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Comparing GDE and Conflict-based Diagnosis

lldik 6 FlescH and Peter J.F. Lucag

Abstract.
for model-based diagnosis, inspired by consistency-bdsephosis,
that incorporates a measure of data conflict, called thendistie
conflict measure, to rank diagnoses. The probabilisticrmédion
that is required to compute the diagnostic conflict meassinep-

Conflict-based diagnosis is a recently proposed method The paper is organised as follows. In Section 2, the necebsaic

concepts from model-based diagnosis, including GDE, amdsk of
Bayesian networks for model-based are reviewed. Next, Ghi@e3,

the basic concepts from conflict-based diagnosis are exqulalWhat

can be achieved by the method of probabilistic reasoningDiE &

resented by means of a Bayesian network. The general didggnos subsequently compared to the method of conflict-based dggim

engine is a classical implementation of consistency-bdssghosis
and incorporates a way to rank diagnoses using probabilifor-

mation. Although conflict-based and consistency-baseghdisis are
related, the way the general diagnostic engine handlesapilatiic

information to rank diagnoses is different from the methgddiin
conflict-based diagnosis. In this paper, both methods amgpaced
to each other.

1 INTRODUCTION

In the last two decades, research into model-based diagremst-
ware has become increasingly important, mainly becausedhe

Section 4. Finally, in Section 5, the paper is rounded offivgidme
conclusions.

2 PRELIMINARIES
2.1 Model-based Diagnosis

In the theory of consistency-based diagnosis [8, 2, 3], thewire
and behaviour of a system is represented lgeal diagnostic sys-

temSy, = (SD, COMPS), where

e SD denotes theystem descriptigrwhich is a finite set of logical
formulae, specifying structure and behaviour;

plexity of devices, for which such software can be used, hass COMPS is a finite set of constants, corresponding toctirapo-

risen considerably and trouble shooting of faults in suchicés
has therefore become increasingly difficult. Basicallyp ttypes
of model-based diagnosis are being distinguished in titeea ()
consistency-based diagnosis [2, 8], aii)ldbductive diagnosis [7].
In consistency-based diagnosis a diagnosis has tobsistentvith
the modelled system behaviour and observations made ortin a
system, whereas in abductive diagnosis the observatiorestbebe

nentsof the system that can be faulty.

The system description consistshahaviour descriptionandcon-

nections A behavioural description is a formula specifyingrmal
and abnormal (faulty) functionality of the components. Aabnor-
mality literal of the form A, is used to indicate that componenis
behaving abnormally. whereas literals of the form. are used to

implied by the modelled system given the diagnosis [1]. In this pa_indicate that component is behaving normally. A connection is a

per, we focus on consistency-based diagnosis as implethentbe
general diagnostic engine, GDE for short, [2]. In additiparticu-
lar probabilistic extensions to consistency-based disigres imple-
mented in GDE are considered [2].

There is also a third kind of model-based diagnosis that edrebt
seen as a translation of consistency-based diagnosis fromxead
logical-probabilistic setting to a purely probabilistieténg, using
a statistical measure of information conflict. The method been
called conflict-based diagnosist exploits Bayesian-network repre-
sentations for the purpose of model-based diagnosis [4].

Although both GDE and conflict-based diagnosis

formula of the formi. = 0./, wherei. ando.. denote the input and

output of components andc’, respectively.
A logical diagnostic problemis defined as a paifP, =
(Sr,0OBS), whereS;, is a logical diagnostic system and OBS is a

finite set of logical formulae, representingservations

Adopting the definition from [3], a diagnosis in the theory of
consistency-based diagnosis is defined as follows.Agtconsist
of the assignment of abnormal behaviour, ¥e, to the set of com-
ponentsC € COMPS and normal behaviour, i.e-A., to the re-
maining component§ OMPS — C, thenA( is aconsistency-based

take diagnosisof the logical diagnostic probler?;, iff the observations

consistency-based diagnosis as a foundation, the way -uncef® consistent with both the system description and thendsisg;

tainty is handled, as well as the way in which diagnoses arieeidy
are different. The aim of this paper is to shed light on théed#inces

and similarities between these two approaches to modeldbas

diagnosis. It is shown that conflict-based diagnosis yialdanking
that, under particular circumstances, is more informatign that
obtained by GDE.
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formally:

SDUAcUOBSFE L.

Here 2 stands for the negation of the logical entailment relation
and_L represents a contradiction.

Usually, one is in particular interested subset-minimadiag-
noses, i.e. diagnosesc, where the se€’ is subset minimal. Thus,
a subset-minimal diagnosis assumes that a subset-minumatber
of components are faulty; this often corresponds to the -ty
diagnosis.
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Figure 1. Full adder with all outputs computed under the assumption of
normality and observed and predicted outpiit1), 12 (0) andis (1)
indicate the inputs of the circuit ard (1) andd. (0) its observed outputs.

Computation ofP(A¢) is made easy in GDE by assuming indepen-
dence between components behaving normally or abnormally.

One of the consequences of this assumption is the following
proposition.

Proposition 1 LetPr, = (SD, OBS) be a logical diagnostic system

with associated joint probability distributio® as defined above for

GDE, such thatP(A.) <« P(-A.) for eachc € COMPS, and let

Ac and A¢r be two consistency-based diagnoses that are both in

either S or U, then it holds that:
P(Ac | OBS) > P(Aq | OBS) ifC CC.

Proof. The result follows from the assumption of independence to-

EXAMPLE 1 Figure 1 presents the full-adder example, which con-gether withP(A.) < P(-A.):

sists of two AND gatesA41 and A2), one OR gateR1) and two
exclusiveor (XOR) gates {1 and X2). Note that thepredicted
outputo; contradicts with the@bservatioro,, which is also the case

for gate X2. As a consequence, the assumption that all components

are behaving normally is invalid; thus, thisista consistency-based
diagnosis. However, a consistency-based diagnosis wautd ks-
sume the malfunctioning of componeatl, as this would restore
consistency. a

2.2 GDE

Next, GDE is briefly described, where [2] is used as a poinetdrr
ence; however, the terminology defined above in this paetapted
throughout this section. For example, where [2] speaks chadi-
date’ in this paper the term ‘diagnosis’ is used.

P(Ac)

[1PA I

P(-A.)

ceC ceCOMPS-C
> [ PA) J] PGHA)=PA)
ceC’ ceCOMPS—-C"’

Filling this result into Equation (1) gives the requestettome. O

For further detail of GDE the reader is referred to the papebb
Kleer and Williams [2]. The following example illustratesva GDE
works.

Table 1. Comparison of the values of the diagnostic conflict measude a
GDE for the full-adder circuit with observatiof3BS = w =
{i1,12,13, 01,02} and the probability distributiod®, assuming that
P(ac) = P(oc | ac) = 0.001.

The logical reasoning implemented by GDE can best be seen as a

efficient implementation of consistency-based diagndSBE can
also deal with uncertainty by attaching a prior probabitifymal-
functioning to components. After an observation is made,ptior
probability becomes a posterior probability, conditiormedthis ob-
servation. Based on new observations, there may be pretiags
noses which become inconsistent with the observationshengyts-
tem description. The set of diagnoses that are still pasgitdenoted
by R and called the set gémainingdiagnoses; it can be partitioned
into two disjoint subsets:i)the set of diagnoses that imply the ob-
servations, called the seteélectedliagnoses and denoted Byand
(i) the set of diagnoses that neither predict nor contradebtiser-
vations, called the set eincommittecdiagnoses, denoted l3y. By
definition,R = SUU andSNU = 0.

The posterior probability of a set of behaviour assumptitbrad
is either inconsistent (not ifk), a selected diagnosis (i), or an
uncommitted diagnosis (i) is computed as follows:

0 if Ac €R
P(Ac | OBS) = gg(ggs)) if AcesS 1)
BRsst if AceU
wherem = 1/P(OBS | A¢).
Finally, the probability?(OBS) is computed as follows:
P(OBS) = > P(OBS,Ac)
Ac€ER
= ) P(OBS,Ac)+ >  P(OBS,A¢)
AceS AceU
P(A
= Y P+ Y Plac) @)
m
AceSs AceU

k | X2 Rl X1 Al A2]| conf[P%](w) | GDE'SP(Ay | OBS)
1 ]1 1 1 1 1 - -
211 1 1 1 0 - -
311 1 1 0 1 - -
411 1 1 0 0 - -
511 1 0 1 1 —0.4255 0.99402
61 1 0 1 0 —0.4255 9.9502 - 10~4
711 1 0 0 1 —0.3006 9.9502 - 10—4
8|1 1 0 0 O —0.3006 9.9601 - 10~ 7
9 1 0 1 1 1 - -
0/1 0o 1 1 0 - -
1111 0o 1 0 1 - -
2|1 0 1 0 0 - -
31 0 0 1 1 —0.3006 9.9502 - 10— 4
4|1 0o 0 1 0 —0.3006 9.9601 - 10~ 7
5|1 0 0 0 1 —0.3006 9.9601 - 10~ 7
6|1 0 0 0 0 —0.3006 9.9701 - 10— 10
7] 0 1 1 1 1 - -
8]0 1 1 1 0 —0.1249 9.9502 - 10—4
9]0 1 1 0 1 - -
20/0 1 1 0 0 0 9.9502 - 10~ 7
21000 1 o0 1 1 —0.1247 9.9502 - 10— 4
20 1 0 1 o0 —0.1249 9.9601 - 10~ 7
230 1 0 0 1 0.0002 9.9601 - 10~ 7
2410 1 0 0 O 0 9.9701 - 10— 10
2510 0 1 1 1 0 9.9502 - 10~ 4%
2610 0 1 1 0 0 9.9601 - 10~ 7
2170 o 1 0 1 0 9.9601 - 10~ 7
2800 0 1 0 o0 0 9.9701 - 10—10
22|10 0 0 1 1 0 9.9601 - 10~7
300 0o 0o 1 o0 0 9.9701 - 10— 10
310 0o o 0 1 0 9.9701 - 10—10
320 0 0 0 o0 0 9.9801 - 10~13

EXAMPLE 2 Reconsider the full-adder shown in Figure 1, where



each component can only be normal or abnormal. Assume tbat th

probability of faulty behaviour of a component is equaltoA.) =

0.001. Without any observations, the diagnosis space consists of

2% = 32 members, where the diagnogig = {—A. | c € COMPS
is the most probable diagnosis with probabiliB(Ay) = (1 —
P(Ac))?
sumed to be faulty, the probabilities decrease quickly ty genall
values.

Now, suppose thaOBS = {i1,12,i3,01,02}. The new prob-
abilities obtained from GDE are shown in the right-most omtu

of Table 1, where ‘1’ for a component means normal behaviour

and ‘0’ means abnormal behaviour. The diagnoges for £ =

(0.999)° = 0.995. When more components are as-

P(u) =0.2
P(v|u)=0.8 Pn|u)=09
P(v|1)=0.01 Pn|a) =01

Figure 2. Example of a Bayesian network.

The interpretation of the conflict measure is as follows. Aoze
or negative conflict measure means that the denominatorusllgq

1,3,4,9,...,12,17, 19, respectively, are eliminated by these obser- likely or more likely than the numerator. This is interpites that the

vations. Furthermore, since there are no diagnoses in the deat
imply the two output observations, the set®fs empty and, thus,
the set of uncommitted diagnoséss equal taR. Then, the posterior
probability of a diagnosig\;, can be computed as follows:

P(AY/m  _ P(Ax)
Cacev PAC)/m  3oa ev P(AC)

where heré” , ., P(Ac) ~ 1.002-107°.

P(Ax | OBS) =

O

In the example, the probability of this;,’s that still can be diagnoses
become about 1000 times more likely when conditioning orothe
servations than without observations. However, eitheh witwith-
out observations, the diagnosis with the fewest number ndabal-
ity assumptions is the most likely one. Thus the resultirgggdostic
reasoning behaviour is very similar to that obtained by eixiplg the
concept of subset-minimal diagnosis.

2.3 Bayesian Networks and the Conflict Measure

Let P(X) be a joint probability distribution of the set of discrete
binary random variableX . A single random variable taking the val-
ues ‘true’ or ‘false’ is written as (uprighty andy, respectively. If
we refer to arbitrary values of a set of variablés sometimes a sin-
gle variable, this will be denoted by (italie) LetU, W, Z C X be
disjoint sets of random variables, théhis said to beconditionally
independenof W givenZ, if for each valueu, w andz:

P(u|w,z) = P(u| z), with P(w, z) > 0. 3)

A Bayesian networl3 is defined as a paiB = (G, P), where
G = (V,E) is an acyclic directed graph, with set of verticés
and set of arcg”, P is the associated joint probability distribution
of the set of random variableX¥ which is associated 1-1 witi.

We will normally use the same names for variables and their asl.

sociated vertices. The factorisation Bfrespects the independence
structure ofG as follows:P(z) =[], ., P(y | (y)), wherer(y)
denotes the values of the parent set of veltexinally, we will fre-
quently make use of marginalising out particular variafbiésvritten
asP(u) =), Plu,w).

Bayesian networks specify probabilistic patterns thattrbaul-
filled by observations. Observations are random variatlias ab-
tain a value through an intervention, such as a diagnostic e
set ofobservationds denoted byv. The conflict measurdas been
proposed as a tool for the detection of potential conflictsvben
observations and a given Bayesian network and is defined:as [5

P(wi)P(w2) - -- P(wm)

conf(w) = log P(w) )

4)

withw =wi Uws U -+ U wm.

joint occurrence of the observations is in accordance vghprob-
abilistic patterns inP. A positive conflict measure, however, implies
negative correlation between the observations Briddicating that
the observations do not matéhvery well.

EXAMPLE 3 Consider the Bayesian network shown in Figure 2,
which describes that stomach ulce) (nay give rise to both vomit-
ing (v) and nausean|.

Now, suppose that a patient comes in with the symptoms of vom-
iting and nausea. The conflict measure then has the followahge:

P()P(m) _
P(v,n)

As the conflict measure assumes a negative value, there ismo ¢
flict between the two observations. This is consistent witidital
knowledge, as we do expect that a patient with stomach ulser d
plays symptoms of both vomiting and nausea.

As a second example, suppose that a patient has only symptoms
of vomiting. The conflict measure now obtains the followirajue:

0.168 - 0.74
0.0232

As the conflict measure is positive, there is a conflict betwie
two observations, which is in accordance to medical expiects O

0.168 - 0.26
o1aas =0

conf({v,n})=log

conf({v,1}) = log ~ log5.36 ~ 0.7.

2.4 Bayesian Diagnostic Problems

A Bayesian diagnostic systeim denoted as a pa$z = (G, P),
whereP is a joint probability distribution of the vertices ¢f, inter-

preted as random variables, afids obtained by mapping a logical
diagnostic systens;, = (SD,COMPS) to a Bayesian diagnostic

systemSg as follows [6]:

component is represented by iigput 7. andoutputO. vertices,
where inputs are connected by an arc to the output;

to each component there belongs ambnormality vertexA.
which has an arc pointing to the outpt.

2.

Figure 3 shows the Bayesian diagnostic system correspgalitihe
logical diagnostic system shown in Figure 1.

Let O denote the set of all output variables ahithe set of all input
variables, leb andi denote (arbitrary) values of the set of output and
input variables, respectively, and let

dbc ={ac.|ceC}uU{a. | ce COMPS - C}

be the set of values of the abnormality variablés, with ¢ €
COMPS. The latter definition establishes a link betweka in log-
ical diagnostic systems and the abnormality variables ipeBan
diagnostic systems.



Figure 3. The graphical representation of a Bayesian diagnostiesyst
corresponding to the full-adder in Figure 1.

Due to the independences that hold for a Bayesian diagrsystic
tem, itis possible to simplify the computation of the joimbpability
distribution P by exploiting the following properties:

Property 1:the joint probability distribution of a set of output vari-
ablesO can be factorised as follows:

Plo) = P(i.6) [[ Ploc|m(oc));
i,0c

ceCOMPS

®)

Property 2:the input variables and abnormality variables are mutu-

ally independent of each other, formall§{i, d.) = P(:) P(dc).

Recall that logical diagnostic problems are logical diagjiwosys-
tems augmented with observations; Bayesian diagnostiolegrs
are defined similarly. The input and output variables thaehzeen
observed are now referred to &s and O,,, respectively. The un-
observed input and output variables will be referred tolasand
O, respectively. The set of actual observations is then denoye
w = i, U oy,. Thus, aBayesian diagnostic problez = (Sg,w)

consists of i) a Bayesian diagnostic system representing the compo

nents, their behaviour and interaction, arnjl & set of observations
w [4].

In Bayesian diagnostic problems, the normal behaviour ofpm
nentc is expressed in a probabilistic setting by the assumptiahah
normally functioning component yields an output value vgtbba-
bility of either0 or 1. Thus,

P(oc | m(oc)) € {0,1},

when the abnormality variabld. € 7(O.) takes the value ‘false’,
i.e. isa.. For the abnormal behaviour of a componeittis assumed

diagnosis is that the conflict measure can be used to ranle thes
consistency-based diagnoses (cf. [4]). We start with tHaitien
of the diagnostic conflict measure.

Definition 1 (diagnostic conflict measureLet Pz = (Sp,w) be
a Bayesian diagnostic problem. THegnostic conflict measurde-
noted byconf[P°¢](-, -), is defined fotP(w | dc) # 0, as:

P(iv | c)P(ow | dc)

conf[P*¢](i.s, 0,) = log P(iw, 00| 6c) '

(6)
with observationsw = i, U o,,.

Using the independence properties of Bayesian diagnositidgms
we obtain [4]:

PO, T1, Ploc | w(00)
&S Plw) 2, I Ploc [ m(0c))

wherer(O.) may include input variables froth

The diagnostic conflict measure can take positive, zero agd-n
tive values having different diagnostic meaning. Note thatumer-
ator of the diagnostic conflict measure is defined as the pilitya
of the individual occurrence of the inputs and outputs, wherthe
denominator is defined as the probability of the joint ocence of
the observations. Intuitively, if the probability of thedimidual oc-
currence of the observations is higher than that of the joduur-
rence, then the observations do not support each other, Tiare
conflict between diagnosis and observations yields higherg pos-
itive) values of the diagnostic conflict measure. This meaaasthe
signof the diagnostic conflict measure, negative, zero or p@sitian
already be used to rank diagnoses in a qualitative fashion.

This interpretation gives rise to the following definition.

conf[P°C](iy, 0,) =1

Tu

Definition 2 ((minimal) conflict-based diagnos)js Let Pp =
(SB,w) be a Bayesian diagnostic problem and &t be a
consistency-based diagnosis®g (i.e. P(w | dc) # 0). Then,éc
is called aconflict-based diagnositconf[P°¢](w) < 0. A conflict-
based diagnosisc is calledminimal, if for each conflict-based di-
agnosisi¢ it holds thatconf[P?¢|(w) < conf[P%c|(w).

In general, the diagnostic conflict measure has the impopsap-
erty that its value can be seen as the overall result of a bolysis
of component behaviours under particular logical and poiiséic

normality and abnormality assumptions. A smaller valuénefdiag-
nostic conflict measure is due to a higher likelihood of deleeice
between observations, and this indicates a better fit betoleserva-

that the random variabl@. is conditionally independent of its parent tions and component behaviours. Consider the followingrgpte.

setr(O.) if componentc is assumed to function abnormally, i4.
takes the value ‘true’, written as:

P(oc | m(oc)) = P(oc | ac).

Thus, the fault behaviour of an abnormal component cannitflue
enced by its environment. We use the abbreviafign. | a.) = pe.

EXAMPLE 4 Reconsider the full-adder circuit example from Fig-
ure 1. Let as beforer = {i1,12, 13,01, 02 }. The diagnostic conflict
measures for all the possible diagnoses are listed in Table 1

As an example, the diagnostic conflict measures for the diag-
nosesds, ds, 67 and ds are compared to one another for the case
that the probabilitypx1 = P(ox1 | ax1) = 0.001 and it is ex-

Note that this assumption ot made when a component is behaving plained what it means that, according to Tablezdnf[P55](w) =

normally, i.e. whera. holds.

3 CONFLICT-BASED DIAGNOSIS

There exists a 1-1 correspondence betweeoaraistency-based di-
agnosisA¢ of a logical diagnostic probler?;, and aj¢ for which
it holds thatP(w | d¢) # 0 if Pp is the result of the mapping de-

conf[P%%](w) < conf[P%7](w) = conf[P%](w).

First, the diagnoses:, for k = 6 andk = 7, will be considered in
more detail in order to explain the meaning of the diagnasiitlict
measure. The difference in value of the diagnostic conflieasure
for these two diagnoses can be explained by noting thadéfdtris
assumed that the adder Al functions normally and A2 abnéymal
whereas ford7 it is the other way around. The diagnostic conflict

scribed above, applied t8... The basic idea behind conflict-based measure of the diagnosis is higher than that foé7, because if Al



functions normally, then its output has to be equal to 0, waeiif
A2 functions normally, then its output has to be equal to lteNbat

it has been observed for R1 that the output is equal to 0. Becau
is the output of the OR gate R1, its inputs must be 0; theretbee
assumption that Al functions normally with output O offerisedter
explanation for the output 0 of the R1 gate than the assumptié;
that A2 functions normally (which yields output value 1).rther-
more, since in both diagnosés andd, component X1 is assumed
to be faulty, and the output of the X1 acts as the input of A2, th
assumption about the output of A2 is already relaxed. Tl ak-
plains the preference of diagnosisabovedr and whydg is ranked
higher thanyz.

Next, the diagnoseér, ds, 013, 014, 015, anddis are compared to
one another and we explain why it is reasonable that thegaakes
have the same diagnostic conflict measure valu@.3006). Note
that both diagnose$; and ds include faulty assumptionx; and
aa1, anddis, 014, 915 anddie include the faulty behaviouesg; and
ax1. Note that for both{ax1,a41} and{ar1,ax1}, one input of
the X2 and the two inputs of R1 are relaxed. Therefore, theidyi
the same qualitative information about fault behaviouthefgystem.
Below, these results are compared with those by GDE. |

The example above illustrates that comparing the value efdih
agnostic conflict measure for different diagnoses givesicenable
insight into the behavioural abnormality of a system.

4 COMPARISON

In this section, the diagnostic conflict measure and GDExar
bilistic method are compared to each other in terms of tHergifice
in ranking they give rise to. To start, the main differencesateen
the diagnostic conflict measure and GDE are summarised hvidic
followed by an example. The example is used to illustraté tine
diagnostic conflict measure yields a ranking that, for thebpbility
distribution defined earlier, conveys more useful diagoasforma-
tion than the ranking by GDE.

The following facts summarise the differences and simiksibe-
tween the diagnostic conflict measure and GDE:

1. an abnormality assumptialy¢ is a diagnosis according to GDE
iff its associated diagnostic conflict measure is defined[4]

P(w|dc) #0 < SDUACUOBS¥ L.

2. computation of the diagnostic conflict measure requinescon-
ditional probabilityp. = P(oc | ac), i.e. the probability that the
component’s output is. when the component is faulty, this prob-
ability is assumed to be always 0 or 1 by GDE.

3. in GDE the probabilityP(a.), i.e. the probability that component
c functions abnormally, acts as the basis for ranking diagsios
this probability is not needed to rank diagnoses using ainfli
based diagnosis, because it is summed out in the computtion
the diagnostic conflict measure.

. the ranking of a conflict-based diagnosis is based on &doedy-
sis of interactions between inputs and outputs of compaenéak-
ing into account the probability of particular faulty bef@aws of

components, and thus can be interpreted as a measure of Hbw We[G]

the diagnosis, observations and system behaviour matchk; @D
fers nothing that is to some extent similar.

5. in GDE assuming more components to be functioning abribrma
renders a diagnosis less likely, as proved in Propositiansim-
ilar property does not hold for conflict-based diagnosingshe
diagnostic conflict measure.

All properties above have already been discussed exténsiveere-
fore, only the last issue is illustrated.

EXAMPLE 5 Consider the Bayesian diagnostic problem discussed
above. Table 1 summarises the results of GDE and confligtebas
diagnosis, which makes it easier to compare the resultse Mt
O = Ak andw = OBS.

Consider again the Bayesian diagnostic probl®m with set
of observationsw = {ii,T2,i3,01,02} and the two diagnoses
05 = dyx1} = {8x2,8R1,ax1,841,842} aNAJs = J{x1,42} =
{ax2,aRr1,ax1,841,842}.

According to Table 1 the posterior probabilities computedibE
are equal toP(As | OBS) = 0.99402 and P(As | OBS) =
9.9502 - 10~%. Thus, As is much more likely tham\g, which is
due to the inclusion of an extra abnormality assumptiom\inin
comparison taA5. Consequently, the ranking obtained is compat-
ible with subset-minimality. However, using the diagnostonflict
measure gives, according to Table 1, for both diagnosesdtie of
—0.4255. This means that relaxing one extra logical and probatuilist
constraint, i.e A2 in addition toX 1, has no effect on the likelihood
of the diagnosis in this case.

Next consider the diagnosés; andAg, which both have the same
number of components assumed to be abnormal, and thus ttain
same ranking according to GDE. Howewgyanddz have a different
diagnostic conflict measure, as explained in Example 4. a

This example again illustrates that GDE and conflict-basaginbsis
rank diagnoses differently. Conflict-based diagnosidydabks into
the system behaviour and, based on a local analysis of sitrefithe
various constraints, comes up with a ranking.

5 CONCLUSION AND FUTURE WORK

Conflict-based diagnosis is a new concept in the area of rzatsd
diagnosis that has been introduced recently [4]. In thipape have
compared this new method with the well-known probabilistethod
employed in GDE. It was shown that the probabilistic methad u
derlying conflict-based diagnosis yields detailed insigtd the be-
haviour of a system. As the obtained information differsniran-
formation obtained from GDE, it may be useful as an alteveatir
complementary method.

In the near future, we intend to implement the method as gart o
a diagnostic reasoning engine in order to build up expeeiemith
regard to the practical usefulness of the method.
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