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Abstract

A correct histological diagnosis, careful staging and detection of tumour response to treatment are all crucial in the
management of sarcomas. Imaging is important in all of these stages. Sarcomas have distinct biological and treatment-
related features posing challenges for imaging. For example, size measurements may not adequately reflect response
rates. Techniques which can measure tissue function rather than generate merely anatomical data such as positron
emission tomography (PET) are rapidly gaining interest. We discuss the importance of imaging in different stages
of patient management, emphasising the unique characteristics of sarcoma. Furthermore, we discuss the potential of
PET for the various indications, focussing on therapy evaluation.
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Introduction

Sarcomas are a rare and heterogeneous group of
mesenchymal-derived tumours with distinct molecular
features. They are subclassified into bone and soft-
tissue sarcoma (STS). The latter group consists of over
50 subtypes including gastro-intestinal stromal tumour
(GIST)[1]. In STS, treatment consists of surgery and in
selected subtypes or stages of disease also of radiotherapy
and/or chemotherapy. In bone sarcoma, such as Ewing�s
sarcoma and osteosarcoma, treatment always includes
(neo-)adjuvant chemotherapy. Targeting underlying
molecular events may provide spectacular benefits, as
demonstrated in GIST and dermatofibrosarcoma protu-
berans (DFSP)[2�5]. Prognosis depends on the extent
of the disease, requiring optimal staging, and the possi-
bility for radical resection of the primary tumour.

Prognosis drops dramatically once the sarcoma is metas-
tasised or worsens, in case of Ewing�s sarcoma and osteo-
sarcoma, if the histological response to neoadjuvant
chemotherapy is limited. Early, adequate therapy evalua-
tion prevents prolonged exposure to toxic yet ultimately
unsuccessful treatment, which in some cases may be sub-
stituted by an alternative, more effective one. An ideal
evaluation method should provide information in an objec-
tive and reproducible fashion. At present, especially since
the introduction of targeted therapies, the call for func-
tional rather than mere anatomical imaging is increasing.

Diagnosis, grading and staging

Histological classification is a crucial first step in sus-
pected sarcomas since tumour type and grade have
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major impact on prognosis and management. The heter-
ogeneity of sarcomas poses the risk for sampling error
from a single biopsy while repeated biopsy risks tumour
spread. Currently, imaging of the primary tumour is
mainly performed by magnetic resonance imaging
(MRI) or computed tomography (CT), depending
on the tumour localisation. Both modalities provide
important anatomical information and have also been
used to assess tissue composition[6�8] to select the
biopsy site most likely to have the highest grade present.
Furthermore, local tissue reaction and invasion may give
an impression of the malignancy grade, which helps
avoiding false reassurance in non-representative biopsy.
Staging is also crucial, as the mainstay of therapy is rad-
ical surgery. In peripheral sarcomas limb-sparing surgery
is largely facilitated as MRI enables assessment of the
anatomical extension of the tumour, as well as its rela-
tionship with the neurovascular bundle and other adja-
cent structures. Still, large and disabling surgical
interventions are no exception. This is acceptable in the
setting of localised sarcoma but not in metastasised dis-
ease. CT is the imaging technique of choice to detect
pulmonary metastasis and [99mTc]polyphosphate bone
scintigraphy is useful to stage sarcomas allowing whole-
body screening for bone metastases[9] and � in bone-
forming sarcomas � soft-tissue metastases[10]. More
recently, whole-body MRI was found more sensitive
than bone scanning in the detection of osseous metasta-
ses from Ewing�s sarcoma[11]. The basis for these find-
ings is the intramedullary accumulation of tumour cells
replacing the normal marrow before reactive osteoblastic
response occurs. MRI directly reveals neoplastic bone
marrow infiltrates[11].

Response evaluation and restaging

Available imaging modalities for therapy evaluation are
essentially the same as in staging and grading[12,13] and
the choice is guided by tumour or metastasis localisation.
Bone scintigraphy, however, is not sufficiently specific
for assessment of response[14,15]. Much work has been
done to standardise the interpretation of radiological
evaluation methods on the basis of size. This resulted
in the World Health Organization (WHO) criteria[16�18],
later replaced by the simplified European Organisation
for Research and Treatment of Cancer Response
Evaluation Criteria in Solid Tumours (EORTC/
RECIST)[19�21]. These criteria have imperfections, both
in general and specifically for sarcoma. First, they were
originally based on the change in tumour size which
could reliably be detected by palpation[22]. Therefore
marked size reduction is required before a tumour is con-
sidered responsive to therapy. Although much smaller
changes can now be detected, these RECIST criteria
are still adhered to because of a supposed relationship
between tumour size reduction and clinical benefit. The
inter- and intratumoural heterogeneity and the rareness of

sarcomas have prevented a reliable scientific foundation
of the relationship between size and effects, although
there are several reasons to question whether such a rela-
tionship exists.

First, sarcomas differ from other tumours as they
contain large volumes of non-malignant cells and other
stromal materials, which maintain a certain size even
if all malignant components disappear[23�25]. Also, with
the disappearance of tumour cells, rather than shrinkage,
replacement with fibrous materials or calcification can be
seen[26]. In bone sarcomas, surrounding bone has limited
capacity to return to its normal size (Fig. 2)[12]. In GIST,
progression under treatment may present as a nodule
within a cystic mass, instead of mass enlargement[27].
Finally, the development of targeted tyrosine kinase inhi-
bitors and antibodies[28] needs consideration. These treat-
ments are cytostatic rather than cytoreductive and hence
cause consolidation rather than reduction of tumour size.

In summary, the large changes in size required by
WHO and RECIST criteria may be too stringent for
the detection of progression or response in sarcoma.
Furthermore, size reduction takes time. Thus, identifica-
tion of tumour response � or lack thereof � may require
several weeks or months. This time delay causes unnec-
essary costs and toxicity and may prevent a timely
switch to alternative treatments. Moreover, the absence
of progression of disease is increasingly considered as a
relevant endpoint for clinical trials, replacing response
rate[5,29].

To overcome the possibility that size does not repre-
sent tumour viability, histological evaluation can be per-
formed. Histological evaluation for therapy-related
changes, including the percentage of necrosis, provides
adequate insight into the response to previous therapy
and correlates well with prognosis. Limitations are that
standardised approaches are only available for osteosar-
coma and Ewing�s sarcoma[30]. Heterogeneity of the
tumour might again hamper a representative and reliable
histological assessment based on small biopsies.

New developments

Improvements in anatomical imaging
and interpretation

The above-mentioned restrictions of anatomical imaging
during therapy are not only challenging for existing
criteria, they are also demanding for the development
of new ones. The appearance of a nodule within a
mass has been proposed as a sign of recurrent
GIST[27]. Choi and colleagues have shown that a 10%
tumour size decrease or 15% tumour density decrease as
determined by measuring the attenuation coefficient are
sensitive and specific methods for assessing targeted ther-
apy response in patients with GIST (the so-called �Choi
criteria�) (Fig. 1)[31,32]. Dynamic contrast-enhanced MRI
(DCE-MRI) is a technique sensitive to alterations in

S62 Mini-symposium: Imaging techniques for assessing treatment response



vascular permeability and blood flow. It has been
reported as a sensitive imaging method for the evaluation
of response to chemotherapy and it might help in differ-
entiating viable tumour from vascularised granulation
tissue[13,33]. It is, however, not widely used in clinical
practice, as it is labour intensive and technically challen-
ging[34]. These approaches incorporate an increasingly
popular concept of imaging; i.e. it is not (only) size
that matters, but more so the underlying tissue function,
cell biology, physiology and biochemistry.

Positron emission tomography

Positron emission tomography (PET) is a technique with
large potential because of its ability to image biological
characteristics based on the differential utilisation of var-
ious substrates by cancer cells and normal tissue.
Numerous PET radiopharmaceuticals are available, but
the most widely used agent is [18F]fluorodeoxyglucose
(FDG). This lead position is in part due to its approval

as a tracer by the US Food and Drug Administration
(FDA) for routine clinical use[35], its early development,
and wide availability[36]. There is a clear rationale for
its use. Mammalian cells depend on glucose as a
major source of energy and of carbons. Glucose is trans-
ported into the cell via facilitative transporters (GLUT)
present in all cell types. Many GLUT isoforms exist with
tissue-specific expression, subject to environmental con-
trol (e.g. hypoxia)[37]. After membrane transport, glucose
is phosphorylated by hexokinases to glucose 6-phosphate
and is further metabolised in the glycolysis pathway.
Increased glucose utilisation of malignant cells has
been recognised for decades. Like glucose, FDG is trans-
ported into the cell cytoplasm where it is phosphorylated
and becomes trapped inside the cell as dephosporylation
hardly occurs.

Another well-characterised radiopharmaceutical is
[18F]fluorodeoxythymidine (FLT)[38�40]. FLT is a pyri-
midine analog that utilises the salvage pathway of DNA
synthesis. Much like FDG, it is taken up through

Figure 1 Patient with liver metastasis from gastric GIST. Top, PET; middle, contrast-enhanced diagnostic CT; bottom,
fused images. After 18 days of imatinib there was a complete metabolic response on PET, while CT showed stable
disease according to RECIST (�15%) and partial response according to Choi et al.[32].
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facilitated transport and diffusion and phosphorylated by
a cell cycle-regulated enzyme, thymidine kinase 1 (TK1)
and then becomes trapped in the cell. TK1 activity is
higher in malignant cells than in normal cells; therefore,
the uptake of FLT is a reflection of proliferative activ-
ity[41]. Recent data indicate that the sensitivity to detect
most tumour types is lower than that of FDG PET.
However, specificity could be higher since FLT does
not accumulate in inflammatory cells[42], although the
latter is not undisputed[43].

PET scans can be evaluated both qualitatively
(visual assessment) or (semi)quantitatively[44].
Qualitative assessment is more practical for clinical use,
but obviously less objective. Semiquantitative measure-
ments of maximum standardised uptake value (SUV),
average SUV and tumour-to-background ratio (TBR)
have all been used. In recent years a gradual replacement
of PET scans with hybrid PET-CT scanners has occurred.

PET in the various stages of
imaging in sarcoma

Grading and staging

In theory, increased FDG uptake represents a metaboli-
cally active site[45�47]. Thus, PET scanning could
aid biopsy guidance and should discriminate between
sarcoma and benign conditions. However, non-malignant
processes like inflammation and areas with variable phys-
iologic FDG turnover such as brown fat and muscle may
interfere with image analysis[48]. The inherently limited
spatial resolution of PET compared to anatomical

imaging has been largely solved by using hybrid PET-
CT technology. Still, sensitivity for pulmonary and intra-
hepatic lesions may be relatively limited[49�51].

To date, only one meta-analysis has been per-
formed[51], indicating that FDG-PET can indeed discrim-
inate between sarcomas and benign tumours and low
and high grade sarcomas, although the methodological
quality of the studies included was generally poor. Thus,
there is an urgent need for further evidence to support
the routine clinical use of FDG-PET for diagnosing and
staging sarcomas[52].

Treatment evaluation

The same principles that make FDG PET an interesting
new option in the diagnostic phase apply to evaluation
during treatment. Particularly, PET allows quantification
of tumour viability or proliferation. When listing
and evaluating studies that have investigated the value
of PET or PET/CT for therapy evaluation in sarcoma,
it becomes clear that there is no generally accepted def-
inition for a metabolic response in sarcoma on FDG-
PET. Preliminary criteria have been published by the
EORTC/RECIST group[53] and the National Cancer
Institute[54], but the imaging protocols, measures of activ-
ity and definitions of response have varied and study size
has been modest.

Bone sarcomas

Schulte et al.[55], Franzius et al.[56] and Nair et al.[57]

used TBR to determine metabolic response to neoadju-
vant chemotherapy in a total of 64 patients. In the first

Figure 2 (a) A patient with Ewing�s sarcoma of the left femur. Top, PET; middle, low-dose CT; bottom, fused images.
After two cycles of polychemotherapy PET showed (good) partial metabolic response while MRI showed stable
disease according to RECIST (�16%). The resection sample showed only microscopic residue of viable tumour
(4 90% necrosis) and therefore correlated well with PET. (b) Axial contrast-enhanced spin echo T1-weighted MRI
image with fat-saturation acquired on the same day.
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two studies, the decrease of FDG uptake after chemo-
therapy correlated well with histological response. Nair
et al. found that tumour necrosis was accurately pre-
dicted on PET scan in 15/16 patients by visual assess-
ment, 14/15 patients by TBR value on presurgery scans,
and 7/15 patients using percent change of TBR on serial
scans. Hawkins et al. measured changes in the tumour
SUVmax in 69 patients and found a correlation with both
post-chemotherapy SUVmax and post- to pre-treatment
SUVmax ratio with histological response[58,59]. Iagaru
implemented the RECIST criteria for PET analysis in a
heterogeneous group of bone and soft tissue sarcoma
patients in a protocol including both PET and PET/CT
imaging. The pathological degree of necrosis after
chemotherapy was concordant with PET in 57.1% of
cases; the observed discrepancies were attributed to
chemotherapy-induced inflammation. Inflammation
can be induced by radiotherapy and certain cytotoxic
agents[60�62] sometimes presenting as the so-called
fibrous pseudocapsule with inflammatory tissue that
can form around the tumour[63]. Uptake in the latter
has been attributed to passive accumulation of FDG as
a result of altered cell membrane permeability in the ini-
tial phase of irreversible cell death[64].

For the detection of recurrent disease, Arush et al.[65]

and Gerth et al.[66] recently studied a total of 72 patients
including many Ewing�s sarcoma cases. The first study
confirms the high accuracy of FDG-PET/CT in the diag-
nosis of local relapse of sarcoma, while it failed in the
detection of metastases in three patients. Gerth et al.
compared PET and PET/CT and found that the sensitivi-
ty, specificity, and accuracy of single-modality PET were
71%, 95%, and 88%, respectively; the corresponding
values for the hybrid PET/CT technique were 87%,
97%, and 94% (P50.0001). PET/CT thus was signifi-
cantly more accurate than PET alone for the detection
and localisation of lesions.

Soft-tissue sarcomas

In this group of tumours, PET has been used to evaluate
not only chemotherapy effects, but also the effect of iso-
lated limb perfusion (ILP), a technique with the possibil-
ity of local high-dosed therapy to facilitate limb-sparing
surgery. For ILP, Nieweg and colleagues first reported a
case of liposarcoma in which PET suggested complete
response which was later confirmed by histological exam-
ination[67]. In larger groups of STS patients, it was shown
by Van Ginkel et al. that based on the pre-treatment
glucose consumption in soft-tissue sarcomas, one could
predict the probability of a patient achieving
complete response after ILP, although uptake in inflam-
matory tissue hampered the evaluation[68]. To overcome
this, PET with L-[11C]tyrosine was used by the same
group[69]. They were able to predict histological response
by post-treatment uptake rates and inflammatory tissue
did not interfere with viable tumour. More recently, a
study from this group investigated the possibilities of

FLT by PET/CT. Interestingly, uptake was correlated
with the mitotic index of the tumours (r¼ 0.82 and
P¼ 0.004 for SUVmax; r¼ 0.87 and P¼ 0.001 for
SUVmean). After HILP, the uptake of FLT decreased sig-
nificantly (P¼ 0.008 for SUVmax and P¼ 0.002 for
SUVmean). Tumours with initially high FLT uptake
showed a better response to HILP (r¼ 0.64,
P50.05)[41].

In the evaluation of chemotherapy, Jones et al.
described a homogeneously decreased FDG uptake
throughout the tumour in responsive cases. Again, despite
complete necrosis, persistent tumour FDG uptake was
observed in fibrous pseudocapsules[63]. Shields describes
two patients who underwent chemotherapy; in the
responding patient a decrease of FDG uptake of 40%
was seen while in the non-responding case uptake
increased by 69%. Change in [11C]thymidine incorpora-
tion was more marked in the responder but remained
stable in the non-responding case[70]. Changes in
tumour SUVmax predicted outcomes in 46 patients
with localised extremity STS by PET scanning in a
study by Schuetze et al.[36]. Not only was a change in
SUVmax 440% correlated with the amount of residual
viable tumour, also multivariate analysis found a correla-
tion between lack of response and increased risk of disease
recurrence, metastasis and death. Peng et al. confirmed
the association between permanent uptake and rapid
relapse versus decreased uptake and favourable response
in rhabdomyosarcoma[71], as did Kasper et al., by demon-
strating a significant difference in the progression-free
survival for patients with a decrease in the standardised
uptake value in comparison with patients with an
increased or stable SUV[72].

Hybrid PET/CT scanning has been performed in the
reports by Evilevitch et al. and Park et al.[35,73]. In the
Evilevitch study, FDG-PET was significantly more accu-
rate than size-based criteria (RECIST) at assessing
response to neoadjuvant therapy, correctly identifying
all of the responders and 71% of the non-responders
while only 25% of responding tumours were identified
by size-based criteria. Moreover, threshold values ranging
from 50% to 70% of baseline FDG uptake allowed assess-
ment of response, thereby limiting the effect of remaining
uptake in inflammatory lesions. Park et al. report that
PET or PET/CT was highly effective in discriminating
true recurrence in patients with suspected recurrence
and was highly sensitive in detecting recurrence in
asymptomatic patients.

Gastro-intestinal stromal tumours

The separate consideration of GIST from STS appears
rather artificial, but there are some distinct features to
FDG-PET in GIST. Comparability is better because the
same tumour under the same treatment regimen is stud-
ied and adherence to standardised response criteria[53]

has been rather strict. Also, directly from the first avail-
ability of imatinib for GIST treatment, it was shown that
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FDG-PET seems to predict response very early
(Fig. 1)[23,24,74] and therefore it has been incorporated
in a relatively large amount of study protocols, the larger
of which we have listed in Table 1. Overall results of
these studies have been that the main limitations are
the occasional lack of pre-treatment FDG avidity[31,75]

and the lower sensitivity for pulmonary and hepatic
lesions[76,77]. Still, all agree that PET scanning is a sen-
sitive and rapid indicator of response preceding size-
based response by weeks or months[23,74,76�79].
Furthermore, response on PET scans is closely related
to clinical symptom relief[74] and predicts clinical
outcome[32,75,79].

FDG-PET in GIST exceeds the role of a staging and re-
staging modality. Different mutations with different ther-
apeutic impact can exist synchronously in a patient[81].
Furthermore, a change in micro-environment can result
in replacement of tumour cells with drug-resistant
variant cells[27,82,83]. In this context, FDG-PET-evalua-
tion can be used to select only progressive lesions for
resection in patients with ongoing response of the
remainder of the metastases[84], an approach that is
still controversial versus the generally accepted surgical
approaches in oncology.

Conclusion

Sarcomas have unique properties which not only increase
demands on imaging but also pose specific problems.
In the phase of diagnosis and staging, anatomical ima-
ging techniques such as MRI for local tumour character-
isation and CT for detection of pulmonary metastasis
remain indispensable and reliable techniques. During
treatment, the limitations of these techniques and their
size-based evaluation in sarcoma become clearer.
Although studies on the value of PET are of limited
size and quality, PET is a promising modality especially
for treatment evaluation in sarcoma, providing a rapid
and reliable indication of response. The possibility to
non-invasively detect tumour progression has already

influenced clinical practice in GIST in a revolutionary
way, with clear impact on patient management. PET
scanning has inherent limitations which fortunately do
not entirely overlap with those of anatomical imaging.
Therefore, these techniques should be regarded as com-
plementary. The studies comparing PET versus PET/CT
underscore this statement. For future studies, the avail-
ability of objective criteria for response evaluation with
PET would be highly instrumental to implement PET in a
cost effective way for patient tailored sarcoma treatment.

References
[1] de Alava E. Molecular pathology in sarcomas. Clin Transl Oncol

2007; 9: 130�44.
[2] Wunder JS, Nielsen TO, Maki RG, O�Sullivan B, Alman BA.

Opportunities for improving the therapeutic ratio for patients
with sarcoma. Lancet Oncol 2007; 8: 513�24.

[3] Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and
safety of imatinib mesylate in advanced gastrointestinal stromal
tumors. N Engl J Med 2002; 347: 472�80.

[4] Verweij J, van Oosterom A, Blay JY, et al. Imatinib mesylate
(STI-571 Glivec, Gleevec) is an active agent for gastrointestinal
stromal tumours, but does not yield responses in other soft-tissue
sarcomas that are unselected for a molecular target. Results from
an EORTC Soft Tissue and Bone Sarcoma Group phase II study.
Eur J Cancer 2003; 39: 2006�11.

[5] Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in
gastrointestinal stromal tumours with high-dose imatinib: rando-
mised trial. Lancet 2004; 364: 1127�34.

[6] Alyas F, James SL, Davies AM, Saifuddin A. The role of MR
imaging in the diagnostic characterisation of appendicular
bone tumours and tumour-like conditions. Eur Radiol 2007; 17:
2675�86.

[7] Vilanova JC, Woertler K, Narvaez JA, et al. Soft-tissue tumors
update: MR imaging features according to the WHO classifica-
tion. Eur Radiol 2007; 17: 125�38.

[8] Yu RS, Chen Y, Jiang B, Wang LH, Xu XF. Primary hepatic
sarcomas: CT findings. Eur Radiol 2008 [Epub ahead of print].

[9] Hicks RJ. Functional imaging techniques for evaluation of
sarcomas. Cancer Imaging 2005; 5: 58�65.

[10] Ghaed N, Thrall JH, Pinsky SM, Johnson MC. Detection of
extraosseous metastases from osteosarcoma with 99mTc-polypho-
sphate bone scanning. Radiology 1974; 112: 373�5.

[11] Daldrup-Link HE, Franzius C, Link TM, et al. Whole-body MR
imaging for detection of bone metastases in children and

Table 1 Studies evaluating PET in GIST therapy evaluation

First author n Histology Daily imatinib
dose (mg)

Modality for
comparison

First follow-up
PET

PET modality and
interpretation method

Van Oosterom[74] 17 GIST Various CT 8 days PET; EORTC
Demetri[23] 64 GIST 400/600 CT or MRI 24 hours PET; NS
Stroobants[80] 21 GIST/STS Various CT 8 days PET; EORTC
Gayed[78] 54 GIST NS CT 2 months PET; EORTC
Antoch[76] 20 GIST 400/600/800 �All information after

6 months�
1 month PET, PET/CT; EORTC

Jager[79] 16 GIST/STS NS CT, PFS 1 week PET; SUVmax decrease
Choi[31] 29 GIST NS CT; size and density 2 months PET; modified EORTC
Goldstein (abstract)[77] 18 GIST 400/800 CT, outcome Unknown PET; unknown
Goerres[75] 28 GIST 400/800 CT Median 19 days PET, PET/CT; EORTC
Choi[32] 109 GIST 400/800 PET 2 months CT, size and density;

SUVmax decrease

NS, not specified; PFS, progression-free survival; SUV, standardised uptake value, EORTC, according to the criteria published by Young et al.[53].

S66 Mini-symposium: Imaging techniques for assessing treatment response



young adults: comparison with skeletal scintigraphy and FDG
PET. AJR Am J Roentgenol 2001; 177: 229�36.

[12] Suzuki C, Jacobsson H, Hatschek T, et al. Radiologic measure-
ments of tumor response to treatment: practical approaches and
limitations. Radiographics 2008; 28: 329�44.

[13] van der Woude HJ, Bloem JL, Hogendoorn PC. Preoperative
evaluation and monitoring chemotherapy in patients with high-
grade osteogenic and Ewing�s sarcoma: review of current imaging
modalities. Skeletal Radiol 1998; 27: 57�71.

[14] Brisse H, Ollivier L, Edeline V, et al. Imaging of malignant
tumours of the long bones in children: monitoring response
to neoadjuvant chemotherapy and preoperative assessment.
Pediatr Radiol 2004; 34: 595�605.

[15] Bloem JL, Taminiau AH, Eulderink F, Hermans J, Pauwels EK.
Radiologic staging of primary bone sarcoma: MR imaging, scinti-
graphy, angiography, and CT correlated with pathologic examina-
tion. Radiology 1988; 169: 805�10.

[16] Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting
results of cancer treatment. Cancer 1981; 47: 207�14.

[17] Van Glabbeke M, van Oosterom AT, Steward W, Verweij J,
Mouridsen H. Selection of large and objectively measurable
target lesions in EORTC phase II trials: impact on recruitment
and response rate. EORTC Soft Tissue and Bone Sarcoma Group
(STBSG). Eur J Cancer 1993; 29A: 1943�7.

[18] Van Glabbeke M, van Oosterom AT, Oosterhuis JW, et al.
Prognostic factors for the outcome of chemotherapy in advanced
soft tissue sarcoma: an analysis of 2185 patients treated with
anthracycline-containing first-line regimens � a European
Organization for Research and Treatment of Cancer Soft Tissue
and Bone Sarcoma Group Study. J Clin Oncol 1999; 17: 150�7.

[19] Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to
evaluate the response to treatment in solid tumors. European
Organization for Research and Treatment of Cancer, National
Cancer Institute of the United States, National Cancer Institute
of Canada. J Natl Cancer Inst 2000; 92: 205�16.

[20] Therasse P, Le Cesne A, Van Glabbeke M, Verweij J, Judson I.
RECIST vs. WHO: prospective comparison of response criteria in
an EORTC phase II clinical trial investigating ET-743 in
advanced soft tissue sarcoma. Eur J Cancer 2005; 41: 1426�30.

[21] Therasse P, Eisenhauer EA, Verweij J. RECIST revisited: a review
of validation studies on tumour assessment. Eur J Cancer 2006;
42: 1031�9.

[22] Moertel CG, Hanley JA. The effect of measuring error on the
results of therapeutic trials in advanced cancer. Cancer 1976; 38:
388�94.

[23] Demetri GD, Von Mehren M., Blanke CD, et al. Efficacy and
safety of imatinib mesylate in advanced gastrointestinal stromal
tumors. N Engl J Med 2002; 347: 472�80.

[24] Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the
tyrosine kinase inhibitor STI571 in a patient with a metastatic
gastrointestinal stromal tumor. N Engl J Med 2001; 344: 1052�6.

[25] Einarsdottir H, Wejde J, Bauer HC. Pre-operative radiotherapy in
soft tissue tumors. Assessment of response by static post-contrast
MR imaging compared to histopathology. Acta Radiol 2001; 42:
1�5.

[26] van der Woude HJ, Bloem JL, Holscher HC, et al. Monitoring the
effect of chemotherapy in Ewing�s sarcoma of bone with MR
imaging. Skeletal Radiol 1994; 23: 493�500.

[27] Shankar S, van Sonnenberg E, Desai J, Dipiro PJ, Van Den
Abbeele A, Demetri GD. Gastrointestinal stromal tumor: new
nodule-within-a-mass pattern of recurrence after partial response
to imatinib mesylate. Radiology 2005; 235: 892�8.

[28] Shor AC, Agresta SV, D�Amato GZ, Sondak VK. Therapeutic
potential of directed tyrosine kinase inhibitor therapy in sarco-
mas. Cancer Control 2008; 15: 47�54.

[29] Van Glabbeke M, Verweij J, Judson I, Nielsen OS. Progression-
free rate as the principal end-point for phase II trials in soft-tissue
sarcomas. Eur J Cancer 2002; 38: 543�9.

[30] Coffin CM, Lowichik A, Zhou H. Treatment effects in pediatric
soft tissue and bone tumors: practical considerations for the
pathologist. Am J Clin Pathol 2005; 123: 75�90.

[31] Choi H, Charnsangavej C, de Castro FS, et al. CT evaluation of
the response of gastrointestinal stromal tumors after imatinib
mesylate treatment: a quantitative analysis correlated with FDG
PET findings. AJR Am J Roentgenol 2004; 183: 1619�28.

[32] Choi H, Charnsangavej C, Faria SC, et al. Correlation of com-
puted tomography and positron emission tomography in patients
with metastatic gastrointestinal stromal tumor treated at a single
institution with imatinib mesylate: proposal of new computed
tomography response criteria. J Clin Oncol 2007; 25: 1753�9.

[33] Dyke JP, Panicek DM, Healey JH, et al. Osteogenic and Ewing
sarcomas: estimation of necrotic fraction during induction che-
motherapy with dynamic contrast-enhanced MR imaging.
Radiology 2003; 228: 271�8.

[34] Mar WA, Taljanovic MS, Bagatell R, et al. Update on imaging
and treatment of Ewing sarcoma family tumors: what the radiol-
ogist needs to know. J Comput Assist Tomogr 2008; 32: 108�18.

[35] Park JY, Kim EN, Kim DY, et al. Role of PET or PET/CT in the
post-therapy surveillance of uterine sarcoma. Gynecol Oncol
2008; 109: 255�62.

[36] Schuetze SM, Rubin BP, Vernon C, et al. Use of positron emis-
sion tomography in localized extremity soft tissue sarcoma treated
with neoadjuvant chemotherapy. Cancer 2005; 103: 339�48.

[37] Medina RA, Owen GI. Glucose transporters: expression, regula-
tion and cancer. Biol Res 2002; 35: 9�26.

[38] Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ,
Elsinga PH. [18F]FLT-PET in oncology: current status and oppor-
tunities. Eur J Nucl Med Mol Imaging 2004; 31: 1659�72.

[39] Cobben DC, Elsinga PH, Hoekstra HJ, et al. Is 18F-30 -fluoro-30 -
deoxy-L-thymidine useful for the staging and restaging of non-
small cell lung cancer? J Nucl Med 2004; 45: 1677�82.

[40] Cobben DC, van der Laan BF, Maas B, et al. 18F-FLT PET for
visualization of laryngeal cancer: comparison with 18F-FDG PET.
J Nucl Med 2004; 45: 226�31.

[41] Been LB, Suurmeijer AJ, Elsinga PH, Jager PL, van Ginkel RJ,
Hoekstra HJ. 18F-fluorodeoxythymidine PET for evaluating the
response to hyperthermic isolated limb perfusion for locally
advanced soft-tissue sarcomas. J Nucl Med 2007; 48: 367�72.

[42] van Waarde A, Cobben DC, Suurmeijer AJ, et al. Selectivity of
18F-FLT and 18F-FDG for differentiating tumor from inflamma-
tion in a rodent model. J Nucl Med 2004; 45: 695�700.

[43] Dimitrakopoulou-Strauss A, Strauss LG. The role of 18F-FLT in
cancer imaging: does it really reflect proliferation? Eur J Nucl
Med Mol Imaging 2008; 35: 523�6.

[44] Aoki J, Endo K, Watanabe H, et al. FDG-PET for evaluating
musculoskeletal tumors: a review. J Orthop Sci 2003; 8: 435�41.

[45] Folpe AL, Lyles RH, Sprouse JT, Conrad III EU, Eary JF. (F-18)
fluorodeoxyglucose positron emission tomography as a predictor
of pathologic grade and other prognostic variables in bone and
soft tissue sarcoma. Clin Cancer Res 2000; 6: 1279�87.

[46] Ioannidis JP, Lau J. 18F-FDG PET for the diagnosis and grading
of soft-tissue sarcoma: a meta-analysis. J Nucl Med 2003; 44:
717�24.

[47] Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y,
Hasegawa T. Glut-1 expression and enhanced glucose metabolism
are associated with tumour grade in bone and soft tissue sarco-
mas: a prospective evaluation by [18F]fluorodeoxyglucose posi-
tron emission tomography. Eur J Nucl Med Mol Imaging 2006;
33: 683�91.

[48] Rosenbaum SJ, Stergar H, Antoch G, Veit P, Bockisch A, Kuhl H.
Staging and follow-up of gastrointestinal tumors with PET/CT.
Abdom Imaging 2006; 31: 25�35.

[49] Franzius C, Daldrup-Link HE, Wagner-Bohn A, et al. FDG-PET
for detection of recurrences from malignant primary bone tumors:
comparison with conventional imaging. Ann Oncol 2002; 13:
157�60.

Tuesday 7 October 2008 S67



[50] Gould MK, Maclean CC, Kuschner WG, Rydzak CE,
Owens DK. Accuracy of positron emission tomography for diag-
nosis of pulmonary nodules and mass lesions: a meta-analysis.
JAMA 2001; 285: 914�24.

[51] Bastiaannet E, Groen H, Jager PL, et al. The value of FDG-PET
in the detection, grading and response to therapy of soft tissue
and bone sarcomas; a systematic review and meta-analysis.
Cancer Treat Rev 2004; 30: 83�101.

[52] Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations
on the use of 18F-FDG PET in oncology. J Nucl Med 2008; 49:
480�508.

[53] Young H, Baum R, Cremerius U, et al. Measurement of clinical
and subclinical tumour response using [18F]-fluorodeoxyglucose
and positron emission tomography: review and 1999 EORTC
recommendations. European Organization for Research and
Treatment of Cancer (EORTC) PET Study Group. Eur J
Cancer 1999; 35: 1773�82.

[54] Shankar LK, Hoffman JM, Bacharach S, et al. Consensus
recommendations for the use of 18F-FDG PET as an indicator
of therapeutic response in patients in National Cancer Institute
Trials. J Nucl Med 2006; 47: 1059�66.

[55] Schulte M, Brecht-Krauss D, Werner M, et al. Evaluation of
neoadjuvant therapy response of osteogenic sarcoma using
FDG PET. J Nucl Med 1999; 40: 1637�43.

[56] Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O.
Evaluation of chemotherapy response in primary bone tumors
with F-18 FDG positron emission tomography compared with
histologically assessed tumor necrosis. Clin Nucl Med 2000; 25:
874�81.

[57] Nair N, Ali A, Green AA, et al. Response of osteosarcoma
to chemotherapy. Evaluation with F-18 FDG-PET scans. Clin
Positron Imaging 2000; 3: 79�83.

[58] Hawkins DS, Rajendran JG, Conrad III EU, Bruckner JD,
Eary JF. Evaluation of chemotherapy response in pediatric
bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission
tomography. Cancer 2002; 94: 3277�84.

[59] Hawkins DS, Schuetze SM, Butrynski JE, et al.
[18F]Fluorodeoxyglucose positron emission tomography predicts
outcome for Ewing sarcoma family of tumors. J Clin Oncol 2005;
23: 8828�34.

[60] Iagaru A, Masamed R, Chawla SP, Menendez LR, Fedenko A,
Conti PS. F-18 FDG PET and PET/CT evaluation of response to
chemotherapy in bone and soft tissue sarcomas. Clin Nucl Med
2008; 33: 8�13.

[61] Issels RD, Meier TH, Muller E, Multhoff G, Wilmanns W.
Ifosfamide induced stress response in human lymphocytes. Mol
Aspects Med 1993; 14: 281�6.

[62] Huang TL, Liu RS, Chen TH, Chen WY, Hsu HC, Hsu YC.
Comparison between F-18-FDG positron emission tomography
and histology for the assessment of tumor necrosis rates in
primary osteosarcoma. J Chin Med Assoc 2006; 69: 372�6.

[63] Jones DN, McCowage GB, Sostman HD, et al. Monitoring of
neoadjuvant therapy response of soft-tissue and musculoskeletal
sarcoma using fluorine-18-FDG PET. J Nucl Med 1996; 37:
1438�44.

[64] Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N.
Active and passive mechanisms of [fluorine-18] fluorodeoxyglu-
cose uptake by proliferating and prenecrotic cancer cells in vivo: a
microautoradiographic study. J Nucl Med 1994; 35: 1067�75.

[65] Arush MW, Israel O, Postovsky S, et al. Positron emission
tomography/computed tomography with 18fluoro-deoxyglucose
in the detection of local recurrence and distant metastases of
pediatric sarcoma. Pediatr Blood Cancer 2007; 49: 901�5.

[66] Gerth HU, Juergens KU, Dirksen U, Gerss J, Schober O,
Franzius C. Significant benefit of multimodal imaging: PET/CT

compared with PET alone in staging and follow-up of patients
with Ewing tumors. J Nucl Med 2007; 48: 1932�9.

[67] Nieweg OE, Pruim J, Hoekstra HJ, et al. Positron emission tomo-
graphy with fluorine-18-fluorodeoxyglucose for the evaluation of
therapeutic isolated regional limb perfusion in a patient with soft-
tissue sarcoma. J Nucl Med 1994; 35: 90�2.

[68] van Ginkel RJ, Hoekstra HJ, Pruim J, et al. FDG-PET to evaluate
response to hyperthermic isolated limb perfusion for locally
advanced soft-tissue sarcoma. J Nucl Med 1996; 37: 984�90.

[69] van Ginkel RJ, Kole AC, Nieweg OE, et al. L-[1-11C]-tyrosine PET
to evaluate response to hyperthermic isolated limb perfusion for
locally advanced soft-tissue sarcoma and skin cancer. J Nucl Med
1999; 40: 262�7.

[70] Shields AF, Mankoff DA, Link JM, et al. Carbon-11-thymidine
and FDG to measure therapy response. J Nucl Med 1998; 39:
1757�62.

[71] Peng F, Rabkin G, Muzik O. Use of 2-deoxy-2-[F-18]-fluoro-D-
glucose positron emission tomography to monitor therapeutic
response by rhabdomyosarcoma in children: report of a retrospec-
tive case study. Clin Nucl Med 2006; 31: 394�7.

[72] Kasper B, Dietrich S, Dimitrakopoulou-Strauss A, et al. Early
prediction of therapy outcome in patients with high-risk soft
tissue sarcoma using positron emission tomography. Onkologie
2008; 31: 107�12.

[73] Evilevitch V, Weber WA, Tap WD, et al. Reduction of glucose
metabolic activity is more accurate than change in size at predict-
ing histopathologic response to neoadjuvant therapy in high-grade
soft-tissue sarcomas. Clin Cancer Res 2008; 14: 715�20.

[74] van Oosterom AT, Judson I, Verweij J, et al. Safety and efficacy of
imatinib (STI571) in metastatic gastrointestinal stromal tumours:
a phase I study. Lancet 2001; 358: 1421�3.

[75] Goerres GW, Stupp R, Barghouth G, et al. The value of PET, CT
and in-line PET/CT in patients with gastrointestinal stromal
tumours: long-term outcome of treatment with imatinib mesylate.
Eur J Nucl Med Mol Imaging 2005; 32: 153�62.

[76] Antoch G, Kanja J, Bauer S, et al. Comparison of PET, CT, and
dual-modality PET/CT imaging for monitoring of imatinib
(STI571) therapy in patients with gastrointestinal stromal
tumors. J Nucl Med 2004; 45: 357�65.

[77] Goldstein D, Tan BS, Rossleigh M, Haindl W, Walker B, Dixon J.
Gastrointestinal stromal tumours: correlation of F-FDG gamma
camera-based coincidence positron emission tomography with CT
for the assessment of treatment response � an AGITG study.
Oncology 2005; 69: 326�32.

[78] Gayed I, Vu T, Iyer R, et al. The role of 18F-FDG PET in staging
and early prediction of response to therapy of recurrent gastroin-
testinal stromal tumors. J Nucl Med 2004; 45: 17�21.

[79] Jager PL, Gietema JA, van der Graaf WT. Imatinib mesylate for
the treatment of gastrointestinal stromal tumours: best monitored
with FDG PET. Nucl Med Commun 2004; 25: 433�8.

[80] Stroobants S, Goeminne J, Seegers M, et al. 18FDG-positron
emission tomography for the early prediction of response in
advanced soft tissue sarcoma treated with imatinib mesylate
(Glivec). Eur J Cancer 2003; 39: 2012�20.

[81] Wardelmann E, Thomas N, Merkelbach-Bruse S, et al. Acquired
resistance to imatinib in gastrointestinal stromal tumours caused
by multiple KIT mutations. Lancet Oncol 2005; 6: 249�51.

[82] Rajagopalan H, Lengauer C. Aneuploidy and cancer. Nature
2004; 432: 338�41.

[83] Desai J, Shankar S, Heinrich MC, et al. Clonal evolution of resis-
tance to imatinib in patients with metastatic gastrointestinal stro-
mal tumors. Clin Cancer Res 2007; 13: 5398�405.

[84] Al-Batran SE, Hartmann JT, Heidel F, et al. Focal progression in
patients with gastrointestinal stromal tumors after initial response
to imatinib mesylate: a three-centre-based study of 38 patients.
Gastric Cancer 2007; 10: 145�52.

S68 Mini-symposium: Imaging techniques for assessing treatment response


