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Comparing GDE and Conflict-based Diagnosis
Ildik ó Flesch1 and Peter J.F. Lucas2

Abstract. Conflict-based diagnosis is a recently proposed method
for model-based diagnosis, inspired by consistency-baseddiagnosis,
that incorporates a measure of data conflict, called the diagnostic
conflict measure, to rank diagnoses. The probabilistic information
that is required to compute the diagnostic conflict measure is rep-
resented by means of a Bayesian network. The general diagnostic
engine is a classical implementation of consistency-baseddiagnosis
and incorporates a way to rank diagnoses using probabilistic infor-
mation. Although conflict-based and consistency-based diagnosis are
related, the way the general diagnostic engine handles probabilistic
information to rank diagnoses is different from the method used in
conflict-based diagnosis. In this paper, both methods are compared
to each other.

1 INTRODUCTION

In the last two decades, research into model-based diagnostic soft-
ware has become increasingly important, mainly because thecom-
plexity of devices, for which such software can be used, has
risen considerably and trouble shooting of faults in such devices
has therefore become increasingly difficult. Basically, two types
of model-based diagnosis are being distinguished in literature: (i)
consistency-based diagnosis [2, 8], and (ii ) abductive diagnosis [7].
In consistency-based diagnosis a diagnosis has to beconsistentwith
the modelled system behaviour and observations made on the actual
system, whereas in abductive diagnosis the observations have to be
implied by the modelled system given the diagnosis [1]. In this pa-
per, we focus on consistency-based diagnosis as implemented in the
general diagnostic engine, GDE for short, [2]. In addition,particu-
lar probabilistic extensions to consistency-based diagnosis as imple-
mented in GDE are considered [2].

There is also a third kind of model-based diagnosis that can be best
seen as a translation of consistency-based diagnosis from amixed
logical-probabilistic setting to a purely probabilistic setting, using
a statistical measure of information conflict. The method has been
calledconflict-based diagnosis; it exploits Bayesian-network repre-
sentations for the purpose of model-based diagnosis [4].

Although both GDE and conflict-based diagnosis take
consistency-based diagnosis as a foundation, the way uncer-
tainty is handled, as well as the way in which diagnoses are ranked,
are different. The aim of this paper is to shed light on the differences
and similarities between these two approaches to model-based
diagnosis. It is shown that conflict-based diagnosis yieldsa ranking
that, under particular circumstances, is more informativethan that
obtained by GDE.
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The paper is organised as follows. In Section 2, the necessary basic
concepts from model-based diagnosis, including GDE, and the use of
Bayesian networks for model-based are reviewed. Next, in Section 3,
the basic concepts from conflict-based diagnosis are explained. What
can be achieved by the method of probabilistic reasoning in GDE is
subsequently compared to the method of conflict-based diagnosis in
Section 4. Finally, in Section 5, the paper is rounded off with some
conclusions.

2 PRELIMINARIES

2.1 Model-based Diagnosis

In the theory of consistency-based diagnosis [8, 2, 3], the structure
and behaviour of a system is represented by alogical diagnostic sys-
temSL = (SD, COMPS), where

• SD denotes thesystem description, which is a finite set of logical
formulae, specifying structure and behaviour;

• COMPS is a finite set of constants, corresponding to thecompo-
nentsof the system that can be faulty.

The system description consists ofbehaviour descriptionsandcon-
nections. A behavioural description is a formula specifyingnormal
andabnormal(faulty) functionality of the components. Anabnor-
mality literal of the formAc is used to indicate that componentc is
behaving abnormally. whereas literals of the form¬Ac are used to
indicate that componentc is behaving normally. A connection is a
formula of the formic ≡ oc′ , whereic andoc′ denote the input and
output of componentsc andc′, respectively.

A logical diagnostic problemis defined as a pairPL =
(SL, OBS), whereSL is a logical diagnostic system and OBS is a
finite set of logical formulae, representingobservations.

Adopting the definition from [3], a diagnosis in the theory of
consistency-based diagnosis is defined as follows. Let∆C consist
of the assignment of abnormal behaviour, i.e.Ac, to the set of com-
ponentsC ⊆ COMPS and normal behaviour, i.e.¬Ac, to the re-
maining componentsCOMPS−C, then∆C is aconsistency-based
diagnosisof the logical diagnostic problemPL iff the observations
are consistent with both the system description and the diagnosis;
formally:

SD ∪ ∆C ∪ OBS 2 ⊥.

Here,2 stands for the negation of the logical entailment relation�,
and⊥ represents a contradiction.

Usually, one is in particular interested insubset-minimaldiag-
noses, i.e. diagnoses∆C , where the setC is subset minimal. Thus,
a subset-minimal diagnosis assumes that a subset-minimal number
of components are faulty; this often corresponds to the most-likely
diagnosis.
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Figure 1. Full adder with all outputs computed under the assumption of
normality and observed and predicted outputs;i1 (1), ı̄2 (0) andi3 (1)

indicate the inputs of the circuit ando1 (1) andō2 (0) its observed outputs.

EXAMPLE 1 Figure 1 presents the full-adder example, which con-
sists of two AND gates (A1 andA2), one OR gate (R1) and two
exclusive-OR (XOR) gates (X1 and X2). Note that thepredicted
outputō1 contradicts with theobservationo1, which is also the case
for gateX2. As a consequence, the assumption that all components
are behaving normally is invalid; thus, this isnota consistency-based
diagnosis. However, a consistency-based diagnosis would be to as-
sume the malfunctioning of componentX1, as this would restore
consistency. 2

2.2 GDE

Next, GDE is briefly described, where [2] is used as a point of refer-
ence; however, the terminology defined above in this paper isadopted
throughout this section. For example, where [2] speaks of a ‘candi-
date’ in this paper the term ‘diagnosis’ is used.

The logical reasoning implemented by GDE can best be seen as an
efficient implementation of consistency-based diagnosis.GDE can
also deal with uncertainty by attaching a prior probabilityof mal-
functioning to components. After an observation is made, the prior
probability becomes a posterior probability, conditionedon this ob-
servation. Based on new observations, there may be previousdiag-
noses which become inconsistent with the observations and the sys-
tem description. The set of diagnoses that are still possible is denoted
by R and called the set ofremainingdiagnoses; it can be partitioned
into two disjoint subsets: (i) the set of diagnoses that imply the ob-
servations, called the set ofselecteddiagnoses and denoted byS, and
(ii ) the set of diagnoses that neither predict nor contradict the obser-
vations, called the set ofuncommitteddiagnoses, denoted byU . By
definition,R = S ∪ U andS ∩ U = ∅.

The posterior probability of a set of behaviour assumptionsthat
is either inconsistent (not inR), a selected diagnosis (inS), or an
uncommitted diagnosis (inU ) is computed as follows:

P (∆C | OBS) =

8

>

<

>

:

0 if ∆C 6∈ R
P (∆C)
P (OBS)

if ∆C ∈ S
P (∆C)/m
P (OBS)

if ∆C ∈ U

(1)

wherem = 1/P (OBS | ∆C).
Finally, the probabilityP (OBS) is computed as follows:

P (OBS) =
X

∆C∈R

P (OBS, ∆C)

=
X

∆C∈S

P (OBS, ∆C) +
X

∆C∈U

P (OBS, ∆C)

=
X

∆C∈S

P (∆C) +
X

∆C∈U

P (∆C)

m
. (2)

Computation ofP (∆C) is made easy in GDE by assuming indepen-
dence between components behaving normally or abnormally.

One of the consequences of this assumption is the following
proposition.

Proposition 1 LetPL = (SD, OBS) be a logical diagnostic system
with associated joint probability distributionP as defined above for
GDE, such thatP (Ac) ≪ P (¬Ac) for eachc ∈ COMPS, and let
∆C and ∆C′ be two consistency-based diagnoses that are both in
eitherS or U , then it holds that:

P (∆C | OBS) ≥ P (∆C′ | OBS) if C ⊆ C′.

Proof. The result follows from the assumption of independence to-
gether withP (Ac) ≪ P (¬Ac):

P (∆C) =
Y

c∈C

P (Ac)
Y

c∈COMPS−C

P (¬Ac)

≥
Y

c∈C′

P (Ac)
Y

c∈COMPS−C′

P (¬Ac) = P (∆C′)

Filling this result into Equation (1) gives the requested outcome. 2

For further detail of GDE the reader is referred to the paper by De
Kleer and Williams [2]. The following example illustrates how GDE
works.

Table 1. Comparison of the values of the diagnostic conflict measure and
GDE for the full-adder circuit with observationsOBS = ω =

{i1, ı̄2, i3, o1, ō2} and the probability distributionP , assuming that
P (ac) = P (oc | ac) = 0.001.

k X2 R1 X1 A1 A2 conf[P δk ](ω) GDE’sP (∆k | OBS)

1 1 1 1 1 1 – –
2 1 1 1 1 0 – –
3 1 1 1 0 1 – –
4 1 1 1 0 0 – –
5 1 1 0 1 1 −0.4255 0.99402
6 1 1 0 1 0 −0.4255 9.9502 · 10−4

7 1 1 0 0 1 −0.3006 9.9502 · 10−4

8 1 1 0 0 0 −0.3006 9.9601 · 10−7

9 1 0 1 1 1 – –
10 1 0 1 1 0 – –
11 1 0 1 0 1 – –
12 1 0 1 0 0 – –
13 1 0 0 1 1 −0.3006 9.9502 · 10−4

14 1 0 0 1 0 −0.3006 9.9601 · 10−7

15 1 0 0 0 1 −0.3006 9.9601 · 10−7

16 1 0 0 0 0 −0.3006 9.9701 · 10−10

17 0 1 1 1 1 – –
18 0 1 1 1 0 −0.1249 9.9502 · 10−4

19 0 1 1 0 1 – –
20 0 1 1 0 0 0 9.9502 · 10−7

21 0 1 0 1 1 −0.1247 9.9502 · 10−4

22 0 1 0 1 0 −0.1249 9.9601 · 10−7

23 0 1 0 0 1 0.0002 9.9601 · 10−7

24 0 1 0 0 0 0 9.9701 · 10−10

25 0 0 1 1 1 0 9.9502 · 10−4

26 0 0 1 1 0 0 9.9601 · 10−7

27 0 0 1 0 1 0 9.9601 · 10−7

28 0 0 1 0 0 0 9.9701 · 10−10

29 0 0 0 1 1 0 9.9601 · 10−7

30 0 0 0 1 0 0 9.9701 · 10−10

31 0 0 0 0 1 0 9.9701 · 10−10

32 0 0 0 0 0 0 9.9801 · 10−13

EXAMPLE 2 Reconsider the full-adder shown in Figure 1, where



each component can only be normal or abnormal. Assume that the
probability of faulty behaviour of a component is equal toP (Ac) =
0.001. Without any observations, the diagnosis space consists of
25 = 32 members, where the diagnosis∆∅ = {¬Ac | c ∈ COMPS}
is the most probable diagnosis with probabilityP (∆∅) = (1 −
P (Ac))

5 = (0.999)5 ≈ 0.995. When more components are as-
sumed to be faulty, the probabilities decrease quickly to very small
values.

Now, suppose thatOBS = {i1, ı̄2, i3, o1, ō2}. The new prob-
abilities obtained from GDE are shown in the right-most column
of Table 1, where ‘1’ for a component means normal behaviour
and ‘0’ means abnormal behaviour. The diagnoses∆k, for k =
1, 3, 4, 9, . . . , 12, 17, 19, respectively, are eliminated by these obser-
vations. Furthermore, since there are no diagnoses in the set R that
imply the two output observations, the set ofS is empty and, thus,
the set of uncommitted diagnosesU is equal toR. Then, the posterior
probability of a diagnosis∆k can be computed as follows:

P (∆k | OBS) =
P (∆k)/m

(
P

∆C∈U P (∆C))/m
=

P (∆k)
P

∆C∈U P (∆C)
,

where here
P

∆C∈U P (∆C) ≈ 1.002 · 10−3. 2

In the example, the probability of the∆k ’s that still can be diagnoses
become about 1000 times more likely when conditioning on theob-
servations than without observations. However, either with or with-
out observations, the diagnosis with the fewest number of abnormal-
ity assumptions is the most likely one. Thus the resulting diagnostic
reasoning behaviour is very similar to that obtained by exploiting the
concept of subset-minimal diagnosis.

2.3 Bayesian Networks and the Conflict Measure

Let P (X) be a joint probability distribution of the set of discrete
binary random variablesX. A single random variable taking the val-
ues ‘true’ or ‘false’ is written as (upright)y and ȳ, respectively. If
we refer to arbitrary values of a set of variablesX, sometimes a sin-
gle variable, this will be denoted by (italic)x. Let U, W, Z ⊆ X be
disjoint sets of random variables, thenU is said to beconditionally
independentof W givenZ, if for each valueu, w andz:

P (u | w, z) = P (u | z), with P (w, z) > 0. (3)

A Bayesian networkB is defined as a pairB = (G, P ), where
G = (V, E) is an acyclic directed graph, with set of verticesV
and set of arcsE, P is the associated joint probability distribution
of the set of random variablesX which is associated 1–1 withV .
We will normally use the same names for variables and their as-
sociated vertices. The factorisation ofP respects the independence
structure ofG as follows:P (x) =

Q

y∈x P (y | π(y)), whereπ(y)
denotes the values of the parent set of vertexY . Finally, we will fre-
quently make use of marginalising out particular variablesW written
asP (u) =

P

w P (u, w).
Bayesian networks specify probabilistic patterns that must be ful-

filled by observations. Observations are random variables that ob-
tain a value through an intervention, such as a diagnostic test. The
set ofobservationsis denoted byω. Theconflict measurehas been
proposed as a tool for the detection of potential conflicts between
observations and a given Bayesian network and is defined as [5]:

conf(ω) = log
P (ω1)P (ω2) · · ·P (ωm)

P (ω)
, (4)

with ω = ω1 ∪ ω2 ∪ · · · ∪ ωm.

v n

u P (u) = 0.2

P (v | u) = 0.8
P (v | ū) = 0.01

P (n | u) = 0.9
P (n | ū) = 0.1

Figure 2. Example of a Bayesian network.

The interpretation of the conflict measure is as follows. A zero
or negative conflict measure means that the denominator is equally
likely or more likely than the numerator. This is interpreted as that the
joint occurrence of the observations is in accordance with the prob-
abilistic patterns inP . A positive conflict measure, however, implies
negative correlation between the observations andP indicating that
the observations do not matchP very well.

EXAMPLE 3 Consider the Bayesian network shown in Figure 2,
which describes that stomach ulcer (u) may give rise to both vomit-
ing (v) and nausea (n).

Now, suppose that a patient comes in with the symptoms of vom-
iting and nausea. The conflict measure then has the followingvalue:

conf({v, n})=log
P (v)P (n)

P (v, n)
=log

0.168 · 0.26

0.1448
≈−0.5.

As the conflict measure assumes a negative value, there is no con-
flict between the two observations. This is consistent with medical
knowledge, as we do expect that a patient with stomach ulcer dis-
plays symptoms of both vomiting and nausea.

As a second example, suppose that a patient has only symptoms
of vomiting. The conflict measure now obtains the following value:

conf({v, n̄}) = log
0.168 · 0.74

0.0232
≈ log 5.36 ≈ 0.7.

As the conflict measure is positive, there is a conflict between the
two observations, which is in accordance to medical expectations.2

2.4 Bayesian Diagnostic Problems

A Bayesian diagnostic systemis denoted as a pairSB = (G, P ),
whereP is a joint probability distribution of the vertices ofG, inter-
preted as random variables, andG is obtained by mapping a logical
diagnostic systemSL = (SD, COMPS) to a Bayesian diagnostic
systemSB as follows [6]:

1. componentc is represented by itsinput Ic andoutputOc vertices,
where inputs are connected by an arc to the output;

2. to each componentc there belongs anabnormality vertexAc

which has an arc pointing to the outputOc.

Figure 3 shows the Bayesian diagnostic system corresponding to the
logical diagnostic system shown in Figure 1.

LetO denote the set of all output variables andI the set of all input
variables, leto andi denote (arbitrary) values of the set of output and
input variables, respectively, and let

δC = {ac | c ∈ C} ∪ {āc | c ∈ COMPS − C}

be the set of values of the abnormality variablesAc, with c ∈
COMPS. The latter definition establishes a link between∆C in log-
ical diagnostic systems and the abnormality variables in Bayesian
diagnostic systems.
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Figure 3. The graphical representation of a Bayesian diagnostic system
corresponding to the full-adder in Figure 1.

Due to the independences that hold for a Bayesian diagnosticsys-
tem, it is possible to simplify the computation of the joint probability
distributionP by exploiting the following properties:

Property 1:the joint probability distribution of a set of output vari-
ablesO can be factorised as follows:

P (o) =
X

i,δc

P (i, δc)
Y

c∈COMPS

P (oc | π(oc)) ; (5)

Property 2:the input variables and abnormality variables are mutu-
ally independent of each other, formally:P (i, δc) = P (i)P (δc).

Recall that logical diagnostic problems are logical diagnostic sys-
tems augmented with observations; Bayesian diagnostic problems
are defined similarly. The input and output variables that have been
observed are now referred to asIω andOω, respectively. The un-
observed input and output variables will be referred to asIu and
Ou respectively. The set of actual observations is then denoted by
ω = iω ∪ oω. Thus, aBayesian diagnostic problemPB = (SB, ω)
consists of (i) a Bayesian diagnostic system representing the compo-
nents, their behaviour and interaction, and (ii ) a set of observations
ω [4].

In Bayesian diagnostic problems, the normal behaviour of compo-
nentc is expressed in a probabilistic setting by the assumption that a
normally functioning component yields an output value withproba-
bility of either0 or 1. Thus,

P (oc | π(oc)) ∈ {0, 1},

when the abnormality variableAc ∈ π(Oc) takes the value ‘false’,
i.e. isāc. For the abnormal behaviour of a componentc it is assumed
that the random variableOc is conditionally independent of its parent
setπ(Oc) if componentc is assumed to function abnormally, i.e.Ac

takes the value ‘true’, written as:

P (oc | π(oc)) = P (oc | ac).

Thus, the fault behaviour of an abnormal component cannot beinflu-
enced by its environment. We use the abbreviationP (oc | ac) = pc.
Note that this assumption isnotmade when a component is behaving
normally, i.e. when̄ac holds.

3 CONFLICT-BASED DIAGNOSIS

There exists a 1–1 correspondence between aconsistency-based di-
agnosis∆C of a logical diagnostic problemPL and aδC for which
it holds thatP (ω | δC) 6= 0 if PB is the result of the mapping de-
scribed above, applied toPL. The basic idea behind conflict-based

diagnosis is that the conflict measure can be used to rank these
consistency-based diagnoses (cf. [4]). We start with the definition
of the diagnostic conflict measure.

Definition 1 (diagnostic conflict measure) Let PB = (SB, ω) be
a Bayesian diagnostic problem. Thediagnostic conflict measure, de-
noted byconf[P δC ](·, ·), is defined forP (ω | δC) 6= 0, as:

conf[P δC ](iω, oω) = log
P (iω | δC)P (oω | δC)

P (iω, oω | δC)
, (6)

with observationsω = iω ∪ oω.

Using the independence properties of Bayesian diagnostic problems
we obtain [4]:

conf[P δC ](iω, oω) = log

P

i P (i)
P

ou

Q

c P (oc | π(oc)
P

iu
P (iu)

P

ou

Q

c P (oc | π(oc))
.

whereπ(Oc) may include input variables fromI .
The diagnostic conflict measure can take positive, zero and nega-

tive values having different diagnostic meaning. Note thatthe numer-
ator of the diagnostic conflict measure is defined as the probability
of the individual occurrence of the inputs and outputs, whereas the
denominator is defined as the probability of the joint occurrence of
the observations. Intuitively, if the probability of the individual oc-
currence of the observations is higher than that of the jointoccur-
rence, then the observations do not support each other. Thus, more
conflict between diagnosis and observations yields higher (more pos-
itive) values of the diagnostic conflict measure. This meansthat the
signof the diagnostic conflict measure, negative, zero or positive, can
already be used to rank diagnoses in a qualitative fashion.

This interpretation gives rise to the following definition.

Definition 2 ((minimal) conflict-based diagnosis) Let PB =
(SB, ω) be a Bayesian diagnostic problem and letδC be a
consistency-based diagnosis ofPB (i.e. P (ω | δC) 6= 0). Then,δC

is called aconflict-based diagnosisif conf[P δC ](ω) ≤ 0. A conflict-
based diagnosisδC is calledminimal, if for each conflict-based di-
agnosisδC′ it holds thatconf[P δC ](ω) ≤ conf[P δ

C′ ](ω).

In general, the diagnostic conflict measure has the important prop-
erty that its value can be seen as the overall result of a localanalysis
of component behaviours under particular logical and probabilistic
normality and abnormality assumptions. A smaller value of the diag-
nostic conflict measure is due to a higher likelihood of dependence
between observations, and this indicates a better fit between observa-
tions and component behaviours. Consider the following example.

EXAMPLE 4 Reconsider the full-adder circuit example from Fig-
ure 1. Let as beforeω = {i1, ı̄2, i3, o1, ō2}. The diagnostic conflict
measures for all the possible diagnoses are listed in Table 1.

As an example, the diagnostic conflict measures for the diag-
nosesδ5, δ6, δ7 and δ8 are compared to one another for the case
that the probabilitypX1 = P (oX1 | aX1) = 0.001 and it is ex-
plained what it means that, according to Table 1,conf[P δ5 ](ω) =
conf[P δ6 ](ω) < conf[P δ7 ](ω) = conf[P δ8 ](ω).

First, the diagnosesδk, for k = 6 andk = 7, will be considered in
more detail in order to explain the meaning of the diagnosticconflict
measure. The difference in value of the diagnostic conflict measure
for these two diagnoses can be explained by noting that forδ6 it is
assumed that the adder A1 functions normally and A2 abnormally,
whereas forδ7 it is the other way around. The diagnostic conflict
measure of the diagnosisδ6 is higher than that forδ7, because if A1



functions normally, then its output has to be equal to 0, whereas if
A2 functions normally, then its output has to be equal to 1. Note that
it has been observed for R1 that the output is equal to 0. Because 0
is the output of the OR gate R1, its inputs must be 0; therefore, the
assumption that A1 functions normally with output 0 offers abetter
explanation for the output 0 of the R1 gate than the assumption in δ7

that A2 functions normally (which yields output value 1). Further-
more, since in both diagnosesδ6 andδ7 component X1 is assumed
to be faulty, and the output of the X1 acts as the input of A2, the
assumption about the output of A2 is already relaxed. This also ex-
plains the preference of diagnosisδ6 aboveδ7 and whyδ6 is ranked
higher thanδ7.

Next, the diagnosesδ7, δ8, δ13, δ14, δ15, andδ16 are compared to
one another and we explain why it is reasonable that these diagnoses
have the same diagnostic conflict measure value (−0.3006). Note
that both diagnosesδ7 and δ8 include faulty assumptionaX1 and
aA1, andδ13, δ14, δ15 andδ16 include the faulty behavioursaR1 and
aX1. Note that for both{aX1, aA1} and{aR1, aX1}, one input of
the X2 and the two inputs of R1 are relaxed. Therefore, they yield
the same qualitative information about fault behaviour of the system.
Below, these results are compared with those by GDE. 2

The example above illustrates that comparing the value of the di-
agnostic conflict measure for different diagnoses gives considerable
insight into the behavioural abnormality of a system.

4 COMPARISON

In this section, the diagnostic conflict measure and GDE’s proba-
bilistic method are compared to each other in terms of the difference
in ranking they give rise to. To start, the main differences between
the diagnostic conflict measure and GDE are summarised, which is
followed by an example. The example is used to illustrate that the
diagnostic conflict measure yields a ranking that, for the probability
distribution defined earlier, conveys more useful diagnostic informa-
tion than the ranking by GDE.

The following facts summarise the differences and similarities be-
tween the diagnostic conflict measure and GDE:

1. an abnormality assumption∆C is a diagnosis according to GDE
iff its associated diagnostic conflict measure is defined, i.e. [4]

P (ω | δC) 6= 0 ⇔ SD ∪ ∆C ∪ OBS 2 ⊥.

2. computation of the diagnostic conflict measure requires the con-
ditional probabilitypc = P (oc | ac), i.e. the probability that the
component’s output isoc when the component is faulty, this prob-
ability is assumed to be always 0 or 1 by GDE.

3. in GDE the probabilityP (ac), i.e. the probability that component
c functions abnormally, acts as the basis for ranking diagnoses;
this probability is not needed to rank diagnoses using conflict-
based diagnosis, because it is summed out in the computationof
the diagnostic conflict measure.

4. the ranking of a conflict-based diagnosis is based on a local analy-
sis of interactions between inputs and outputs of components, tak-
ing into account the probability of particular faulty behaviours of
components, and thus can be interpreted as a measure of how well
the diagnosis, observations and system behaviour match; GDE of-
fers nothing that is to some extent similar.

5. in GDE assuming more components to be functioning abnormally
renders a diagnosis less likely, as proved in Proposition 1;a sim-
ilar property does not hold for conflict-based diagnosis using the
diagnostic conflict measure.

All properties above have already been discussed extensively. There-
fore, only the last issue is illustrated.

EXAMPLE 5 Consider the Bayesian diagnostic problem discussed
above. Table 1 summarises the results of GDE and conflict-based
diagnosis, which makes it easier to compare the results. Note that
δk ≡ ∆k andω ≡ OBS.

Consider again the Bayesian diagnostic problemPB with set
of observationsω = {i1, ı̄2, i3, o1, ō2} and the two diagnoses
δ5 = δ{X1} = {āX2, āR1, aX1, āA1, āA2} andδ6 = δ{X1,A2} =
{āX2, āR1, aX1, āA1, aA2}.

According to Table 1 the posterior probabilities computed by GDE
are equal toP (∆5 | OBS) = 0.99402 and P (∆6 | OBS) =
9.9502 · 10−4. Thus,∆5 is much more likely than∆6, which is
due to the inclusion of an extra abnormality assumption in∆6 in
comparison to∆5. Consequently, the ranking obtained is compat-
ible with subset-minimality. However, using the diagnostic conflict
measure gives, according to Table 1, for both diagnoses the value of
−0.4255. This means that relaxing one extra logical and probabilistic
constraint, i.e.A2 in addition toX1, has no effect on the likelihood
of the diagnosis in this case.

Next consider the diagnoses∆7 and∆6, which both have the same
number of components assumed to be abnormal, and thus obtainthe
same ranking according to GDE. However,δ6 andδ7 have a different
diagnostic conflict measure, as explained in Example 4. 2

This example again illustrates that GDE and conflict-based diagnosis
rank diagnoses differently. Conflict-based diagnosis really looks into
the system behaviour and, based on a local analysis of strength of the
various constraints, comes up with a ranking.

5 CONCLUSION AND FUTURE WORK

Conflict-based diagnosis is a new concept in the area of model-based
diagnosis that has been introduced recently [4]. In this paper, we have
compared this new method with the well-known probabilisticmethod
employed in GDE. It was shown that the probabilistic method un-
derlying conflict-based diagnosis yields detailed insightinto the be-
haviour of a system. As the obtained information differs from in-
formation obtained from GDE, it may be useful as an alternative or
complementary method.

In the near future, we intend to implement the method as part of
a diagnostic reasoning engine in order to build up experience with
regard to the practical usefulness of the method.
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