a
killer if we spawn a new thread for each invocation of f.

In exchange for this great implementation, the programming model is hor-
rible: all the parallelism must come from a single parallel loop. This restriction
makes the programming model is very non-compositional. If you have an existing
function g written using the data-parallel mapP, you can’t call g from another
data-parallel map (e.g. mapP g a), because the argument to mapP must be a
sequential function.

Furthermore, just as the control structure must be flat, so must the data
structure. We cannot allow a to contain rich nested structure (e.g. the elements
of a cannot themselves be vectors), or else similar-run-time promise of f could
not be guaranteed, and data locality would be lost.

230

6.3 Nested data parallelism

In the early 90’s, Guy Blelloch described nested data-parallel programming. The
idea is similar:

Apply the same function f, in parallel, to every element of a large col-
lection of values a. However, f may itself be a (nested) data-parallel
function, and does not need to have a similar run-time for each element
of a.

For example, here is how we might multiply a matrix by a vector:

type Vector = [:Float:]

type Matrix = [:Vector:]

matMul :: Matrix -> Vector -> Vector

matMul m v = [: vecMul r v | r <- m :]

That is, for each row of the matrix, multiply it by the vector v using vecMul.
Here we are calling a data-parallel function vecMul from inside a data-parallel
operation (the comprehension in matMul).

In very regular examples like this, consisting of visible, nested loops, modern
FORTRAN compilers can collapse a loop nest into one loop, and partition the
loop across the processors. It is not entirely trivial to do this, but it is well within
the reach of compiler technology. But the flattening process only works for the
simplest of cases. A typical complication is the matrices may be sparse.

A sparse vector (or matrix) is one in which almost all the elements are zero.
We may represent a sparse vector by a (dense) vector of pairs:

type SparseVector = [: (Int, Float) :]

In this representation, only non-zero elements of the vector are represented, by
a pair of their index and value. A sparse matrix can now be represented by a
(dense) vector of rows, each of which is a sparse vector:

type SparseMatrix = [: SparseVector :]

Now we may write vecMul and matMul for sparse arguments thus1:

sparseVecMul :: SparseVector -> Vector -> Float

sparseVecMul sv v = sumP [: x * v!:i | (i,x) <- sv :]

sparseMatMul :: SparseMatrix -> Vector -> Vector

sparseMatMul sm v = [: sparseVecMul r v | r <- sm :]

1 Incidentally, although these functions are very short, they are important in some
applications. For example, multiplying a sparse matrix by a dense vector (i.e.
sparseMatMul) is the inner loop of the NAS Conjugate Gradient benchmark, con-
suming 95% of runtime [4].

231

We use the indexing operator (!:) to index the dense vector v. In this code,
the control structure is the same as before (a nested loop, with both levels being
data-parallel), but now the data structure is much less regular, and it is much

less obvious how to flatten the program into a single data-parallel loop, in such
a way that the work is evenly distributed over N processors, regardless of the
distribution of non-zero data in the matrix.

Blelloch’s remarkable contribution was to show that it is possible to take
any program written using nested data parallelism (easy to write but hard to
implement efficiently), and transform it systematically into a program that uses
flat data parallelism (hard to write but easy to implement efficiently). He did
this for a special-purpose functional language, NESL, designed specifically to
demonstrate nested data parallelism.

As a practical programming language, however, NESL is very limited: it
is a first-order language, it has only a fixed handful of data types, it is im-
plemented using an interpreter, and so on. Fortunately, in a series of papers,
Manuel Chakravarty, Gabriele Keller and Roman Leshchinskiy have generalized
Blelloch’s transformation to a modern, higher order functional programming
language with user-defined algebraic data types – in other words, Haskell. Data
Parallel Haskell is a research prototype implementation of all these ideas, in the
Glasgow Haskell Compiler, GHC.

The matrix-multiply examples may have suggested to you that Data Parallel
Haskell is intended primarily for scientific applications, and that the nesting
depth of parallel computations is statically fixed. However the programming
paradigm is much more flexible than that. In the rest of this chapter we will give
a series of examples of programming in Data Parallel Haskell, designed to help
you gain familiarity with the programming style.

Most (in due course, all) of these examples can be found at in the Darcs repos-
itory http://darcs.haskell.org/packages/ndp, in the sub-directory examples/.
You can also find a dozen or so other examples of data-parallel algorithms written
in NESL at http://www.cs.cmu.edu/~scandal/nesl/algorithms.html.

6.4 Word search

Here is a tiny version of a web search engine. A Document is a vector of words,
each of which is a string. The task is to find all the occurrences of a word
in a large collection of documents, returning the matched documents and the
matching word positions in those documents. So here is the type signature for
search:

type Document = [: String :]

type DocColl = [: Document :]

search :: DocColl -> String -> [: (Document, [:Int:]) :]

We start by solving an easier problem, that of finding all the occurrences of a
word in a single document:

wordOccs :: Document -> String -> [:Int:]

232

wordOccs d s = [: i | (i,s2) <- zipP [:1..lengthP d:] d

, s == s2 :]

Here we use a filter in the array comprehension, that selects just those pairs
(i,s2) for which s==s2. Because this is an array comprehension, the implied
filtering is performed in data parallel. The (i,s2) pairs are chosen from a vector
of pairs, itself constructed by zipping the document with the vector of its indices.
The latter vector [: 1..lengthP d :] is again analogous to the list notation
[1..n], which generate the list of values between 1 and n. As you can see, in
both of these cases (filtering and enumeration) Data Parallel Haskell tries hard
to make parallel arrays and vectors as notationally similar as possible.

With this function in hand, it is easy to build search:

search :: [: Document :] -> String -> [: (Document, [:Int:]) :]

search ds s = [: (d,is) | d <- ds

, let is = wordOccs d s

, not (nullP is) :]

6.5 Prime numbers

Let us consider the problem of computing the prime numbers up to a fixed
number n, using the sieve of Erathosthenes. You may know the cunning solution
using lazy evaluation, thus:

primes :: [Int]

primes = 2 : [x | x <- [3..]

, not (any (‘divides‘ x) (smallers x))]

where

smallers x = takeWhile (\p -> p*p <= x) primes

divides :: Int -> Int -> Bool

divides a b = b ‘mod‘ a == 0

(In fact, this code is not the sieve of Eratosthenes, as Melissa O’Neill’s elegant
article shows [5], but it will serve our purpose here.) Notice that when considering
a candidate prime x, we check that is is not divisible by any prime smaller than
the square root of x. This test involves using primes, the very list the definition
produces.

How can we do this in parallel? In principle we want to test a whole batch of
numbers in parallel for prime factors, so we must specify how big the batch is:

primesUpTo :: Int -> [: Int :]

primesUpTo 1 = [: :]

primesUpTo 2 = [: 2 :]

primesUpTo n = smallers +:+

[: x | x <- [: ns+1..n :]

, not (anyP (‘divides‘ x) smallers) :]

233

where

ns = intSqrt n

smallers = primesUpTo ns

As in the case of wordOccs, we use a boolean condition in a comprehension to
filter the candidate primes. This time, however, computing the condition itself
is a nested data-parallel computation (as it was in search). used here to filter
candidate primes x.

To compute smallers we make a recursive call to primesUpTo. This makes
primesUpTo unlike all the previous examples: the depth of data-parallel nesting is
determined dynamically, rather than being statically fixed to depth two. It should
be clear that the structure of the parallelism is now much more complicated than
before, and well out of the reach of mainstream flat data-parallel systems. But
it has abundant data parallelism, and will execute with scalable performance on
a parallel processor.

6.6 Quicksort

In all the examples so far the “branching factor” has been large. That is, each
data-parallel operations has worked on a large collection. What happens if the
collection is much smaller? For example, a divide-and-conquer algorithm usually
divides a problem into a handful (perhaps only two) sub-problems, solves them,
and combines the results. If we visualize the tree of tasks for a divide-and-conquer
algorithm, it will have a small branching factor at each node, and may be highly
un-balanced.

Is this amenable to nested data parallelism? Yes, it is. Quicksort is a classic
divide-and-conquer algorithm, and one that we have already studied. Here it is,
expressed in Data Parallel Haskell:

qsort :: [: Double :] -> [: Double :]

qsort xs | lengthP xs <= 1 = xs

| otherwise = rs!:0 +:+ eq +:+ rs!:1

where

p = xs !: (lengthP xs ‘div‘ 2)

lt = [:x | x <- xs, x < p :]

eq = [:x | x <- xs, x == p:]

gr = [:x | x <- xs, x > p :]

rs = mapP qsort [: lt, gr :]

The crucial step here is the use of mapP on a two-element array [: lt, gr :].
This says “in data-parallel, apply qsort to lt and gr”. The fact that there are
only two elements in the vector does not matter. If you visualize the binary tree
of sorting tasks that quicksort generates, then each horizontal layer of the tree is
done in data-parallel, even though each layer consists of many unrelated sorting
tasks.

234

6.7 Barnes Hut

All our previous examples worked on simple flat or nested collections. Let’s now
have a look at an algorithm based on a more complex structure, in which the
elements of a parallel array come from a recursive and user-defined algebraic
data type.

In the following, we present an implementation2 of a simple version of the
Barnes-Hut n-body algorithm[7], which is a representative of an important class
of parallel algorithms covering applications like simulation and radiocity compu-
tations. These algorithms consist of two main steps: first, the data is clustered
in a hierarchical tree structure; then, the data is traversed according to the hi-
erarchical structure computed in the first step. In general, we have the situation
that the computations that have to be applied to data on the same level of the
tree can be executed in parallel. Let us first have a look at the Barnes-Hut al-
gorithm and the data structures that are required, before we discuss the actual
implementation in parallel Haskell.

An n-body algorithm determines the interaction between a set of particles by
computing the forces which act between each pair of particles. A precise solution
therefore requires the computations of n

2 forces, which is not feasible for large
numbers of particles. The Barnes-Hut algorithm minimizes the number of force
calculations by grouping particles hierarchically into cells according to their spa-
tial position. The hierarchy is represented by a tree. This allows approximating
the accelerations induced by a group of particles on distant particles by using
the centroid of that group’s cell. The algorithm has two phases: (1) The tree
is constructed from a particle set, and (2) the acceleration for each particle is
computed in a down-sweep over the tree. Each particle is represented by a value
of type MassPoint, a pair of position in the two dimensional space and mass:

type Vec = (Double, Double)

type Area = (Vec, Vec)

type Mass = Double

type MassPoint = (Vec, Mass)

We represent the tree as a node which contains the centroid and a parallel array
of subtrees:

data Tree = Node MassPoint [:Tree:]

Notice that a Tree contains a parallel array of Tree.
Each iteration of bhTree takes the current particle set and the area in which

the particles are located as parameters. It first splits the area into four subareas
subAs of equal size. It then subdivides the particles into four subsets according to
the subarea they are located in. Then, bhTree is called recursively for each subset
and subarea. The resulting four trees are the subtrees of the tree representing
the particles of the area, and the centroid of their roots is the centroid of the
complete area. Once an area contains only one particle, the recursion terminates.

2 Our description here is based heavily on that in [6].

235

p6p7
p4

p5

p2

p3

p8

p9

p1

Fig. 7. Hierarchical division of an area into subareas

Figure 7 shows such a decomposition of an area for a given set of particles, and
Figure 8 displays the resulting tree structure.

bhTree :: [:MassPnt:] -> Area -> Tree

bhTree p area = Node p [::]

bhTree ps area =

let

subAs = splitArea area

pgs = splitParticles ps subAs

subts = [: bhTree pg a| pg <- pgs | a <- subAs :]

cd = centroid [:mp | Node mp _ <- subts :]

in Node cd subts

The tree computed by bhTree is then used to compute the forces that act
on each particle by a function accels. It first splits the set of particles into
two subsets: fMps, which contains the particles far away (according to a given
criteria), and cMps, which contains those close to the centroid stored in the
root of the tree. For all particles in fMps, the acceleration is approximated by
computing the interaction between the particle and the centroid. Then, accels
is called recursively for with cMps and each of the subtrees. The computation
terminates once there are no particles left in the set.

accels:: Tree -> [:MassPoint:] -> [:Vec:]

accels _ [::] = [::]

accels (Node cd subts) mps =

let

(fMps, cMps) = splitMps mps

fAcs = [:accel cd mp | mp <- fMps:]

cAcs = [:accels t cMps| t <- subts:]

in combine farAcs closeAcs

accel :: MassPoint -> MassPoint -> Vec

-- Given two particles, the function accel computes the

-- acceleration that one particle exerts on the other

The tree is both built and traversed level by level, i.e., all nodes in one level
of the tree are processed in a single parallel step, one level after the other. This

236

p6 p7 p8 p9

c4 c5 p2 p3 p4 p5

c1 c2 c3 p1

c0

Fig. 8. Example of a Barnes-Hut tree.

Processor 1 Processor 2

c0 c0

c1 c2 c3 p1

c4 c5 p2 p3 p4 p5

p5 p6 p7 p8

Fig. 9. Distribution of the values of the flattened tree

information is important for the compiler to achieve good data locality and load
balance, because it implies that each processor should have approximately the
same number of masspoints of each level. We can see the tree as having a se-
quential dimension to it, its depth, and a parallel dimension, the breadth, neither
of which can be predicted statically. The programmer conveys this information
to the compiler by the choice the data structure: By putting all subtrees into
a parallel array in the type definition, the compiler assumes that all subtrees
are going to be processed in parallel. The depth of the tree is modeled by the
recursion in the type, which is inherently sequential.

6.8 A performance model

One of the main advantages of the data parallel programming model is that it
comes with a performance model that lets us make reasonable predictions about
the behavior of the program on a parallel machine, including its scalability – that
is, how performance changes as we add processors. So what is this performance
model?

First, we must make explicit something we have glossed over thus far: data-
parallel arrays are strict. More precisely, if any element of a parallel diverges,
then all elements diverge3. This makes sense, because if we demand any element
of a parallel array then we must compute them all in data parallel; and if that

3 What if the elements are pairs? See Leshchinskiy’s thesis for the details [8].

237

computation diverges we are justified in not returning any of them. The same
constraint means that we can represent parallel arrays very efficiently. For ex-
ample, an array of floats, [:Float:], is represented by a contiguous array of
unboxed floating-point numbers. There are no pointers, and iterating over the
array has excellent spatial locality.

In reasoning about performance, Blelloch [9] characterizes the work and depth

of the program:

– The work, W , of the program is the time it would take to execute on a single
processor.

– The depth, D, of the program is the time it would take to execute on an
infinite number processors, under the assumption that the additional pro-
cessors leap into action when (but only when) a mapP, or other data-parallel
primitive, is executed.

If you think of the unrolled data-flow diagram for the program, the work is the
number of nodes in the data-flow diagram, while the depth is the longest path
from input to output.

Of course, we do not have an infinite number of processors. Suppose instead
that we have P processors. Then if everything worked perfectly, the work work
be precisely evenly balanced across the processors and the execution time T

would be W/P . That will not happen if the depth D is very large. So in fact,
we have

W/P ≤ T ≤ W/P + L ∗ D

where L is a constant that grows with the latency of communication in the
machine. Even this is a wild approximation, because it takes no account of
bandwidth limitations. For example, between each of the recursive calls in the
Quicksort example there must be some data movement to bring together the
elements less than, equal to, and greater than the pivot. Nevertheless, if the net-
work bandwidth of the parallel machine is high (and on serious multiprocessors
it usually is) the model gives a reasonable approximation.

How can we compute work and depth? It is much easier to reason about
the work of a program in a strict setting than in a lazy one, because all sub-
expressions are evaluated. This is why the performance model of the data-parallel
part of DPH is more tractable than for Haskell itself.

The computation of depth is where we take account of data parallelism.
Figure 10 shows the equations for calculating the depth of a closed expression
e, where D[[e]] means “the depth of e”. These equations embody the following
ideas:

– By default execution is sequential. Hence, the depth of an addition is the
sum of the depths of its arguments.

– The parallel primitive mapP, and its relatives such as filterP, can take
advantage of parallelism, so the depth is the worst depth encountered for
any element.

– The parallel reduction primitive sumP, and its relatives, take time logarithmic
in the length of the array.

238

D[[k]] = 0 where k is a constant
D[[x]] = 0 where x is a variable

D[[e1 + e2]] = 1 + D[[e1]] + D[[e2]]

D[[if e1 then e2 else e3]] = D[[e1]] + D[[e2]] if e1 = True

= D[[e1]] + D[[e3]] if e1 = False

D[[let x=e in b]] = D[[b[e/x]]]

D[[e1 +:+ e2]] = 1 + D[[e1]] + D[[e2]]
D[[concatP e]] = 1 + D[[e]]
D[[mapP f e]] = 1 + D[[e]] + max

x∈e
D[[f x]]

D[[filterP f e]] = 1 + D[[e]] + D[[f]]

D[[sumP e]] = 1 + D[[e]] + log(length(e))

Fig. 10. Depth model for closed expressions

The rule for mapP dirctly embodies the idea that nested data parallelism is
flattened. For example, suppose e :: [:[:Float:]:]. Then, applying the rules
we see that

D[[mapP f (concatP e]] = 1 + D[[concatP e]] + max
x∈concatP eD[[f x]]

= 1 + 1 + D[[e]] + max
x∈concatP eD[[f x]]

= 2 + D[[e]] + max
xs∈e

max
x∈xs D[[f x]]

D[[mapP (mapP f) e]] = 1 + D[[e]] + max
xs∈e D[[mapP f xs]]

= 1 + D[[e]] + 1 + max
xs∈e

max
x∈xs D[[f x]]

= 2 + D[[e]] + max
xs∈e

max
x∈xs D[[f x]]

Notice that although the second case is a nested data-parallel computation, it
has the same depth expression as the first: the data-parallel nesting is flattened.

These calculations are obviously very approximate, certainly so far as con-
stant factors are concerned. For example, in the inequality for execution time,

W/P ≤ T ≤ W/P + L ∗ D

we do not know the value of the latency-related constant L. However, what we
are primarily looking for is the Asymptotic Scalability (AS) property:

A program has the Asymptotic Scalability property if D grows asymp-
totically more slowly than W , as the size of the problem increases.

If this is so then, for a sufficiently large problem and assuming sufficient network
bandwidth, performance should scale linearly with the number of processors.

For example, the functions sumSq and search both have constant depth, so
both have the AS property, and (assuming sufficient bandwidth) performance

239

should scale linearly with the number of processors after some fairly low thresh-
old.

For Quicksort, an inductive argument shows that the depth is logarithmic in
the size of the array, assuming the pivot is not badly chosen. So W = O(nlogn)
and D = O(logn), and Quicksort has the AS property.

For computing primes, the depth is smaller: D = O(loglogn). Why? Because

at every step we take the square root of n, so that at depth d we have n = 22d

.
Almost all the work is done at the top level. The work at each level involves
comparing all the numbers between

√

n and n with each prime smaller than
√

n.
There are approximately

√

n/logn primes smaller than
√

n, so the total work is
roughly W = O(n3/2

/logn). So again we have the AS property.
Leshchinskiy et al [10] give further details of the cost model.

6.9 How it works

NESL’s key insight is that it is possible to transform a program that uses nested

data-parallelism into one that uses only flat data parallelism. While this little
miracle happens behind the scenes, it is instructive to have some idea how it
works, just as a car driver may find some knowledge of internal combustion
engines even if he is not a skilled mechanic. The description here is necessarily
brief, but the reader may find a slightly more detailed overview in [11], and in
the papers cited there.

We call the nested-to-flat transformation the vectorization transform. It has
two parts:

– Transform the data so that all parallel arrays contain only primitive, flat
data, such as Int, Float, Double.

– Transform the code to manipulate this flat data.

To begin with, let us focus on the first of these topics. We may consider it as
the driving force, because nesting of data-parallel operations is often driven by
nested data structures.

Transforming the data As we have already discussed, a parallel array of
Float is represented by a contiguous array of honest-to-goodness IEEE floating
point numbers; and similarly for Int and Double. It is as if we could define the
parallel-array type by cases, thus:

data instance [: Int :] = PI Int ByteArray

data instance [: Float :] = PF Int ByteArray

data instance [: Double :] = PD Int ByteArray

In each case the Int field is the size of the array. These data declarations are
unusual because they are non-parametric: the representation of an array depends
on the type of the elements4.

4 None of this is visible to the programmer, but the data instance notation is in
fact available to the programmer in recent versions of GHC [12, 13]. Why? Because

240

Matters become even more interesting when we how to represent a parallel
array of pairs. We must not represent it as a vector of pointers to heap-allocated
pairs, scattered randomly around the address space. We get much better locality
if we instead represented it as a pair of arrays thus:

data instance [: (a,b) :] = PP [:a:] [:b:]

What about a parallel array of parallel arrays? Again, we must avoid a vector of
pointers. Instead, the natural representation is obtained by literally concatenat-
ing the (representation of) the sub-vectors into one giant vector, together with
a vector of indices to indicate where each of the sub-vectors begins.

data instance [: [:a:] :] = PA [:Int:] [:a:]

By way of example, recall the data types for sparse matrices:

type SparseMatrix = [: SparseVector :]

type SparseVector = [: (Int, Float) :]

Now consider this tiny matrix, consisting of two short documents:

m :: SparseMatrix

m = [: [:(1,2.0), (7,1.9):], [:(3,3.0):] :]

This would be represented as follows:

PA [:0,2:] (PP [:1, 7, 3 :]

[:1.0, 1.9, 3.0:])

The array as the leaves are themselves represented as byte arrays:

PA (PI 2 #<0x0,0x2>)

(PP (PI 3 #<0x0, 0x7, 0x3>)

(PF 3 #<0x9383, 0x92818, 0x91813>))

Here we have invented a fanciful notation for literal ByteArrays (not supported
by GHC, let alone Haskell) to stress the fact that in the end everything boils
down to literal bytes. (The hexadecimal encodings of floating point numbers are
also made up because the real ones have many digits!)

We have not discussed how to represent arrays of sum types (such as Bool,
Maybe, or lists), nor of function types — see [14] and [8] respectively.

GHC has a typed intermediate language so we needed to figure out how to give a
typed account of the vectorization transformation, and once that is done it seems
natural to offer it to the programmer. Furthermore, much of the low-level support
code for nested data parallelism is itself written in Haskell, and operates directly on
the post-vectorization array representation.

241

Vectorising the code As you can see, data structures are transformed quite
radically by the vectorisation transform, and it follows that the code must be
equally radically transformed. Space precludes proper treatment here; a good
starting point is Keller’s thesis [15].

A data-parallel program has many array-valued sub-expressions. For exam-
ple, in sumSq we see

sumSq a = sumP [: x*x | x <- a :]

However, if a is a big array, it would be silly to compute a new, equally big array
of squares, only to immediately consume it with sumP. It would be much better
for each processor to zip down its chunk of a, adding the square of each element
into a running total, and for each processor’s total to be combined.

The elimination of intermediate arrays is called fusion and is crucial to im-
prove the constant factor of Data Parallel Haskell. It turns out that vectorisation
introduces many more intermediate arrays, which makes fusion even more im-
portant. These constant factors are extremely important in practice: if there is
a slow-down of a factor of 50 relative to C, then even if you get linear speedup
by adding processors, Data Parallel Haskell is unlikely to become popular.

6.10 Running Data Parallel Haskell

GHC 6.6 and 6.8 come with support for Data Parallel Haskell syntax, and a
purely sequential implementation of the operations. So you can readily try out
all of the examples in this paper, and ones of your own devising thus:

– Use ghc or ghci version 6.6.x or 6.8.x.
– Use flags -fparr and -XParallelListComp.
– Import module GHC.PArr.

Some support for genuinely-parallel Data Parallel Haskell, including the all-
important vectorisation transformation, will be in GHC 6.10 (planned release:
autumn 2008). It is not yet clear just how complete the support will be at that
time. At the time of writing, for example, type classes are not vectorized, and
neither are lists. Furthermore, in a full implementation we will want need support
for partial vectorisation [16], among other things.

As a result, although all the examples in this paper should work when run
sequentially, they may not all vectorise as written, even in GHC 6.10.

A good source of working code is in the Darcs repository http://darcs.

haskell.org/packages/ndp, whose sub-directory examples/ contains many ex-
ecutable examples.

6.11 Further reading

Blelloch and Sabot originated the idea of compiling nested data parallelism into
flat data parallelism [17], but an easier starting point is probably Blelloch sub-
sequence CACM paper “Programming parallel algorithms” [9], and the NESL
language manual [18].

242

Keller’s thesis [15] formalized an intermediate language that models the cen-
tral aspects of data parallelism, and formalized the key vectorisation transforma-
tion. She also studied array fusion, to eliminate unnecessary intermediate arrays.
Leshchinskiy’s thesis [8] extended this work to cover higher order languages ([19]
gives a paper-sized summary), while Chakravarty and Keller explain a further
generalization to handle user-defined algebraic data types [14].

Data Parallel Haskell is an ongoing research project [11]. The Manticore
project at Chicago shares similar goals [20].

References

1. Mohr, E., Kranz, D.A., Halstead, R.H.: Lazy task creation – a technique for
increasing the granularity of parallel programs. IEEE Transactions on Parallel and
Distributed Systems 2(3) (July 1991)

2. Trinder, P., Loidl, H.W., Pointon, R.F.: Parallel and Distributed Haskells. Journal
of Functional Programming 12(5) (July 2002) 469–510

3. Trinder, P., Loidl, H.W., Barry, E., Hammond, K., Klusik, U., Peyton Jones, S.,
Rebón Portillo, Á.J.: The Multi-Architecture Performance of the Parallel Func-
tional Language GPH. In Bode, A., Ludwig, T., Wismüller, R., eds.: Euro-Par
2000 — Parallel Processing. Lecture Notes in Computer Science, Munich, Ger-
many, 29.8.-1.9., Springer-Verlag (2000)

4. Prins, J., Chatterjee, S., Simons, M.: Irregular computations in fortran: Expression
and implementation strategies. Scientific Programming 7 (1999) 313–326

5. O’Neill, M.: The genuine sieve of Eratosthenes. Submitted to JFP (2007)

6. Chakravarty, M., Keller, G., Lechtchinsky, R., Pfannenstiel, W.: Nepal – nested
data-parallelism in haskell. In Sakellariou, Keane, Gurd, Freeman, eds.: Euro-Par
2001: Parallel Processing, 7th International Euro-Par Conference. Number 2150 in
LNCS, Springer-Verlag (2001) 524–534

7. Barnes, J., Hut, P.: A hierarchical O(n log n) force calculation algorithm. Nature
324 (December 1986)

8. Leshchinskiy, R.: Higher-order nested data parallelism: semantics and implemen-
tation. PhD thesis, Technical University of Berlin (2006)

9. Blelloch, G.: Programming parallel algorithms. Communications of the ACM 39(3)
(March 1996) 85–97

10. Leshchinskiy, R., Chakravarty, M., Keller, G.: Costing nested array codes. Parallel
Processing Letters 12 (2002) 249–266

11. Chakravarty, M., Leshchinskiy, R., Jones, S.P., Keller, G.: Data Parallel Haskell:
a status report. In: ACM Sigplan Workshop on Declarative Aspects of Multicore
Programming, Nice (January 2007)

12. Schrijvers, T., Jones, S.P., Chakravarty, M., Sulzmann, M.: Type checking with
open type functions. Submitted to ICFP’08 (2008)

13. Chakravarty, M., Keller, G., Peyton Jones, S.: Associated type synonyms. In:
ACM SIGPLAN International Conference on Functional Programming (ICFP’05),
Tallinn, Estonia (2005)

14. Chakravarty, M.M., Keller, G.: More types for nested data parallel program-
ming. In: ACM SIGPLAN International Conference on Functional Programming
(ICFP’00), Montreal, ACM Press (September 2000) 94–105

243

15. Keller, G.: Transformation-based Implementation of Nested Data Parallelism for
Distributed Memory Machines. PhD thesis, Technische Universite at Berlin, Fach-
bereich Informatik (1999)

16. Chakravarty, M.M., Leshchinskiy, R., Jones, S.P., Keller, G.: Partial vectorisation
of Haskell programs. In: Proc ACM Workshop on Declarative Aspects of Multicore
Programming, San Francisco, ACM Press (January 2008)

17. Blelloch, G., Sabot, G.: Compiling collection-oriented languages onto massively
parallel computers. Journal of Parallel and Distributed Computing 8 (February
1990) 119 – 134

18. Blelloch, G.: NESL: A nested data-parallel language (3.1). Technical Report CMU-
CS-95-170, Carnegie Mellon University (September 1995)

19. Leshchinskiy, R., Chakravarty, M.M., Keller, G.: Higher order flattening. In: Third
International Workshop on Practical Aspects of High-level Parallel Programming
(PAPP 2006). LNCS, Springer (2006)

20. Fluet, M., Rainey, M., Reppy, J., Shaw, A., Xiao, Y.: Manticore: A heterogeneous
parallel language. In: ACM Sigplan Workshop on Declarative Aspects of Multicore
Programming, Nice (January 2007)

244

	afpPreface
	libintroJohan.pdf
	Introduction
	Introduction to generic programming
	Types of generic programming
	Value
	Type
	Function
	Interface
	Property
	Program Representation
	Shape

	The world of Haskell datatypes
	Monomorphic datatypes
	Polymorphic datatypes
	Families and mutually-recursive datatypes
	Higher-order kinded datatypes
	Nested datatypes
	Existentially quantified datatypes
	Generalized algebraic data types

	Lab assignment: Exercise Assistants
	An introduction to exercise assistants
	The main components
	The domain of logic expressions
	Other domains in the exercise assistants
	Generic components

	Implementing generic components

	Libraries for generic programming
	Lightweight Implementation of Generics and Dynamics
	An example function
	Run-time type representation
	Going generic: universe extension
	Support for overloading
	Generic functions in LIGD
	Empty
	Flatten
	Generalised map

	Generics for the Masses
	An example function
	Run-time type representation
	Going generic: universe extension
	Support for overloading
	Making generic functions extensible
	Generic functions in EMGM
	Empty
	Crush and flatten
	Generalised map

	Scrap Your Boilerplate
	An example function
	Run-time type representation
	Going generic: universe extension
	Generic functions in SYB
	Types of SYB combinators
	Basic examples
	Generic maps
	Equality

	Support for overloading
	Making generic functions extensible
	Variants

	Comparing Libraries for Generic programming
	Type-indexed datatypes in GHC
	Conclusions

