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CoRoT Measures Solar-Like 
Oscillations and Granulation in Stars 
Hotter Than the Sun
Eric Michel,1* Annie Baglin,1 Michel Auvergne,1 Claude Catala,1 Reza Samadi,1 
Frédéric Baudin,2 Thierry Appourchaux,2 Caroline Barban,1 Werner W. Weiss,3 
Gabrielle Berthomieu,4 Patrick Boumier,2 Marc-Antoine Dupret,1 Rafael A. Garcia,5 
Malcolm Fridlund,6 Rafael Garrido,7 Marie-Jo Goupil,1 Hans Kjeldsen,8 Yveline Lebreton,9 
Benoît Mosser,1 Arlette Grotsch-Noels,10 Eduardo Janot-Pacheco,11 Janine Provost,4 
Ian W. Roxburgh,12,1 Anne Thoul,10 Thierry Toutain,13 Didier Tiphène,1 Sylvaine Turck-Chieze,5 
Sylvie D. Vauclair,14 Gérard P. Vauclair,14 Conny Aerts,15 Georges Alecian,16 Jérôme Ballot,17 
Stéphane Charpinet,14 Anne-Marie Hubert,9 François Lignières,14 Philippe Mathias,18 
Mario J. P. F. G. Monteiro,19 Coralie Neiner,9 Ennio Poretti,20 José Renan de Medeiros,21 
Ignasi Ribas,22 Michel L. Rieutord,14 Teodoro Roca Cortés,23 Konstanze Zwintz3

Oscillations of the Sun have been used to understand its interior structure. The extension of similar 
studies to more distant stars has raised many difficulties despite the strong efforts of the international 
community over the past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite, 
launched in December 2006, has now measured oscillations and the stellar granulation signature in 
three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are 
about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The 
stellar amplitudes are about 25% below the theoretic values, providing a measurement of the 
nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.

The discovery of global oscillations in 
the Sun (1, 2) opened the way to solar 
seismology, that is, to sounding the Sun’s 

interior, measuring, for instance, the depth of 
its convection zone and its rotation at dif
ferent depths and latitudes (3). High-precision 
photometry from space has long been consid
ered the best way to extend these techniques 
to other main sequence stars of moderate mass 
where such oscillations are expected. How
ever, the first attempts were ambiguous (4, 5), 
casting some doubt on the theoretical esti
mates of intrinsic amplitudes and questioning 
to what extent the oscillations might be hid
den by stellar granulation. We present here the 
detection of solar-like oscillations in three stars 
observed by the CoRoT (Convection Rotation 
and Planetary Transits) (6) space mission, and

we characterize their amplitudes and the gran
ulation signature.

Detecting and measuring solar-like oscil
lations in main sequence stars other than the 
Sun is challenging. Tracking the variations in 
the light from a star to one part per million (ppm) 
requires high accuracy on individual measure
ments. It also requires long uninterrupted se
quences of observations to enhance the statistics 
of the measurements without being polluted by 
the spurious frequency components induced by 
data gaps. Solar-like oscillations have been de
tected from the ground in radial velocity in 
several stars (Fig. 1). However, ground-based 
observations are hampered by diurnal inter
ruptions, weather instabilities, and the annual 
motion of the Earth. As a result, all existing 
data sets suffer more or less severely from a

Fig. 1. HR diagram fea
turing stars for which mode 
structure has been observed 
in photometry (red squares), 
a power excess has been de
tected in photometry (green 
circles), and a detection has 
been performed in radial ve
locity (blue stars). Stellar evo
lutionary tracks are taken 
from (20), for solar chem
ical composition. Red giant 
pulsators (~6 objects) are 
out of the upper right corner 
of the figure.
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limited time base and large gaps in the data, 
which hamper the measurement of mode char
acteristics. In addition, radial velocity observa
tions are strongly biased toward low-effective 
temperature stars (and slow rotators), for they 
require many narrow spectral lines, and toward 
subgiant and giant stars, which show oscillations 
of the same nature as the Sun and other main 
sequence stars but with larger intrinsic ampli
tudes. On the other hand, photometric detection 
of solar-like oscillations has not been possible 
from the ground because of the higher sensitiv
ity to atmospheric scintillation, and the previous 
space projects detected only power excess so 
far [for Procyon and beta Hydri with WIRE 
(Wide-Field Infrared Explorer) (7, 8) and eta 
Boo with MOST (Microvariabilité et Oscillations
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Table 1. Parameters obtained in the present analysis, with standard deviation estimates.

Star „  Ab° ^  , B'o‘ C (s) D (mHz)(I = 0)(ppm) (ppm /mHz)

HD 49933 4.02 ± 0.57 1.97 ± 0.53 1967 ± 431 86 ± 2
HD 181420 3.82 ± 0.40 2.41 ± 0.31 1936 ± 206 77 ± 2
HD 181906 3.26 ± 0.42 1.12 ± 0.20 1650 ± 0276 88 ± 2
Sun PMO6 2.39 ± 0.17 0.85 ± 0.06 1440 ± 86 135 ± 2
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Fig. 2. Instrumental power spectral density. (A) 
For HD49933; a moving mean is applied with a 
4-mHz boxcar (black); yellow curve: same spectrum 
highly smoothed (4 times D boxcar); green curve: 
mean level of the granulation + white noise com
ponents; red curve: mean white noise component 
level alone; blue curve: oscillation mean power den
sity contribution alone. (B) Same for HD181420. (C) 
Same for HD181906.
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Fig. 3. Maximum bolometric amplitudes per radial 
mode measured (red) for HD49933, HD181420, 
HD181906, and for the Sun. Theoretical values 
are also given (blue). Error bars on amplitudes are 
standard deviation estimates associated with the 
accuracy of the measurements (red), and with the 
error estimate on Teff (blue).

Stellaires) (9)]. For alpha Cen A, WIRE (10) 
detected the characteristic comblike pattern of 
the oscillations, which could be analyzed with

the help of complementary velocity data (11). 
However, alpha Cen A is very close to the Sun 
in terms of its global characteristics. The results 
here are based on light curves obtained with 
CoRoT over 60 days for HD49933 and 156 days 
for HD181420 and HD181906, three main se
quence F stars noticeably hotter than the Sun 
(Fig. 1 and table S1).

The CoRoT satellite was launched on De
cember 2006 in an inertial polar orbit at an 
altitude of 897 km. The instrument is fed by a 
27-cm diameter telescope. During each run, it 
simultaneously provides light curves (variations 
in stellar flux with time) from 10 bright stars 
(5.5 < mV < 9.5) dedicated to seismic studies, 
while 12,000 fainter stars (11.5 < mV< 15.5) are 
monitored to search for transits due to planets 
(6). The sampling rate is 1 s for an integration 
time of 0.794 s. Pointing stability reaches a 
precision of 0.15" root mean square. The duty 
cycle was higher than 93%; the missing data 
correspond essentially to the time spent in the 
South Atlantic magnetic anomaly where the per
turbations due to energetic particles have not, as 
yet, been effectively corrected. These gaps, about 
eight per day, from 5 to 15 min each, have been 
linearly interpolated (with a 2000-s boxcar on 
each side of the gap to prevent the introduction 
of any spurious high frequencies) before we 
computed the Fourier power spectra, to mini
mize the aliases of the low-frequency components 
due to the window. We used synthetic spectra to 
check that this procedure has no noticeable in
fluence on the measured mean values.

For each of the three stars, the Fourier power 
density spectra (Fig. 2) show three components 
that can be understood as (i) a flat white-noise 
component essentially due to photon counting 
noise, (ii) a stellar background component (es
sentially granulation in this frequency domain) 
following a Lorentzian profile B/[1+(Cv)2] as 
suggested in (12), and (iii) the stellar oscilla
tion spectrum with its comblike pattern char
acterized by the large separation D (13).

Although dedicated analyses are under way 
to extract individual mode frequencies and pro
files for each star, we measure here the con
tributions of these three components. We follow 
the method proposed in (14) and illustrated in 
Fig. 2, and we convert these instrumental values 
into intrinsic bolometric maximum amplitude per 
radial mode [Abol(1 = 0)] and bolometric maxi
mum power spectral density Bbol (15). We apply 
the same analysis to the solar SOHO/VIRGO/ 
PMO6 (Solar and Heliospheric Observatory/

B

Variability of Solar Irradiance and Gravity Os
cillations) data (16). The amplitudes of the three 
stars are larger than in the Sun by a factor of 
~1.5 (Fig. 3).

Theoretical predictions suggest that veloc
ity amplitudes follow a scaling law in (L/M)a 
with a  ~ 0.7 (L and M  standing for luminosity 
and mass), in broad agreement with the exist
ing velocity measurements (17). In the adiabatic 
approximation (18), this would give photomet
ric amplitudes scaling as (L/M)a (Teff)1/2, where 
Teff is effective temperature. As shown in Fig. 3 
(see also Table 1), the measured values for the 
three stars are of the same order but significantly 
lower (by 24 ± 8% globally) than the theoretical 
values. The measurement of this systematic de
parture from the adiabatic case, which is not ob
served in velocity, tells us about the exchange of 
energy between convection and oscillations in the 
outer part of the convection zone. This process 
is responsible for the existence, and the specific 
amplitudes and lifetimes, of the oscillations. Both 
radial velocity and photometry measurements are 
sensitive to the oscillation momentum induced by 
this energy exchange; the photometric amplitudes 
are in addition more sensitive to the details of this 
process, via radiation-matter interaction. These 
measurements offer the possibility of testing theo
retical models of the nonadiabatic effects of the 
processes governing the oscillations and illustrate 
the complementary interest of photometry and 
radial velocity measurements (when they are pos
sible), which probe the oscillations differently.

The spectral signature of granulation is ex
pected to reveal time scales and distance scales 
characteristic of the convection process in dif
ferent stars (12, 19). Our data show (fig. S1 and 
Table 1) that (i) the maximum bolometric power 
density (Bbol), associated with the number of 
eddies seen at the stellar surface and the border/ 
center contrast of the granules, is higher for the 
three stars than for the Sun by a factor up to 3; and 
(ii) the characteristic time scale for granulation (C) 
associated with the eddy turnover time increases 
slightly with Teff (up to 30% higher than the Sun).
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In our analysis, as suggested in (S1), the power spectra are smoothed with a boxcar, taken 

here to be four times the large separation A (S2) estimated from the autocorrelation of each 

oscillation spectrum. Then, an estimate of the first two components (white noise and stellar 

background) is obtained by a least squares fit of the spectrum outside the domain where the 

oscillation signal is seen. After subtraction of these two components, we isolate that due to 

stellar oscillations (Po). Instrumental noise is neglected here, since the same analysis 

applied to bright hot stars showing smaller or no significant granulation signature allows
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setting a higher limit for instrumental noise, at least 10 times below the values measured for 

the three solar-like pulsators.

In order to compare with theoretical estimates and with measurements on the Sun, it is

convenient, following (S1) [see also (S3)] to convert these instrumental power spectral

1/2
densities into intrinsic bolometric amplitudes per radial mode: Abol(l=0)=4(2Po) A/Ro, and 

bolometric power spectral density of the granulation Bbol/(1+(Cv)2) (see Fig. S1), where 

Bbol=B/Rg, and R  and Rg are the instrumental response functions for CoRoT (S3).

Fig. S1. Bolometric power spectral density of granulation measured for HD49933 

(red), HD181420 (green), HD181906 (blue) and for reference for the Sun (black). 

Error bars are standard deviation estimates resulting from a least squares fit.
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Table S1. Fundamental parameters of the stars considered here, with standard 

deviation estimates. Effective Temperatures and chemical contents have been 

derived via spectroscopic detailed analysis as described in (S4). Luminosities are 

computed using Hipparcos parallaxes (S5) and bolometric corrections from (S6). 
Masses are obtained by comparison with an extensive grid of stellar models 

described in (S7).

Star (K)ffeTe [Fe/H] Log(L/Lsun) M/Msun

HD 49933 6750±60 -0.4±0.1 0.54±0.02 1.17±0.1

HD 181420 6650±60 -0.04±0.1 0.66±0.04 1.4±0.1

HD 181906 6380±60 -0.14±0.1 0.54±0.06 1.2±0.1
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