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Magnetic zigzag edges of graphene are considered as a basis for novel spintronics devices despite 
the fact th a t no true long-range magnetic order is possible in one dimension. We study the transverse 
and longitudinal fluctuations of magnetic moments at zigzag edges of graphene from first principles.
We find a high value for the spin wave stiffness D =  2100 meV Â2 and a spin-collinear domain wall 
creation energy Edw =  114 meV accompanied by low magnetic anisotropy. Above the crossover 
tem perature T* ~10 K the spin correlation length Ç oc T _1 limits the long-range magnetic order to 
~1  nm at 300 K while below Tx it grows exponentially w ith decreasing tem perature. We discuss 
possible ways of increasing the range of magnetic order and effects of edge roughness on it.
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G raphene, a two-dimensional form of carbon, has a t­
trac ted  considerable a tten tion  due to  its unique phys­
ical properties and poten tia l technological applications 
[1, 2]. The possibility of designing graphene-based m ag­
netic nanostructures is particu larly  intriguing and has 
been fuelled by the recent experim ental observations of 
m agnetism  in graphitic m aterials [3, 4]. A num ber of 
exceptional nanoscale spintronics devices built around 
the phenom enon of spin polarization localized a t one­
dim ensional (ID ) zigzag edges of graphene have been 
proposed [5, 6, 7, 8]. However, feasibility of such de­
vices is questioned by the fact th a t no tru e  long-range 
m agnetic ordering in ID  system s is possible a t finite tem ­
peratu res [9]. Nevertheless, nanom eter range spin corre­
lation lengths in certain  ID  system s have been achieved 
in practice [10]. Establishing the range of m agnetic or­
der a t graphene edges as well as the  underlying physical 
m echanisms is thus crucial for practical realization of the 
proposed spintronics devices.

In th is L etter we study  the m agnetic correlations at 
zigzag edges of graphene by investigating the transverse 
and longitudinal fluctuations of m agnetic m om ents from 
first principles. W hile the  transverse excitations (spin 
waves) are characterized by the  continuous ro ta tion  of the 
electron spin m om ents along the edge (Fig. la ) , the lon­
gitudinal fluctuations affect the spin correlation length 
only if an inversion of m agnetic m om ents resulting in ap­
pearance of a spin-collinear dom ain wall [11] takes place 
(Fig. lb ). The evaluated energies of these low-energy 
excitations m apped onto the classical H eisenberg/Ising 
models allow us to  estim ate the  spin correlation lengths 
a t different tem peratures. F inally  possible ways of in­
creasing the spin correlation length and the effects of edge 
roughness are discussed.

The first-principles calculations of the  m agnetic ex-

FIG. 1: (Color online) Schematic representation of the trans­
verse (a) and longitudinal (b) low-energy spin excitation at 
graphene zigzag edges. The magnetic moments of the out­
ermost edge atoms are shown by arrows. The direction of 
magnetic moments is represented by direction and color of 
the arrows while the m agnitude is illustrated through the ar­
row lengths and color intensities.

citations are perform ed on the density functional the­
ory (D FT) level using the Perdew -Burke-Ernzerhof 
exchange-correlation functional [12]. A non-collinear spin 
D FT  formalism [13, 14] im plem ented in the PWSCF plane 
wave pseudopotential code [15] in com bination w ith the 
u ltrasoft pseudopotentials [16] and a plane wave kinetic 
energy cutoff of 25 Ry is used to  study  spin wave modes. 
M uch larger supercells are required to  ob tain  converged 
results for the spin-collinear dom ain walls. These calcu­
lations are perform ed using the stan d ard  spin-polarized 
D FT  scheme im plem ented in the  SIESTA code [17] to ­
gether w ith a double-^ plus polarization basis set, an en­
ergy cutoff of 200 Ry and norm conserving pseudopoten­
tials [18]. Test calculations perform ed on lim ited size sys­
tem s verify th a t bo th  codes provide results in close agree­
m ent. The model system s considered are the hydrogen- 
te rm inated  periodic one-dimensional graphene nanorib­
bons of different w idths and supercell lengths relaxed in
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FIG. 2: (Color online) (a): Spin density isosurface plot for the 
collinear domain wall excitation at a zigzag edge of graphene. 
Spin populations m  (b) and spin-resolved projected density 
of states (c) for the outerm ost edge atoms. The projected 
density of states values for spin-up and spin-down electrons 
are indicated by the intensities of red and blue colors, respec­
tively. The edge atoms are numbered w ith n.

their ground s ta te  configurations.
The ground s ta te  electronic configurations of zigzag 

graphene nanoribbons is characterized by the ferrom ag­
netic arrangem ent of spins along the edges and antifer­
rom agnetic coupling of the spins a t the opposite edges 
[19]. To obtain  a spin-wave-excited s ta te  we perform  
constrained self-consistent calculations w ith a penalty  
functional te rm  [20] added to  the to ta l energy expression 
in order to  induce small non-collinear deviations of the 
m agnetization directions from the spin-collinear ground- 
s ta te  configuration. The to ta l energy energy difference 
is m apped onto the quadratic  spin-wave dispersion re­
lation, E(q)  =  nq2, w ith  n  =  320 meV Â2. At a zigzag 
edge of graphene the m agnetic m om ents of the  outerm ost 
edge atom s m edge =  0.28 ¿te while the  m agnetic m om ents 
localized on the atom s belonging to  the  A  and B  sub lat­
tices w ithin a single edge un it cell are /??a  =  0.43 ¿ t e  and 
/??b =  —0.13 ¿te, respectively. This yields a to ta l m ag­
netic m om ent of m  =  to a  +  m& = 0 .3 0  ¿te per un it cell of 
zigzag edge. The obtained value of m  agrees w ith the  fact 
th a t in zigzag graphene nanoribbons a flat band  develops 
in one-third of the ID  Brillouin zone (27t/3 <  \ kaz \ < n; 
a~ =  2.46 Â is the un it cell length) when electron-electron 
in teractions are not taken into account [21]. The spin- 
wave stiffness constant D  =  2ft/m  tu rn s  out to  be 2100 
meV À2. A ctually  th is is a very high value which is 
about one order of m agnitude higher th an  the stiffness 
constant of bcc iron [22, 23], a three-dim ensional solid 
w ith much larger m agnetic m om ent of 2.2 ¿te per atom.

Thus, our results confirm the expectation of higher spin 
stiffness values in m agnetic m aterials based on sp  ele­
m ents com pared to  d  elem ent m aterials [24].

In sp-electron itinerant-electron m agnets, S toner-type 
longitudinal spin fluctuations m ay be essential [24]. To 
estim ate their characteristic  energy we study  collinear 
dom ain walls a t the graphene zigzag edge. We have per­
formed the calculations on a large graphene nanoribbon 
supercells (up to  « 1 .8  nm  wide and 6 nm  long). In or­
der to  converge the self-consistent calculations to  the  do­
m ain wall solution we provide an appropria te  initial m ag­
netizations of edge atom s w ith two equidistant dom ain 
walls per unit cell for m aintaining periodicity along the 
nanoribbon direction. Figure 2a illustrates the  d istribu­
tion  of the spin density  a t such a dom ain wall located in 
the center of the  edge fragm ent shown. The spin popu­
lations of the outerm ost edge atom s (Fig. 2b) show th a t 
the dom ain wall is practically  localized w ithin two unit 
cells (0.5 nm) and the m agnetization exhibits weak os­
cillations close to  the kink. The spin-resolved projected 
density  of sta tes for the  outerm ost edge atom s (Fig. 2c) 
shows an avoided crossing p a tte rn  w ith band  gap dim in­
ishing (but not closing) a t the  dom ain wall. From  the 
to ta l energy difference we find a collinear dom ain wall 
creation energy i?dw =  114 meV per edge.

In order to  determ ine the m agnetic correlation param ­
eters in the  presence of spin wave fluctuations we recall 
the nearest-neighbor ID  classical Heisenberg model

H ~ a Y . SjSi+ i -  d, ^ 2  -s'i -Si+ 1 -  mH ^ 2 s (1)

where S; is the m agnetic m om ent un it vector a t site i and 
H is the external m agnetic field vector. The Heisenberg 
coupling a =  2ft/a? =  105 meV corresponds to  the  value 
of ft calculated above from first principles. The axial 
anisotropy param eter d  is expected to  be small due to  in­
trinsically  weak spin-orbit coupling in graphene [25, 26]. 
We ob tain  an-order-of-m agnitude estim ate for the m ag­
netic anisotropy d / a  =  10~4 using the spin-orbit coupling 
streng th  of ~0.01 meV [25] predicted for graphene with 
weak corrugations observed experim entally [27, 28]. The 
estim ated d / a  agrees w ith the  recent m easurem ents of 
2D m agnetic correlations in irrad iated  graphite [29] and 
w ith the electron spin resonance ^-tensor anisotropies in 
molecular graphitic  radicals [30, 31].

The spin correlation length £“ (a  =  x,  y,  z ) de­
fines the  decay law of the spin correlation function 
(s“ s“+ ;) =  (s“ s“ )exp(—//£ “ ), i.e. the  range of m agnetic 
order. F irst, we evaluate the  zero-field spin correlation 
length due to  the transverse spin fluctuations as a func­
tion  of tem pera tu re  (see Fig. 3) [32]. Above the crossover 
tem pera tu re  Tx = \/ad, «  10 K [33] the small anisotropy 
term  of the model H am iltonian has practically  no in­
fluence and the system  exhibits behavior typical for an 
isotropic Heisengerg model [36] w ith «  300 /T  [nm] 
and ( s f s f )  =  1/3. Below Tx the anisotropy term  s ta rts
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FIG. 3: Correlation lengths of m agnetization vector compo­
nents orthogonal (£z) and parallel (Çæ, £y) to  the graphene 
plane as a function of tem perature T  for weakly anisotropic 
(d/a  =  1CP4) and isotropic (d / a  =  0) Heisenberg models.

playing an im portan t role and the solution exhibits a 
characteristic  for ID  Ising model exponential divergence 
of oc e x p (i/8 a d / k T )  and (sfsf)  =  1 for T  -> 0 K. 
The spin correlation length a t zero field in the pres­
ence of spin-collinear dom ain walls is the one for ID  
Ising model, «  exp ( E dw/ k T ) .  Since E dw >  a/8 ad  
[33] the  overall spin correlation length £ in the pres­
ence of b o th  transverse and longitudinal fluctuations, 

~  isw1 is defined predom inantly  by the 
spin wave disorder.

At room  tem peratu re  (^300  K) the spin correlation 
length £ =  3.7 un it cells (~1 nm ). This result implies 
th a t a spintronics device based on m agnetic graphene 
edges can be operated  a t room  tem peratu re  only if its di­
mensions do no t exceed several spin correlation lengths,
i.e. several nanom eters. The device dimensions can be 
scaled linearly by lowering the operation  tem peratu re  
and below Tx th is size could be extended beyond the mi­
crom eter scale. These estim ations m ay first look ra ther 
disappointing, bu t nevertheless they  are com parable to  
one of the m ost appealing example of ID  m agnetism: 
m onoatom ic Co chains on P t  substra te  characterized by 
a ferrom agnetic order range of « 4  nm  a t 45 K [10]. In 
th is d-element system  ferrom agnetic order stem s m ainly 
from the anom alously high m agnetic anisotropy which is 
absent in graphene nanostructures. However, the lack of 
anisotropy is partia lly  com pensated by the high spin stiff­
ness which results in considerable spin correlation lengths 
even in the isotropic regime above Tx. W hile the spin 
stiffness constan t can hard ly  be increased we suggest sev­
eral ways of increasing the m agnetic anisotropy (and thus 
Tx) by strengthening the spin-orbit coupling by increas­
ing curvature, applying external electric field or coupling 
graphene to  a substra te  [25]. A lternatively  the m ag­
netic anisotropies can be increased by chemical function- 
alization of graphene edges w ith heavy elem ent functional 
groups (e.g. iodine) coupled to  the spin-polarized edges
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FIG. 4: Ideal zigzag edge of graphene (a) and various types of 
edge defects: missing or rehybridized edge atom  (b), Stone- 
Wales defect (c), edge step (d), and 120° edge tu rn . The 
domain wall creation energies at these structures are shown.

sta tes via the exchange polarization  [34, 35]. Augm ent­
ing the crossover tem pera tu re  above 300 K would result 
in a significant increase of to  the length scales of the 
present-day sem iconductor technology.

Thus, the graphene edges a t finite tem peratu res are 
not actually  ferrom agnetic bu t superparam agnetic ones. 
For the isotropic Heisenberg model the  enhancem ent fac­
to r for the susceptibility in com parison w ith one of non­
in teracting  spins reads [36]

X_ _  1 + u 2a
Xo ~  1 - u ~  T  U

where u  =  co th ( a / T )  — T / a  and the approxim ation being 
valid a t a ^  T .  At room  tem peratu re  the susceptibility 
enhancem ent factor x/xo ~  8.

A lthough we found a relatively high value of E dw, the 
localized dom ain walls m ay become energetically more 
favorable a t edge defects, and therefore we discuss cre­
ation  of localized dom ain walls a t different types of topo­
logical im perfections a t zigzag graphene edge classified 
as shown in Fig. 4. The sim plest case of edge roughness 
is a boundary  atom  missing from the 7r-conjugation net­
work (Fig. 4b). Such sp 2-vacancy form ation m ay result 
from the rehybridization of an outerm ost atom  into the 
sp3 sta te  due to  chemical m odification or because of the 
creation of a tru e  vacancy. The dom ain wall creation en­
ergy a t an sp3-hybridized atom  is found to  be 24 meV,
i.e. factor of 5 smaller th an  E dw =  114 meV for the  ideal 
zigzag edge. Such decrease will have a d ram atic  effect 
on the long-range m agnetic order a t room  tem peratu re  
since E dw is lowered to  k T  (« 2 5  meV a t 300 K). An 
even more d ram atic  decrease to  4 meV is observed a t the 
Stone-W ales defect (Fig. 4c), a topological s truc tu re  ob­
ta ined  by the 90°-rotation of a single C —C bond which 
locally breaks the b ipartite  lattice sym m etry. The pres­
ence of an edge step  (Fig. 4d) has a less severe effect and 
reduces E dw to  62 meV. A com pletely different s ituation  
is observed for a 120°-turn of the  zigzag edge (Fig. 4e). 
The antiferrom agnetic arrangem ent of spins a t the  edge 
segments separated  by the 120°-turn is by 22 meV more 
stable th an  the ferrom agnetic arrangem ent. This is due
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to the change of bipartite sublattice to which belong 
the outermost edge atoms and due to the antiferromag­
netic coupling between the magnetic moments in different 
sublattices [37, 38]. Similar behavior has recently been 
pointed out for the edges of hexagonal graphene nanois­
lands [39]. Domain walls are thus naturally pinned to 
such turns, although the energy difference is close to k T  
at room tem perature. A “spin-inverter” device design 
based on such a 120°-turn topology can be anticipated. 
Simple chemical modifications which do not perturb the 
7r conjugation network at graphene edges show almost no 
effect on E dw. For an ideal zigzag edge term inated with 
electronegative fluorine atoms we find E dw =  117 meV 
very close to the value for the hydrogen-terminated edge 
(114 meV).

To conclude, we have studied from first principles the 
energetics of transverse and longitudinal spin fluctuations 
at the one-dimensional magnetic zigzag edge of graphene. 
The transverse fluctuations characterized by the high 
spin stiffness constant are the main limiting factor of the 
spin correlation length which is found to be ~ 1  nm at 
room tem perature. For the tem peratures above ~10 K 
the spin correlation length is inversely proportional to the 
tem perature due to the low magnetic anisotropy of the 
system. Below the crossover tem perature the spin cor­
relation length grows exponentially with decreasing tem­
perature. We propose several approaches for extending 
the range of magnetic order by increasing the magnetic 
anisotropy in this carbon-based system and discuss the 
effect of edge roughness on the spin correlation length.

We wish to thank L. Helm for his critical reading of 
the manuscript. M. I. K. acknowledges financial sup­
port from FOM (the Netherlands). The computational 
resources were provided by the Swiss National Super com­
puting Center (CSCS).
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