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Certification of Proving Termination of Term
Rewriting by Matrix Interpretations

Adam Koprowski Hans Zantema

August 2007

Abstract

We develop a Coq formalization of the matrix interpretation method, which
is a recently developed, powerful approach to proving termination of term rewrit-
ing. Our formalization is a contribution to the CoLoR project and allows to
automatically certify matrix interpretation proofs produced by tools for proving
termination. Thanks to this development the combination of CoLoR and our
tool, TPA, was the winner in 2007 in the new certified category of the annual
Termination Competition.

1 Introduction

Termination is an important concept in term rewriting. Many methods for proving
termination have been proposed over the years. Recently the emphasis in this area is
on automation and a number of tools have been developed for that purpose. One of
such tools is TPA [15] developed by the first author.

To evaluate termination tools and stimulate their improvement the annual Termi-
nation Competition [3] is organized, where such tools compete on a set of problems
from the Termination Problems Database (TPDB), [4]. This competition has become
a de-facto standard in evaluation of new termination techniques and developments of
termination tools.

However, every year termination tools are becoming more and more complex and are
changing rapidly as new techniques are being developed and old ones re-implemented.
Therefore ensuring correctness of such tools is a challenging task. This was one of the
motivations to start the CoLoR [6] project, initiated by Frédéric Blanqui in 2004. The
goal of the project is to use the Coq [1] theorem prover to fully automatically verify
results produced by tools for proving termination.

The main subject of this paper is our contribution to the CoLoR project, namely
formalization of the matrix interpretation method [10]. This recent method turned out
to be very powerful for proving termination and was incorporated into many modern
termination provers.
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This year in the termination competition the new certified category has been intro-
duced, where tools must not only find a termination proof but also ensure its correctness
by stating and proving it in an established theorem prover. Our contribution to CoLoR
allowed the combined entry of TPA+CoLoR to win the 2007 edition of the competition
in this newly introduced category.

Concerning related work in the first place we should mention the Coccinelle library
which uses approach similar to the one employed by CoLoR and also uses Coq theorem
prover. We will say more about it in Section 4, where we evaluate the results of CoLoR
in the context of the termination competition.

The recent work of Alexander Krauss [16] is another effort toward certified termina-
tion. It is different in several aspects. Its main aim is to automatically generate certified
termination proofs for recursive functions used in Isabelle/HOL theorem prover. How-
ever external termination provers are not involved and the only termination technique
supported by this method is the size-change principle.

The rest of this paper is organized as follows. First in Section 2 we recapitulate
the theory of matrix interpretations from [10]. Section 3 presents an overview of the
Coq formalization of the theoretical results from the preceding section. It is followed by
Section 4 where the method is evaluated in the context of the Termination Competition.
We conclude in Section 5.

2 Theory of Matrix Interpretations

In this section we recall what we need from the theory of matrix interpretations as it is
presented in [10, 11]. To keep the presentation self-contained we start by preliminaries
on term rewriting.

2.1 Preliminaries

Let Σ be a signature, being a set of operation symbols each having a fixed arity in N.
For a set of variable symbols V , let T (Σ,V) be the set of terms over Σ and V , that is,
the smallest set satisfying

• x ∈ T (Σ,V) for all x ∈ V , and

• if the arity of f ∈ Σ is n and ti ∈ T (Σ,V) for i = 1, . . . , n, then f(t1, . . . , tn) ∈
T (Σ,V).

A term rewriting system (TRS) R over Σ,V is a set of pairs (`, r) ∈ T (Σ,V) ×
T (Σ,V), for which ` 6∈ V and all variables in r occur in `. Pairs (`, r) are called rewrite
rules and are usually written as `→ r.

For a substitution σ : V → T (Σ,V) and a term t the application of σ to t, denoted
by tσ, is a term defined inductively as

• xσ = σ(x) for all x ∈ V , and
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• f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

For a TRS R the top rewrite relation
top→R on T (Σ,V) is defined by t

top→R u if and
only if there is a rewrite rule ` → r ∈ R and a substitution σ : V → T (Σ,V) such
that t = `σ and u = rσ. The rewrite relation →R is defined to be the smallest relation
satisfying

• if t
top→R u then t→R u, and

• if ti →R ui and tj = uj for j 6= i, then f(t1, . . . , tn) →R f(u1, . . . , un) for every
f ∈ Σ of arity n.

A binary relation → is called terminating or strongly normalizing, notation SN(→),
if it is well-founded, i.e., no infinite sequence t1, t2, . . . exists satisfying ti → ti+1 for all
i ∈ N. A TRS R is called terminating if SN(→R) holds, shortly written as SN(R)

Example 2.1. Consider the TRS consisting of the following single rule:

a(a(x))→ a(b(a(x)))

We will use this example to illustrate the method of matrix interpretations. It is worth
noting that this TRS is not simply terminating and hence simplification orders are
bound to fail for it.

A binary relation →1 is called terminating relative to a binary relation →2, written
as SN(→1 /→2), if there is no infinite sequence t1, t2, t3, . . . such that

• ti →1 ti+1 for infinitely many values of i, and

• ti →2 ti+1 for all other values of i.

We use the notation →1 / →2 to denote →∗2 · →1 (1); it is easy to see that SN(→1

/→2) coincides with well-foundedness of→1 /→2. Obviously for every binary relation
→ the property SN(∅/ →) holds, and SN(→ /∅) is equivalent to SN(→). We write
SN(R/S) as a shorthand for SN(→R /→S), and we write SN(Rtop/S) as a shorthand

for SN(
top→R /→S).

For a TRS R a symbol f ∈ Σ is called a defined symbol if f is the root symbol
of a left hand side of a rule from R. For every defined symbol f ∈ Σ we add to the
signature a new marked symbol f# with the same arity as f . If f(s1, . . . , sn) → r is a
rule in R and g(t1, . . . , tm) is a subterm of r for g being a defined symbol of R, then
the rewrite rule f#(s1, . . . , sn) → g#(t1, . . . , tm) is called a dependency pair of R. The
TRS consisting of all dependency pairs of R is denoted by DP(R).

1Other texts define →1 /→2 to denote →∗
2 · →1 · →∗

2; since SN(→∗
2 · →1) and SN(→∗

2 · →1 · →∗
2)

are easily seen to be equivalent, this does not cause an essential difference, while for our purpose
→∗

2 · →1 is more convenient
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Example 2.2. Consider again the TRS from Example 2.1. The only defined symbol is
“ a” and there are two dependency pairs:

a](a(x))→ a](b(a(x))) a](a(x))→ a](x)

The main theorem about dependency pairs is the following, due to Arts and Giesl
[5].

Theorem 2.3. Let R be an arbitrary TRS. Then SN(R) if and only if
SN(DP(R)top/R).

2.2 Monotone algebras

Here we summarize the monotone algebra theory as presented in [10]. There is one
difference: in contrast to [10] we do not consider many-sortedness. It is not essential
for certification as every proof in the many-sorted setting can be trivially translated to
the one-sorted setting. The reason for this more complex setup in [10] is that it allows
for an optimization in the search for termination proofs using matrix interpretations.

The monotone algebra approach works for all non-empty sets A; when using matrix
interpretations the set A always consists of the set of vectors over N of a fixed dimension.

Definition 2.4. An operation [f ] : A × · · · × A → A is monotone with respect to a
binary relation → on A if for all ai, bi ∈ A for i = 1, . . . , n with ai → bi for some i and
aj = bj for all j 6= i we have [f ](a1, . . . , an) → [f ](b1, . . . , bn).

A weakly monotone Σ-algebra (A, [·], >,&) is a Σ-algebra (A, [·]) equipped with two
binary relations >, & on A such that

• > is well-founded;

• > ·& ⊆ >;

• for every f ∈ Σ the operation [f ] is monotone with respect to &.

An extended monotone Σ-algebra (A, [·], >,&) is a weakly monotone Σ-algebra
(A, [·], >,&) in which moreover for every f ∈ Σ the operation [f ] is monotone with
respect to >.

Up to presentation details the following theorem is the one-sorted version of the
main theorem for the matrix interpretations from [10, Theorem 2].

Theorem 2.5. Let R,R′,S,S ′ be TRSs over a signature Σ.

1. Let (A, [·], >,&) be an extended monotone Σ-algebra such that [`, α]&[r, α] for
every rule ` → r in R ∪ S and [`, α]>[r, α] for every rule ` → r in R′ ∪ S ′, for
every α : V → A.

Then SN(→R/→S) implies SN(→R ∪→R′ /→S ∪→S′).
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2. Let (A, [·], >,&) be a weakly monotone Σ-algebra such that [`, α]&[r, α] for every
rule ` → r in R ∪ S and [`, α]>[r, α] for every rule ` → r in R′, for every
α : V → A.

Then SN(→Rtop/→S) implies SN((→R ∪→R′)top/→S).

2.3 Matrix interpretations

Now we present matrix interpretations with a fixed dimension d as an instance of
monotone algebras. For the interpretation [f ] of a symbol f ∈ Σ of arity n we choose

a vector ~f ∈ Nd and n matrices F1, F2, . . . , Fn over N, each of size d× d, such that the
upper left elements (Fi)1,1 are positive for all i = 1, 2, . . . , n. Now we define

[f ](~v1, . . . , ~vn) = F1 ~v1 + · · ·+ Fn ~vn + ~f (1)

for all ~v1, . . . , ~vn ∈ A.
So we fix a monotone algebra with A = Nd, interpretations [·] defined as above and

we use the following orders on algebra elements:

(u1, . . . , ud)&(v1, . . . , vd) ⇐⇒ ∀i : ui ≥N vi

(u1, . . . , ud)>(v1, . . . , vd) ⇐⇒ (u1, . . . , ud)&(v1, . . . , vd) ∧ u1 >N v1

One easily checks that (A, [·], >,&) is an extended monotone Σ-algebra.
Let x1, . . . , xk be the variables occurring in `, r. Then due to the linear shape of the

functions [f ] we can compute matrices L1, . . . , Lk, R1, . . . , Rk and vectors ~l, ~r such that

[`, α] = L1 ~x1 + · · ·+ Lk ~xk +~l

[r, α] = R1 ~x1 + · · ·+Rk ~xk + ~r
(2)

where α(xi) = ~xi for i = 1, . . . , k.
For matrices B,C ∈ Nd×d write

B<C ⇐⇒ ∀i, j : (B)i,j ≥ (C)i,j.

The following lemma provides a decision procedure for orders > and & lifted to
terms as used in Theorem 2.5.

Lemma 2.6. Let `, r be terms and let matrices L1, . . . , Lk, R1, . . . , Rk and vectors ~l, ~r
be defined as above. Then:

• ∀α : V → A, [`, α]&[r, α] ⇐⇒ ~l&~r ∧ ∀i : Li<Ri, and

• ∀α : V → A, [`, α]>[r, α] ⇐⇒ ~l>~r ∧ ∀i : Li<Ri.

Now the approach of applying Theorem 2.5, part 1, for proving SN(R/S) is as
follows (for proving SN(R) this coincides with choosing S = ∅):
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• Fix a dimension d.

• For every symbol f ∈ Σ choose a vector ~f ∈ Nd and matrices Fi ∈ Nd×d for
i = 1, 2, . . . , n for n being the arity of f , such that the upper left elements (Fi)1,1

are positive for all i = 1, 2, . . . , n.

• For every rule ` → r ∈ R ∪ S check that Li<Ri for i = 1, . . . , k and ~l&~r for the
corresponding matrices Li, Ri and vectors ~l, ~r as defined above.

• Remove all rules from R and S moreover satisfying l1>r1.

• If the remaining R is empty we are finished since SN(∅/S) trivially holds, other-
wise the process is repeated for the reduced TRSs R, S.

We illustrate this on an example:

Example 2.7. Consider again the TRS from Example 2.1. Now we choose dimension
d = 2 and the following interpretation of symbols:

[a(x)] =
[

1 1
0 0

]
x+

[
0
1

]
[b(x)] =

[
1 0
0 0

]
x+

[
0
0

]
We proceed by computing interpretation of the left and right hand side of the single
rule.

[a(a(x))] =
[

1 1
0 0

]( [
1 1
0 0

]
x+

[
0
1

])
+
[

0
1

]
[a(b(a(x)))] =

[
1 1
0 0

]( [
1 0
0 0

]( [
1 1
0 0

]
x+

[
0
1

])
+
[

0
0

])
+
[

0
1

]
Evaluating that expressions to linear form, as in Equation 2 yields:

[a(a(x))] =
[

1 1
0 0

]
x+

[
1
1

]
[a(b(a(x)))] =

[
1 1
0 0

]
x+

[
0
1

]
We observe that coefficients standing by x are equal and for the constant terms we have[

1
1

]
>
[

0
1

]
as we have strict decrease in the first position and equality in the second.

Hence by Lemma 2.6 we conclude that ∀α : V → A, [a(a(x)), α] > [a(b(a(x))), α].
Application of Theorem 2.5, part 1 allows us to remove this rule. As this is the only
rule we have proven termination of this one rule TRS.

For proving termination of a TRSR by dependency pairs, according to Theorem 2.3,
we have to prove SN(DP(R)top/R). For this we apply Theorem 2.5, part 2. A similar
scheme as sketched above is used, with the following difference:
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• Since we only require to have a weakly monotone algebra, we may choose arbitrary
matrices Fi ∈ Nd×d without the restricton of positiveness of the upper left element
(Fi)1,1.

• For proving SN(DP(R)top/R) only rules from DP(R) are removed until nothing
remains, and all rules from R are kept.

We conclude this section by illustrating how a termination of a very challenging
system can be easily proven with the matrix interpretation method.

Example 2.8. Consider the TRS (Zantema/z086.srs from the TPDB [4]) consisting of
the following three rules:

a(a(x))→ c(b(x)), b(b(x))→ c(a(x)), c(c(x))→ b(a(x)).

Until recently termination of this innocent looking system was an open problem [2,
Problem 104]. Attempts to prove its termination gave birth to the matrix interpretation
method.

We choose dimension d = 4 and the following interpretation:

[a(x)] =

 1 0 0 1
0 0 0 1
0 1 0 2
0 1 0 0

x+

 0
0
2
0


[b(x)] =

 1 1 0 0
0 2 0 1
0 1 0 0
0 0 0 0

x+

 0
1
0
0


[c(x)] =

 1 0 0 2
0 0 1 1
0 1 0 2
0 0 0 0

x+

 0
0
1
0


Computing interpretation for the first rule a(a(x))→ c(b(x)) yields:

a(a(x)) =

 1 0 0 1
0 0 0 1
0 1 0 2
0 1 0 0

 1 0 0 1
0 0 0 1
0 1 0 2
0 1 0 0

x+

 0
0
2
0

+

 0
0
2
0


=

 1 1 0 1
0 1 0 0
0 2 0 1
0 0 0 1

x+

 0
0
2
0



c(b(x)) =

 1 0 0 2
0 0 1 1
0 1 0 2
0 0 0 0

 1 1 0 0
0 2 0 1
0 1 0 0
0 0 0 0

x+

 0
1
0
0

+

 0
0
1
0


=

 1 1 0 0
0 1 0 0
0 2 0 1
0 0 0 0

x+

 0
0
2
0
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We conclude that ∀α : V → A, [a(a(x)), α] & [c(b(x)), α]. Repeating this procedure for
the remaining two rules we observe that the third rule is also oriented weakly, whereas
the second rule is oriented strictly. Application of Theorem 2.5, part 1 allows us to
remove this rule and proceed with proving termination of the simplified system:

a(a(x))→ c(b(x)), c(c(x))→ b(a(x)),

which is easy and can be established with any standard method.

3 Coq Formalization

Our formalization was developed within the CoLoR project, so we begin by a short
introduction of CoLoR in Section 3.1. Then we continue with a description of the
formalization of matrix interpretations, which consists of several parts. The formal-
ization of monotone algebras, introduced in Section 2.2, is presented in Section 3.2.
To deal with matrices we had to develop a Coq library of matrices; this is the subject
of Section 3.3. Then in Section 3.4 we present the formalization of the matrix inter-
pretations method, corresponding to the theory developed in Section 2.3. Finally, in
Section 3.5, we shortly explain how the results concerning polynomial interpretations,
already present in CoLoR, could be expressed in the setting of monotone algebras and
how they were improved by doing so.

3.1 CoLoR: Certification of Termination

The CoLoR [6] project was founded by Frédéric Blanqui in March 2004, with the goal of
certification of termination proofs found by termination provers in Coq. It is available
at the following address:

http://color.loria.fr

It essentially consists of three parts:

• TPG (Termination Proofs Grammar): a formal grammar for the termination
proofs.

• CoLoR (Coq Library on Rewriting and Termination): a library of results on ter-
mination of rewriting, formalized in Coq.

• Rainbow: a tool for transforming termination proofs in the TPG format into Coq
scripts certifying termination by employing results from CoLoR.

The general approach to certifying termination with CoLoR is presented in Figure 1.
For a given TRS R some termination prover is called. If it succeeds in proving termi-
nation, it outputs a termination proof in the TPG format. Such an encoding of a proof
is given to Rainbow which translates it into a Coq script containing a formal proof of
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TRS
problem.trs // Termination

prover

Termination proof
prf.xml (TPG)

// Rainbow
Coq script

prf.v
++WWWWWWWWWWWWWWWW

Coq

CoLoR

22eeeeeeeeeeeeeeeee

Figure 1: Certifying termination with CoLoR.

the claim that R is terminating by using results from the CoLoR library. Then Coq is
executed on such a script to verify that the termination proof found by the termination
tool is indeed correct.

Before presenting a glimpse of how the TPG format looks like we would like to begin
with two general remarks concerning the format. Firstly, owing to the use of XML as an
underlying markup language, the proof format is rather verbose. This does not seem to
be a problem, however, as such proofs are both produced and consumed by programs
and there is hardly ever any need for human to consult such file. The advantages
of using XML are clear, as it is very popular, enjoys a lot of extensions (for instance
allowing to easily transform XML documents) and is heavily supported by tools.

Second important observation is that the TRS under consideration is not part of
the proof. Indeed at the moment the choice in CoLoR was to separate the problem and
the corresponding proof in two different files. This is likely to change in future versions
of CoLoR, though.2

We conclude this section with an example of how the proofs in the TPG format look
like.

Example 3.1. Figure 2 presents a complete termination proof of the TRS introduced in
Example 2.1, in the TPG format.3

We try to give a short overview of the structure of the proof. It starts on line
[01]; the first step of the proof is application of the Manna-Ness criterion ([02]). This
is the standard criterion stating that if a TRS is included in a reduction ordering (a
well-founded ordering on terms closed under substitutions and contexts) then it is ter-
minating. It is closely related to the approach of monotone algebras (monotone algebras
giving rise to a particular class of reduction orderings). In this case the Manna-Ness
criterion is instantiated to the matrix interpretation ordering ([03-04]), with dimen-
sion 2 ([05]). The interpretations of function symbols follow ([06-39]). For instance

the constant term of the interpretation of “ b” is given by vector
[

0
0

]
([10-12]).

Then we have a number of matrix entries – one per every argument. The matrices are

given in a row-by-row order, so lines [14-19] encode the matrix
[

1 0
0 0

]
. Similarly

lines [23-38] encode [a(x)] =
[

1 1
0 0

]
x +

[
0
1

]
. Finally lines [42-44] contain the

2Indeed in our opinion this was not a fortunate choice.
3Line numbers in bracket are included for presentation purposes only and are not part of the format.
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[01] <proof>
[02] <manna_ness>
[03] <order>
[04] <matrix_int>
[05] <dimension>2</dimension>
[06] <mi_map>
[07] <mapping>
[08] <fun>b</fun>
[09] <mi_fun>
[10] <const>
[11] <velem>0</velem> <velem>0</velem>
[12] </const>
[13] <arg>
[14] <row>
[15] <velem>1</velem> <velem>0</velem>
[16] </row>
[17] <row>
[18] <velem>0</velem> <velem>0</velem>
[19] </row>
[20] </arg>
[21] </mi_fun>
[22] </mapping>
[23] <mapping>
[24] <fun>a</fun>
[25] <mi_fun>
[26] <const>
[27] <velem>0</velem> <velem>2</velem>
[28] </const>
[29] <arg>
[30] <row>
[31] <velem>1</velem> <velem>1</velem>
[32] </row>
[33] <row>
[34] <velem>0</velem> <velem>0</velem>
[35] </row>
[36] </arg>
[37] </mi_fun>
[38] </mapping>
[39] </mi_map>
[40] </matrix_int>
[41] </order>
[42] <proof>
[43] <trivial/>
[44] </proof>
[45] </manna_ness>
[46] </proof>

Figure 2: Termination proof for the a(a(x))→ a(b(a(x))) TRS in the TPG format used
by Rainbow.
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termination proof for the simplified TRS resulting from the application of Theorem 2.5.
In this particular case no rules remain (the only rule is oriented strictly and removed)
so the remaining part of the proof is indeed <trivial>. It is worth noting, however,
that the proof obligations (in the form of a TRS under consideration) at every point in
the proof are implicit. They follow from the transformations and simplifications pre-
ceding in the proof so from this point of view they can be considered redundant. This
is another point where CoLoR is likely to change in the future.

3.2 Monotone Algebras

While doing this formalization we faced a number of design choices. The essential
question was whether to simply formalize matrix interpretations as they are or to try
to make the development as general as possible, such that hopefully (parts of) it could be
reused for other techniques and also extensions to the technique itself would be feasible.
We opted for the latter. Hence we formalized monotone algebras in their full generality
and only later instantiated them to matrix interpretations; as in the theory presented
in Sections 2.2 and 2.3. This, later on, allowed us to easily express the technique of
polynomial interpretations in the setting of monotone algebras, making it more powerful
and more generally applicable. We will see more about that in Section 3.5.

To achieve such a generic formalization we found the module mechanism of Coq
especially useful. It allows for mass abstraction by encapsulating a number of decla-
rations and definitions in modules. Such modules can be parameterized by means of
functors, that is functions from modules to modules. For instance we formalized mono-
tone algebras in Coq as a functor, which takes as an argument the following structure
describing a weakly monotone Σ-algebra instance:

Module Type MonotoneAlgebraType.

Parameter Sig : Signature.

Parameter I : interpretation Sig.

Notation A := (domain I).

Parameters (succ succeq : relation A).

So a monotone algebra structure consists of: a signature Sig, interpretation I for
all function symbols from this signature and two relations over the domain A of the
monotone algebra: succ and succeq. Moreover it contains the following requirements
on those components:

Parameter monotone_succeq : monotone I succeq.

Parameter succ_wf : WF succ.

Parameter succ_succeq_compat : absorb succ succeq.

So we demand that succeq is monotone (monotone succeq), succ is well-founded
(succ wf) and we also require the compatibility condition between succ and succeq
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(succ succeq compat); all the standard requirements of monotone algebras, as pre-
sented in Section 2.2. Note that typically succ and succeq will be orders, but this is
not required.

There is however one more thing that we need in order to be able to deal with
concrete examples. For an application of Theorem 2.5 we need to check for arbitrary
terms ` and r whether [`, α]>[r, α] for every α : V → A and similarly for &. Our first
approach was as follows:

Parameter succ_dec : rel_dec IR_succ.

Parameter succeq_dec : rel_dec IR_succeq.

IR succ and IR succeq are relations on terms obtained from succ and succeq by
requiring the respective relation to hold for an arbitrary instantiation of variables. Now
we require those lifted relations on terms to be decidable, that is we require a proof
that for two arbitrary elements the relation between them either holds or not. Such
decidability results proven in the constructive logic of Coq provide a decision procedure.
By making proofs transparent and hence allowing to reduce associated proof terms, one
effectively obtains an algorithm for checking whether two given terms can be oriented
with the given relation.

This approach however has one limitation: we require a decidability proof, so indeed
the relations in question must be decidable. This is the case for matrix interpretations
due to the characterization of Lemma 2.6 but it is not so for instance for non-linear
polynomial interpretations. Therefore to make our development more general the actual
requirements are as follows:

Parameters (succ’ : relation term) (succeq’ : relation term).

Parameter (succ’_sub : succ’ << IR_succ).

Parameter (succeq’_sub : succeq’ << IR_succeq).

Parameter succ’_dec : rel_dec succ’.

Parameter succeq’_dec : rel_dec succeq’.

End MonotoneAlgebraType.

So essentially we must provide two decidable relations succ’ and succeq’ that are
refinements of succ and succeq (<< being the CoLoR notation for the inclusion of
relations), respectively, and those relations are used in application of Theorem 2.5 to
check whether a rule can be (weakly) oriented. The fact that they are subsets of
succ and succeq ensures soundness of this approach. But there is no completeness
requirement allowing to use some heuristics in cases where the intended relations are
not decidable, such as in case of polynomial interpretations; see Section 3.5.

Given a monotone algebra instance, specified by means of a module described above
(MonotoneAlgebraType), we build a module with results about such a monotone algebra
and machinery for proving termination of concrete examples with its help as a functor:

Module MonotoneAlgebraResults (MA : MonotoneAlgebraType).
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To give a feeling of how theorems from Section 2.2 are stated in the theorem prover we
present the Coq equivalent of Theorem 2.5, part 1.

Lemma ma_relative_termination:

let S_gt := partition part_succ S in

let S_ge := partition part_succeq S in

let R_gt := partition part_succ R in

let R_ge := partition part_succeq R in

monotone I succ ->

snd R_ge = nil ->

snd S_ge = nil ->

WF (red_mod (snd S_gt) (snd R_gt)) ->

WF (red_mod S R).

Let us try to explain the components of this statement. To begin with partition P

l is a function that given a predicate P and a list l, splits this list into two parts and
returns them as a pair l1, l2, such that P holds for every element of the list l1 and
does not hold for every element of l2.

Now part succ and part succeq are predicates for the partition function, cor-
responding to the relations succ and succeq. We demand succ to be monotone,
monotone I succ. This is because in order to have one uniform module to deal with
all types of problems (termination, relative termination, relative-top termination) we do
not introduce extended weakly monotone algebras as a separate construct, but rather
postulate this additional monotonicity property of extended algebras where needed.
Now we require the second component of the pairs R ge and S ge to be empty, hence
all the rules of R and S must be weakly oriented. Finally this theorem states that we
can conclude WF (red mod S R) if, on top of all the other requirements that we men-
tioned, we can prove WF (red mod (snd S gt) (snd R gt)) so of the relative problem
consisting of the rules from S and R that could not be oriented strictly. Stating this
problem in such “operational” style allows us to easily apply it for concrete instances
of termination problems.

Our formalized proof of the theorem ma relative termination mentioned above
(corresponding to Theorem 2.5) is constructive and hence slightly differs from the proof
in [10]. It is based on the following lemma.

Lemma 3.2. Let→R,→S ,→R′,→S′ be binary relations for which→S∗ ·→R and (→R∪
→S)∗ · (→R′ ∪→S′) are well-founded. Then (→S ∪→S′)∗ · (→R ∪→R′) is well-founded.

When thinking in terms of infinite sequences this lemma can easily be proven by
truncating the initial part of such, supposedly, infinite sequences and observing that
the remaining part must be finite. Working in the constructive setting of Coq brings
a slightly different kind of reasoning, where the focus is on providing a relation that is
decreasing along the sequence and performing induction with respect to it.
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The MonotoneAlgebraResults module also contains tactics allowing to deal with
proving termination for concrete examples. This means that for using a monotone alge-
bra approach one only needs to provide a monotone algebra instance, a module of type
MonotoneAlgebraType, and as a result one obtains all the results and a full machinery
for proving termination. We will show in Section 3.4 how we did this for the monotone
algebra corresponding to the matrix interpretation method. We will also shortly ex-
plain in Section 3.5 how we did the same for the polynomial interpretations approach,
by using the existing CoLoR development of polynomial interpretations method and
expressing it in the framework of monotone algebras.

3.3 Matrices

To begin with, the sole fact that we had to formalize matrices may be surprising —
one would expect such a general notion to be readily available in a theorem prover.
But it is not present in the Coq standard library. Moreover we could find only one Coq
development where matrices were used: the contribution by Nicolas Magaud [17], where
he proves ring properties of square matrices. We decided not to use this formalization
for the reasons that we discuss at the end of this section.

To implement matrices we used a generic approach by allowing entries in the matri-
ces to be arbitrary elements from some semi-ring structure. For that firstly we expressed
semi-rings as a module type. Then we defined matrices as a functor taking as its argu-
ment such a semi-ring structure and as a result producing the structure of matrices of
arbitrary size with entries from the semi-ring domain.

Internally we represent matrices as vectors of vectors. Vectors are defined in the
standard library of Coq (Coq.Bool.BVector) as follows:

Variable A : Type.
Inductive vector : nat -> Type :=
| Vnil : vector 0
| Vcons : forall (a : A) (n : nat), vector n -> vector (S n).

So vector A n represents a vector of n elements of type A. Apart from this definition
the Coq standard library provides only few basic properties and operations on this type.
But on the other hand, building on that, the CoLoR project provides a rich set of results
about vectors that were further extended in the course of this development. Some of
these functions, which we will need later on in the presentation, are informally defined
in Figure 3 and their corresponding Coq types are presented in Figure 4.

Ability to reuse those results was our main motivation to represent matrices in the
following way:

Definition matrix (m n : nat) : matrix m n := vector (vector A n) m.

Then a number of operations on matrices was defined and some of its properties
proven. The library is by no means complete and contains little more than the results
needed for certification of matrix interpretations. The provided operations include:
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Vnth [a1; . . . an] i = ai

Vfold left f [a1; . . . an] b = f a1 (f . . . (f an b) . . .)

Vmap f [a1; . . . an] = [f a1; . . . f an]

Vmap2 f [a1; . . . an] [b1; . . . bn] = [f a1 b1; . . . f an bn]

Vforall2n P [a1; . . . an] [b1; . . . bn] = P a1 b1 ∧ . . . ∧ P an bn

Figure 3: Informal definitions of some basic functions operating on vectors.

Vnth : forall (A : Set) (n : nat),
vector A n -> forall i : nat, i < n -> A.

Vfold_left : forall (A B : Set) (f : B -> A -> B),
B -> forall (n : nat), vector A n -> B.

Vmap : forall (A B : Set) (f : A -> B),
forall n : nat, vector A n -> vector B n.

Vmap2 : forall (A B C : Set) (f : A -> B -> C),
forall n : nat, vector A n -> vector B n -> vector C n.

Vforall2n : forall (A : Set) (P : A -> A -> Prop),
forall n : nat, vector A n -> vector A n -> Prop.

Figure 4: Coq types of some basic functions operating on vectors.

matrix creation (given matrix size and a function providing values for all matrix entries),
several accessor functions to retrieve matrix elements, columns and rows, conversions
from vectors to 1-row and 1-column matrices and few standard matrix operations such
as transposition, addition and multiplication. To show how reusing results about vectors
substantially eased our task we present below the definition of multiplication.

First we need a few auxiliary functions on matrices. We begin with three accessor
functions: get row, get col and get elem to retrieve, respectively, the i’th row, the
j’th column and element at position (i, j) of a given matrix. 4

Definition get_row m n (M : matrix m n) i (ip : i < m) :=
Vnth M ip.

Definition get_col m n (M : matrix m n) j (ip : j < n) :=
Vmap (fun v => Vnth v ip) M.

Definition get_elem m n (M : matrix m n) i j (ip : i < m) (jp : j < n) :=
Vnth (get_row M ip) jp.

Note that those functions are partial as indexes i and j must be within the boundaries
of a matrix M. In Coq all functions are total and to deal with this we use additional

4Note that variables m, n, i and j below do not have type annotations as their types can be inferred
by Coq and hence can be omitted. In this case all those variables range over natural numbers as a
careful reader can easily check.
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arguments for those functions, the so-called domain predicates, that ensure that the
arguments are within the domain of the function.

Next we introduce the mat build function, which constructs a m × n matrix from
two natural numbers m and n, and a function f which, given a matrix position, returns
the value of a matrix element to be placed at that position. Again, this function f is
partial as it is defined only for coordinates i, j such that 0 ≤ i < m and 0 ≤ j < n.5

Defining function mat build explicitly is not an easy task due to the presence of domain
predicates and dependent types. Therefore we use Coq proving capabilities to prove
existence of such a function using its specification.6

Definition mat_build_spec m n (gen : forall i j, i < m -> j < n -> A),
{ M : matrix m n | forall i j (ip : i < m) (jp : j < n),
get_elem M ip jp = gen i j ip jp }.

Proof.
...

Defined.

and we extract the computational content from the above constructive proof to obtain
the required function:

Definition mat_build m n gen : matrix m n :=
proj1_sig (mat_build_spec gen).

Having all those auxiliary, general purpose functions on vectors and matrices defin-
ing matrix multiplication is fairly straightforward. First we introduce a dot product of
two vectors as:

Definition dot_product (n : nat) (l r : vector A n) : vector A n :=
Vfold_left Aplus A0 (Vmap2 Amult l r).

where A0 is the zero element of the domain (the additive identity of the semi-ring) and
Aplus is the addition. Then multiplication becomes:

Definition mat_mult m n p (L : matrix m n) (R : matrix n p) :=
mat_build (fun i j ip jp => dot_product (get_row L ip) (get_col R jp)).

As can be seen from this example abstracting away natural operations on vectors
and matrices and then using them for more complex constructs has big advantages.
Not only the definitions became significantly simpler but also reasoning about them,
as one can first prove properties about such auxiliary functions and then use them to
reason about more complex constructs.

In fact this was the main reason against using the development by Nicolas Magaud,
mentioned at the beginning of this section. It provides nice results by proving the ring

5We index matrix rows and columns starting from 0.
6Please note that we are using the Coq mechanism of implicit arguments to skip arguments that can

be inferred by Coq due to type dependencies. So for the function get elem M i j ip jp arguments
i and j can be inferred from the domain predicates ip and jp. For the reader aware of that, it also
improves readability as the definitions get shorter and do not contain redundant information.
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properties for square matrices. But the fact that it is stand-alone and does not provide
this kind of separation as mentioned above, made it difficult to use in our setting. For
instance a function for matrix addition is realized there by a relatively complex Fixpoint
construct (which is 16 lines long), whereas we can simply write

Definition vec_plus n (L R : vector A n) := Vmap2 Aplus L R.
Definition mat_plus m n (L R : matrix m n) := Vmap2 (@vec_plus n) L R.

and use all CoLoR properties of Vmap2 to prove properties of matrix addition. Simi-
larly other operations could be expressed easily and concisely by using operations and
properties of vectors available in CoLoR.

3.4 Matrix Interpretations

Now we will explain how monotone algebras are instantiated for the matrix interpre-
tation method, so we will develop the Coq counter-part of the theory described in
Section 2.3. First we introduce a data type representing a matrix interpretation of a
function symbol:

Variables (Sig : Signature) (f : symbol Sig) (dim : nat).

Record matrixInt (argCnt : nat) : Type := mkMatrixInt {

const : vector nat dim;

args : vector (matrix dim dim) argCnt

}.

So matrixInt n is a type of matrix interpretation for a function symbol of arity n,
defined as a record with two fields: const being a constant vector of the interpretation
of size dim and args representing coefficients for the arguments with a dim×dim matrix
per argument. Comparing with equation 1, const represents the ~f vector and args the
list of matrices F1, · · · , Fn.

Now we enclose all the parameters required for the application of Theorem 2.5
specialized to the monotone algebra for matrix interpretations, in a module type:

Module Type TMatrixInt.

Parameter sig : Signature.

Parameter dim : nat.

Parameter dim_pos : dim > 0.

Parameter trsInt : forall f : sig, matrixInt dim (arity f).

End TMatrixInt.

So we take a signature sig, dimension for matrices (dim; d in Section 2.3), a proof
that dimension is positive (dim pos) and interpretations for all function symbols of the
signature, with respective arities (trsInt).

Given those parameters we construct the respective monotone algebra. We begin
by constructing the evaluation function mi eval, which corresponds to computation of
Equation 1, given values of vectors ~v1, . . . , ~vn.
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Notation vec := (vector A dim).

Definition mi_eval n (mi : matrixInt dim n)

(v : vector vec n) : vec :=

add_vectors (Vmap2 mat_times_vec (args mi) v) [+] const mi.

Note that add vectors takes a list of vectors of equal size as an argument and returns
their sum as output; mat times vec M v computes the vector resulting from multipli-
cation of a matrix M by a vector v (both of appropriate sizes); and finally [+] is a
notation we introduce for addition of vectors.

Now we can begin monotone algebra construction.

Module MatrixIntAlgebra <: MonotoneAlgebraType.

Definition Sig := sig.

Definition I := @mkInterpretation sig vec (@zero_vector dim)

(fun f => mi_eval (trsInt f)).

Definition succeq := @vec_ge dim.

Definition succ v1 v2 := v1 >=v v2 /\ vec_at0 v1 > vec_at0 v2.

...

End MatrixIntAlgebra.

where mkInterpretation sig A A0 Aeval is a CoLoR function to build a function
interpretation type given an interpretation domain A, a zero element of the domain A0

and the evaluation function Aeval. vec at0 is a function returning the 0 coordinate of
a vector and vec ge is a greater equal relation on vectors defined by demanding vector
elements to be pointwise related by ≥ relation, defined simply as:

Definition vec_ge := Vforall2n ge.

What remains to be done is to prove that those definitions meets the monotone
algebra requirements. We cannot present this part of the development in great detail
here due to space considerations. The most difficult property was actually decidability
of algebra relations > and & lifted to terms. This corresponds to proving the ‘if’
parts of Theorem 2.6. Note that we did not prove the ‘only-if’ parts of that theorem,
which state completeness of this characterization and which are not needed for the
correctness of the approach. Proving the ‘if’ part required performing linearization of
the computation of a matrix interpretation, such as in equation 2. Then we proved that
evaluating this linearized expression leads to the same result as simply evaluating this
expression without any simplifications beforehand. Performing those two steps in Coq
requires some effort.

3.5 Polynomial Interpretations and Monotone Algebras

Polynomial interpretations were contributed to CoLoR by Sébastien Hinderer [13]. Com-
bining his contribution with out development we could easily construct a monotone
algebra instance corresponding to polynomial interpretations method. This has the
following advantages:
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• Before, it was not possible to prove termination step-wise. So in order to prove
termination one had to find a polynomial interpretation such that all the rules
could be oriented strictly and then one could conclude termination of the whole
system. The approach of monotone algebras on the other hand allows to orient
strictly only some rules and, provided that the remaining rules can be weakly
oriented, those strict rules can be removed and one may continue with proving
termination for this simpler system. This brings a big improvement in the prov-
ing power of the method and corresponds to the way it is used in automatic
termination provers.

• The development of polynomial interpretations of Sébastien Hinderer supported
only termination, SN(R). The setting of monotone algebras supports also rel-
ative termination, SN(R/S), and relative-top termination, SN(Rtop/S). So by
expressing polynomial interpretations as an instance of the monotone algebra ap-
proach we obtained the support for treating those more general problems with
polynomial interpretations absolutely for free.

Instantiating the monotone algebra results to polynomial interpretations was straight-
forward. We achieved it in mere 117 sparse lines of code and with very minor modi-
fications to the development of Sébastien Hinderer (essentially to get the relation for
orienting rules weakly).

4 Evaluation

We already mentioned the termination competition [3, 7], the battlefield for termination
provers, in Section 3.1. This year, for the first time, a new category of certified termi-
nation has been introduced, showing the recognition for the importance of certification
efforts. Indeed ensuring reliability of constantly evolving and more and more complex
tools is difficult and every year we observe some disqualifications due to erroneous proofs
produced by some of the tools.

In this new category every claim made by a termination prover must be backed
up by a full formal proof expressed and checked by some well established theorem
prover (and not only by a textual informal description of such a proof, as is the case in
the standard category). This makes the results reliable with the highest standards of
reliability available in verification.

The combination of the CoLoR project (with Rainbow) and the termination prover
TPA [15], developed by the first author, was the winning entry in this newly introduced
category of the Termination Competition in 2007. It achieved the score of 354, meaning
that for 354 out of the total 975 TRSs used in the competition, TPA could find a
termination proof and using CoLoR correctness of this proof could be verified by Coq.

Due to the fact that this category was introduced only this year there were only two
other participants. The termination prover CiME [9] using the Coccinelle [8] library to
certify termination results, again using Coq theorem prover. It got the second place
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with a score of 317. The third participating tool was the entry of TTT[14] using CoLoR
as the certifying back-end with a score of 289.

For comparison we would like to mention that in the standard category, which is
run on the same set of problems, the scores ranged from 330 to 723. This shows that
many proofs are beyond reach of the certification at the moment, which is completely
understandable. But it also shows that for a substantial part of proofs we can not
only produce them with termination tools but also fully automatically ensure their
correctness, including difficult problems for which establishing termination results by
human is very hard. We believe this is a big step forward and a very promising future
for the termination results.

Considering evaluation of our contribution, every single termination proof produced
by TPA in the competition was using matrix interpretations at some point. This is not
so surprising given the fact that CoLoR, at the moment, is supporting only two basic
orders: polynomial and matrix interpretations. But this also shows that for winning
the competition, our contribution was crucial.

When it comes to performance finding a proof took TPA on average 2.0 sec and
certification required 2.6 sec per system. There were however a few systems were the
certification time was substantially longer. During the competition verification for 4
problems reached the 5 minutes timeout. We tried to certify termination proofs for
those systems on our own, without a time limit. Three of those systems required 4, 11
and 27 minutes to complete on an Intelr XeonTM 2.8GHz PC. For the forth problem,
TRCSR/PALINDROME complete noand FR.trs, Coq stopped with “out of memory” error
after 86 minutes of computation. It is worth noting that for TPDB standards this is
a large system with 58 function symbols and 76 rules. The proof of its termination
required 57 successive applications of Theorem 2.5 and the generated file with Coq
script was 8240 lines long and 408Kb in size, which is one third of the whole CoLoR
library. Currently we are busy experimenting and trying to improve the performance of
the verification routines but, although we did achieve some speedups, so far they were
of rather minor effect.

5 Conclusions

We presented our contribution to the CoLoR project — a Coq formalization of ma-
trix interpretations method for proving termination of rewriting. This allows us to
fully automatically certify termination of non-trivial rewrite systems, such as the Zan-
tema/z086.srs from the TPDB [4]:

a(a(x))→ c(b(x)), b(b(x))→ c(a(x)), c(c(x))→ b(a(x))

Until recently termination of this innocent looking system was an open problem [2,
Problem 104] and now not only it can be automatically proven terminating by termi-
nation tools but also that results can be warranted by Coq.
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It is worth noting that typically Coq is used as a proof assistant, where the formal-
ization is built by a human interacting with the system. It is not so in our application
as the Coq script formalizing termination of a given system is generated fully auto-
matically by Rainbow from a proof description produced by some termination prover;
again, automatically. However the proof assistance capabilities of Coq are crucial for
the development of CoLoR.

The natural way of continuing work on certification of termination is to formalize
further termination techniques. Although matrix interpretations provide a very power-
ful base ordering, they do not subsume other orders. Consider for instance the following
system:

f(s(x), a)→ f(x, f(s(x), b))

which can be easily proven terminating with lexicographic path order. By a simple
argument one can show that matrix interpretations are not applicable here. Even
more advantageous would be formalization of the dependency pair framework [12],
a modular, powerful approach to proving termination, employed by most, if not all,
successful modern termination provers. This is on-going work.
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