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Optical properties of graphene: the Fermi liquid approach 

M. 1. KATSNELSON 

Institute for Molecules and Materials, Radboud University Nijmegen, 6525 ED Nijmegen, The Netherlands 

PACS 78.20. Hh - Theory, models, and numerical simulation 
PACS 81.05. Uw - Carbon, diamond, graphite 
PACS 71 . 10. Ay - Fermi-liquid theory and other phenomenological models 

Abstract. - Optical properties of two-dimensional massless Dirac fermions are considered by the 
formalism of pseudospin precession equations which provides an easy and natural semiphenomeno
logical way to include correlation effects. It is shown that the latter are negligible, with the only 
assumption that the system under consideration is normal Fermi liquid. This result probably 
explains recent experimental data on the universal optical conductivity of graphene (Nail' R. R . 
et ai, Science 320 (2008) 1308). 

The recent discovery of the first purely two-dimensional 
material, graphene [1 , 2J and of its peculiar electronic 
spectrum with chiral massless charge carriers ("Dirac 
fermions") [3,4] lead to an explosion of scientific activ
ity (for review, see Refs. [5-7]) . Among other unique 
properties of graphene, its universal optical conductivity 
is of special interest. It was demonstrated experimentally 
that visual transparency of graphene is determined only 
by the fine structure constant [8] (the same universal opti
cal conductivity has been observed for graphite [9]). This 
result is in agreement with the theory for noninteracting 
Dirac fermions (see Refs. [10,11] and references therein), 
within an accuracy of 5%. However, this is a problem 
since, generally speaking, one could expect an essential 
many-body renormalization of the optical conductivity. It 
has been demonstrated before the discovery of graphene 
that Coulomb interactions modify drastically the prop
erties of two-dimensional Dirac fermions making them a 
marginal Fermi liquid with strong logarithmic renormal
ization of the Fermi velocity and related properties [12]. 
Recent explicit calculations [13 , 14] result in corrections 
to the frequency-dependent conductivity u(w) of order of 
l/ln (Wj1iw) where W is a cutoff energy of the order of 
the bandwidth. These corrections are for sure larger than 
the experimental errors. 

Actually, the relevance of correlation effects in graphene 
is still rather controversial. In particular, direct measure
ments of electron compressibility in graphene [15] do not 
find any essential difference with the predictions of the 
noninteracting Fermi-gas model. At the same time, some 
many-body features were observed in the infrared con-

ductivity [16]. Theoretically, the problem seems to be 
also rather complicated. For example, taking into account 
ripples on graphene and related gauge fields [17- 19] can 
drastically change the picture of electron-electron interac
tions [13,20]. 

In this situation it seems reasonable to investigate the 
problem semi-phenomenologically, in the spirit of the Lan
dau Fermi liquid theory [21- 23]. The applicability of this 
theory to charge carriers in graphene is unclear now. How
ever, in the current controversial situation it may be rea
sonable to start "from the answer". It will be shown here 
that, in the framework of the Fermi liquid theory, the cor
relation renormalization of the optical conductivity are al
most cancelled so that the experimental results [8] may 
find a natural explanation. This is not trivial since, in 
a standard situation, the Fermi liquid theory allows to 
include all correlation effects in the renormalization of pa
rameters only for static properties whereas at finite fre
quencies essentially many-body effects can be expected 
[22, 23]. Since no alternative explanations are known yet 
it may be a serious motivation for a deeper microscopic 
study which would allow to justify the Fermi liquid the
ory for graphene. 

We will restrict ourselves to the model of Dirac fermions 
neglecting valley and spin degrees of freedom. Then, the 
effective Hamiltonian for noninteracting fermions in the 
presence of a uniform time-dependent electric field E (t) 
reads 

H = 2..= wb (vpu - ieE'Vp) wp (1) 
p 

where v is the electron velocity, p is the quasimomen-
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turn, u = (ux , uy) are the Pauli matrices, e is the elec

tron charge, and wt = (1/J~l' 1/J~2) are electron creation 

operators depending on the pseudospin (sublattice) index 
i = 1,2; here and further 1i = 1. The canonical transfor
mation 

1/Jpl 

(2) 

introduces the annihilation operators for the hole and elec
tron states, ~pl' ~p2with the energies cpl,2 = =Fvp, respec
tively, cj;p is the polar angle of the vector p (for a detailed 
discussion of the Hamiltonian and transformation see, e.g., 
Ref. [24]). In the collisionless limit the equation of motion 
for the average density matrix Pp = wt w p has the form 

i 
0 

(pp) = ([H, pp]) = vp ([u, pp]) - ieE (t) \1 p (pp). (3) ot 
Introducing scalar (n) and pseudospin (m) densities by a 
decomposition 

(4) 

where I is the two by two unit matrix, one has a set of 
uncoupled equations of motion, 

. onp 
2--ot 
.omp 
2-ot 

(5) 

(6) 

Only the second one is relevant for us since the electron 
current does not depend on np: 

j = 2ev Lmp. 
p 

(7) 

Further we will consider only linear optical effects assum
ing E(t) = Eexp( - iwt) and using the linear approxima
tion for mp = m~O) + amp exp (- iwt), amp rv E. 

At last, using the unitary transformation (2), we derive 

m(O) = ~ (J 1 - J 2) 
p 2p p p (8) 

where Jpi = (~~i~Pi ) are the Fermi functions of the en

ergies =Fvp. This vector lies in the xy plane and there
fore amz is not coupled with the electric field. Excluding 
am z from Eq.(6) (further we will omit the subscript p for 
brevity) we obtain 

omX(O) 
- iewE--

opx ' 
omY(O) 

-iewE--(9) 
opx 

where we have chosen the direction of x axis along the 
electric field. After a straightforward transformations we 
find j x = u (w) E where the proportionality coefficient, 
that is, the optical conductivity, equals 

u (w) - L 2 4 2 2 PY 0 Px 0 . 
_ _ 8ie2v3 Py (omX(O) _ . omY(O)) I 

w p w - v p Px Px 

(10) 
For the case of zero doping and zero temperature, Jpl = 
1, Jp 2 = 0 and we have a well-known result for univer
sal, frequency-independent optical conductivity u (w) = 
e2 /16 = 7re2 /8h (per valley per spin) [8- 11]. 

This method of derivation can be easily generalized on 
the case of interacting electrons in the Fermi liquid theory 
approach. The only essential difference with the standard 
case [22,23] is that we have to work with the matrix dis
tribution function (pp). 

The interaction effects are taken into account by the 

replacement [H, app] ~ [H, app] + [aH, p~O)] in the lin

earized version of the equation of motion (3) where 

aHp = LFpp' (app') (11) 
p' 

and Fpp' is the (matrix) Landau interaction function [21-
23]. For the case under consideration (zero doping and 

zero temperature) (p~O)) = _ ~; . 
Now we have to use symmetry considerations to spec

ify the Landau function. First, F should be rotationally 
invariant in the two-dimensional space. Second, due to in
version and time-reversal symmetry, it cannot contain U

Z 

matrices [25]. Third, it should vanish at p' ~ 0 or p ~ 0 
since electron-electron interactions cannot open the gap 
without symmetry breaking [25]. Thus, we have 

Fpp' = AI0 I'+B (pu)0 (p'u')+C (pp') (UX 0 u'x + uY 0 u'Y)1 
(12) 

where A, B, and C are some unknown functions of 
Ip - p'l· In particular, the long-range Coulomb (Hartree) 
interaction singular at small momentum transfer con
tributes to the A function only. As for the "exchange" 
interactions Band C one can assume that they are smooth 
functions which can be expanded in powers of the momen
tum transfer square. Substituting Eqs.(11) and (12) into 
the equation of motion one finds: 

where am = am + d, 

omx(O) 
- iewE--

opx ' 
omY(O) 

-iewE~3) 
Upx 

d p = ~ L [Bpp'p (p' amp') + Cpp' (pp') amp'] 
vp p' 

(14) 
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contains all correlation effects. Eq. (13) is the analog of 
Eq.(9), differing by the terms with b.. The latter give an 
additional contribution to the current density which can 
be represented, after simple transformations, in the form 

(15) 

Note that the terms with B function are exactly cancelled 
in the expression (15) and only the term proportional to 
C can, in general, survive. However, it vanishes obviously 
by symmetry if one assume C = const. 

To find the correlation corrections to the optical con
ductivity explicitly in a general case one has to solve the 
integral equations (13),(14). Fortunately, their frequency 
dependence can be found just analyzing perturbation ex
pansion in the interaction functions Band C. One can 
see (it is also obvious from physical considerations) that 
any adsorption processes require at least one real (and 
not virtual) inter band transition and, thus, either p or pi 
should be equal to w /2v (imaginary part of the fraction in 
Eq.(15) contains the delta-function). The leading correla
tion terms just vanish as was discussed above. 

The next terms of the expansion of C in (p - p/)2 should 
be taken into account which gives, at least, one more power 
of p in the integrand. As a result, j ;OTT ex: w3 which means, 
in dimensionless units, (fiw /W)3 . Indeed, since the inter
action constant in graphene e2 /fiv is of order unity, the 
energy cutoff is the only relevant characteristic which en
ters the problem. This is smaller than the corrections to 
the optical conductivity because of inaccuracy of the Dirac 
Hamiltonian itself [11], which are of order of (fiw/W)2 . 
Thus, the Fermi liquid interaction contributions to (J (w) 
are really negligible. 

To conclude, experimental data [8], together with the 
present analysis, seem to support the Fermi liquid picture 
of charge carriers in graphene, against the marginal Fermi 
liquid. The latter, according to the calculations [13] pre
dicts many-body renormalization of the optical conduc
tivity of order of 2/ In (W/fiw) , that is, of order of unity. 
At the same time, our consideration is purely phenomeno
logical and microscopic justification of the Fermi liquid 
picture for graphene is required. 
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